EP1565331A1 - Dispositif de maintien pour fixer un element electronique - Google Patents

Dispositif de maintien pour fixer un element electronique

Info

Publication number
EP1565331A1
EP1565331A1 EP03795824A EP03795824A EP1565331A1 EP 1565331 A1 EP1565331 A1 EP 1565331A1 EP 03795824 A EP03795824 A EP 03795824A EP 03795824 A EP03795824 A EP 03795824A EP 1565331 A1 EP1565331 A1 EP 1565331A1
Authority
EP
European Patent Office
Prior art keywords
holding device
damper foot
damper
foot
tire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03795824A
Other languages
German (de)
English (en)
Inventor
Anton Mangold
Josef Schorer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IQ-Mobil GmbH
IQ Mobil GmbH
Original Assignee
IQ-Mobil GmbH
IQ Mobil GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IQ-Mobil GmbH, IQ Mobil GmbH filed Critical IQ-Mobil GmbH
Publication of EP1565331A1 publication Critical patent/EP1565331A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2208Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems
    • H01Q1/2241Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems used in or for vehicle tyres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0491Constructional details of means for attaching the control device
    • B60C23/0493Constructional details of means for attaching the control device for attachment on the tyre
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/0061Accessories, details or auxiliary operations not otherwise provided for
    • B29D2030/0072Attaching fasteners to tyres, e.g. patches, in order to connect devices to tyres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/0061Accessories, details or auxiliary operations not otherwise provided for
    • B29D2030/0077Directly attaching monitoring devices to tyres before or after vulcanization, e.g. microchips

Definitions

  • the invention relates to a holding device for fastening an electronic component in a wheel containing a tire.
  • Such holding devices are used for fastening sensors, for example, which monitor the tire inflation pressure, the tire temperature or the tread depth, for example of vehicle or aircraft tires, or also of Transponders, which then transmit such identification variables for further evaluation on the on-board computer, are used.
  • Holding devices are known which attach corresponding electronic components within the wheel to the tire valve or to the rim.
  • the invention is therefore based on the object of providing a holding device for fastening an electronic component in a wheel, which enables a more precise recording of measured values on the tire.
  • the holding device for fastening an electronic component in a wheel containing a tire casing contains at least one device carrier for receiving and holding the electronic component and at least one damper foot which is permanently elastic and at least partially elastic connected to the tire casing.
  • the permanently elastic connection of the holding device to the tire casing enables an almost freely selectable fastening position on the tire casing.
  • Permanent elastic means a connection that enables a permanently secure, elastic, flexible connection over the period of use of the tire, even under the influence of strong vibrations and temperature fluctuations.
  • the tire casing is understood here to mean the tire parts that envelop the tire interior in the broadest sense. It can be attached to both the tread and the side wall of the tire. The attachment can be made directly to the inner surface of the tire casing or in a further inner layer of the tire casing e.g. the inner liner, a butyl layer that counteracts air diffusion through the tire.
  • the device carrier is used to hold and fasten the electronic components in the holding device.
  • the device carrier can be a bowl-shaped or U-shaped one Be component in which the electrical components are inserted and then fastened there.
  • a plate on which the electronic components can be attached would also be conceivable.
  • the damper foot serves to mechanically decouple the equipment carrier and the electrical components contained therein from the movements, deformations and vibrations of the tire casing. As a result, they are only transferred to the device carrier in absorbed or damped form. This leads to a significant reduction in the mechanical load on the electronic components, increases, among other things, their operational reliability and thus only enables the holding device to be fastened in the particularly strong e.g. areas of the tire that are stressed by flexing. This also results in a high degree of flexibility in the arrangement of the electrical components. This can e.g. Sensors or transponders can also be arranged in tires with emergency running properties. Arranging the holding device in the center directly under the tread of the tire could also avoid a directional constraint.
  • the damper foot can be elastic in some areas, e.g. as a rigid metal or plastic tube with a spring or a damper element, or else be elastic overall e.g. a tube made of rubber, caoutchouc or elastic plastic.
  • the shape of the damper foot can be e.g. be mushroom-shaped, square, cuboid, prismatic, conical or cylindrical.
  • the permanent securing of electronic components makes it possible to individualize the tire.
  • safety-related information about the tire can be entered into the electronic component, for example an RFID transponder.
  • Such parameters include, for example, the loading and speed indices, the type of tire or the date of manufacture and the serial number of the tire.
  • the rewritability is of particular interest, among other things, when retreading tires.
  • recordings can be made, for example, of the load history of the tire, which in turn allows conclusions to be drawn about the condition of the tire as a load spectrum diagram.
  • An advantageous development of the holding device provides that the damper foot consists of the same elastic material as the tire casing. This ensures that there are no different temperature expansions and corresponding constraints between the bracket and the tire, which negatively affect the durability of the permanently elastic connection.
  • the damper foot is at least partially hollow. So he can e.g. be tubular or have weight-reducing and damping-increasing cavities, chambers or honeycombs. A completely hollow design is also conceivable.
  • the damper foot can contain a heat-conducting material, at least in some areas.
  • the cavity of the very leek-shaped damper foot can be filled with such a heat-conducting mass.
  • the damper foot contains a flow-conducting material at least in some areas.
  • the damper foot contains an antenna. This could be integrated in the material of the damper foot, or it could be arranged in the cavity of the damper foot.
  • the damper foot is preferably tapered in its transverse extent, at least in some areas. Such a taper in some areas can be a notch, for example. This taper leads to an increased mechanical decoupling of the equipment carrier from the tire casing and its movements.
  • Another development of the invention consists in that the tire casing and the damper foot form a monolithic unit that is produced in a coherent manner. This means that the damper foot is made of the same material as the tire and is made in one piece with it. In this case, the damper foot would represent a kind of elevation of the tire casing on the inside.
  • the holding device can be glued to the tire casing. This can e.g. by gluing with an adhesive or by a cold or hot vulcanization process. This would make it possible to retrofit the holding device according to the invention on the tire.
  • the equipment carrier is advantageously made of a metal. This could e.g. Be aluminum or steel. An embodiment is also conceivable and also advantageous, in which the device carrier is made of a plastic, such as PVC exists.
  • the device carrier can be attached to the damper foot by gluing or vulcanization.
  • the equipment carrier is attached to the damper foot. Under the latter there is flexible connection e.g. to understand about clips or snap locks. Subsequent changes can be made to the electronic component or to the device carrier in that the device carrier can then be attached and removed.
  • This allows e.g. a mass production of tires that are all already equipped with a damper foot. Such tires would only be marginally more expensive to manufacture, but would, depending on the customer's wishes, e.g. also allow retrofitting of the tire with an electronic component. This would also allow defective electrical components to be replaced without having to replace the entire tire. This would also reduce the logistical effort in the manufacture of the tires.
  • the damper foot and the equipment carrier form a monolithic unit which is produced in a coherent manner.
  • the equipment carrier is made of the same material as the damper foot and is made in one piece with it.
  • the device carrier would represent a kind of expansion, for example with a receiving surface or bulge of the damper foot.
  • Another embodiment of the holding device provides that the device carrier is attached to the tire casing by at least one cross member with at least one damper foot. This makes it possible to arrange the device carrier not directly above but also, for example, laterally from the center of gravity of the damper foot, thus increasing the mechanical decoupling of the holding device, among other things.
  • a bridge-like embodiment in which the cross member connects at least two damper feet and the equipment carrier sits on the cross member is also advantageous.
  • Such a cross member could, for example, be made of a plastic or metal rail or consist of the same material as the damper foot.
  • the electronic components to be held are preferably firmly connected to the device carrier. This can also be done by gluing or vulcanizing on the device carrier.
  • a capacitive or inductive coupling for connecting two electronic components is provided in the damper foot.
  • Figure 1 shows a section through a tire in which a holding device for attaching electronic components is attached to the tread.
  • Fig. 2 is an enlarged cross-sectional view of the holding device shown in Fig. 1;
  • FIG. 3 shows the side view AA of the holding device shown in FIG. 2;
  • Fig. 4 is a plan view of the holding device shown in Fig. 1, 2, 3;
  • FIG. 5 shows a section through a tire in which a holding device for fastening electronic components is attached to the side wall of the tire and in which the device carrier is fastened laterally on a cross member;
  • Fig. 6 is an enlarged cross-sectional view of the holding device shown in Fig. 5;
  • Fig. 7 is a side view B-B of the holding device shown in Fig. 6;
  • Fig. 8 is a plan view of the holding device shown in Fig. 5, 6, 7;
  • FIG. 9 shows a section through a tire in which a holding device for fastening electronic components is attached to the side wall of the tire and in which the device carrier is held laterally by two cross-members loaded with damper feet;
  • Fig. 10 is a side view of the holding device shown in Fig. 9;
  • FIG. 11 is a top view of the holding device shown in FIG. 10.
  • a tire 1 shows a section through a tire 1 which has a side wall 3 and a tread 2.
  • the holding device 4.1 shown in FIG. 1 contains a single damper foot 7 and an equipment carrier 5.
  • An electronic component 6 is fastened on the equipment carrier 5.
  • the damper foot 7 is a in this embodiment rotationally symmetrical shaped and tapering along its longitudinal axis 9.
  • the damper foot 7 is permanently elastic connected to the tread 2 and the device carrier 5.
  • the device carrier 5 is U-shaped and can consist, for example, of a metal or a plastic material.
  • FIG. 4 shows a top view of the holding device 4.1 shown in FIGS. 2 and 3.
  • the damper foot 7 has a circular cylindrical cross section.
  • the thickness of the damper foot 7 is greatest in the region of the fastening of the damper foot to the tread, smallest in the region of the center of the damper foot and increases again towards the region of fastening the device carrier 5.
  • the damper foot has as large a connection area as possible in the area of the fastening with the tire casing, here the inside of the tread 2, and the device carrier 5.
  • the greatest possible connection force between damper foot 7 and tire 1 or device carrier 5 is obtained.
  • the taper in the center area in turn produces a particularly good mechanical decoupling from the vibrations and movements of the tire 1.
  • FIG 5 shows a section through a tire 1, in which a holding device for fastening electronic components according to a second exemplary embodiment is shown.
  • the holding device 4.2 is attached to the side wall 3 of the tire 1.
  • FIG. 6 shows an enlarged cross-sectional view of the holding device 4.2 shown in FIG. 5.
  • An electronic component 6 is inserted into the device carrier 5 from below.
  • the damper foot 7 has a widened fastening surface in the area of the tire side wall 3 and tapers to the cross member 8, as can be seen in FIG. 7.
  • the equipment carrier 5 is laterally attached to the cross member 8.
  • the cross member 8 is in turn permanently attached to the damper foot 7.
  • the connection between the damper foot 7 and the tire wall 3 is also permanently elastic.
  • the electronic component 6 is fastened on the side of the device carrier 5 facing the tire wall 3.
  • FIG. 9 shows a section through a tire 1.
  • a holding device according to a third exemplary embodiment for fastening electronic components in a tire 1 is shown.
  • the device carrier 5 is held here by two laterally attached cross members 8.
  • a damper foot 7 is attached at the two lateral ends of the cross member 8 .
  • the damper feet 7 are in turn permanently connected to the tire side wall 3.
  • different electrical components 6 can be fastened in the device carrier 5.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Measuring Fluid Pressure (AREA)
  • Tires In General (AREA)

Abstract

L'invention concerne un dispositif de maintien destiné à fixer un élément électronique dans une roue. Le dispositif de maintien présente au moins un support pour appareils (5) destiné à recevoir et à maintenir des éléments (6) électroniques et au moins un pied amortisseur (7) partiellement élastique, relié de manière continuellement flexible au bandage pneumatique (1). De ce fait, ledit pied amortisseur (7) agit comme amortisseur et il est conçu de sorte qu'il est élastique et effilé le long de son axe longitudinal. Le pied amortisseur (7) peut être fixé au support d'appareils (5) et au bandage pneumatique (1), par exemple par collage ou par vulcanisation. Le pied amortisseur (7) est, dans d'autres modes de réalisation, produit d'une seule pièce avec le support d'appareils et le bandage pneumatique, dans un matériau pneumatique. De manière avantageuse, ledit pied amortisseur (7) est également conducteur d'énergie et thermoconducteur et contient un couplage capacitif ou inductif destiné à connecter deux éléments (6) électroniques ou une antenne.
EP03795824A 2002-11-26 2003-11-17 Dispositif de maintien pour fixer un element electronique Withdrawn EP1565331A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10255138 2002-11-26
DE10255138A DE10255138A1 (de) 2002-11-26 2002-11-26 Haltevorrichtung zur Befestigung eines elektronischen Bauteils
PCT/EP2003/012864 WO2004048132A1 (fr) 2002-11-26 2003-11-17 Dispositif de maintien pour fixer un element electronique

Publications (1)

Publication Number Publication Date
EP1565331A1 true EP1565331A1 (fr) 2005-08-24

Family

ID=32318693

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03795824A Withdrawn EP1565331A1 (fr) 2002-11-26 2003-11-17 Dispositif de maintien pour fixer un element electronique

Country Status (5)

Country Link
EP (1) EP1565331A1 (fr)
JP (1) JP2006507495A (fr)
AU (1) AU2003298119A1 (fr)
DE (1) DE10255138A1 (fr)
WO (1) WO2004048132A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101460320B (zh) * 2006-04-26 2011-01-26 倍耐力轮胎股份公司 具有电子单元的轮胎和将该电子单元安装到轮胎中的方法

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7186308B2 (en) 2003-10-09 2007-03-06 Michelin Recherche Et Technique S.A. System and method for providing tire electronics mounting patches
DE10357467B4 (de) * 2003-10-31 2008-05-29 Pav Card Gmbh Anordnung zum drahtlosen Identifizieren sowie zur logistischen Verfolgung des Lebens- und Einsatzzyklus von Reifen
US20050126668A1 (en) * 2003-12-16 2005-06-16 Pierre Fornerod Post patch for mounting devices inside tires
US7353720B2 (en) * 2004-07-09 2008-04-08 Michelin Recherche Et Technique, S.A. Bridge patch for electromechanical transducer elements in tire assemblies
EP1809491A4 (fr) * 2004-11-12 2008-09-24 Michelin Soc Tech Correctif de montage pour monter une structure rigide sur un pneu
JP4599150B2 (ja) * 2004-12-14 2010-12-15 住友ゴム工業株式会社 電子部品の収納具を具える空気入りタイヤ
JP4732788B2 (ja) * 2005-04-26 2011-07-27 株式会社ブリヂストン 保護部材、電子式モニター装置及び空気入りタイヤ
DE102005023597A1 (de) * 2005-05-18 2006-11-23 Continental Aktiengesellschaft Fahrzeugreifen
DE102005024258B4 (de) * 2005-05-27 2013-01-31 Continental Reifen Deutschland Gmbh Anordnung zum Befestigen eines Elektronikbauteils oder einer Batterie an der Innenseite eines Fahrzeugluftreifens
DE102005027998B4 (de) * 2005-06-17 2012-10-25 Continental Reifen Deutschland Gmbh Fahrzeugreifen
JP4901148B2 (ja) * 2005-07-15 2012-03-21 株式会社ブリヂストン 電子部品取付用台座及び台座付タイヤ
JP2007024696A (ja) * 2005-07-15 2007-02-01 Bridgestone Corp 電子部品取付用台座及び台座付タイヤ
DE102005051136A1 (de) * 2005-10-26 2007-05-03 Leopold Kostal Gmbh & Co. Kg Reifendruck-Sensormodul für einen Kraftfahrzeugreifen
WO2007049093A1 (fr) * 2005-10-28 2007-05-03 Pirelli Tyre S.P.A. Pneu comprenant une unite electronique, et procede permettant de monter l'unite electronique dans le pneu
JP4778786B2 (ja) * 2005-12-12 2011-09-21 株式会社ブリヂストン 電子装置取付構造、及び空気入りタイヤ
FR2894519B1 (fr) * 2005-12-13 2010-02-12 Michelin Soc Tech Emplatre pour fixer un systeme electronique sur un pneumatique
US7770444B2 (en) 2005-12-13 2010-08-10 Michelin Recherche Et Technique S.A. Patch for fixing an electronic system to a tire
JP4980621B2 (ja) * 2006-01-06 2012-07-18 株式会社ブリヂストン 取付パッチ構造及び空気入りタイヤ
DE102007007016B4 (de) * 2006-02-08 2016-01-14 Continental Teves Ag & Co. Ohg Reifenmodul
DE102007009154A1 (de) * 2007-02-24 2008-08-28 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Bauteilhalterung
FR2922487B1 (fr) * 2007-10-23 2009-12-11 Michelin Soc Tech Organe formant support pour un dispositif et pneumatique comprenant un tel organe
FR2922488B1 (fr) * 2007-10-23 2009-12-11 Michelin Soc Tech Organe formant support pour un dispositif et pneumatique comportant un tel organe
FR2922486B1 (fr) 2007-10-23 2009-12-11 Michelin Soc Tech Ensemble d'un pneumatique et d'un organe souple
FR2936184B1 (fr) 2008-09-24 2010-10-15 Michelin Soc Tech Organe de support a courbure continue.
US8430142B2 (en) 2009-02-25 2013-04-30 The Goodyear Tire & Rubber Company Environmentally resistant assembly containing an electronic device for use in a tire
CN103619616B (zh) 2011-07-01 2015-11-25 株式会社普利司通 安装结构
JP6092531B2 (ja) * 2011-07-19 2017-03-08 株式会社ブリヂストン 取付構造体
ITMI20120090A1 (it) 2012-01-26 2013-07-27 Pirelli Metodo per installare un dispositivo di monitoraggio in un pneumatico per ruote di veicoli
EP3031632B1 (fr) 2014-12-11 2017-06-21 AGCO International GmbH Dispositif de déformation du pneu de véhicule
FR3029832B1 (fr) * 2014-12-15 2017-10-20 Michelin & Cie Procede de pose de support pour module electronique de pneumatique
US10336144B2 (en) 2014-12-30 2019-07-02 Bridgestone Americas Tire Operations, Llc Tire electronics securing structures
CN105180575B (zh) * 2015-08-20 2017-10-27 湖北美的电冰箱有限公司 一种抽屉组件及设有该抽屉组件的冰箱
JP6783204B2 (ja) * 2017-08-31 2020-11-11 太平洋工業株式会社 端末ホルダー及びタイヤ状態検出装置
JP6981821B2 (ja) * 2017-09-06 2021-12-17 株式会社ブリヂストン タイヤ情報取得装置及びタイヤ
EP3707017B1 (fr) * 2017-11-08 2023-07-19 Compagnie Générale des Etablissements Michelin Ensemble electronique avec patch pour pneumatique
US11938762B2 (en) * 2020-08-19 2024-03-26 The Goodyear Tire & Rubber Company Tire sensor attachment structure
US20240123771A1 (en) * 2021-02-25 2024-04-18 Sumitomo Rubber Industries, Ltd. Tire
JP2023035683A (ja) * 2021-09-01 2023-03-13 株式会社ブリヂストン タイヤセンサ及びタイヤ

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5971046A (en) * 1997-09-17 1999-10-26 Bridgestone/Firestone, Inc. Method and apparatus for bonding an active tag to a patch and a tire
US6030478A (en) * 1998-02-10 2000-02-29 Bridgestone/Firestone, Inc. Method and apparatus for removably inserting an electric tire tag into a tire
EP1144208B1 (fr) * 1998-08-03 2004-03-31 THE GOODYEAR TIRE & RUBBER COMPANY Montage de transpondeurs dans des pneumatiques
US6388567B1 (en) * 1999-04-29 2002-05-14 Bridgestone/Firestone North American Tire, Llc Combination monitoring device and patch for a pneumatic tire and method of installing the same
US6255940B1 (en) * 1999-10-01 2001-07-03 The Goodyear Tire & Rubber Company Apparatus for monitoring a condition of a tire
US6462650B1 (en) * 2000-08-11 2002-10-08 Raymond J. Balzer Tire module attachment mount
US7331367B2 (en) * 2000-03-31 2008-02-19 Bridgestone Firestone North American Tire, Llc Monitoring device and patch assembly
JP4397533B2 (ja) * 2001-01-15 2010-01-13 横浜ゴム株式会社 タイヤ用トランスポンダ
FR2823148A1 (fr) * 2001-04-09 2002-10-11 Michelin Soc Tech Dispositif de fixation d'un module electronique de surveillance sur un pneumatique

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004048132A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101460320B (zh) * 2006-04-26 2011-01-26 倍耐力轮胎股份公司 具有电子单元的轮胎和将该电子单元安装到轮胎中的方法

Also Published As

Publication number Publication date
AU2003298119A1 (en) 2004-06-18
DE10255138A1 (de) 2004-06-17
WO2004048132A1 (fr) 2004-06-10
JP2006507495A (ja) 2006-03-02

Similar Documents

Publication Publication Date Title
EP1565331A1 (fr) Dispositif de maintien pour fixer un element electronique
DE69821887T2 (de) Verfahren und Gerät zur Überwachung von Fahrzeugreifen
DE102007001279B4 (de) Fahrzeugluftreifen mit einem Elektronikmodul
DE102006043873B4 (de) Verfahren und Vorrichtung zur Halterung einer Reifendruck-Überwachungsvorrichtung
EP1707406B1 (fr) Support de fixation d'un composant électronique à un article en caoutchouc
EP2673147B1 (fr) Pneu pour véhicule, présentant un matériau d'étanchéité sur la face intérieure du pneu
DE68904259T2 (de) Elastischer reifen.
DE60106615T2 (de) Lose überwachungsvorrichtung für reifen
DE102011003707A1 (de) Fahrzeug-Luftreifen mit einer über eine Klebeverbindung an einer Innenseite des Reifens befestigten Sensoreinheit
DE102007030238B4 (de) Fahrzeugluftreifen mit einem Elektronikmodul
DE202019104976U1 (de) Fahrzeugrad mit Überwachungseinrichtung und Überwachungseinrichtung für Fahrzeugräder
WO2006131179A1 (fr) Pneu de vehicule
DE102005023974A1 (de) Fahrzeugreifen
EP1633580B1 (fr) Pneu avec transpondeur
DE102006010736A1 (de) Halterung zur Befestigung eines elektronischen Bauelements an einem Gummiartikel
EP1318032B1 (fr) Procédé de fabrication d'un pneu muni d'un transpondeur
DE102016221267A1 (de) Vollgummireifen und Verfahren zur Herstellung eines Vollgummireifens
DE102008045016A1 (de) Reifenmodul für Fahrzeugreifen
EP1688276A2 (fr) Bandage pneumatique
DE102017210149A1 (de) Sensormodul sowie Reifen mit einem derartigen Sensormodul
DE102017102155A1 (de) System zur Ermittlung wenigstens einer Fahrzeuginformation bei einem Fahrzeug
DE102004045262A1 (de) Fahrzeugreifen mit einer Karkasse und einem integrierten Transponder
DE102017214147A1 (de) Sensorvorrichtung für einen Reifen
DE10360780A1 (de) Vorrichtung zur Erfassung und Übertragung von den Zustand eines Luftreifens charakterisierenden Messsignalen
EP3581473B1 (fr) Bande d'élastomère permettant de transmettre une force d'entraînement dans des machines agricoles et son procédé de fabrication ainsi que système de surveillance de l'état d'une bande d'élastomère

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050616

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 20060228

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20071107