EP1563105B1 - Method for making an abrasion resistant steel plate and plate obtained - Google Patents

Method for making an abrasion resistant steel plate and plate obtained Download PDF

Info

Publication number
EP1563105B1
EP1563105B1 EP03786006A EP03786006A EP1563105B1 EP 1563105 B1 EP1563105 B1 EP 1563105B1 EP 03786006 A EP03786006 A EP 03786006A EP 03786006 A EP03786006 A EP 03786006A EP 1563105 B1 EP1563105 B1 EP 1563105B1
Authority
EP
European Patent Office
Prior art keywords
plate
optionally
steel
process according
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03786006A
Other languages
German (de)
French (fr)
Other versions
EP1563105A1 (en
Inventor
Jean Beguinot
Jean-Georges Brisson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Industeel Creusot
Original Assignee
Industeel Creusot
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Industeel Creusot filed Critical Industeel Creusot
Priority to SI200331112T priority Critical patent/SI1563105T1/en
Publication of EP1563105A1 publication Critical patent/EP1563105A1/en
Application granted granted Critical
Publication of EP1563105B1 publication Critical patent/EP1563105B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals

Definitions

  • the present invention relates to an abrasion-resistant steel and its method of manufacture.
  • High abrasion resistant steels with a hardness of about 600 Brinell are known. These steels contain from 0.4% to 0.6% of carbon and from 0.5% to 3% of at least one alloying element such as manganese, nickel, chromium and molybdenum and are soaked to have a completely martensitic structure. But these steels are very difficult to weld and cut. To remedy these drawbacks, it has been proposed, particularly in EP 0 739 993 to use for the same purposes, a less hard steel, whose carbon content is about 0.27% and having a quenched structure containing a significant amount of residual austenite. But these steels are still difficult to weld or cut.
  • the object of the present invention is to overcome these disadvantages, by proposing an abrasion-resistant steel sheet whose abrasion resistance is comparable to that of known steels but whose weldability and thermal cutting ability is better.
  • quenching may be followed by tempering at a temperature below 350 ° C, and preferably below 250 ° C.
  • the invention also relates to a part, in particular a sheet, obtained in particular by this method, the steel having a martensitic or martensito-bainitic structure, said structure containing from 5% to 20% retained austenite, as well as carbides.
  • the thickness of the sheet may be between 2 mm and 150 mm and its flatness is characterized by an arrow less than or equal to 12 mm / m and preferably less than 5 mm / m.
  • the carbon, titanium, zirconium and nitrogen contents must be such that: C - Ti / 4 - Zr / 8 + 7xN / 8> 0.095%
  • C * represents the free carbon content after precipitation of the titanium and zirconium carbides, taking into account the formation of titanium and zirconium nitrides.
  • This free carbon content C * must be greater than 0.095%, and preferably ⁇ 0.12%, to have a martensite having a minimum hardness. The lower this content, the better the welding and thermal cutting ability.
  • the micrographic structure of the steel consists of martensite or bainite or a mixture of these two structures, and from 5% to 20% retained austenite.
  • This structure further comprises large titanium or zirconium carbides formed at high temperature, or even carbides of niobium, tantalum or vanadium.
  • the inventors have found that the effectiveness of large carbides for improving the abrasion resistance could be obelated by the premature loosening thereof and that this loosening could be avoided by the presence of metastable austenite which is transformed under the effect of abrasion phenomena.
  • the transformation of the metastable austenite is by swelling, this transformation in the abraded undercoat increases the resistance to carburetion and thus improves abrasion resistance.
  • the steel is made, it flows in the form of slab or ingot.
  • the slab or slug is hot-rolled to obtain a sheet which is subjected to a heat treatment which makes it possible at the same time to obtain the desired structure and a good flatness without subsequent planing or with limited planing.
  • the heat treatment can be carried out directly in the hot rolling or carried out later, and possibly after a cold planing or half-hot.
  • an expansion treatment such as tempering, can be carried out at a temperature of less than or equal to 350 ° C, and preferably less than 250 ° C.
  • steel sheets identified A to C according to the invention and D to E according to the prior art were produced.
  • the chemical compositions of the steels, expressed in 10 -3 % by weight, as well as the hardness and a wear resistance index Rus, are reported in Table 1.
  • the wear resistance is measured by the weight loss of a prismatic specimen rotated in a tank containing calibrated granules of quartzite for 5 hours.
  • the Rus index of a steel is equal to 100 times the ratio of the wear resistance of the steel in question and the wear resistance of a reference steel (steel D).
  • All sheets are 27 mm thick and are hardened after austenitization at 900 ° C.
  • the sheets according to the invention have a martensito-bainitic self-regenerating structure containing from 5% to 20% retained austenite and large titanium carbides, whereas the sheets given for comparison have a completely martensitic structure.
  • the comparison of the wear resistances and the hardnesses shows that, although being very substantially less hard than the sheets given for comparison, the sheets according to the invention have a slightly better resistance to wear.
  • the comparison of the free carbons shows that the good abrasion resistance of the sheets according to the invention is obtained with very significantly lower free carbons, which leads to significantly better welding or thermal cutting abilities than for the sheets according to the invention. the prior art.
  • the deformation after cooling, without planing, for steels according to the invention A to C is about 5 mm / m and 16 mm / m for steels D and E given for comparison.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Articles (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Description

La présente invention est relative à un acier résistant à l'abrasion et à son procédé de fabrication.The present invention relates to an abrasion-resistant steel and its method of manufacture.

On connaît des aciers à haute résistance à l'abrasion dont la dureté est d'environ 600 Brinell. Ces aciers contiennent de 0,4% à 0,6% de carbone et de 0,5% à 3% d'au moins un élément d'alliage tel que le manganèse, le nickel, le chrome et le molybdène et ils sont trempés pour avoir une structure entièrement martensitique. Mais ces aciers sont très difficiles à souder et à découper. Pour remédier à ces inconvénients, on a proposé, notamment dans EP 0 739 993 , d'utiliser pour les mêmes usages, un acier moins dur, dont la teneur en carbone est d'environ 0,27% et ayant une structure trempée contenant une quantité significative d'austénite résiduelle. Mais ces aciers restent cependant difficiles à souder ou à découper.High abrasion resistant steels with a hardness of about 600 Brinell are known. These steels contain from 0.4% to 0.6% of carbon and from 0.5% to 3% of at least one alloying element such as manganese, nickel, chromium and molybdenum and are soaked to have a completely martensitic structure. But these steels are very difficult to weld and cut. To remedy these drawbacks, it has been proposed, particularly in EP 0 739 993 to use for the same purposes, a less hard steel, whose carbon content is about 0.27% and having a quenched structure containing a significant amount of residual austenite. But these steels are still difficult to weld or cut.

Le but de la présente invention est de remédier à ces inconvénients, en proposant une tôle en acier résistant à l'abrasion dont la résistance à l'abrasion est comparable à celle des aciers connus mais dont l'aptitude au soudage et au découpage thermique est meilleure.The object of the present invention is to overcome these disadvantages, by proposing an abrasion-resistant steel sheet whose abrasion resistance is comparable to that of known steels but whose weldability and thermal cutting ability is better.

A cet effet, l'invention a pour objet un procédé pour fabriquer une pièce, et notamment une tôle, en acier pour abrasion dont la composition chimique comprend, en poids :

  • 0,24% ≤ C < 0,35%
  • 0% ≤ Si ≤ 2%
  • 0% ≤ Al ≤ 2%
  • 0,5% ≤ Si + Al ≤ 2%
  • 0% ≤ Mn ≤ 2,5%
  • 0% ≤ Ni ≤ 5%
  • 0% ≤ Cr ≤ 5%
  • 0% ≤ Mo ≤ 1%
  • 0% ≤ W ≤ 2%
  • 0,1% ≤ Mo +W/2 ≤ 1%
  • 0% ≤ Cu ≤ 1,5%
  • 0% ≤ B ≤ 0,02%
  • 0% ≤ Ti ≤ 1,1%
  • 0% ≤ Zr ≤ 2,2%
  • 0,35% < Ti + Zr/2 ≤ 1,1%
  • 0% ≤ S ≤ 0,15%
  • N < 0,03%
    • éventuellement au moins un élément pris parmi Nb, Ta et V en des teneurs telles que Nb/2 + Ta/4 + V ≤ 0,5%,
    • éventuellement au moins un élément pris parmi Se, Te, Ca, Bi, Pb en des teneurs inférieures ou égales à 0,1%,
    le reste étant du fer et des impuretés résultant de l'élaboration, la composition chimique satisfaisant en outre les relations suivantes :
    • C* = C - Ti/4 - Zr/8 + 7xN/8 ≥ 0,095% et de préférence ≥ 0,12% et :
    • 1,05xMn + 0,54xNi +0,50xCr + 0,3x(Mo + W/2)1/2 + K > 1,8 ou mieux 2
    avec : K = 0,5 si B ≥ 0,0005% et K = 0 si B < 0,0005%.
    Selon ce procédé, on soumet la pièce ou la tôle à un traitement thermique de trempe, effectué dans la chaude de mise en forme à chaud telle que le laminage ou après austénitisation par réchauffage dans un four, qui consiste à :
  • refroidir la pièce ou la tôle à une vitesse de refroidissement moyenne supérieure à 0,5°C/s entre une température supérieure à AC3 et une température comprise entre T = 800 - 270xC* - 90xMn -37xNi - 70XCr - 83x(Mo + W/2) et T-50°C, la température étant exprimée en °C et les teneurs en C*, Mn, Ni, Cr, Mo et W, étant exprimées en % en poids,
  • puis refroidir la pièce ou la tôle à une vitesse de refroidissement moyenne à coeur Vr < 1150xep-1,7 (en °C/s) et supérieure à 0,1°C/s entre la température T et 100°C, ep étant l'épaisseur de la pièce ou la tôle exprimée en mm,
  • et à refroidir la pièce ou la tôle jusqu'à la température ambiante, éventuellement, on effectue un planage.
For this purpose, the subject of the invention is a method for manufacturing a part, and in particular a sheet, made of steel for abrasion, the chemical composition of which comprises, by weight:
  • 0.24% ≤ C <0.35%
  • 0% ≤ If ≤ 2%
  • 0% ≤ Al ≤ 2%
  • 0.5% ≤ Si + Al ≤ 2%
  • 0% ≤ Mn ≤ 2.5%
  • 0% ≤ Ni ≤ 5%
  • 0% ≤ Cr ≤ 5%
  • 0% ≤ Mo ≤ 1%
  • 0% ≤ W ≤ 2%
  • 0.1% ≤ Mo + W / 2 ≤ 1%
  • 0% ≤ Cu ≤ 1.5%
  • 0% ≤ B ≤ 0.02%
  • 0% ≤ Ti ≤ 1.1%
  • 0% ≤ Zr ≤ 2.2%
  • 0.35% <Ti + Zr / 2 ≤ 1.1%
  • 0% ≤ S ≤ 0.15%
  • N <0.03%
    • optionally at least one element selected from Nb, Ta and V in contents such that Nb / 2 + Ta / 4 + V ≤ 0.5%,
    • optionally at least one element selected from Se, Te, Ca, Bi, Pb in contents of less than or equal to 0.1%,
    the remainder being iron and impurities resulting from the preparation, the chemical composition further satisfying the following relationships:
    • C * = C - Ti / 4 - Zr / 8 + 7xN / 8 ≥ 0.095% and preferably ≥ 0.12% and:
    • 1.05xMn + 0.54xNi + 0.50xCr + 0.3x (Mo + W / 2) 1/2 + K> 1.8 or better 2
    with: K = 0.5 if B ≥ 0.0005% and K = 0 if B <0.0005%.
    According to this method, the part or the sheet is subjected to a quenching heat treatment, carried out in hot hot shaping such as rolling or after austenitization by reheating in an oven, which consists in:
  • cooling the workpiece or sheet at an average cooling rate greater than 0.5 ° C / s between a temperature above AC 3 and a temperature between T = 800 - 270xC * - 90xMn -37xNi - 70XCr - 83x (Mo + W / 2) and T-50 ° C, the temperature being expressed in ° C and the contents of C *, Mn, Ni, Cr, Mo and W, being expressed in% by weight,
  • then cool the workpiece or the sheet at an average cooling rate at core Vr <1150xep -1.7 (in ° C / s) and greater than 0.1 ° C / s between the temperature T and 100 ° C, ep being the thickness of the part or sheet metal expressed in mm,
  • and to cool the workpiece or the sheet to room temperature, optionally, planing is carried out.

Eventuellement, la trempe peut être suivie d'un revenu à une température inférieure à 350°C, et préférence inférieure à 250°C.Optionally, quenching may be followed by tempering at a temperature below 350 ° C, and preferably below 250 ° C.

L'invention concerne également une pièce, notamment une tôle, obtenue notamment par ce procédé, l'acier ayant une structure martensitique ou martensito-bainitique, ladite structure contenant de 5% à 20% d'austénite retenue, ainsi que des carbures. L'épaisseur de la tôle peut être comprise entre 2 mm et 150 mm et sa planéité est caractérisée par une flèche inférieure ou égale à 12mm/m et de préférence inférieure à 5mm/m.The invention also relates to a part, in particular a sheet, obtained in particular by this method, the steel having a martensitic or martensito-bainitic structure, said structure containing from 5% to 20% retained austenite, as well as carbides. The thickness of the sheet may be between 2 mm and 150 mm and its flatness is characterized by an arrow less than or equal to 12 mm / m and preferably less than 5 mm / m.

L'invention va maintenant être décrite de façon plus précise mais non limitative et être illustrée par des exemples.The invention will now be described in a more precise but nonlimiting manner and be illustrated by examples.

Pour fabriquer une tôle selon l'invention, on élabore un acier dont la composition chimique comprend, en % en poids :

  • de 0,24% à 0,35% de carbone pour permettre la formation d'une quantité importante de carbures et d'obtenir une dureté suffisante, tout en ayant une aptitude au soudage suffisante ; de préférence, la teneur en carbone est inférieure à 0,325%, et mieux inférieure à 0,3%.
  • De 0% à 1,1% de titane, de 0% à 2,2% de zirconium. La somme Ti + Zr/2 doit être supérieure à 0,35% et de préférence supérieure à 0,4%, et mieux encore supérieure à 0,5%, de façon à former une quantité importante de gros carbures. Cependant, cette somme doit rester inférieure à 1,1% de façon à conserver suffisamment de carbone en solution dans la matrice après formation des carbures. De préférence cette somme doit rester inférieure à 1%, et mieux à 0,9% et mieux encore, inférieure à 0,7% si l'on a besoin de privilégier la ténacité du matériau. Il en résulte que la teneur en titane doit de préférence rester inférieure à 1%, et mieux inférieure à 0,9%, voire inférieure à 0,7%, et la teneur en zirconium doit de préférence rester inférieure à 2%, et mieux inférieure à 1,8%, voire inférieure à 1,4%.
  • De 0% (ou des traces) à 2% de silicium et de 0% (ou des traces) à 2% d'aluminium, la somme Si+Al étant comprise entre 0,5% et 2% et de préférence supérieure à 0,7%. Ces éléments, qui sont des désoxydants, ont en outre pour effet de favoriser l'obtention d'une austénite retenue métastable fortement chargée en carbone dont la transformation en martensite s'accompagne d'un gonflement important favorisant l'ancrage des carbures de titane ou de zirconium.
  • De 0% (ou des traces) à 2% ou même 2,5% de manganèse, de 0% (ou des traces) à 4% ou même 5% de nickel et de 0% (ou des traces) à 4% ou même 5% de chrome, pour obtenir une trempabilité suffisante et ajuster les différentes caractéristiques mécaniques ou d'emploi. Le nickel a, en particulier un effet favorable sur la ténacité, mais cet élément est cher. Le chrome forme également de fins carbures dans la martensite ou la bainite.
  • De 0% (ou des traces) à 1% de molybdène et de 0% (ou des traces) à 2% de tungstène, la somme Mo+W/2 étant comprise entre 0,1% et 1%, et de préférence reste inférieure à 0,8%, ou mieux, inférieure à 0,6%. Ces éléments augmentent la trempabilité et forment dans la martensite ou dans la bainite de fins carbures durcissant, notamment par précipitation par auto revenu au cours du refroidissement. Il n'est pas nécessaire de dépasser une teneur de 1% en molybdène pour obtenir l'effet désiré en particulier en ce qui concerne la précipitation de carbures durcissants. Le molybdène peut être remplacé, en tout ou partie, par un poids double de tungstène. Néanmoins cette substitution n'est pas recherchée en pratique car elle n'offre pas d'avantage par rapport au molybdène et est plus coûteuse.
  • Eventuellement de 0% à 1,5% de cuivre. Cet élément peut apporter un durcissement supplémentaire sans détériorer la soudabilité. Au-delà de 1,5%, il n'a plus d'effet significatif, il engendre des difficultés de laminage à chaud et coûte inutilement cher.
  • De 0% à 0,02% de bore. Cet élément peut être ajouté de façon optionnelle afin d'augmenter la trempabilité. Pour que cet effet soit obtenu, la teneur en bore doit, de préférence, être supérieure à 0,0005% ou mieux 0,001%, et n'a pas besoin de dépasser sensiblement 0,01%.
  • Jusqu'à 0,15% de soufre. Cet élément est un résiduel en général limité à 0,005% ou moins, mais sa teneur peut être volontairement augmentée pour améliorer l'usinabilité. A noter qu'en présence de soufre, pour éviter des difficultés de transformation à chaud, la teneur en manganèse doit être supérieure à 7 fois la teneur en soufre.
  • Eventuellement au moins un élément pris parmi le niobium, le tantale et le vanadium, en des teneurs telles que Nb/2+Ta/4+V reste inférieure à 0,5% afin de former des carbures relativement gros qui améliorent la tenue à l'abrasion. Mais les carbures formés par ces éléments sont moins efficaces que ceux qui sont formés par le titane ou le zirconium, c'est pour cela qu'ils sont optionnels et ajoutés en quantité limitée.
  • Eventuellement un ou plusieurs éléments pris parmi le sélénium, le tellure, le calcium, le bismuth et le plomb en des teneurs inférieures à 0,1% chacun. Ces éléments sont destinés à améliorer l'usinabilité. A noter que, lorsque l'acier contient du Se et/ou du Te, la teneur en manganèse doit être suffisante compte tenu de la teneur en soufre pour qu'il puisse se former des séléniures ou des tellurures de manganèse.
  • Le reste étant du fer et des impuretés résultant de l'élaboration. Parmi les impuretés, il y a en particulier l'azote dont la teneur dépend du procédé d'élaboration mais ne dépasse en général pas 0,03%. Cet élément peut réagir avec le titane ou le zirconium pour former des nitrures qui ne doivent pas être trop gros pour ne pas détériorer la ténacité. Afin d'éviter la formation de gros nitrures, le titane et le zirconium peuvent être ajoutés dans l'acier liquide de façon très progressive, par exemple en mettant au contact de l'acier liquide oxydé une phase oxydée telle qu'un laitier chargé en oxydes de titane ou de zirconium, puis en désoxydant l'acier liquide, de façon à faire diffuser lentement le titane ou le zirconium depuis la phase oxydée vers l'acier liquide.
To manufacture a sheet according to the invention, a steel is produced whose chemical composition comprises, in% by weight:
  • from 0.24% to 0.35% carbon to allow the formation of a significant amount of carbides and to obtain sufficient hardness, while having sufficient welding ability; preferably, the carbon content is less than 0.325%, and more preferably less than 0.3%.
  • From 0% to 1.1% titanium, from 0% to 2.2% zirconium. The sum Ti + Zr / 2 must be greater than 0.35% and preferably greater than 0.4%, and more preferably greater than 0.5%, so as to form a large amount of large carbides. However, this sum must remain less than 1.1% so as to keep enough carbon in solution in the matrix after formation of carbides. Preferably this sum must remain less than 1%, and better still 0.9% and better still less than 0.7% if one needs to favor the tenacity of the material. As a result, the titanium content should preferably remain less than 1%, and more preferably less than 0.9%, or even less than 0.7%, and the zirconium content should preferably remain below 2%, and better less than 1.8%, or even less than 1.4%.
  • From 0% (or traces) to 2% silicon and 0% (or traces) at 2% aluminum, the sum Si + Al being between 0.5% and 2% and preferably greater than 0 , 7%. These elements, which are deoxidizing agents, also have the effect of favoring the obtaining of a metastable retained austenite highly loaded with carbon whose transformation into martensite is accompanied by a significant swelling favoring the anchoring of the titanium carbides or of zirconium.
  • From 0% (or traces) to 2% or even 2.5% manganese, from 0% (or traces) to 4% or even 5% nickel and 0% (or traces) at 4% or even 5% chromium, to obtain a sufficient quenchability and adjust the different mechanical characteristics or use. Nickel has a particularly favorable effect on toughness, but this element is expensive. Chromium also forms fine carbides in martensite or bainite.
  • 0% (or traces) at 1% molybdenum and 0% (or traces) at 2% tungsten, the sum Mo + W / 2 being between 0.1% and 1%, and preferably remains less than 0.8%, or better, less than 0.6%. These elements increase the quenchability and form in martensite or bainite of hardening carbides, in particular by self-precipitation during cooling. It is not necessary to exceed a molybdenum content of 1% in order to obtain the desired effect, particularly as regards the precipitation of hardening carbides. Molybdenum can be replaced in whole or in part by a double weight of tungsten. However, this substitution is not sought in practice because it offers no advantage over molybdenum and is more expensive.
  • Possibly from 0% to 1.5% copper. This element can provide additional hardening without damaging the weldability. Beyond 1.5%, it has no significant effect, it generates hot rolling difficulties and unnecessarily expensive.
  • 0% to 0.02% boron. This element can be added optionally to increase quenchability. For this effect to be obtained, the boron content should preferably be greater than 0.0005% or better 0.001%, and need not exceed substantially 0.01%.
  • Up to 0.15% sulfur. This element is a residual usually limited to 0.005% or less, but its content can be voluntarily increased to improve machinability. It should be noted that in the presence of sulfur, in order to avoid difficulties of hot transformation, the manganese content must be greater than 7 times the sulfur content.
  • Optionally at least one of niobium, tantalum and vanadium in such quantities that Nb / 2 + Ta / 4 + V remains below 0.5% in order to form relatively large carbides which improve the resistance to corrosion. 'abrasion. But the carbides formed by these elements are less effective than those formed by titanium or zirconium, that is why they are optional and added in limited quantities.
  • Possibly one or more elements selected from selenium, tellurium, calcium, bismuth and lead in contents of less than 0.1% each. These elements are intended to improve machinability. Note that when the steel contains Se and / or Te, the manganese content must be sufficient sulfur content to form selenides or tellurides of manganese.
  • The rest being iron and impurities resulting from the elaboration. Among the impurities, there is in particular nitrogen, the content of which depends on the production process but generally does not exceed 0.03%. This element can react with titanium or zirconium to form nitrides which must not be too big to not deteriorate toughness. In order to avoid the formation of large nitrides, titanium and zirconium can be added to the liquid steel in a very gradual manner, for example by contacting the oxidized liquid steel with an oxidized phase such as a slag loaded with oxides of titanium or zirconium, then deoxidizing the liquid steel, so as to slowly diffuse titanium or zirconium from the oxidized phase to the liquid steel.

En outre, afin d'obtenir des propriétés satisfaisantes, les teneurs en carbone, titane, zirconium, et azote doivent être telles que :
C - Ti/4 - Zr/8 + 7xN/8 > 0,095%
In addition, in order to obtain satisfactory properties, the carbon, titanium, zirconium and nitrogen contents must be such that:
C - Ti / 4 - Zr / 8 + 7xN / 8> 0.095%

L'expression C - Ti/4 - Zr/8 + 7xN/8 = C* représente la teneur en carbone libre après précipitation des carbures de titane et de zirconium, compte tenu de la formation de nitrures de titane et de zirconium. Cette teneur en carbone libre C* doit être supérieur à 0,095%, et de préférence ≥ 0,12%, pour avoir une martensite ayant une dureté minimale. Plus cette teneur est faible, plus l'aptitude au soudage et à la découpe thermique est bonne.The expression C - Ti / 4 - Zr / 8 + 7xN / 8 = C * represents the free carbon content after precipitation of the titanium and zirconium carbides, taking into account the formation of titanium and zirconium nitrides. This free carbon content C * must be greater than 0.095%, and preferably ≥ 0.12%, to have a martensite having a minimum hardness. The lower this content, the better the welding and thermal cutting ability.

De plus, la composition chimique doit être choisie de telle sorte que la trempabilité de l'acier soit suffisante, compte tenu de l'épaisseur de la tôle qu'on souhaite fabriquer. Pour cela, la composition chimique doit satisfaire la relation:

  • Tremp =1,05xMn + 0,54xNi +0,50xCr + 0,3x(Mo + W/2)1/2 + K > 1,8 ou mieux 2 avec : K = 0,5 si B > 0,001% et K = 0 si B < 0,001%,
In addition, the chemical composition must be chosen so that the quenchability of the steel is sufficient, given the thickness of the sheet that is to be manufactured. For this, the chemical composition must satisfy the relation:
  • Tremp = 1.05xMn + 0.54xNi + 0.50xCr + 0.3x (Mo + W / 2) 1/2 + K> 1.8 or better 2 with: K = 0.5 if B> 0.001% and K = 0 if B <0.001%,

En outre, et pour obtenir une bonne tenue à l'abrasion, la structure micrographique de l'acier est constituée de martensite ou de bainite ou d'un mélange de ces deux structures, et de 5% à 20% d'austénite retenue. Cette structure comprenant en outre des gros carbures de titane ou de zirconium formés à haute température, voire des carbures de niobium, de tantale ou de vanadium. Les inventeurs ont constaté que l'efficacité des gros carbures pour l'amélioration de la tenue à l'abrasion pouvait être obérée par le déchaussement prématuré de ceux-ci et que ce déchaussement pouvait être évité par la présence d'austénite métastable qui se transforme sous l'effet des phénomènes d'abrasion. La transformation de l'austénite métastable se faisant par gonflement, cette transformation dans la sous-couche abrasée augmente la résistance au déchaussement des carbures et, ainsi, améliore la résistance à l'abrasion.In addition, and to obtain a good resistance to abrasion, the micrographic structure of the steel consists of martensite or bainite or a mixture of these two structures, and from 5% to 20% retained austenite. This structure further comprises large titanium or zirconium carbides formed at high temperature, or even carbides of niobium, tantalum or vanadium. The inventors have found that the effectiveness of large carbides for improving the abrasion resistance could be obelated by the premature loosening thereof and that this loosening could be avoided by the presence of metastable austenite which is transformed under the effect of abrasion phenomena. The transformation of the metastable austenite is by swelling, this transformation in the abraded undercoat increases the resistance to carburetion and thus improves abrasion resistance.

D'autre part, la dureté élevée de l'acier et la présence de carbures de titane fragilisant imposent de limiter autant que possible les opérations de planage. De ce point de vue, les inventeurs ont constaté qu'en ralentissant de façon suffisante le refroidissement dans le domaine de transformation bainito-martensitique, on réduit les déformations résiduelles des produits, ce qui permet de limiter les opérations de planage. Les inventeurs ont constaté qu'en refroidissant la pièce ou la tôle à une vitesse de refroidissement Vr < 1150xep-1,7, (dans cette formule, ep est l'épaisseur de la tôle exprimée en mm, et la vitesse de refroidissement est exprimée en °C/s) en dessous d'une température T = 800 - 270xC* - 90xMn -37xNi - 70XCr - 83x(Mo + W/2), (exprimée en °C), d'une part, on obtenait une proportion significative d'austénite résiduelle, et d'autre part, on réduisait les contraintes résiduelles engendrées par les changements de phase. Cette réduction de contraintes est souhaitable, à la fois pour limiter le recours au planage ou faciliter celui-ci d'une part, et pour limiter les risques de fissuration lors des opérations ultérieures de soudage et de pliage.On the other hand, the high hardness of the steel and the presence of embrittling titanium carbides make it necessary to limit the leveling operations as much as possible. From this point of view, the inventors have found that by slowing down cooling sufficiently in the bainitomensitic transformation domain, the residual deformations of the products are reduced, which makes it possible to limit the leveling operations. The inventors have found that cooling the workpiece or the sheet at a cooling rate Vr <1150xep -1.7 , (in this formula, ep is the thickness of the sheet expressed in mm, and the cooling rate is expressed in ° C / s) below a temperature T = 800 - 270xC * - 90xMn -37xNi - 70XCr - 83x (Mo + W / 2), (expressed in ° C), on the one hand, a proportion was obtained significant residual austenite, and on the other hand, the residual stresses generated by the phase changes were reduced. This reduction in stresses is desirable, both to limit the use of leveling or facilitate it on the one hand, and to limit the risk of cracking during subsequent welding and folding operations.

Pour fabriquer une tôle ayant une bonne résistance à l'abrasion et bien plane, on élabore l'acier, on le coule sous forme de brame ou de lingot. On lamine à chaud la brame ou le lingot pour obtenir une tôle qu'on soumet à un traitement thermique permettant tout à la fois d'obtenir la structure souhaitée et une bonne planéité sans planage ultérieur ou avec un planage limité. Le traitement thermique peut être effectué directement dans la chaude de laminage ou réalisé ultérieurement, et éventuellement après un planage à froid ou à mi-chaud.To make a sheet having a good resistance to abrasion and well flat, the steel is made, it flows in the form of slab or ingot. The slab or slug is hot-rolled to obtain a sheet which is subjected to a heat treatment which makes it possible at the same time to obtain the desired structure and a good flatness without subsequent planing or with limited planing. The heat treatment can be carried out directly in the hot rolling or carried out later, and possibly after a cold planing or half-hot.

Pour réaliser le traitement thermique :

  • Soit directement après laminage à chaud, soit après réchauffage au-dessus du point AC3, on refroidit la tôle à une vitesse de refroidissement moyenne, supérieure à 0,5°C/s, c'est à dire supérieure à la vitesse critique de transformation bainitique jusqu'à une température égale ou légèrement inférieure à une température T = 800 - 270xC* - 90xMn -37xNi - 70XCr - 83x(Mo + W/2), (exprimée en °C), de façon à éviter la formation de constituants ferritiques ou perlitiques. Par légèrement inférieure, on entend une température comprise entre T et T - 50°C, ou mieux entre T et T - 25°C, ou mieux encore, entre T et T - 10°C.
  • puis, entre la température précédemment définie et 100°C environ, on refroidit la tôle à une vitesse de refroidissement moyenne à coeur Vr comprise entre 0,1°C/s, pour obtenir une dureté suffisante, et 1150xep-1,7 pour obtenir la structure souhaitée,
  • et on refroidit la tôle jusqu à la température ambiante, de préférence, sans que ce soit obligatoire, à une vitesse lente.
To achieve the heat treatment:
  • Either directly after hot rolling, or after reheating above point AC 3 , the sheet is cooled to an average cooling rate, greater than 0.5 ° C./s, ie greater than the critical speed of bainitic transformation to a temperature equal to or slightly less than a temperature T = 800 - 270xC * - 90xMn -37xNi - 70XCr - 83x (Mo + W / 2), (expressed in ° C), so as to avoid the formation of ferritic constituents or pearlitic. By slightly lower is meant a temperature between T and T - 50 ° C, or better still between T and T - 25 ° C, or better still, between T and T - 10 ° C.
  • then, between the previously defined temperature and approximately 100 ° C., the sheet is cooled to a mean core cooling rate Vr of between 0.1 ° C./s, to obtain a sufficient hardness, and 1150 × th -1.7 to obtain the desired structure,
  • and the sheet is cooled to room temperature, preferably, but not necessarily, at a slow rate.

En outre, on peut effectuer un traitement de détente, tel qu'un revenu, à une température inférieure ou égale à 350°C, et de préférence, inférieure à 250°C.In addition, an expansion treatment, such as tempering, can be carried out at a temperature of less than or equal to 350 ° C, and preferably less than 250 ° C.

On obtient ainsi une tôle, dont l'épaisseur peut être comprise entre 2 mm et 150 mm, ayant une excellente planéité caractérisée par une flèche inférieure à 12 mm par mètre sans planage, où avec un planage modéré. La tôle a une dureté comprise entre 280HB et 450HB, environ. Cette dureté dépend principalement de la teneur en carbone libre C* = C - Ti/4 - Zr/8 + 7xN/8.This gives a sheet, whose thickness can be between 2 mm and 150 mm, having excellent flatness characterized by an arrow less than 12 mm per meter without planing, or with a moderate leveling. The sheet has a hardness of between 280HB and 450HB, approximately. This hardness depends mainly on the free carbon content C * = C - Ti / 4 - Zr / 8 + 7xN / 8.

A titre d'exemple, on a réalisé des tôles en acier repérées A à C selon l'invention et D à E selon l'art antérieur. Les compositions chimiques des aciers, exprimés en 10-3 % en poids, ainsi que la dureté et un indice de résistance à l'usure Rus, sont reportées au tableau 1.By way of example, steel sheets identified A to C according to the invention and D to E according to the prior art were produced. The chemical compositions of the steels, expressed in 10 -3 % by weight, as well as the hardness and a wear resistance index Rus, are reported in Table 1.

La résistance à l'usure est mesurée par la perte de poids d'une éprouvette prismatique mise en rotation dans un bac contenant des granulats calibrés de quartzite pendant 5 heures.The wear resistance is measured by the weight loss of a prismatic specimen rotated in a tank containing calibrated granules of quartzite for 5 hours.

L'indice Rus d'un acier est égal à 100 fois le rapport de la résistance à l'usure de l'acier considéré et de la résistance à l'usure d'un acier de référence (l'acier D). Ainsi, un acier dont l'indice Rus = 110 a une résistance à l'usure de 10% supérieure à celle de l'acier de référence.The Rus index of a steel is equal to 100 times the ratio of the wear resistance of the steel in question and the wear resistance of a reference steel (steel D). Thus, a steel whose Rus = 110 index has a wear resistance 10% higher than that of the reference steel.

Toutes les tôles ont une épaisseur de 27 mm, et sont trempées après austénitisation à 900°C.All sheets are 27 mm thick and are hardened after austenitization at 900 ° C.

Après austénitisation :

  • pour les tôles en acier A et C, la vitesse moyenne de refroidissement est de 7°C/s au dessus de la température T définie plus haut, et de 1,6°C/s en dessous, conformément à l'invention;
  • pour la tôle B, la vitesse moyenne de refroidissement est de 0,8°C/s au dessus de la température T définie plus haut, et de 0,15°C/s en dessous, conformément à l'invention;
  • les tôles en acier D et E, données à titre de comparaison, ont été refroidies à une vitesse moyenne de 24°C/s au dessus de la température T définie plus haut, et à une vitesse moyenne de 12°C/s en dessous.
Tableau 1 C Si Al Mn Ni Cr Mo W Ti B N C* HB Rus A 245 820 40 1620 220 150 280 - 405 3 6 149 380 121 B 275 650 50 1210 210 1100 250 - 600 2 5 129 305 111 C 245 480 30 1340 300 710 100 200 360 2 5 159 385 114 D 290 810 60 1290 495 726 330 - - 2 6 290 520 100 E 295 260 300 1330 300 710 340 - 100 2 5 274 525 103 After austenitization:
  • for steel sheets A and C, the average cooling rate is 7 ° C / s above the temperature T defined above, and 1.6 ° C / s below, according to the invention;
  • for sheet B, the average cooling rate is 0.8 ° C / s above the temperature T defined above, and 0.15 ° C / s below, according to the invention;
  • the steel sheets D and E, given for comparison, were cooled at an average speed of 24 ° C / s above the temperature T defined above, and at an average speed of 12 ° C / s below .
Table 1 VS Yes al mn Or Cr MB W Ti B NOT VS* HB Rus AT 245 820 40 1620 220 150 280 - 405 3 6 149 380 121 B 275 650 50 1,210 210 1100 250 - 600 2 5 129 305 111 VS 245 480 30 1340 300 710 100 200 360 2 5 159 385 114 D 290 810 60 1290 495 726 330 - - 2 6 290 520 100 E 295 260 300 1330 300 710 340 - 100 2 5 274 525 103

Les tôles selon l'invention ont une structure martensito-bainitique auto-revenue contenant de 5% à 20% d'austénite retenue et des gros carbures de titane, alors que les tôles données à titre de comparaison ont une structure entièrement martensitique.The sheets according to the invention have a martensito-bainitic self-regenerating structure containing from 5% to 20% retained austenite and large titanium carbides, whereas the sheets given for comparison have a completely martensitic structure.

La comparaison des résistances à l'usure et des duretés montre que, bien qu'étant très sensiblement moins dures que les tôles données à titre de comparaison, les tôles selon l'invention ont une résistance à l'usure légèrement meilleure. La comparaison des carbones libres montre que la bonne tenue à l'usure des tôles selon l'invention est obtenue avec des carbones libres très sensiblement plus faibles, ce qui conduit à des aptitudes au soudage ou au découpage thermique nettement meilleures que pour les tôles selon l'art antérieur. Par ailleurs, la déformation après refroidissement, sans planage, pour les aciers selon l'invention A à C est d'environ 5 mm/m et de 16 mm/m pour les aciers D et E donnés à titre de comparaison. Ces résultats montrent la réduction de déformation des produits obtenus grâce à l'invention.The comparison of the wear resistances and the hardnesses shows that, although being very substantially less hard than the sheets given for comparison, the sheets according to the invention have a slightly better resistance to wear. The comparison of the free carbons shows that the good abrasion resistance of the sheets according to the invention is obtained with very significantly lower free carbons, which leads to significantly better welding or thermal cutting abilities than for the sheets according to the invention. the prior art. Furthermore, the deformation after cooling, without planing, for steels according to the invention A to C is about 5 mm / m and 16 mm / m for steels D and E given for comparison. These results show the reduction of deformation of the products obtained thanks to the invention.

Il en résulte en pratique, en fonction du degré d'exigence en planéité des utilisateurs,

  • soit la possibilité de livrer les produits sans planage, ce qui engendre un gain sur le coût et une réduction des contraintes résiduelles,
  • soit l'exécution d'un planage pour satisfaire une exigence de planéité plus sévère (par exemple 5mm/m) mais réalisée plus facilement et en introduisant moins de contraintes du fait de la déformation originelle moindre sur les produits selon l'invention.
This results in practice, according to the degree of requirement in flatness of the users,
  • the possibility of delivering the products without planing, which generates a cost saving and a reduction of the residual stresses,
  • either the execution of a planing to satisfy a requirement of flatness more severe (for example 5mm / m) but achieved more easily and introducing fewer constraints due to the original deformation less on the products according to the invention.

Claims (13)

  1. Process for manufacturing a part or a plate made of an abrasion-resistant steel, the chemical composition of which comprises, by weight:
    0.24% ≤ C < 0.35%
    0% ≤ Si ≤ 2%
    0% ≤ Al ≤ 2%
    0.5% ≤ Si + Al ≤ 2%
    0% ≤ Mn ≤ 2.5%
    0% ≤ Ni ≤ 5%
    0% ≤ Cr ≤ 5%
    0% ≤ Mo ≤ 1%
    0% ≤ W ≤ 2%
    0.1% ≤ Mo +W/2 ≤ 1%
    0% ≤ B ≤ 0.02%
    0% ≤ Ti ≤ 1.1%
    0% ≤ Zr ≤ 2.2%
    0.35% ≤ Ti +Zr/2 ≤ 1.1%
    0% ≤ S ≤ 0.15%
    N < 0.03%
    - optionally, 0% to 1.5% of copper;
    - optionally, at least one element taken from Nb, Ta and V in contents such that Nb/2 + Ta/4 + V ≤ 0.5%;
    - optionally, at least one element taken from Se, Te, Ca, Bi and Pb in contents of 0.1% or less, the balance being iron and impurities resulting from the smelting, the chemical composition furthermore satisfying the following relationships:
    C* = C-Ti/4-Zr/8+7×N/8 ≥ 0.095%
    and
    1.05×Mn+ 0.54×Ni +0.50×Cr+0.3×(Mo+W/2)1/2 +K > 1.8
    where K = 0.5 if B ≥ 0.0005% and K = 0 if B < 0.0005%,
    in which the part or the plate undergoes a hardening heat treatment carried out in the hot-forming heat, for example rolling heat, or after austenitization by reheating in a furnace, in order to carry out the hardening, in which:
    - the part or the plate is cooled at an average cooling rate of greater than 0.5°C/s between a temperature above AC3 and a temperature between T = 800-270×C*-90×Mn-37×Ni-70×Cr-83×(Mo+W/2) and about T-50°C;
    - then the part or the plate is cooled at an average core cooling rate Vc < 1150 × th-1.7 and greater than 0.1°C/s between the temperature T and 100°C, th being the thickness of the part or plate expressed in mm; and
    - the part or the plate is cooled down to ambient temperature and, optionally, undergoes skin pass rolling.
  2. Process according to Claim 1, characterized in that:
    1.05xMn+0.54xNi+0.50xCr+0.3x(Mo+W/2)1/2+K > 2
  3. Process according to Claim 1 or Claim 2, characterized in that:
    Ti + Zr/2 ≥ 0.4%.
  4. Process according to any one of Claims 1 to 3, characterized in that:
    C* ≥ 0.12%.
  5. Process according to any one of Claims 1 to 4, characterized in that:
    Si + Al ≥ 0.7%.
  6. Process according to any one of Claims 1 to 5, characterized in that a tempering operation is also carried out at a temperature of 350°C or below.
  7. Process according to any one of Claims 1 to 6, characterized in that, to add titanium to the steel, a liquid steel is brought into contact with a titanium-containing slag and the titanium is made to diffuse slowly from the slag into the liquid steel.
  8. Part, and especially a plate, made of an abrasion-resistant steel, the chemical composition of which comprises, by weight:
    0.24% ≤ C < 0.35%
    0% ≤ Si ≤ 2%
    0% ≤ Al ≤ 2%
    0.5% ≤ Si + Al ≤ 2%
    0% ≤ Mn ≤ 2.5%
    0% ≤ Ni ≤ 5%
    0% ≤ Cr ≤ 5%
    0% ≤ Mo ≤ 1%
    0% ≤ W ≤ 2%
    0.1% ≤ Mo +W/2 ≤ 1%
    0% ≤ B < 0.02%
    0% ≤ Ti ≤ 1.1%
    0% ≤ Zr ≤ 2.2%
    0.35% ≤ Ti +Zr/2 ≤ 1.1%
    0% ≤ S ≤ 0.15%
    N < 0.03%
    - optionally, 0% to 1.5% of copper;
    - optionally, at least one element taken from Nb, Ta and V in contents such that Nb/2 + Ta/4 + V ≤ 0.5%;
    - optionally, at least one element taken from Se, Te, Ca, Bi and Pb in contents of 0.1% or less, the balance being iron and impurities resulting from the smelting, the chemical composition furthermore satisfying the following relationships:
    C* = C-Ti/4-Zr/8+7×N/8 ≥ 0.095% and
    1.05×Mn+0.54×Ni+0.50×Cr+0.3×(Mo+W/2)1/2+K > 1.8
    where K = 0.5 if B ≥ 0.0005% and K = 0 if B < 0.0005%,
    the steel having a martensitic or martensitic-bainitic structure, said structure containing 5% to 20% residual austenite and carbides.
  9. Part according to Claim 8, characterized in that:
    1.05×Mn+0.54×Ni+0.50×Cr+0.3×(Mo+W/2)1/2+K > 2
  10. Part according to Claim 8 or Claim 9, characterized in that:
    Ti + Zr/2 ≥ 0.4%.
  11. Part according to any one of Claims 8 to 10, characterized in that:
    C* ≥ 0.12%.
  12. Part according to any one of Claims 8 to 11, characterized in that:
    Si + Al ≥ 0.7%.
  13. Part according to any one of Claims 8 to 12, characterized in that it is a plate with a thickness between 2 mm and 150 mm.
EP03786006A 2002-11-19 2003-11-13 Method for making an abrasion resistant steel plate and plate obtained Expired - Lifetime EP1563105B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SI200331112T SI1563105T1 (en) 2002-11-19 2003-11-13 Method for making an abrasion resistant steel plate and plate obtained

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0214426 2002-11-19
FR0214426A FR2847272B1 (en) 2002-11-19 2002-11-19 METHOD FOR MANUFACTURING AN ABRASION RESISTANT STEEL SHEET AND OBTAINED SHEET
PCT/FR2003/003358 WO2004048619A1 (en) 2002-11-19 2003-11-13 Method for making an abrasion resistant steel plate and plate obtained

Publications (2)

Publication Number Publication Date
EP1563105A1 EP1563105A1 (en) 2005-08-17
EP1563105B1 true EP1563105B1 (en) 2008-01-02

Family

ID=32187697

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03786006A Expired - Lifetime EP1563105B1 (en) 2002-11-19 2003-11-13 Method for making an abrasion resistant steel plate and plate obtained

Country Status (19)

Country Link
US (1) US7713362B2 (en)
EP (1) EP1563105B1 (en)
JP (1) JP4535876B2 (en)
KR (1) KR101010571B1 (en)
CN (1) CN100348738C (en)
AR (1) AR042073A1 (en)
AT (1) ATE382716T1 (en)
AU (1) AU2003295014B2 (en)
BR (1) BR0315693B1 (en)
CA (1) CA2506349C (en)
DE (1) DE60318478T2 (en)
ES (1) ES2298605T3 (en)
FR (1) FR2847272B1 (en)
PE (1) PE20040484A1 (en)
PL (1) PL202086B1 (en)
RU (1) RU2326179C2 (en)
UA (1) UA78624C2 (en)
WO (1) WO2004048619A1 (en)
ZA (1) ZA200504150B (en)

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2847270B1 (en) * 2002-11-19 2004-12-24 Usinor METHOD FOR MANUFACTURING AN ABRASION RESISTANT STEEL SHEET AND OBTAINED SHEET
JP4894297B2 (en) * 2006-02-28 2012-03-14 Jfeスチール株式会社 Wear-resistant steel plate
JP4894296B2 (en) * 2006-02-28 2012-03-14 Jfeスチール株式会社 Wear-resistant steel plate
JP5176954B2 (en) * 2006-05-10 2013-04-03 新日鐵住金株式会社 Steel sheet for hot pressed steel sheet member and method for producing hot pressed steel sheet
JP4899874B2 (en) * 2007-01-12 2012-03-21 Jfeスチール株式会社 Wear-resistant steel plate with excellent workability and method for producing the same
JP5380892B2 (en) * 2007-05-29 2014-01-08 Jfeスチール株式会社 Wear-resistant steel plate with excellent workability and method for producing the same
FR2919593B1 (en) * 2007-07-30 2009-11-20 Sidel Participations DEVICE FOR FORMING LOTS OF SUBSTANTIALLY PARALLELEPIPEDIC OBJECTS CIRCULATING ON A CONVEYOR BELT
CN101240399B (en) * 2008-03-05 2010-06-02 钢铁研究总院 Low-chromium low-cost hot working die steel
US8137483B2 (en) * 2008-05-20 2012-03-20 Fedchun Vladimir A Method of making a low cost, high strength, high toughness, martensitic steel
JP2010085716A (en) 2008-09-30 2010-04-15 Fujinon Corp Lens assembly and image capturing apparatus
CN101775545B (en) * 2009-01-14 2011-10-12 宝山钢铁股份有限公司 Low-alloy high-strength high-toughness wear-resistant steel plate and manufacturing method thereof
US10189099B2 (en) 2010-04-22 2019-01-29 Milwaukee Electric Tool Corporation Saw Blade
CA2797111C (en) 2010-04-22 2015-06-09 Milwaukee Electric Tool Corporation Saw blade
JP2012031511A (en) * 2010-06-30 2012-02-16 Jfe Steel Corp Wear-resistant steel sheet having excellent toughness of multi-layer-welded part and lagging destruction resistance properties
JP5866820B2 (en) * 2010-06-30 2016-02-24 Jfeスチール株式会社 Wear-resistant steel plate with excellent weld toughness and delayed fracture resistance
RU2458177C1 (en) * 2010-12-03 2012-08-10 Открытое акционерное общество "Магнитогорский металлургический комбинат" Strip rolled products from boron-containing manganese steel
RU2460823C1 (en) * 2011-02-08 2012-09-10 Российская Федерация, от имени которой выступает Министерство промышленности и торговли (Минпромторг России) Dynamically resistant steel, and manufacturing method of plates from it
USD841417S1 (en) 2011-04-22 2019-02-26 Milwaukee Electric Tool Corporation Saw blade
CN102367558B (en) * 2011-10-24 2016-05-04 山东双轮股份有限公司 A kind of pump boric low alloy wear resistant steel
CN102560272B (en) * 2011-11-25 2014-01-22 宝山钢铁股份有限公司 Ultrahigh-strength abrasion-resistant steel plate and manufacturing method thereof
CN103898420A (en) * 2012-12-25 2014-07-02 隆英(金坛)特钢科技有限公司 Wear-resisting steel plate and manufacturing method thereof
CN103060715B (en) 2013-01-22 2015-08-26 宝山钢铁股份有限公司 A kind of ultra-high strength and toughness steel plate and manufacture method thereof with low yielding ratio
US9738334B2 (en) * 2013-05-07 2017-08-22 Arcelormittal Track shoe having increased service life useful in a track drive system
RU2532768C1 (en) * 2013-07-23 2014-11-10 Открытое акционерное общество "Северсталь" (ОАО "Северсталь") Manufacturing method of rolled stock from low-alloy plate steel
SI2789699T1 (en) 2013-08-30 2017-06-30 Rautaruukki Oyj A high-hardness hot-rolled steel product, and a method of manufacturing the same
CN103614645A (en) * 2013-10-24 2014-03-05 铜陵市经纬流体科技有限公司 Cold-brittleness resistant alloy steel material used for pump trucks and preparation method of the material
CN103627967A (en) * 2013-11-12 2014-03-12 铜陵市肆得科技有限责任公司 Wear-resistant alloy steel material for pump casing and preparation method thereof
CN103628001A (en) * 2013-11-12 2014-03-12 铜陵市肆得科技有限责任公司 Alloy steel material for corrosion-resistant pump valve and preparation method thereof
CN103898421B (en) * 2013-11-15 2016-04-06 东南大学 A kind of manufacture method of grinder hammerhead
AT515157B1 (en) * 2013-11-21 2016-12-15 Böhler Edelstahl GmbH & Co KG Process for producing plastic molds from martensitic chromium steel and plastic mold
CN103757552B (en) * 2013-12-17 2016-01-20 界首市华盛塑料机械有限公司 A kind of cutting tool alloy steel material and preparation method thereof
RU2546262C1 (en) * 2014-01-09 2015-04-10 Публичное акционерное общество "Северсталь" (ПАО "Северсталь") Wear-resistant steel and item made from it
RU2544981C1 (en) * 2014-03-06 2015-03-20 Закрытое акционерное общество "Омутнинский металлургический завод" Medium-carbon screw steel
CN104073741A (en) * 2014-05-09 2014-10-01 铜陵市明诚铸造有限责任公司 High-temperature and deformation resistant alloy steel material and preparation method thereof
RU2557860C1 (en) * 2014-09-15 2015-07-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Южно-Уральский государственный университет" (национальный исследовательский университет) (ФГБОУ ВПО "ЮУрГУ" (НИУ)) Easy-to-machine structural chromium-manganese-molybdenum steel
CN104313506A (en) * 2014-10-20 2015-01-28 熊荣鑫 Non-spark iron alloy
CN104451436A (en) * 2014-12-08 2015-03-25 钢铁研究总院 Bainite-martensite-austenite multi-phase wear-resistant steel plate and manufacturing method thereof
CN104357758B (en) * 2014-12-08 2016-03-30 钢铁研究总院 A kind of ultra-hard particles enhancement type martensite wear-resistant steel plate and manufacture method thereof
CN104561834A (en) * 2014-12-26 2015-04-29 济源市金诚科技有限公司 Hard alloy steel and preparation method thereof
RU2593810C1 (en) * 2015-03-04 2016-08-10 Открытое акционерное общество "Магнитогорский металлургический комбинат" Method for production of high-strength steel sheet
CN104651735B (en) * 2015-03-06 2017-01-18 武汉钢铁(集团)公司 Low-alloy wear-resistant steel with toughness being more than 50J/cm2 and production method thereof
RU2682366C1 (en) * 2015-10-19 2019-03-19 Ниппон Стил Энд Сумитомо Метал Корпорейшн Hot rolled steel and steel component
CN105220075B (en) * 2015-11-02 2017-05-24 大冶有色机电设备修造有限公司 Method for producing lining plate of ball mill by adopting rolling technology
CN105648310B (en) * 2016-03-30 2017-09-29 河北钢铁股份有限公司承德分公司 A kind of shellproof coil of strip of hot rolling containing vanadium and its production method
US11118240B2 (en) 2016-04-19 2021-09-14 Jfe Steel Corporaton Abrasion-resistant steel plate and method of producing abrasion-resistant steel plate
US11111556B2 (en) 2016-04-19 2021-09-07 Jfe Steel Corporation Abrasion-resistant steel plate and method of producing abrasion-resistant steel plate
CN105903764A (en) * 2016-04-22 2016-08-31 柳州凯通新材料科技有限公司 Composite wear-resisting steel plate rolling technology
RU2625861C1 (en) * 2016-05-23 2017-07-19 Открытое акционерное общество "Магнитогорский металлургический комбинат" Production of steel sheets of higher wear resistance
EP3597784B1 (en) * 2017-03-13 2021-03-31 JFE Steel Corporation Abrasion-resistant steel plate and method of manufacturing same
CN110650829A (en) 2017-05-16 2020-01-03 米沃奇电动工具公司 Saw blade
CN107385354B (en) * 2017-08-02 2019-02-12 合肥安力电力工程有限公司 A kind of electricians' plier high hardness wear-resisting oxidation resistant steel
CN107916360A (en) * 2017-11-14 2018-04-17 郑媛媛 A kind of production technology of high-strength abrasion-proof safety valve
CN107829033B (en) * 2017-11-23 2019-10-11 攀钢集团攀枝花钢铁研究院有限公司 High abrasion containing V brake rim hot continuous rolling alloy-steel plate and its production method
RU2674797C1 (en) * 2018-06-07 2018-12-13 Публичное акционерное общество "Магнитогорский металлургический комбинат" Method of producing high-strength cold-resistant sheet from low-alloy steel
CN108893680A (en) * 2018-06-26 2018-11-27 澳洋集团有限公司 A kind of low-alloy wear-resistant steel and preparation method thereof
CN113122771B (en) * 2019-12-31 2022-01-14 中内凯思汽车新动力系统有限公司 High-performance friction welding steel piston and preparation method thereof
CN115141985B (en) * 2021-03-31 2023-05-09 宝山钢铁股份有限公司 Medium-carbon high-titanium boron-containing steel with high hardenability and slab continuous casting production method thereof
CN113458175A (en) * 2021-06-21 2021-10-01 周传盛 Spring steel processing method
CN114107823A (en) * 2021-11-30 2022-03-01 宝武集团马钢轨交材料科技有限公司 Steel for high-speed wheel, heat treatment method of steel and method for preparing high-speed wheel by using steel

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3883347A (en) * 1971-02-16 1975-05-13 Aikoh Co Slag-forming agent for steelmaking
US4170497A (en) * 1977-08-24 1979-10-09 The Regents Of The University Of California High strength, tough alloy steel
JPH0441616A (en) * 1990-06-06 1992-02-12 Nkk Corp Production of low-hardness water-resistant steel excellent in wear resistance and bendability
US5595614A (en) * 1995-01-24 1997-01-21 Caterpillar Inc. Deep hardening boron steel article having improved fracture toughness and wear characteristics
FR2733516B1 (en) * 1995-04-27 1997-05-30 Creusot Loire STEEL AND PROCESS FOR THE MANUFACTURE OF PARTS WITH HIGH ABRASION RESISTANCE
JPH09249935A (en) * 1996-03-13 1997-09-22 Sumitomo Metal Ind Ltd High strength steel material excellent in sulfide stress cracking resistance and its production
CN1182142A (en) * 1996-11-07 1998-05-20 鞍山钢铁集团公司 Abrasion-resisting cast steel
JP3975852B2 (en) * 2001-10-25 2007-09-12 Jfeスチール株式会社 Steel pipe excellent in workability and manufacturing method thereof
FR2847270B1 (en) * 2002-11-19 2004-12-24 Usinor METHOD FOR MANUFACTURING AN ABRASION RESISTANT STEEL SHEET AND OBTAINED SHEET
FR2847271B1 (en) * 2002-11-19 2004-12-24 Usinor METHOD FOR MANUFACTURING AN ABRASION RESISTANT STEEL SHEET AND OBTAINED SHEET

Also Published As

Publication number Publication date
CN100348738C (en) 2007-11-14
AR042073A1 (en) 2005-06-08
ES2298605T3 (en) 2008-05-16
PE20040484A1 (en) 2004-08-18
CA2506349A1 (en) 2004-06-10
AU2003295014A1 (en) 2004-06-18
KR20050083903A (en) 2005-08-26
US20060162826A1 (en) 2006-07-27
PL375543A1 (en) 2005-11-28
EP1563105A1 (en) 2005-08-17
CA2506349C (en) 2012-04-24
DE60318478D1 (en) 2008-02-14
JP2006506527A (en) 2006-02-23
FR2847272A1 (en) 2004-05-21
ATE382716T1 (en) 2008-01-15
UA78624C2 (en) 2007-04-10
US7713362B2 (en) 2010-05-11
CN1714159A (en) 2005-12-28
WO2004048619A1 (en) 2004-06-10
AU2003295014B2 (en) 2009-03-12
DE60318478T2 (en) 2008-12-11
ZA200504150B (en) 2006-09-27
JP4535876B2 (en) 2010-09-01
RU2326179C2 (en) 2008-06-10
FR2847272B1 (en) 2004-12-24
PL202086B1 (en) 2009-05-29
WO2004048619A8 (en) 2005-05-26
RU2005119205A (en) 2006-05-10
BR0315693A (en) 2005-09-20
BR0315693B1 (en) 2011-06-28
KR101010571B1 (en) 2011-01-25

Similar Documents

Publication Publication Date Title
EP1563105B1 (en) Method for making an abrasion resistant steel plate and plate obtained
EP1563103B1 (en) Method for making an abrasion resistant steel plate and steel plate obtained
EP1563104B1 (en) Method for making an abrasion resistant steel plate and plate obtained
EP2171112B1 (en) Method for producing steel sheets having high resistance and ductility characteristics, and sheets thus obtained
EP3783116B1 (en) Pre-coated sheets allowing the production of press-hardened and coated steel parts
EP1913169B1 (en) Manufacture of steel sheets having high resistance and excellent ductility, products thereof
EP1751321B1 (en) Steel with high mechanical strength and wear resistance
CA2680623C (en) Steel for tool-less hot forming or quenching with improved ductility
JP5024051B2 (en) Centrifugal cast composite roll
KR100386134B1 (en) High strength low alloy heat resistant steel
CA2847809C (en) Rolled steel that hardens by means of precipitation after hot-forming and/or quenching with a tool having very high strength and ductility, and method for manufacturing same
EP2707515B1 (en) Producing method for very high yield strength martensitic steel sheet and steel sheet obtained
TWI741145B (en) Composite roll for rolling and manufacturing method thereof
CA3065036C (en) Method for producing high-strength steel parts with improved ductility, and parts obtained by said method
BE1008531A6 (en) Hot rolled steel affine no heat and method for the preparation thereof.
FR2847273A1 (en) Weldable steel components for construction applications requiring an elevated hardness and a martensite or martensite-bainite structure
EP1885900B1 (en) Steel for submarine hulls with improved weldability
CA2980878C (en) Parts with a bainitic structure having high strength properties and manufacturing process
JP4823441B2 (en) Continuous casting and hot rolling rolls with excellent hot wear resistance and thermal crack resistance
JP4320764B2 (en) Gear case hardened steel with excellent impact fatigue strength and anti-pitting strength

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050513

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BEGUINOT, JEAN

Inventor name: BRISSON, JEAN-GEORGES

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REF Corresponds to:

Ref document number: 60318478

Country of ref document: DE

Date of ref document: 20080214

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20080405

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2298605

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080602

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080102

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080102

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20081003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080403

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 60318478

Country of ref document: DE

Owner name: INDUSTEEL FRANCE, FR

Free format text: FORMER OWNER: INDUSTEEL CREUSOT, PUTEAUX, FR

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 382716

Country of ref document: AT

Kind code of ref document: T

Owner name: INDUSTEEL FRANCE, FR

Effective date: 20150608

Ref country code: NL

Ref legal event code: SD

Effective date: 20150706

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: INDUSTEEL FRANCE

Effective date: 20150716

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20150625 AND 20150701

REG Reference to a national code

Ref country code: SI

Ref legal event code: SP73

Owner name: INDUSTEEL FRANCE; FR

Effective date: 20150701

REG Reference to a national code

Ref country code: SK

Ref legal event code: PC4A

Ref document number: E 3186

Country of ref document: SK

Owner name: INDUSTEEL FRANCE, SAINT DENIS, FR

Free format text: FORMER OWNER: INDUSTEEL CREUSOT, SAINT DENIS, FR

Effective date: 20150821

Ref country code: SK

Ref legal event code: TE4A

Ref document number: E 3186

Country of ref document: SK

Owner name: INDUSTEEL CREUSOT, SAINT DENIS, FR

Effective date: 20150821

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: INDUSTEEL FRANCE, FR

Effective date: 20150910

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20221020

Year of fee payment: 20

Ref country code: FR

Payment date: 20221021

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20221031

Year of fee payment: 20

Ref country code: SK

Payment date: 20221026

Year of fee payment: 20

Ref country code: SE

Payment date: 20221024

Year of fee payment: 20

Ref country code: RO

Payment date: 20221107

Year of fee payment: 20

Ref country code: LU

Payment date: 20221020

Year of fee payment: 20

Ref country code: IT

Payment date: 20221020

Year of fee payment: 20

Ref country code: GB

Payment date: 20221021

Year of fee payment: 20

Ref country code: ES

Payment date: 20221201

Year of fee payment: 20

Ref country code: DE

Payment date: 20220616

Year of fee payment: 20

Ref country code: CZ

Payment date: 20221025

Year of fee payment: 20

Ref country code: AT

Payment date: 20221024

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SI

Payment date: 20221026

Year of fee payment: 20

Ref country code: BE

Payment date: 20221020

Year of fee payment: 20

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230522

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 60318478

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20231112

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20231124

REG Reference to a national code

Ref country code: BE

Ref legal event code: MK

Effective date: 20231113

REG Reference to a national code

Ref country code: SK

Ref legal event code: MK4A

Ref document number: E 3186

Country of ref document: SK

Expiry date: 20231113

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20231112

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 382716

Country of ref document: AT

Kind code of ref document: T

Effective date: 20231113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20231113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20231112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20231114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20231113

Ref country code: SI

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20231114

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20231112

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20231114

Ref country code: CZ

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20231113