JP4894296B2 - Wear-resistant steel plate - Google Patents

Wear-resistant steel plate Download PDF

Info

Publication number
JP4894296B2
JP4894296B2 JP2006051826A JP2006051826A JP4894296B2 JP 4894296 B2 JP4894296 B2 JP 4894296B2 JP 2006051826 A JP2006051826 A JP 2006051826A JP 2006051826 A JP2006051826 A JP 2006051826A JP 4894296 B2 JP4894296 B2 JP 4894296B2
Authority
JP
Japan
Prior art keywords
carbide
wear
composite carbide
wear resistance
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006051826A
Other languages
Japanese (ja)
Other versions
JP2007231320A (en
Inventor
稔 諏訪
康宏 室田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006051826A priority Critical patent/JP4894296B2/en
Publication of JP2007231320A publication Critical patent/JP2007231320A/en
Application granted granted Critical
Publication of JP4894296B2 publication Critical patent/JP4894296B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

本発明は、建設、土木、鉱山等で使用される、パワーショベル、ブルドーザー、ホッパー、バケット等の産業機械、運搬機器等で、岩石、砂、鉱石等によるアブレッシブ摩耗、すべり摩耗あるいは衝撃摩耗等を受ける部材用として好適な耐摩耗鋼板に関する。   The present invention is used in construction, civil engineering, mining, etc., for industrial machines such as power shovels, bulldozers, hoppers, buckets, etc., carrying equipment, etc. The present invention relates to a wear-resistant steel plate suitable for a receiving member.

岩石、砂、鉱石等によるアブレッシブ摩耗、すべり摩耗、または衝撃摩耗等を受ける部材には、長寿命化のため、耐摩耗性に優れた鋼材が使用されている。従来から、鋼材の耐摩耗性は、高硬度化することにより、向上することが知られている。このため、耐摩耗性が要求される部材には、Cr、Mo等の合金元素を多量に添加した鋼材に焼入等の熱処理を施し、高硬度化した鋼材が使用されてきた。   Steel members having excellent wear resistance are used for members that are subjected to abrasive wear, sliding wear, impact wear, etc. due to rock, sand, ore or the like in order to extend the life. Conventionally, it is known that the wear resistance of a steel material is improved by increasing the hardness. For this reason, steel members that have been hardened by heat treatment such as quenching have been used for members that require a high level of wear resistance.

例えば、特許文献1には、溶接性の良好な耐摩耗用鋼板の製造方法が提案されている。特許文献1に記載された技術は、C:0.10〜0.19%を含み、Si、Mnを適正量含有し、Ceqを0.35〜0.44に限定した鋼を、熱間圧延後直接焼入れし、あるいは900〜950℃に再加熱したのち焼入れし、300〜500℃で焼戻し、鋼板表面硬さを300HV以上とする耐摩耗用鋼板の製造方法である。   For example, Patent Document 1 proposes a method of manufacturing a wear-resistant steel plate having good weldability. The technique described in Patent Document 1 includes C: 0.10 to 0.19%, containing appropriate amounts of Si and Mn, and Ceq limited to 0.35 to 0.44, directly quenched after hot rolling, or 900 to This is a method for producing a wear-resistant steel sheet that is reheated to 950 ° C. and then tempered and tempered at 300 to 500 ° C. to make the steel sheet surface hardness 300 HV or higher.

また、特許文献2には、C:0.10〜0.20%を含み、Si、Mn、P、S、N、Alを適正量に調整し、あるいはさらにCu、Ni、Cr、Mo、Bのうちの1種以上を含有する鋼に、熱間圧延後直接焼入れし、あるいは圧延後放冷したのち再加熱し焼入れして、340HB以上の硬さを有し、靭性および溶接低温割れ性の優れた耐摩耗厚鋼板とする技術が提案されている。
また、特許文献3には、C:0.07〜0.17%を含み、Si、Mn、V、B、Alを適正量含有し、あるいはさらにCu、Ni、Cr、Moのうちの1種以上を含有した鋼に、熱間圧延後直ちに焼入れ、あるいは一旦空冷した後に、再加熱し焼入れして、表面硬さを321HB以上で、曲げ加工性に優れた鋼板とする耐摩耗用鋼板の製造方法が提案されている。
Patent Document 2 includes C: 0.10 to 0.20%, and Si, Mn, P, S, N, and Al are adjusted to appropriate amounts, or one of Cu, Ni, Cr, Mo, and B. Steel containing more than seeds is hardened directly after hot rolling, or cooled after rolling and then re-heated and quenched, and has a hardness of 340HB or more, and has excellent toughness and weld cold cracking resistance. Techniques for making thick steel plates have been proposed.
Patent Document 3 includes C: 0.07 to 0.17%, contains an appropriate amount of Si, Mn, V, B, and Al, or further contains one or more of Cu, Ni, Cr, and Mo. A method of manufacturing a wear-resistant steel sheet is proposed in which steel is quenched immediately after hot rolling, or once air-cooled and then reheated and quenched to obtain a steel sheet having a surface hardness of 321 HB or more and excellent bending workability. ing.

特許文献1〜3に記載された技術は、合金元素を多量に添加して、固溶硬化、変態硬化、析出硬化等を活用して、硬度を顕著に高め耐摩耗性を向上させている。
しかし、近年、要求される耐摩耗性は、より一層厳しさを増しており、単に硬度を高めるという方法では、本質的な耐摩耗性の改善にはなっていないのが現状である。特許文献1〜3に記載された技術におけるように、合金元素を多量に添加して、固溶硬化、変態硬化、析出硬化等を活用して、硬度を顕著に高めた場合には、結果的に溶接性、加工性が低下し、さらに高合金化により製造コストが高騰するという問題があった。このため、顕著な高硬度化を伴うことなく、耐摩耗性を向上させることが要望されていた。
The techniques described in Patent Documents 1 to 3 add a large amount of alloy elements and utilize solid solution hardening, transformation hardening, precipitation hardening, and the like to remarkably increase hardness and improve wear resistance.
However, in recent years, the required wear resistance has become more severe, and the current situation is that the method of simply increasing the hardness does not improve the wear resistance. As in the techniques described in Patent Documents 1 to 3, when alloying elements are added in large quantities and solid solution hardening, transformation hardening, precipitation hardening, etc. are utilized to significantly increase the hardness, the result is In addition, there are problems that weldability and workability are lowered, and that the production cost is increased due to the high alloying. For this reason, it has been desired to improve the wear resistance without significantly increasing the hardness.

このような要望に対し、例えば、特許文献4には、C:0.10〜0.45%を含み、Si、Mn、P、S、Nを適正量に調整し、さらにTi:0.10〜1.0%を含有し、0.5μm以上の大きさのTiC析出物あるいはTiCとTiN,TiSとの複合析出物を400個/mm以上含み、Ti*が0.05%以上0.4%未満である表面性状に優れた耐摩耗鋼が提案されている。特許文献4に記載された技術によれば、凝固時に粗大なTiCを主体とする析出物を生成させ、顕著な高硬度化を伴うことなく、安価に、耐摩耗性を向上させることができるとしている。
特開昭62−142726号公報 特開昭63−169359号公報 特開平1−142023号公報 特許3089882号公報
In response to such a request, for example, Patent Document 4 includes C: 0.10 to 0.45%, Si, Mn, P, S, and N are adjusted to appropriate amounts, and further Ti: 0.10 to 1.0% is contained. , 0.5 [mu] m or more the size of the TiC precipitates or TiC and TiN, include complex precipitates of TiS 400 pieces / mm 2 or more, the abrasion steel Ti * is excellent in surface properties is less than 0.4% 0.05% or more Has been proposed. According to the technique described in Patent Document 4, it is possible to generate precipitates mainly composed of coarse TiC during solidification, and to improve wear resistance at a low cost without significantly increasing hardness. Yes.
JP-A-62-142726 JP 63-169359 A Japanese Patent Laid-Open No. 1-142023 Japanese Patent No. 3089882

最近では、耐摩耗部材の長寿命化や高性能化のため、使用する耐摩耗鋼板には、溶接性、加工性を大幅に低下させることなく、より一層の耐摩耗性の向上が要求されるようになってきた。しかし、例えば、特許文献4に記載の耐摩耗鋼板では、このような最近の耐摩耗性の向上要求を、十分に満足することができないという問題があった。
本発明は、かかる要望に鑑み、溶接性、加工性に優れ、かつ顕著な高硬度化を伴うことなく、耐摩耗性に優れた鋼板を提供することを目的とする。
Recently, in order to extend the life and performance of wear-resistant members, the wear-resistant steel plates used are required to have even higher wear resistance without significantly reducing weldability and workability. It has become like this. However, for example, the wear-resistant steel sheet described in Patent Document 4 has a problem in that it cannot fully satisfy the recent demand for improvement in wear resistance.
In view of such demands, an object of the present invention is to provide a steel plate that is excellent in weldability and workability, and has excellent wear resistance without being accompanied by a marked increase in hardness.

本発明者らは、上記した目的を達成するため、顕著な高硬度化を伴うことなく、耐摩耗性を向上させるためには、Tiを多量に含有する組成とし、粗大なTi炭化物(TiC)を晶出・析出させることが有効であることを見出した。そして、さらにその効果を高める方策について、鋭意研究を重ねた。その結果、Tiの多量含有に加えて、さらに0.1質量%以上のWと0.05質量%以上のMoとを複合含有させることにより、耐摩耗性が更に著しく向上することを見出した。   In order to achieve the above-described object, the inventors of the present invention have a composition containing a large amount of Ti and coarse Ti carbide (TiC) in order to improve wear resistance without significantly increasing hardness. It has been found that it is effective to crystallize and precipitate. And we conducted intensive research on measures to further increase the effect. As a result, it has been found that the wear resistance is further remarkably improved by combining 0.1% by mass or more of W and 0.05% by mass or more of Mo in addition to a large amount of Ti.

TiとWおよびMoの複合含有により、耐摩耗性が著しく向上する機構については現在までのところ十分に明確にはなっていないが、晶出物・析出物の成分分析から、耐摩耗性が顕著に向上する場合には、析出物(TiC)にWとMoが同時に含まれていることが確認されていることから、本発明者らは次のように推定している。すなわち、TiCにWとMoが同時に固溶した複合炭化物を形成することにより、炭化物の特性が変化して、耐摩耗性の向上に顕著に寄与するようになったものと推定している。   Although the mechanism by which Ti, W, and Mo are combined to significantly improve wear resistance has not been clarified so far, the wear resistance is remarkable from the analysis of crystallized and precipitated components. In the case where it is improved, it is confirmed that W and Mo are simultaneously contained in the precipitate (TiC), and the present inventors presume as follows. That is, it is presumed that by forming a composite carbide in which W and Mo are simultaneously dissolved in TiC, the characteristics of the carbide are changed, and this has contributed significantly to the improvement of wear resistance.

本発明は、上記した知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨は、次のとおりである。
(1)質量%で、C:0.20〜0.50%、Si:0.1〜1.0%、Mn:0.1〜2.0%、P:0.04%以下、S:0.04%以下、Ti:0.2〜1.0%、W:0.1〜4.0%、Mo:0.05〜2.0%、B:0.0003〜0.01%、N:0.01%以下を含み、残部Feおよび不可避的不純物からなる組成と、平均粒径:0.5μm以上の、Ti炭化物、TiとWの複合炭化物、TiとMoの複合炭化物およびTiとWとMoの複合炭化物を合計で、400個/mm以上含む組織を有することを特徴とする耐摩耗鋼板。
The present invention has been completed based on the above findings and further studies. That is, the gist of the present invention is as follows.
(1) By mass%, C: 0.20 to 0.50%, Si: 0.1 to 1.0%, Mn: 0.1 to 2.0%, P: 0.04% or less, S: 0.04% or less, Ti: 0.2 to 1.0%, W: 0.1 -4.0%, Mo: 0.05-2.0%, B: 0.0003-0.01%, N: 0.01% or less, the composition consisting of the balance Fe and inevitable impurities, and the average particle size: Ti carbide of 0.5 μm or more, Ti A wear-resisting steel sheet having a structure containing a total of 400 / mm 2 or more of a composite carbide of Ti and W, a composite carbide of Ti and Mo, and a composite carbide of Ti, W and Mo.

(2)(1)において、前記組成に加えてさらに、質量%で、Cu:0.1〜2.0%、Ni:0.1〜10%、Cr:0.1〜3.0%のうちから選ばれた1種または2種以上を含む組成とすることを特徴とする耐摩耗鋼板。
(3)(1)または(2)において、前記組成に加えてさらに、質量%で、Al:0.1%以下を含む組成とすることを特徴とする耐摩耗鋼板。
(2) In (1), in addition to the above composition, in addition to mass, one or two selected from Cu: 0.1 to 2.0%, Ni: 0.1 to 10%, Cr: 0.1 to 3.0% A wear-resistant steel sheet characterized by having a composition including the above.
(3) In (1) or (2), in addition to the said composition, it is set as the composition containing Al: 0.1% or less by the mass% further, The abrasion-resistant steel plate characterized by the above-mentioned.

本発明によれば、溶接性、加工性に優れ、かつ顕著な高硬度化を伴うことなく、従来材に比べて耐摩耗性がさらに向上した耐摩耗鋼板を、容易にしかも安価に製造でき、産業上格段の効果を奏する。   According to the present invention, it is possible to easily and inexpensively manufacture a wear-resistant steel sheet that is excellent in weldability, workability, and without significantly increasing hardness, and further improved in wear resistance compared to conventional materials, There are remarkable effects in the industry.

まず、本発明の鋼板の組成範囲規定理由について説明する。なお、以下の%表示は、いずれも質量%を示す。
C:0.20〜0.50%
Cは、TiCを主体とする炭化物(析出物)を形成させるために必須の元素である。0.20%未満では、TiCを主体とする炭化物(析出物)を有効に形成することができない。一方、0.50%を超える含有は、過剰な固溶Cが残存するため、高硬度化とともに溶接性、加工性等が低下する。このため、Cは0.20〜0.50%の範囲に規定した。
First, the reason for defining the composition range of the steel sheet of the present invention will be described. In addition, the following% display shows mass% altogether.
C: 0.20 ~ 0.50%
C is an essential element for forming a carbide (precipitate) mainly composed of TiC. If it is less than 0.20%, carbides (precipitates) mainly composed of TiC cannot be effectively formed. On the other hand, if the content exceeds 0.50%, excessive solid solution C remains, so that the weldability, workability, and the like decrease as the hardness increases. For this reason, C was specified in the range of 0.20 to 0.50%.

Si:0.1〜1.0%
Siは、脱酸元素として有効な元素であり、その効果を得るためには、少なくとも0.1%以上の含有を必要とする。また、Siは、鋼に固溶して、固溶強化により高硬度化に寄与する有効な元素であるが、1.0%を超える含有は、延性、靭性を低下させ、さらに介在物量が増加する等の問題を生じる。このため、Siは0.1〜1.0%の範囲に規定した。 なお、好ましくは0.1〜0.5%である。
Si: 0.1-1.0%
Si is an effective element as a deoxidizing element, and in order to obtain the effect, it needs to contain at least 0.1% or more. In addition, Si is an effective element that dissolves in steel and contributes to higher hardness by solid solution strengthening. However, if it exceeds 1.0%, ductility and toughness are reduced, and the amount of inclusions is increased. Cause problems. For this reason, Si was specified in the range of 0.1 to 1.0%. In addition, Preferably it is 0.1 to 0.5%.

Mn:0.1〜2.0%
Mnは、焼入性を向上させる有効な元素であり、その効果を得るためには、0.1%以上の含有を必要とする。一方、2.0%を超える含有は、溶接性を低下させる。このため、Mnは0.1〜2.0%の範囲に規定した。なお、好ましくは0.5〜1.6%である。
P:0.04%以下
Pは、鋼の延性・靭性を低下させ、鋼板特性に悪影響を及ぼす元素であり、本発明では不可避的不純物として極力低減するのが望ましいが、過度の低減は精錬コストを高騰させる。このような悪影響を及ぼさず、しかも精錬コストの過度の上昇を抑える観点から、Pは0.04%以下に規定した。なお、好ましくは0.02%以下である。
Mn: 0.1-2.0%
Mn is an effective element for improving the hardenability, and in order to obtain the effect, the content needs to be 0.1% or more. On the other hand, if the content exceeds 2.0%, weldability decreases. For this reason, Mn was specified in the range of 0.1 to 2.0%. In addition, Preferably it is 0.5 to 1.6%.
P: 0.04% or less P is an element that lowers the ductility and toughness of steel and adversely affects the properties of the steel sheet. In the present invention, it is desirable to reduce it as an inevitable impurity, but excessive reduction increases the refining cost. Let From the viewpoint of preventing such an adverse effect and suppressing an excessive increase in the refining cost, P is specified to be 0.04% or less. In addition, Preferably it is 0.02% or less.

S:0.04%以下
Sは、熱間延性の低下、常温での延性・靭性の低下をもたらす不純物元素であり、極力低減するのが望ましいが、過度の低減は精錬コストを高騰させる。このため、このような悪影響を及ぼさず、しかも精錬コストの過度の上昇を抑える観点から、Sは0.04%以下に規定した。なお、好ましくは0.02%以下である。
S: 0.04% or less S is an impurity element that causes a decrease in hot ductility and a decrease in ductility and toughness at room temperature, and it is desirable to reduce it as much as possible. However, excessive reduction increases the refining cost. For this reason, from the viewpoint of preventing such an adverse effect and suppressing an excessive increase in the refining cost, S is specified to be 0.04% or less. In addition, Preferably it is 0.02% or less.

Ti:0.2〜1.0%
Tiは、本発明において、C、W、Moと共に最も重要な元素であり、安定してTiC、TiとWの複合炭化物、TiとMoの複合炭化物、およびTiとWおよびMoの複合炭化物を生成させるために必須の元素である。このような炭化物を形成させて、耐摩耗性を向上させる観点から、0.2%以上の含有を必要とする。一方、1.0%を超えて含有すると、加工性が低下するとともに、材料コストの高騰に繋がる。このため、Tiは0.2〜1.0%の範囲に規定した。なお、好ましくは0.3〜0.8%である。
Ti: 0.2-1.0%
Ti is the most important element together with C, W and Mo in the present invention, and stably produces TiC, Ti and W composite carbide, Ti and Mo composite carbide, and Ti, W and Mo composite carbide. It is an essential element to make it. From the viewpoint of improving the wear resistance by forming such a carbide, the content of 0.2% or more is required. On the other hand, when it contains exceeding 1.0%, workability will fall and it will lead to the rise of material cost. For this reason, Ti was specified in the range of 0.2 to 1.0%. In addition, Preferably it is 0.3 to 0.8%.

W:0.1〜4.0%
Wは、本発明において、C、Ti、Moと共に最も重要な元素であり、Ti、Moと共に複合炭化物を形成し、耐摩耗性を向上させる元素である。このような効果を得るためには、0.1%以上の含有を必要とする。一方、4.0%を超える多量の含有は、材料コストの高騰を招くとともに、Wが複合炭化物中に固溶できなくなり、耐摩耗性向上効果が飽和し、含有量に見合う効果が期待できなくなり、経済的に不利になるうえ、溶接性、加工性が低下する。このため、Wは0.1〜4.0%の範囲に規定した。なお、好ましくは0.2〜3.0%である。
W: 0.1-4.0%
In the present invention, W is the most important element together with C, Ti, and Mo, and is an element that forms a composite carbide with Ti and Mo and improves wear resistance. In order to obtain such an effect, the content of 0.1% or more is required. On the other hand, if the content exceeds 4.0%, the material cost will increase, W will not be able to be dissolved in the composite carbide, the effect of improving the wear resistance will be saturated, and the effect commensurate with the content cannot be expected. In addition, the weldability and workability are reduced. For this reason, W was specified in the range of 0.1 to 4.0%. In addition, Preferably it is 0.2 to 3.0%.

Mo:0.05〜2.0%
Moは、本発明において、C、Ti、Wと共に最も重要な元素であり、Ti、Wと共に複合炭化物を形成し、耐摩耗性を向上させる元素である。このような効果を得るためには、0.05%以上の含有を必要とする。一方、2.0%を超える含有は、Moが複合炭化物中に固溶できなくなるため、溶接性が低下するとともに、材料コストの高騰に繋がる。このため、Moは0.05〜2.0%の範囲に規定した。なお、好ましくは0.1〜1.6%である。
Mo: 0.05-2.0%
In the present invention, Mo is the most important element together with C, Ti, and W, and is an element that forms a composite carbide with Ti and W and improves wear resistance. In order to acquire such an effect, 0.05% or more of content is required. On the other hand, if the content exceeds 2.0%, Mo cannot be dissolved in the composite carbide, so that the weldability is lowered and the material cost is increased. For this reason, Mo was specified in the range of 0.05 to 2.0%. In addition, Preferably it is 0.1 to 1.6%.

B:0.0003〜0.01%
Bは、微量添加で焼入れ性を高める元素であるが、この効果を発揮するためには、0.0003%以上の含有を必要とする。一方、0.01%を超える含有は、溶接性を低下させるとともに、焼入れ性も低下させる。このため、Bは0.0003〜0.01%の範囲に規定した。なお、好ましくは0.0005〜0.004%である。
B: 0.0003-0.01%
B is an element that enhances the hardenability by adding a small amount, but in order to exert this effect, the content of 0.0003% or more is required. On the other hand, the content exceeding 0.01% reduces weldability and hardenability. For this reason, B was specified in the range of 0.0003 to 0.01%. In addition, Preferably it is 0.0005 to 0.004%.

N:0.01%以下
Nは、鋼の延性・靭性を低下させる不純物元素であり、極力低減するのが望ましいが、過度の低減は精錬コストの高騰を招く。このため、このような悪影響を及ぼさず、しかも精錬コストの過度の上昇を抑える観点から、Nは0.01%以下に規定した。なお、好ましくは0.006%以下である。
N: 0.01% or less N is an impurity element that lowers the ductility and toughness of steel, and it is desirable to reduce it as much as possible. However, excessive reduction leads to an increase in refining cost. For this reason, from the viewpoint of preventing such an adverse effect and suppressing an excessive increase in the refining cost, N is specified to be 0.01% or less. In addition, Preferably it is 0.006% or less.

上記した成分が基本成分であるが、必要に応じて、この基本成分に加えてさらに、Cu:0.1〜2.0%、Ni:0.1〜10%、Cr:0.1〜3.0%のうちから選ばれた1種または2種以上、および/または、Al:0.1%以下を含有できる。
Cu、Ni、Crはいずれも、鋼の焼入れ性を高める元素であり、必要に応じて選択して1種または2種以上含有できる。
The above-mentioned components are basic components. In addition to this basic component, if necessary, Cu: 0.1 to 2.0%, Ni: 0.1 to 10%, Cr: 0.1 to 3.0% 1 Species or two or more, and / or Al: 0.1% or less can be contained.
Cu, Ni, and Cr are all elements that enhance the hardenability of the steel, and can be selected as necessary and contained in one or more.

Cuは、焼入性を高める元素であり、目的に応じて硬さを制御するために有効に作用する元素であるが、このような効果を得るためには0.1%以上の含有を必要とする。一方、2.0%を超える含有は、熱間加工性を低下させるとともに、材料コストの高騰を招く。このため、Cuは含有する場合、0.1〜2.0%の範囲に限定することが好ましい。
Niは、焼入性を高めるとともに、低温靭性を向上させる元素であり、このような効果は0.1%以上の含有で顕著となる。一方、10%を超える高価なNiの含有は、材料コストを著しく上昇させる。このため、含有する場合には、Niは0.1〜10%の範囲に限定することが好ましい。
Cu is an element that enhances hardenability, and is an element that works effectively to control the hardness according to the purpose, but in order to obtain such an effect, it needs to contain 0.1% or more . On the other hand, if the content exceeds 2.0%, the hot workability is lowered and the material cost is increased. For this reason, when it contains Cu, it is preferable to limit to 0.1 to 2.0% of range.
Ni is an element that enhances hardenability and improves low-temperature toughness, and such an effect becomes remarkable when the content is 0.1% or more. On the other hand, the content of expensive Ni exceeding 10% significantly increases the material cost. For this reason, when it contains, it is preferable to limit Ni to 0.1 to 10% of range.

Crは、焼入性を高める元素であり、このような効果を得るためには0.1%以上の含有を必要とする。一方、3.0%を超える含有は、溶接性を低下させるとともに、材料コストの高騰を招く。このため、含有する場合には、Crは0.1〜3.0%の範囲に限定することが好ましい。
Al:0.1%以下
Alは、脱酸剤として作用するとともに、Nと結合して結晶粒微細化に寄与する元素であり、必要に応じ含有できる。このような効果は、0.01%以上の含有で認められるが、0.1
%を超える多量の含有は、鋼の清浄度を低下させる。このため、Alは含有する場合には、0.1%以下に限定することが好ましい。
Cr is an element that enhances hardenability and needs to be contained in an amount of 0.1% or more in order to obtain such an effect. On the other hand, if the content exceeds 3.0%, the weldability is lowered and the material cost is increased. For this reason, when it contains, it is preferable to limit Cr to 0.1 to 3.0% of range.
Al: 0.1% or less
Al is an element that acts as a deoxidizing agent and combines with N to contribute to refinement of crystal grains, and can be contained as necessary. Such an effect is recognized at a content of 0.01% or more, but 0.1%
Containing a large amount exceeding 1% lowers the cleanliness of the steel. For this reason, when Al is contained, it is preferably limited to 0.1% or less.

上記した成分以外の残部は、Feおよび不可避的不純物である。不可避的不純物としては、O:0.1%以下、Al:0.01%未満が許容される。
つぎに、本発明の鋼板の組織規定理由について説明する。
本発明の鋼板は、平均粒径:0.5μm以上の、Ti炭化物、TiとMoの複合炭化物、TiとWの複合炭化物およびTiとMoとWの複合炭化物、を合計で、400個/mm以上含む組織を有する。
The balance other than the above components is Fe and inevitable impurities. As unavoidable impurities, O: 0.1% or less and Al: less than 0.01% are allowed.
Next, the reason for defining the structure of the steel sheet of the present invention will be described.
The steel sheet of the present invention has a total particle size of 400 / mm 2 of Ti carbide, Ti and Mo composite carbide, Ti and W composite carbide and Ti, Mo and W composite carbide having an average particle size of 0.5 μm or more. It has an organization that includes the above.

本発明の鋼板では、Ti炭化物(TiC)、TiとMoの複合炭化物、TiとWの複合炭化物およびTiとMoとWの複合炭化物を主体とする粗大な析出物を多量に生成させることにより、所望の耐摩耗性を確保している。平均粒径が0.5μm未満の微細な析出物では、顕著な耐摩耗性向上効果を期待できない。このため、Ti炭化物(TiC)、TiとMoの複合炭化物、TiとWの複合炭化物およびTiとMoとWの複合炭化物を主体とする析出物の大きさを平均粒径で0.5μm以上とした。なお、炭化物の脱落による耐摩耗性の低下を考慮して、析出物の平均粒径の上限は50μmとすることが好ましい。   In the steel sheet of the present invention, a large amount of coarse precipitates mainly composed of Ti carbide (TiC), composite carbide of Ti and Mo, composite carbide of Ti and W, and composite carbide of Ti, Mo and W, The desired wear resistance is ensured. Fine precipitates having an average particle size of less than 0.5 μm cannot be expected to have a remarkable effect of improving wear resistance. For this reason, the size of precipitates mainly composed of Ti carbide (TiC), composite carbide of Ti and Mo, composite carbide of Ti and W, and composite carbide of Ti, Mo and W was set to 0.5 μm or more in average particle size. . Note that the upper limit of the average particle size of the precipitates is preferably 50 μm in consideration of a decrease in wear resistance due to falling off of carbides.

本発明の鋼板では、平均粒径が0.5μm以上の、Ti炭化物、TiとWの複合炭化物、TiとMoの複合炭化物およびTiとWとMoの複合炭化物を、合計で、400個/mm以上含む。平均粒径が0.5μm以上の、粗大なTi炭化物、TiとWの複合炭化物、TiとMoの複合炭化物およびTiとWとMoの複合炭化物を主体とする析出物の密度が400個/mm未満では、耐摩耗性向上効果がほとんど期待できない。このため、平均粒径が0.5μm以上の、Ti炭化物、TiとWの複合炭化物、TiとMoの複合炭化物およびTiとWとMoの複合炭化物を、合計で、400個/mm以上に規定した。なお、上限はとくに規定されない。 In the steel sheet of the present invention, Ti carbide, Ti and W composite carbide, Ti and Mo composite carbide, and Ti, W and Mo composite carbide having an average particle size of 0.5 μm or more in total are 400 pieces / mm 2. Including above. The density of coarse Ti carbide, Ti and W composite carbide, Ti and Mo composite carbide, and precipitates mainly composed of Ti, W and Mo composite carbide having an average particle size of 0.5 μm or more is 400 / mm 2 If it is less than this, the effect of improving wear resistance can hardly be expected. For this reason, Ti carbide, Ti and W composite carbide, Ti and Mo composite carbide and Ti, W and Mo composite carbide with an average particle size of 0.5 μm or more are defined in total at 400 pieces / mm 2 or more. did. There is no specific upper limit.

なお、析出物(Ti炭化物、TiとWの複合炭化物、TiとMoの複合炭化物およびTiとWとMoの複合炭化物)の大きさおよび個数の測定は、光学顕微鏡または走査型電子顕微鏡(倍率:400倍以上)を用いて、一定の面積部分の組織を観察し(5視野以上)、そこで観察される各析出物の大きさおよび単位面積当りの個数を画像解析等の方法を用いて測定するものとする。また、析出物のうち、Ti炭化物、TiとWの複合炭化物、TiとMoの複合炭化物およびTiとWとMoの複合炭化物の識別は、分析装置を搭載した走査型電子顕微鏡を用いて行うことが好ましい。なお、ここでいう「平均粒径」は、各析出物の面積を画像解析等の方法で測定し、測定された各面積から円相当直径を算出して各析出物の直径とし、得られた各析出物の直径を算術平均して得た平均値をその鋼板の析出物の平均粒径とした。なお、平均粒径の算出には、少なくとも100個以上の析出物について測定するものとする。   The size and number of precipitates (Ti carbide, Ti and W composite carbide, Ti and Mo composite carbide and Ti, W and Mo composite carbide) were measured using an optical microscope or a scanning electron microscope (magnification: 400 times or more) is used to observe the structure of a certain area (more than 5 fields of view), and the size of each precipitate observed and the number per unit area is measured using a method such as image analysis. Shall. Of the precipitates, Ti carbide, Ti and W composite carbide, Ti and Mo composite carbide, and Ti, W and Mo composite carbide should be identified using a scanning electron microscope equipped with an analyzer. Is preferred. The “average particle size” here is obtained by measuring the area of each precipitate by a method such as image analysis, and calculating the equivalent circle diameter from each measured area as the diameter of each precipitate. The average value obtained by arithmetically averaging the diameters of the respective precipitates was defined as the average particle size of the precipitates on the steel sheet. In calculating the average particle size, at least 100 precipitates are measured.

なお、上記した炭化物が析出する組織の基地組織は、基本的にマルテンサイト相を主体とする組織とする。基地組織がマルテンサイト相を主体とする組織の場合には、炭化物の密度や硬さを高めることにより、耐摩耗性の向上効果を効率的に引き出すことができる。一方、基地組織がマルテンサイト相を主体とする組織でない場合は、炭化物の硬さや密度を高めていくことにより、ある程度までは耐摩耗性を向上させることができるが、ある限度で耐摩耗性向上効果が飽和し、炭化物の硬さや密度の増加に見合う効果が期待できなくなる。   In addition, the base structure of the structure | tissue which the above-mentioned carbide precipitates shall be a structure | tissue which has a martensite phase as a main component. In the case where the base structure is a structure mainly composed of a martensite phase, the effect of improving the wear resistance can be efficiently derived by increasing the density and hardness of the carbide. On the other hand, when the base structure is not a structure mainly composed of martensite phase, it is possible to improve the wear resistance to some extent by increasing the hardness and density of the carbide, but the wear resistance is improved to a certain extent. The effect is saturated and an effect commensurate with the increase in hardness and density of the carbide cannot be expected.

本発明でいう「マルテンサイト相を主体とする組織」とは、マルテンサイト相の組織分率が70%以上である組織をいうものとする。残部は、マルテンサイト相以外の、ベイナイト相、パーライト相、フェライト相、残留オーステナイト相、あるいはそれらの混合相としてもよい。
また、基地組織をマルテンサイト相を主体とする組織とするためには、基地組織の固溶C量を、0.03質量%超とすることが好ましい。固溶C量が0.03質量%以下では、通常用いられているいかなる工業的熱処理を施しても、マルテンサイト相を主体とする組織とすることができない。
The “structure mainly composed of martensite phase” in the present invention refers to a structure having a martensite phase structure fraction of 70% or more. The balance may be a bainite phase, a pearlite phase, a ferrite phase, a retained austenite phase, or a mixed phase thereof other than the martensite phase.
Further, in order to make the base structure mainly composed of the martensite phase, it is preferable that the solid solution C amount of the base structure is more than 0.03% by mass. When the amount of solute C is 0.03% by mass or less, even if any commonly used industrial heat treatment is performed, a structure mainly composed of a martensite phase cannot be obtained.

つぎに、本発明鋼板の好ましい製造方法について説明する。
転炉、電気炉または真空溶解炉等の公知の溶製方法で、上記した成分範囲内の組成に調整した溶鋼を、公知の連続鋳造法または造塊法を用いて所望の寸法形状の鋼素材(スラブまたはインゴット)とすることが好ましい。
なお、連続鋳造法を用いた場合、厚み200〜400mmの鋳片表面の1500〜1200℃温度域における冷却速度を0.2〜10℃/sの範囲となるように冷却を調整することが好ましい。これにより、析出物(Ti炭化物、TiとWの複合炭化物、TiとMoの複合炭化物およびTiとWとMoの複合炭化物)を所望の大きさおよび個数、すなわち平均粒径が0.5μm以上好ましくは50μm以下の、Ti炭化物、TiとWの複合炭化物、TiとMoの複合炭化物およびTiとWとMoの複合炭化物を、合計で、400個/mm以上、に調整することが可能となる。なお、造塊法を用いる場合にも、インゴットの大きさおよび冷却条件を、析出物(Ti炭化物、TiとWの複合炭化物、TiとMoの複合炭化物およびTiとWとMoの複合炭化物)が所望の大きさおよび個数になるように、調整する必要があることはいうまでもない。
Below, the preferable manufacturing method of this invention steel plate is demonstrated.
A steel material having a desired size and shape is obtained by using a known continuous casting method or ingot forming method with a molten steel adjusted to a composition within the above-described component range by a known melting method such as a converter, electric furnace or vacuum melting furnace. (Slab or ingot) is preferable.
When the continuous casting method is used, it is preferable to adjust the cooling so that the cooling rate in the temperature range of 1500 to 1200 ° C. on the surface of the slab having a thickness of 200 to 400 mm is in the range of 0.2 to 10 ° C./s. Thereby, precipitates (Ti carbide, composite carbide of Ti and W, composite carbide of Ti and Mo and composite carbide of Ti, W and Mo) are desired in size and number, that is, the average particle size is preferably 0.5 μm or more. Ti carbide, Ti and W composite carbide, Ti and Mo composite carbide and Ti, W and Mo composite carbide of 50 μm or less can be adjusted to 400 pieces / mm 2 or more in total. Even when the ingot method is used, the size of the ingot and the cooling conditions are determined according to the precipitates (Ti carbide, Ti and W composite carbide, Ti and Mo composite carbide and Ti, W and Mo composite carbide). Needless to say, it is necessary to adjust the size and number to a desired size.

鋼素材は、ついで、冷却することなく直接、または再加熱されたのち、熱間圧延され、所望の板厚の鋼板とされる。なお、熱間圧延の条件は、所望の寸法形状の鋼板とすることができればよく、とくに限定されない。
熱間圧延後、鋼板は室温付近まで冷却される。冷却後、900℃以上の温度まで再加熱されたのち、焼入れされて、製品(耐摩耗鋼板)とすることが好ましい。焼入れの冷却は、水冷とし、Ms点以下まで冷却することが好ましい。なお、必要に応じて、焼入れ後700℃以下の温度域で焼戻す焼戻処理を施してもよい。
Next, the steel material is directly or reheated without cooling, and then hot-rolled to obtain a steel plate having a desired thickness. The hot rolling conditions are not particularly limited as long as the steel sheet can have a desired size and shape.
After hot rolling, the steel sheet is cooled to near room temperature. After cooling, it is preferably reheated to a temperature of 900 ° C. or higher and then quenched to obtain a product (abrasion resistant steel plate). The quenching cooling is preferably water cooling and cooling to the Ms point or lower. If necessary, a tempering treatment may be performed after tempering in a temperature range of 700 ° C. or lower.

以下、本発明をさらに実施例に基づいて詳細に説明する。   Hereinafter, the present invention will be further described in detail based on examples.

表1に示す組成の溶湯を、真空溶解炉で溶製し、小型鋼塊(50kg鋼塊)とした。これら小型鋼塊を、熱間圧延により板厚15mmの鋼板とした。なお、熱間圧延後は空冷とした。ついでこれら鋼板を、900℃に再加熱したのち、200℃以下まで冷却する焼入れを施した。得られた鋼板について、組織観察、耐摩耗性、硬さについて調査した。なお、調査方法はつぎのとおりである。   The molten metal having the composition shown in Table 1 was melted in a vacuum melting furnace to obtain a small steel ingot (50 kg steel ingot). These small steel ingots were made into steel plates having a thickness of 15 mm by hot rolling. In addition, it was set as air cooling after hot rolling. These steel plates were then reheated to 900 ° C. and then quenched to 200 ° C. or lower. The obtained steel sheet was examined for structure observation, wear resistance, and hardness. The survey method is as follows.

(1)組織観察
得られた各鋼板から組織観察用試験片を採取し、圧延方向に直交する断面全体について、研磨し、ナイタール腐食して、分析装置付走査型電子顕微鏡(倍率:1000倍)を用いて、組織を撮像した。拡大された100mm×100mmの視野(25視野)について、画像解析装置を用いて、Ti炭化物(TiC)、TiとMoの複合炭化物、TiとWの複合炭化物、TiとMoとWの複合炭化物の大きさ、個数を測定した。炭化物の大きさは、各炭化物の面積を測定し、同面積から円相当直径を算出し、得られた円相当直径を算術平均し、得られた平均値をその鋼板の平均粒径とした。また、得られた炭化物(Ti炭化物、TiとMoの複合炭化物、TiとWの複合炭化物、TiとMoとWの複合炭化物)のうち、平均粒径が0.5μm以上の炭化物について、その個数を測定し、1mm当りの個数に換算した。
(1) Microstructure observation A specimen for microstructural observation was collected from each steel plate obtained, and the entire cross section perpendicular to the rolling direction was polished and subjected to nital corrosion, and a scanning electron microscope with an analyzer (magnification: 1000 times). Was used to image the tissue. Using an image analysis device for an enlarged 100 mm x 100 mm field of view (25 fields), Ti carbide (TiC), Ti-Mo composite carbide, Ti-W composite carbide, Ti-Mo-W composite carbide The size and number were measured. As for the size of the carbide, the area of each carbide was measured, the equivalent circle diameter was calculated from the same area, the obtained equivalent circle diameter was arithmetically averaged, and the obtained average value was taken as the average particle diameter of the steel sheet. In addition, among the obtained carbides (Ti carbide, composite carbide of Ti and Mo, composite carbide of Ti and W, composite carbide of Ti, Mo and W), the number of carbides having an average particle size of 0.5 μm or more is Measured and converted to the number per 1 mm 2 .

なお、同時に、基地組織の種類、およびその組織分率を調査した。なお、組織分率は、撮像した範囲において、画像解析装置を用いて評価した。なお、マルテンサイト相の組織分率は、マルテンサイトラス組織の全体に占める割合を、画像解析装置を用いて面積率で評価した。
(2)耐摩耗性
得られた各鋼板から試験片(大きさ:t×25×75mm)を採取し、ASTM G−65に準拠し、摩耗砂としてSiO:90%以上の砂を使用して、摩耗試験を実施した。なお、軟鋼(SS400)板についても同様に試験した。
At the same time, the types of base organizations and their fractions were investigated. Note that the tissue fraction was evaluated using an image analysis device in the imaged range. In addition, the structure fraction of the martensite phase evaluated the ratio which occupies for the whole martensitic structure by the area ratio using the image analyzer.
(2) specimen from each steel sheet obtained abrasion resistance (size: t × 25 × 75 mm) was collected, conforming to ASTM G-65, SiO 2 as a wear sand: using 90% sand A wear test was conducted. A mild steel (SS400) plate was also tested in the same manner.

各鋼板の耐摩耗性は、軟鋼(SS400)板の摩耗量を基準(1.0)として耐摩耗比で評価した。耐摩耗比が大きいほど耐摩耗性に優れていることを意味する。
(3)硬さ測定
得られた各鋼板から試験片を採取し、JIS Z 2243の規定に準拠して、ブリネル硬さHBW
10/3000を測定した。
The wear resistance of each steel plate was evaluated by the wear resistance ratio with the wear amount of the mild steel (SS400) plate as the standard (1.0). A larger wear resistance ratio means better wear resistance.
(3) Hardness measurement Specimens were collected from each steel plate obtained, and in accordance with the provisions of JIS Z 2243, Brinell hardness HBW
10/3000 was measured.

(4)基地組織の固溶C量
得られた各鋼板から試験片を採取し、電解抽出法により炭化物を抽出して、炭化物となっているC量を測定し、ついでtotalC量から、炭化物となっているC量を差引き、基地組織中の固溶C量とした。
得られた結果を表2に示す。
(4) Solid solution C amount of base structure Collect specimens from each steel plate obtained, extract carbides by electrolytic extraction, measure the amount of carbon that has become carbides, and from the total C amount, The amount of C is subtracted to obtain the amount of dissolved C in the base tissue.
The obtained results are shown in Table 2.

Figure 0004894296
Figure 0004894296

Figure 0004894296
Figure 0004894296

本発明例はいずれも、マルテンサイトラス相の占める割合が面積率で70%以上であるマルテンサイト相を主体とする基地組織と、0.3質量%超えの固溶C量を有し、軟鋼(SS400)に比べて摩耗比13以上と耐摩耗性に優れている。また、本発明例は、硬さが約450HBW以下と比較的低く、加工性や溶接性に優れていることが分かる。一方、本発明の範囲を外れる比較例は、耐摩耗性が比較的低く、また硬さが約470HBW以上と高く、加工性や溶接性に劣っていることが分かる。W含有量が本発明の範囲を低く外れる比較例(鋼板No.10)は、摩耗比が11.3であり、本発明例に比べて低下しており、また、硬さも高い値となっている。また、Mo含有量が本発明の範囲を低く外れる比較例(鋼板No.11)は、摩耗比が10.2であり、本発明例に比べて耐摩耗性が低下しており、また、硬さも高い値となっている。また、Ti含有量が本発明の範囲を低く外れる比較例(鋼板No.12)は、炭化物の析出量が少なく、摩耗比が4.3と本発明例に比べて低下している。   Each of the inventive examples has a base structure mainly composed of a martensite phase in which the ratio of the martensite lath phase is 70% or more in area ratio, a solid solution C amount exceeding 0.3% by mass, and mild steel (SS400) Compared to, the wear ratio is more than 13 and wear resistance is excellent. In addition, it can be seen that the example of the present invention has a relatively low hardness of about 450 HBW or less and is excellent in workability and weldability. On the other hand, it can be seen that the comparative example out of the scope of the present invention has relatively low wear resistance and high hardness of about 470 HBW or more, and is inferior in workability and weldability. The comparative example (steel plate No. 10) in which the W content deviates from the scope of the present invention has a wear ratio of 11.3, which is lower than that of the present invention and has a high hardness. Further, in the comparative example (steel plate No. 11) in which the Mo content falls outside the range of the present invention, the wear ratio is 10.2, the wear resistance is lower than that of the present invention example, and the hardness is also high. It is a value. Further, in the comparative example (steel plate No. 12) in which the Ti content deviates from the range of the present invention, the carbide precipitation amount is small and the wear ratio is 4.3, which is lower than that of the present invention.

また、W含有量が本発明の範囲を高く外れる比較例(鋼板No.13)は、硬さが571HBWと著しく高い値となっている。また、Mo含有量が本発明の範囲を高く外れる比較例(鋼板No.14)は、硬さが488HBWと高い値となっている。   Further, the comparative example (steel plate No. 13) in which the W content deviates from the scope of the present invention has a remarkably high value of 571 HBW. Moreover, the comparative example (steel plate No. 14) in which the Mo content is outside the range of the present invention has a high hardness value of 488 HBW.

Claims (3)

質量%で、
C:0.20〜0.50%、 Si:0.1〜1.0%、
Mn:0.1〜2.0%、 P:0.04%以下、
S:0.04%以下、 Ti:0.2〜1.0%、
W:0.1〜4.0%、 Mo:0.05〜2.0%、
B:0.0003〜0.01%、 N:0.01%以下
を含み、残部Feおよび不可避的不純物からなる組成と、平均粒径:0.5μm以上の、Ti炭化物、TiとWの複合炭化物、TiとMoの複合炭化物およびTiとWとMoの複合炭化物を合計で、400個/mm以上含む組織を有することを特徴とする耐摩耗鋼板。
% By mass
C: 0.20 to 0.50%, Si: 0.1 to 1.0%,
Mn: 0.1 to 2.0%, P: 0.04% or less,
S: 0.04% or less, Ti: 0.2-1.0%,
W: 0.1-4.0%, Mo: 0.05-2.0%,
B: 0.0003 to 0.01%, N: 0.01% or less, the composition comprising the balance Fe and inevitable impurities, and the average particle size: 0.5 μm or more of Ti carbide, composite carbide of Ti and W, composite of Ti and Mo A wear-resistant steel sheet having a structure containing a total of 400 carbides / mm 2 or more of carbides and composite carbides of Ti, W, and Mo.
前記組成に加えてさらに、質量%で、Cu:0.1〜2.0%、Ni:0.1〜10%、Cr:0.1〜3.0%のうちから選ばれた1種または2種以上を含む組成とすることを特徴とする請求項1に記載の耐摩耗鋼板。   In addition to the above composition, the composition further includes one or more selected from Cu: 0.1 to 2.0%, Ni: 0.1 to 10%, and Cr: 0.1 to 3.0% by mass%. The wear-resistant steel sheet according to claim 1, wherein 前記組成に加えてさらに、質量%で、Al:0.1%以下を含む組成とすることを特徴とする請求項1または2に記載の耐摩耗鋼板。   The wear-resistant steel sheet according to claim 1 or 2, wherein in addition to the composition, the composition further includes, by mass%, Al: 0.1% or less.
JP2006051826A 2006-02-28 2006-02-28 Wear-resistant steel plate Active JP4894296B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006051826A JP4894296B2 (en) 2006-02-28 2006-02-28 Wear-resistant steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006051826A JP4894296B2 (en) 2006-02-28 2006-02-28 Wear-resistant steel plate

Publications (2)

Publication Number Publication Date
JP2007231320A JP2007231320A (en) 2007-09-13
JP4894296B2 true JP4894296B2 (en) 2012-03-14

Family

ID=38552212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006051826A Active JP4894296B2 (en) 2006-02-28 2006-02-28 Wear-resistant steel plate

Country Status (1)

Country Link
JP (1) JP4894296B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112018017090A2 (en) 2016-09-15 2019-01-02 Nippon Steel & Sumitomo Metal Corp abrasion resistant steel
JP6274381B1 (en) * 2016-09-15 2018-02-07 新日鐵住金株式会社 Wear-resistant steel
CN108315652B (en) * 2018-04-28 2019-09-24 武汉钢铁有限公司 Inexpensive high-hardenability HB450 grades of cut deal wear-resisting steel plates and manufacturing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5393358A (en) * 1990-12-03 1995-02-28 Nkk Corporation Method for producing abrasion-resistant steel having excellent surface property
FR2847272B1 (en) * 2002-11-19 2004-12-24 Usinor METHOD FOR MANUFACTURING AN ABRASION RESISTANT STEEL SHEET AND OBTAINED SHEET
FR2847270B1 (en) * 2002-11-19 2004-12-24 Usinor METHOD FOR MANUFACTURING AN ABRASION RESISTANT STEEL SHEET AND OBTAINED SHEET

Also Published As

Publication number Publication date
JP2007231320A (en) 2007-09-13

Similar Documents

Publication Publication Date Title
JP5648769B2 (en) Abrasion resistant steel plate with excellent low temperature toughness and corrosion wear resistance
KR102250916B1 (en) Abrasion-resistant steel plate and method of manufacturing same
JP6102072B2 (en) Abrasion resistant steel plate with excellent stress corrosion cracking resistance and method for producing the same
KR101165654B1 (en) Abrasion-resistant steel sheet having excellent processability, and method for production thereof
KR101699582B1 (en) Abrasion resistant steel plate or steel sheet excellent in resistance to stress corrosion cracking and method for manufacturing the same
JP5655356B2 (en) Wear-resistant steel plate with excellent low-temperature temper embrittlement cracking
JP5186809B2 (en) Wear-resistant steel plate with excellent workability and method for producing the same
JP4735191B2 (en) Abrasion resistant steel plate with excellent low temperature toughness and method for producing the same
JP4899874B2 (en) Wear-resistant steel plate with excellent workability and method for producing the same
JP4894288B2 (en) Wear-resistant steel plate
JP6245220B2 (en) Abrasion resistant steel plate with excellent low temperature toughness and corrosion wear resistance
JP6217585B2 (en) Abrasion resistant steel plate excellent in bending workability and impact wear resistance and method for producing the same
JP5458624B2 (en) Wear-resistant steel plate with excellent workability and method for producing the same
JPWO2021054015A1 (en) Abrasion resistant steel sheet and its manufacturing method
JP5217191B2 (en) Wear-resistant steel plate with excellent workability and method for producing the same
JP6350340B2 (en) Abrasion-resistant steel plate and method for producing the same
JP4894296B2 (en) Wear-resistant steel plate
JP4894297B2 (en) Wear-resistant steel plate
JP5017937B2 (en) Wear-resistant steel plate with excellent bending workability
JP6217586B2 (en) Abrasion resistant steel plate excellent in bending workability and impact wear resistance and method for producing the same
JP6164193B2 (en) Abrasion resistant steel plate excellent in bending workability and impact wear resistance and method for producing the same
JP2020132914A (en) Wear-resistant thick steel plate
JP2007262429A (en) Wear-resistant steel sheet excellent in bendability
JP2007277590A (en) Wear resistant steel sheet having excellent bending workability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111212

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4894296

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250