EP1563104B1 - Method for making an abrasion resistant steel plate and plate obtained - Google Patents

Method for making an abrasion resistant steel plate and plate obtained Download PDF

Info

Publication number
EP1563104B1
EP1563104B1 EP03782551A EP03782551A EP1563104B1 EP 1563104 B1 EP1563104 B1 EP 1563104B1 EP 03782551 A EP03782551 A EP 03782551A EP 03782551 A EP03782551 A EP 03782551A EP 1563104 B1 EP1563104 B1 EP 1563104B1
Authority
EP
European Patent Office
Prior art keywords
plate
optionally
process according
steel
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03782551A
Other languages
German (de)
French (fr)
Other versions
EP1563104A1 (en
Inventor
Jean Beguinot
Jean-Georges Brisson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Industeel Creusot
Original Assignee
Industeel Creusot
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Industeel Creusot filed Critical Industeel Creusot
Priority to SI200331362T priority Critical patent/SI1563104T1/en
Publication of EP1563104A1 publication Critical patent/EP1563104A1/en
Application granted granted Critical
Publication of EP1563104B1 publication Critical patent/EP1563104B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals

Definitions

  • the present invention relates to an abrasion-resistant steel and its method of manufacture.
  • Abrasion resistant steels are well known and are generally steels of high hardness (between 400 and 500 Brinell) having a martensitic structure, and containing from 0.12% to 0.3% carbon. It is generally accepted that in order to increase the wear resistance it is sufficient to increase the hardness, but this is done to the detriment of other properties such as the ability to weld or shape by folding, for example . Also, in order to obtain steels having both very good wear resistance and good processability, other means have been sought besides increasing the hardness.
  • the object of the present invention is to overcome these disadvantages by providing an abrasion-resistant steel sheet having a good flatness and which, all things being equal, has an abrasion resistance better than that of steels. known.
  • quenching may be followed by tempering at a temperature below 350 ° C, and preferably below 250 ° C.
  • the invention also relates to a part, and in particular a sheet obtained in particular by this method, the steel having a structure consisting of 5% to 20% retained austenite, the remainder of the structure being martensitic or martensite-bainitic with carbides .
  • the piece is a sheet, its thickness may be between 2 mm and 150 mm and its flatness may be characterized by an arrow less than or equal to 12 mm / m, and preferably less than 5 mm / m.
  • the hardness is preferably between 280 HB and 450 HB.
  • the hardness is preferably between 380 HB and 550 HB.
  • the hardness is preferably between 450 HB and 650 HB.
  • the carbon, titanium, zirconium and nitrogen contents must be such that: 0 , 1 % ⁇ VS - Ti / 4 - Zr / 8 + 7 ⁇ NOT / 8 ⁇ 0 , 55 %
  • C * represents the free carbon content after precipitation of the titanium and zirconium carbides, taking into account the formation of titanium and zirconium nitrides.
  • This free carbon content C * must be greater than 0.1%, and preferably greater than or equal to 0.22%, to have a martensite having a minimum hardness, but beyond 0.55% the toughness and the the processability are too deteriorated.
  • the chemical composition must be chosen so that the quenchability of the steel is sufficient, given the thickness of the sheet that is to be manufactured.
  • the silicon content is greater than 0.5% so as to promote the formation of retained austenite.
  • the contents of Ti, Zr and N should preferably be such that: Ti + Zr / 2 - 7xN / 2 ⁇ 0.05%, and more preferably greater than 0.1%, and more preferably, greater than 0.3% for the carbide content to be sufficient.
  • the micrographic structure of the steel consists of martensite or bainite or a mixture of these two structures, and from 5% to 20% retained austenite.
  • This structure further comprising large titanium or zirconium carbides, or even carbides of niobium, tantalum or vanadium, formed at high temperature.
  • the inventors have found that the effectiveness of large carbides for the improvement of the abrasion resistance could be obelated by premature loosening thereof and that this loosening could be avoided by the presence of metastable austenite which is transformed in fresh martensite under the effect of abrasion phenomena.
  • the conversion of the metastable austenite to fresh martensite is by swelling, this transformation in the abraded underlayer increases the resistance to carburetion and thus improves the abrasion resistance.
  • the steel is made, it flows in the form of slab or ingot.
  • the slab or slug is hot-rolled to obtain a sheet which is subjected to a heat treatment which makes it possible at the same time to obtain the desired structure and a good flatness without subsequent planing or with limited planing.
  • the heat treatment can be carried out directly in the hot rolling or carried out later, possibly after a cold planing or half-hot.
  • an expansion treatment can be carried out at a temperature of less than or equal to 350 ° C, and preferably less than or equal to 250 ° C.
  • the hardness being a function of the free carbon content C * the same hardness can be obtained with very different titanium or zirconium contents. With equal hardness, the resistance to abrasion is all the higher as the titanium or zirconium content is important. Similarly, titanium content or equal zirconium, the resistance to abrasion is even better than the hardness is high. In addition, the implementation of the steel is all the easier as the free carbon content is low, but with equal free carbon content, ductility is even better than the titanium content is low. All of these considerations make it possible to choose the carbon and titanium or zirconium contents which lead to all of the properties best suited to each field of application.
  • steel sheets identified A to G according to the invention and H to J according to the prior art are considered.
  • the chemical compositions of the steels, expressed in 10 -3 % by weight, as well as the hardness, the residual austenite content of the structure and a wear resistance index Rus, are reported in Table 1.
  • the wear resistance index Rus varies as the logarithm of the inverse of the weight loss of a prismatic specimen rotated in a tank containing calibrated quartzite granules.
  • All the sheets have a thickness of 30 mm, and the sheets corresponding to the steels A to G have been quenched according to the invention, after austenitization at 900 ° C.
  • the sheets according to the invention have a martensite-bainitic structure containing from 5% to 20% retained austenite, whereas the sheets given for comparison have a completely martensitic structure, that is to say, martensitic and not containing more than 2 or 3% retained austenite. All plates contain carbides.
  • the pair of steels F, G (according to the invention) is clearly different from the pair of steels I, J, term of gain of holding brought by the titanium.
  • the resistance gain Rus supplied by 0.245% of Ti is 0.46, whereas it is only 0.31 for a difference of 0.265% of Ti in the case of the pair I, J. .
  • the deformation after cooling, without planing, for the steel sheets according to the invention is less than 10 mm / m, and is about 15 mm / m for the steel sheet H.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Soft Magnetic Materials (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Heat Treatment Of Articles (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Description

La présente invention est relative à un acier résistant à l'abrasion et à son procédé de fabrication.The present invention relates to an abrasion-resistant steel and its method of manufacture.

Les aciers résistant à l'abrasion sont bien connus et sont, en général, des aciers de dureté élevée (comprise entre 400 et 500 Brinell) ayant une structure martensitique, et contenant de 0,12% à 0,3% de carbone. Il est en général admis que pour augmenter la résistance à l'usure il suffit d'augmenter la dureté, mais cela se fait au détriment d'autres propriétés telles que l'aptitude au soudage ou à la mise en forme par pliage, par exemple. Aussi, afin d'obtenir des aciers ayant tout à la fois une très bonne résistance à l'usure et une bonne aptitude à la mise en oeuvre, on a recherché d'autres moyens que l'augmentation de dureté.Abrasion resistant steels are well known and are generally steels of high hardness (between 400 and 500 Brinell) having a martensitic structure, and containing from 0.12% to 0.3% carbon. It is generally accepted that in order to increase the wear resistance it is sufficient to increase the hardness, but this is done to the detriment of other properties such as the ability to weld or shape by folding, for example . Also, in order to obtain steels having both very good wear resistance and good processability, other means have been sought besides increasing the hardness.

C'est ainsi qu'on a proposé dans EP 0527 276 et dans US 5,393,358 d'améliorer la résistance à l'abrasion d'un acier contenant de 0,05% à 0,45% de carbone, jusqu'à 1% de silicium, jusqu'à 2% de manganèse, jusqu'à 2% de cuivre, jusqu'à 10% de nickel, jusqu'à 3% de chrome, jusqu'à 3% de molybdène, du bore, du niobium et du vanadium, en ajoutant de 0,015% à 1,5% de titane, de façon à former de gros carbures de titane. Cet acier est trempé et comporte de ce fait une structure martensitique, l'augmentation de résistance à l'abrasion étant obtenue par la présence de gros carbures de titane. Mais, plus particulièrement lorsque l'acier est coulé en lingots, cette amélioration est limitée car, sous l'effet des sollicitations abrasives, les carbures se déchaussent et ne remplissent plus leur rôle. En outre, dans ces aciers, la présence de gros carbures de titane détériore la ductilité. Il en résulte que les tôles fabriquées avec ces aciers sont difficiles à planer et à plier, ce qui limite leurs utilisations possibles.This is how we proposed in EP 0527 276 and in US5,393,358 to improve the abrasion resistance of a steel containing from 0.05% to 0.45% of carbon, up to 1% of silicon, up to 2% of manganese, up to 2% of copper , up to 10% nickel, up to 3% chromium, up to 3% molybdenum, boron, niobium and vanadium, adding from 0.015% to 1.5% titanium, so that form large titanium carbides. This steel is hardened and therefore comprises a martensitic structure, the increase in abrasion resistance being obtained by the presence of large titanium carbides. But, especially when the steel is cast ingots, this improvement is limited because, under the effect of abrasive stresses, the carbides come off and no longer fulfill their role. In addition, in these steels, the presence of large titanium carbides deteriorates the ductility. As a result, the sheets made with these steels are difficult to glide and bend, which limits their possible uses.

Le but de la présente invention est de remédier à ces inconvénients, en proposant une tôle en acier résistant à l'abrasion ayant une bonne planéité et qui, toutes choses égales par ailleurs, présente une résistance à l'abrasion, meilleure que celle des aciers connus.The object of the present invention is to overcome these disadvantages by providing an abrasion-resistant steel sheet having a good flatness and which, all things being equal, has an abrasion resistance better than that of steels. known.

A cet effet, l'invention a pour objet un procédé pour fabriquer une pièce, et notamment une tôle, en acier pour abrasion dont la composition chimique comprend, en poids: 0 , 35 % C 0 , 8 %

Figure imgb0001
0 % Si 2 %
Figure imgb0002
0 % Al 2 %
Figure imgb0003
0 , 35 % Si + Al 2 %
Figure imgb0004
0 % Mn 2 , 5 %
Figure imgb0005
0 % Ni 5 %
Figure imgb0006
0 % Cr 5 %
Figure imgb0007
0 % Mo 0 , 50 % 0 % W 1.00 %
Figure imgb0008
0 , 1 % Mo + W / 2 0 , 50 %
Figure imgb0009
0 % Cu 1 , 5 %
Figure imgb0010
0 % B 0 , 02 %
Figure imgb0011
0 % Ti 2 %
Figure imgb0012
0 % Zr 4 %
Figure imgb0013
0 , 05 % Ti + Zr / 2 2 %
Figure imgb0014
0 % S 0 , 15 %
Figure imgb0015
N 0 , 03 %
Figure imgb0016

  • éventuellement au moins un élément pris parmi Nb, Ta et V en des teneurs telles que Nb/2, + Ta/4 + V ≤ 0,5%,
  • éventuellement au moins un élément pris parmi Se, Te, Ca, Bi, Pb en des teneurs inférieures ou égales à 0,1%,
le reste étant du fer et des impuretés résultant de l'élaboration, la composition chimique satisfaisant en outre les relations suivantes, avec C* = C - Ti/4 - Zr/8 + 7xN/8: 0 , 10 % C * 0 , 55 %
Figure imgb0017
et : Ti + Zr / 2 - 7 × N / 2 0 , 05 %
Figure imgb0018
et :
  • 1,05xMn + 0,54xNi +0,50xCr + 0,3x(Mo + W/2)1/2 + K > 1,8 ou mieux 2 avec : K = 0,5 si B ≥ 0,0005% et K = 0 si B < 0,0005%,
selon ce procédé, on soumet la pièce ou la tôle à un traitement thermique de trempe, effectué dans la chaude de mise en forme à chaud telle que le laminage ou après austénitisation par réchauffage dans un four, qui consiste à :
  • refroidir la pièce ou la tôle à une vitesse de refroidissement moyenne supérieure à 0,5° C/s entre une température supérieure à AC3 et une température comprise entre T = 800 - 270xC* - 90xMn -37xNi - 70XCr - 83x(Mo + W/2), et T-50°C, la température étant exprimée en °C et les teneurs en C*, Mn Ni, Cr, Mo et W, étant exprimées en % en poids,
  • puis refroidir la pièce ou la tôle à une vitesse de refroidissement moyenne à coeur Vr < 1150xep-1,7 (en °C/s) et supérieure à 0,1°C/s entre la température T et 100°C, ep étant l'épaisseur de la pièce ou la tôle exprimée en mm,
  • et à refroidir la pièce ou la tôle jusqu'à la température ambiante, éventuellement, on effectue un planage.
For this purpose, the subject of the invention is a method for manufacturing a part, and in particular a sheet, made of steel for abrasion, the chemical composition of which comprises, by weight: 0 , 35 % VS 0 , 8 %
Figure imgb0001
0 % Yes 2 %
Figure imgb0002
0 % al 2 %
Figure imgb0003
0 , 35 % Yes + al 2 %
Figure imgb0004
0 % mn 2 , 5 %
Figure imgb0005
0 % Or 5 %
Figure imgb0006
0 % Cr 5 %
Figure imgb0007
0 % MB 0 , 50 % 0 % W 1.00 %
Figure imgb0008
0 , 1 % MB + W / 2 0 , 50 %
Figure imgb0009
0 % Cu 1 , 5 %
Figure imgb0010
0 % B 0 , 02 %
Figure imgb0011
0 % Ti 2 %
Figure imgb0012
0 % Zr 4 %
Figure imgb0013
0 , 05 % Ti + Zr / 2 2 %
Figure imgb0014
0 % S 0 , 15 %
Figure imgb0015
NOT 0 , 03 %
Figure imgb0016
  • optionally at least one element selected from Nb, Ta and V in such contents as Nb / 2, + Ta / 4 + V ≤ 0.5%,
  • optionally at least one element selected from Se, Te, Ca, Bi, Pb in contents of less than or equal to 0.1%,
the remainder being iron and impurities resulting from the preparation, the chemical composition further satisfying the following relationships, with C * = C - Ti / 4 - Zr / 8 + 7xN / 8: 0 , 10 % VS * 0 , 55 %
Figure imgb0017
and Ti + Zr / 2 - 7 × NOT / 2 0 , 05 %
Figure imgb0018
and
  • 1.05xMn + 0.54xNi + 0.50xCr + 0.3x (Mo + W / 2) 1/2 + K> 1.8 or better 2 with: K = 0.5 if B ≥ 0.0005% and K = 0 if B <0.0005%,
according to this method, the part or the sheet is subjected to a quenching heat treatment carried out in the hot hot forming furnace such as rolling or after austenitization by reheating in an oven, which consists in:
  • cooling the workpiece or sheet at an average cooling rate greater than 0.5 ° C / s between a temperature above AC 3 and a temperature between T = 800 - 270xC * - 90xMn -37xNi - 70XCr - 83x (Mo + W / 2), and T-50 ° C, the temperature being expressed in ° C and the contents of C *, Mn Ni, Cr, Mo and W, being expressed in% by weight,
  • then cool the workpiece or the sheet at an average cooling rate at core Vr <1150xep -1.7 (in ° C / s) and greater than 0.1 ° C / s between the temperature T and 100 ° C, ep being the thickness of the part or sheet metal expressed in mm,
  • and to cool the workpiece or the sheet to room temperature, optionally, planing is carried out.

Eventuellement, la trempe peut être suivie d'un revenu à une température inférieure à 350°C, et de préférence inférieure à 250°C.Optionally, quenching may be followed by tempering at a temperature below 350 ° C, and preferably below 250 ° C.

L'invention concerne également une pièce, et notamment une tôle obtenue notamment par ce procédé, l'acier ayant une structure constituée de 5% à 20% d'austénite retenue, le reste de la structure étant martensitique ou martensito-bainitique avec des carbures. Lorsque la pièce est une tôle, son épaisseur peut être comprise entre 2 mm et 150 mm et sa planéité peut être caractérisée par une flèche inférieure ou égale à 12 mm/m, et de préférence inférieure à 5 mm/m.The invention also relates to a part, and in particular a sheet obtained in particular by this method, the steel having a structure consisting of 5% to 20% retained austenite, the remainder of the structure being martensitic or martensite-bainitic with carbides . When the piece is a sheet, its thickness may be between 2 mm and 150 mm and its flatness may be characterized by an arrow less than or equal to 12 mm / m, and preferably less than 5 mm / m.

Lorsque la teneur en carbone est telle que : 0 , 1 % C - Ti / 4 - Zr / 8 + 7 × N / 8 0 , 2 %

Figure imgb0019
la dureté est, de préférence, comprise entre 280 HB et 450 HB.When the carbon content is such that: 0 , 1 % VS - Ti / 4 - Zr / 8 + 7 × NOT / 8 0 , 2 %
Figure imgb0019
the hardness is preferably between 280 HB and 450 HB.

Lorsque la teneur en carbone est telle que : 0 , 2 % C - Ti / 4 - Zr / 8 + 7 × N / 8 0 , 3 %

Figure imgb0020
la dureté est, de préférence, comprise entre 380 HB et 550 HB.When the carbon content is such that: 0 , 2 % VS - Ti / 4 - Zr / 8 + 7 × NOT / 8 0 , 3 %
Figure imgb0020
the hardness is preferably between 380 HB and 550 HB.

Lorsque la teneur en carbone est telle que : 0 , 3 % C - Ti / 4 - Zr / 8 + 7 × N / 8 0 , 5 %

Figure imgb0021
la dureté est, de préférence, comprise entre 450 HB et 650 HB.When the carbon content is such that: 0 , 3 % VS - Ti / 4 - Zr / 8 + 7 × NOT / 8 0 , 5 %
Figure imgb0021
the hardness is preferably between 450 HB and 650 HB.

L'invention va maintenant être décrite de façon plus précise mais non limitative et être illustrée par des exemples.The invention will now be described in a more precise but nonlimiting manner and be illustrated by examples.

Pour fabriquer une tôle selon l'invention, on élabore un acier dont la composition chimique comprend, en % en poids :

  • de 0,35% à 0,8% de carbone, et de préférence, plus de 0,45%, voire plus de 0,5%, et de 0% à 2% de titane, de 0% à 4% de zirconium, ces teneurs devant êtres telles que: 0,05% ≤ Ti+Zr/2 ≤ 2%. Le carbone est destiné d'une part à obtenir une structure martensitique suffisamment dure, d'autre part à former des carbures de titane et/ou de zirconium. La somme Ti+Zr/2 doit être supérieure à 0,05%, de préférence supérieure 0,10%, et mieux encore, supérieure à 0,3%, ou même supérieure à 0,5% pour qu'il y ait un minimum de carbures formés, mais doit rester inférieure à 2%, et de préférence inférieure ou égale à 0,9%, car au-delà, la ténacité et l'aptitude à la mise en oeuvre sont détériorées.
  • De 0% (ou des traces) à 2% de silicium et de 0% (ou des traces) à 2% d'aluminium, la somme Si+Al étant comprise entre 0,35% et 2% et de préférence supérieure à 0,5%, et mieux encore, supérieure à 0,7%. Ces éléments, qui sont des désoxydants, ont en outre pour effet de favoriser l'obtention d'une austénite retenue métastable fortement chargée en carbone dont la transformation en martensite s'accompagne d'un gonflement important favorisant l'ancrage des carbures de titane.
  • De 0% (ou des traces) à 2% ou même 2,5% de manganèse, de 0% (ou des traces) à 4% ou même 5% de nickel et de 0% (ou des traces) à 4% ou même 5% de chrome, pour obtenir une trempabilité suffisante et ajuster les différentes caractéristiques mécaniques ou d'emploi. Le nickel a, en particulier un effet favorable sur la ténacité, mais cet élément est cher. Le chrome forme également de fins carbures dans la martensite ou la bainite.
  • De 0% (ou des traces) à 0,50% de molybdène. Cet élément augmente la trempabilité et forme dans la martensite ou dans la bainite de fins carbures durcissants notamment par précipitation par auto revenu au cours du refroidissement. Il n'est pas nécessaire de dépasser une teneur de 0,50% pour obtenir l'effet désiré en particulier en ce qui concerne la précipitation de carbures durcissants. Le molybdène peut être remplacé, en tout ou partie, par un poids double de tungstène. Néanmoins cette substitution n'est pas recherchée en pratique car elle n'offre pas d'avantage par rapport au molybdène et est plus coûteuse.
  • Eventuellement de 0% à 1,5% de cuivre. Cet élément peut apporter un durcissement supplémentaire sans détériorer la soudabilité. Au-delà de 1,5%, il n'a plus d'effet significatif, il engendre des difficultés de laminage à chaud et coûte inutilement cher.
  • De 0% à 0,02% de bore. Cet élément peut être ajouté de façon optionnelle afin d'augmenter la trempabilité. Pour que cet effet soit obtenu, la teneur en bore doit, de préférence, être supérieure à 0,0005% ou mieux 0,001%, et n'a pas besoin de dépasser sensiblement 0,01%.
  • Jusqu'à 0,15% de soufre. Cet élément est un résiduel en général limité à 0,005% ou moins, mais sa teneur peut être volontairement augmentée pour améliorer l'usinabilité. A noter qu'en présence de soufre, pour éviter des difficultés de transformation à chaud, la teneur en manganèse doit être supérieure à 7 fois la teneur en soufre.
  • Eventuellement au moins un élément pris parmi le niobium, le tantale et le vanadium, en des teneurs telles que Nb/2+Ta/4+V reste inférieure à 0,5% afin de former des carbures relativement gros qui améliorent la tenue à l'abrasion. Mais les carbures formés par ces éléments sont moins efficaces que ceux qui sont formés par le titane ou le zirconium, c'est pour cela qu'ils sont optionnels et ajoutés en quantité limitée.
  • Eventuellement un ou plusieurs éléments pris parmi le sélénium, le tellure, le calcium, le bismuth et le plomb en des teneurs inférieures à 0,1% chacun. Ces éléments sont destinés à améliorer l'usinabilité. A noter que, lorsque l'acier contient du Se et/ou du Te, la teneur en manganèse doit être suffisante compte tenu de la teneur en soufre pour qu'il puisse se former des séléniures ou des tellurures de manganèse.
  • Le reste étant du fer et des impuretés résultant de l'élaboration. Parmi les impuretés, il y a en particulier l'azote dont la teneur dépend du procédé d'élaboration mais ne dépasse en général pas 0,03%. Cet élément peut réagir avec le titane ou le zirconium pour former des nitrures qui ne doivent pas être trop gros pour ne pas détériorer la ténacité. Afin d'éviter la formation de gros nitrures, le titane et le zirconium peuvent être ajoutés dans l'acier liquide de façon très progressive, par exemple en mettant au contact de l'acier liquide oxydé une phase oxydée telle qu'un laitier chargé en oxydes de titane ou de zirconium, puis en désoxydant l'acier liquide, de façon à faire diffuser lentement le titane ou le zirconium depuis la phase oxydée vers l'acier liquide.
To manufacture a sheet according to the invention, a steel is produced whose chemical composition comprises, in% by weight:
  • from 0.35% to 0.8% of carbon, and preferably more than 0.45% or even more than 0.5%, and from 0% to 2% of titanium, from 0% to 4% of zirconium these contents must be such that: 0.05% ≤ Ti + Zr / 2 ≤ 2%. The carbon is intended on the one hand to obtain a sufficiently hard martensitic structure, on the other hand to form titanium carbides and / or zirconium. The sum Ti + Zr / 2 must be greater than 0.05%, preferably greater than 0.10%, and more preferably greater than 0.3%, or even greater than 0.5%, so that there is minimum carbides formed, but must remain less than 2%, and preferably less than or equal to 0.9%, because beyond, the toughness and workability are deteriorated.
  • From 0% (or traces) to 2% silicon and 0% (or traces) at 2% aluminum, the sum Si + Al being between 0.35% and 2% and preferably greater than 0 , 5%, and more preferably greater than 0.7%. These elements, which are deoxidizing agents, also have the effect of favoring the obtaining of a metastable retained austenite highly loaded with carbon, the transformation of which in martensite is accompanied by a large swelling favoring the anchoring of the titanium carbides.
  • From 0% (or traces) to 2% or even 2.5% manganese, from 0% (or traces) to 4% or even 5% nickel and 0% (or traces) at 4% or even 5% chromium, to obtain a sufficient quenchability and adjust the different mechanical characteristics or use. Nickel has a particularly favorable effect on toughness, but this element is expensive. Chromium also forms fine carbides in martensite or bainite.
  • From 0% (or traces) to 0.50% molybdenum. This element increases the quenchability and forms in martensite or bainite thin carbides hardening including self-precipitation precipitation during cooling. It is not necessary to exceed 0.50% in order to obtain the desired effect, particularly as regards the precipitation of hardening carbides. Molybdenum can be replaced in whole or in part by a double weight of tungsten. However, this substitution is not sought in practice because it offers no advantage over molybdenum and is more expensive.
  • Possibly from 0% to 1.5% copper. This element can provide additional hardening without damaging the weldability. Beyond 1.5%, he has no significant effect, it causes difficulties in hot rolling and unnecessarily expensive.
  • 0% to 0.02% boron. This element can be added optionally to increase quenchability. For this effect to be obtained, the boron content should preferably be greater than 0.0005% or better 0.001%, and need not exceed substantially 0.01%.
  • Up to 0.15% sulfur. This element is a residual usually limited to 0.005% or less, but its content can be voluntarily increased to improve machinability. It should be noted that in the presence of sulfur, in order to avoid difficulties of hot transformation, the manganese content must be greater than 7 times the sulfur content.
  • Optionally at least one of niobium, tantalum and vanadium in such quantities that Nb / 2 + Ta / 4 + V remains below 0.5% in order to form relatively large carbides which improve the resistance to corrosion. 'abrasion. But the carbides formed by these elements are less effective than those formed by titanium or zirconium, that is why they are optional and added in limited quantities.
  • Possibly one or more elements selected from selenium, tellurium, calcium, bismuth and lead in contents of less than 0.1% each. These elements are intended to improve machinability. It should be noted that when the steel contains Se and / or Te, the manganese content must be sufficient in view of the sulfur content so that selenides or tellurides of manganese can be formed.
  • The rest being iron and impurities resulting from the elaboration. Among the impurities, there is in particular nitrogen, the content of which depends on the production process but generally does not exceed 0.03%. This element can react with titanium or zirconium to form nitrides which must not be too big to not deteriorate toughness. In order to avoid the formation of large nitrides, titanium and zirconium can be added to the liquid steel in a very gradual manner, for example by contacting the oxidized liquid steel with an oxidized phase such as a slag loaded with oxides of titanium or zirconium, then deoxidizing the liquid steel, so as to slowly diffuse titanium or zirconium from the oxidized phase to the liquid steel.

En outre, afin d'obtenir des propriétés satisfaisantes, les teneurs en carbone, titane, zirconium, et azote doivent être telles que : 0 , 1 % C - Ti / 4 - Zr / 8 + 7 × N / 8 0 , 55 %

Figure imgb0022
In addition, in order to obtain satisfactory properties, the carbon, titanium, zirconium and nitrogen contents must be such that: 0 , 1 % VS - Ti / 4 - Zr / 8 + 7 × NOT / 8 0 , 55 %
Figure imgb0022

L'expression C - Ti/4 - Zr/8 + 7xN/8 = C* représente la teneur en carbone libre après précipitation des carbures de titane et de zirconium, compte tenu de la formation de nitrures de titane et de zirconium. Cette teneur en carbone libre C* doit être supérieure à 0,1%, et de préférence supérieure ou égale à 0,22%, pour avoir une martensite ayant une dureté minimale, mais au-delà de 0,55% la ténacité et l'aptitude à la mise en oeuvre sont trop détériorées.The expression C - Ti / 4 - Zr / 8 + 7xN / 8 = C * represents the free carbon content after precipitation of the titanium and zirconium carbides, taking into account the formation of titanium and zirconium nitrides. This free carbon content C * must be greater than 0.1%, and preferably greater than or equal to 0.22%, to have a martensite having a minimum hardness, but beyond 0.55% the toughness and the the processability are too deteriorated.

De plus, la composition chimique doit être choisie de telle sorte que la trempabilité de l'acier soit suffisante, compte tenu de l'épaisseur de la tôle qu'on souhaite fabriquer. Pour cela, la composition chimique doit satisfaire la relation: Tremp = 1 , 05 × Mn + 0 , 54 × Ni + 0 , 50 × Cr + 0 , 3 × ( Mo + W / 2 ) 1 / 2 + K > 1 , 8 ou mieux 2 avec : K = 0 , 5 si B > ou égal 0 , 0005 % et K = 0 si B < 0 , 0005 % ,

Figure imgb0023
In addition, the chemical composition must be chosen so that the quenchability of the steel is sufficient, given the thickness of the sheet that is to be manufactured. For this, the chemical composition must satisfy the relation: Tremp = 1 , 05 × mn + 0 , 54 × Or + 0 , 50 × Cr + 0 , 3 × ( MB + W / 2 ) 1 / 2 + K > 1 , 8 or better 2 with : K = 0 , 5 if B > or equal 0 , 0005 % and K = 0 if B < 0 , 0005 % ,
Figure imgb0023

A noter que, plus particulièrement lorsque Tremp est compris entre 1,8 et 2, il est préférable que la teneur en silicium soit supérieure à 0,5% de façon à favoriser la formation d'austénite retenue.Note that, especially when Tremp is between 1.8 and 2, it is preferable that the silicon content is greater than 0.5% so as to promote the formation of retained austenite.

En outre, les teneurs en Ti, Zr et N doivent, de préférence, être telles que : Ti + Zr/2 - 7xN/2 ≥ 0,05%, et mieux supérieure à 0,1 %, et mieux encore, supérieure à 0,3% pour que la teneur en carbures soit suffisante.In addition, the contents of Ti, Zr and N should preferably be such that: Ti + Zr / 2 - 7xN / 2 ≥ 0.05%, and more preferably greater than 0.1%, and more preferably, greater than 0.3% for the carbide content to be sufficient.

Enfin, et pour obtenir une bonne tenue à l'abrasion, la structure micrographique de l'acier est constituée de martensite ou de bainite ou d'un mélange de ces deux structures, et de 5% à 20% d'austénite retenue. Cette structure comprenant en outre des gros carbures de titane ou de zirconium, voire des carbures de niobium, de tantale ou de vanadium, formés à haute température. Les inventeurs ont constaté que l'efficacité des gros carbures pour l'amélioration de la tenue à l'abrasion pouvait être obérée par le déchaussement prématuré de ceux-ci et que ce déchaussement pouvait être évité par la présence d'austénite métastable qui se transforme en martensite fraîche sous l'effet des phénomènes d'abrasion. La transformation de l'austénite métastable en martensite fraîche se faisant par gonflement, cette transformation dans la sous-couche abrasée augmente la résistance au déchaussement des carbures et, ainsi, améliore la résistance à l'abrasion.Finally, and to obtain a good resistance to abrasion, the micrographic structure of the steel consists of martensite or bainite or a mixture of these two structures, and from 5% to 20% retained austenite. This structure further comprising large titanium or zirconium carbides, or even carbides of niobium, tantalum or vanadium, formed at high temperature. The inventors have found that the effectiveness of large carbides for the improvement of the abrasion resistance could be obelated by premature loosening thereof and that this loosening could be avoided by the presence of metastable austenite which is transformed in fresh martensite under the effect of abrasion phenomena. The conversion of the metastable austenite to fresh martensite is by swelling, this transformation in the abraded underlayer increases the resistance to carburetion and thus improves the abrasion resistance.

D'autre part, la dureté élevée de l'acier et la présence de carbures de titane fragilisant imposent de limiter autant que possible les opérations de planage. De ce point de vue, les inventeurs ont constaté qu'en ralentissant de façon suffisante le refroidissement dans le domaine de transformation bainito-martensitique, on réduit les déformations résiduelles des produits, ce qui permet de limiter les opérations de planage. Les inventeurs ont constaté qu'en refroidissant la pièce ou la tôle à une vitesse de refroidissement Vr < 1150xep-1,7, (dans cette formule, ep est l'épaisseur de la tôle exprimée en mm, et la vitesse de refroidissement est exprimée en °C/s) en dessous d'une température T = 800 - 270xC* - 90xMn -37xNi - 70XCr - 83x(Mo + W/2), (exprimée en °C), d'une part on favorisait l'obtention d'une proportion significative d'austénite résiduelle, et d'autre part, on réduisait les contraintes résiduelles engendrées par les changements de phase.On the other hand, the high hardness of the steel and the presence of embrittling titanium carbides make it necessary to limit the leveling operations as much as possible. From this point of view, the inventors have found that by slowing down cooling sufficiently in the bainitomensitic transformation domain, the residual deformations of the products are reduced, which makes it possible to limit the leveling operations. The inventors have found that cooling the workpiece or the sheet at a cooling rate Vr <1150xep -1.7 , (in this formula, ep is the thickness of the sheet expressed in mm, and the cooling rate is expressed in ° C / s) below a temperature T = 800 - 270xC * - 90xMn -37xNi - 70XCr - 83x (Mo + W / 2), (expressed in ° C), on the one hand it was favored to obtain a significant proportion of residual austenite, and on the other hand, the residual stresses generated by the phase changes were reduced.

Pour fabriquer une tôle ayant une bonne résistance à l'abrasion et bien plane, on élabore l'acier, on le coule sous forme de brame ou de lingot. On lamine à chaud la brame ou le lingot pour obtenir une tôle qu'on soumet à un traitement thermique permettant tout à la fois d'obtenir la structure souhaitée et une bonne planéité sans planage ultérieur ou avec un planage limité. Le traitement thermique peut être effectué directement dans la chaude de laminage ou réalisé ultérieurement, éventuellement après un planage à froid ou à mi-chaud.To make a sheet having a good resistance to abrasion and well flat, the steel is made, it flows in the form of slab or ingot. The slab or slug is hot-rolled to obtain a sheet which is subjected to a heat treatment which makes it possible at the same time to obtain the desired structure and a good flatness without subsequent planing or with limited planing. The heat treatment can be carried out directly in the hot rolling or carried out later, possibly after a cold planing or half-hot.

Pour réaliser le traitement thermique :

  • on chauffe l'acier au-dessus du point AC3 de façon à lui conférer une structure entièrement austénitique,
  • puis on le refroidit à une vitesse de refroidissement moyenne supérieure à la vitesse critique de transformation bainitique jusqu'à une température égale ou légèrement inférieure (de moins de 50°C environ) à une température T = 800 - 270xC* - 90xMn -37xNi - 70XCr - 83x(Mo + W/2), (exprimée en °C),
  • puis, entre la température ainsi définie (c'est à dire comprise entre T et T - 50°C environ) et 100°C environ, on refroidit la tôle à une vitesse de refroidissement moyenne à coeur Vr comprise entre 0,1°C/s, pour obtenir une dureté suffisante, et 1150xep-1,7, pour obtenir la structure souhaitée,
  • et on refroidit la tôle jusqu à la température ambiante, de préférence, sans que ce soit obligatoire, à une vitesse lente.
To achieve the heat treatment:
  • the steel is heated above the point AC 3 so as to give it a completely austenitic structure,
  • and then cooled to a higher average cooling rate than the critical bainitic transformation rate to a temperature equal to or slightly lower (less than about 50 ° C) at a temperature T = 800 - 270xC * - 90xMn -37xNi - 70XCr - 83x (Mo + W / 2), (expressed in ° C),
  • then, between the temperature thus defined (that is to say between T and T - about 50 ° C) and 100 ° C, the sheet is cooled to an average cooling rate at heart Vr between 0.1 ° C / s, to obtain a sufficient hardness, and 1150xep -1.7 , to obtain the desired structure,
  • and the sheet is cooled to room temperature, preferably, but not necessarily, at a slow rate.

En outre, on peut effectuer un traitement de détente à une température inférieure ou égale à 350°C, et de préférence inférieure ou égale à 250°C.In addition, an expansion treatment can be carried out at a temperature of less than or equal to 350 ° C, and preferably less than or equal to 250 ° C.

On obtient ainsi une tôle, dont l'épaisseur peut être comprise entre 2 mm et 150 mm, ayant une excellente planéité caractérisée par une flèche inférieure à 12 mm par mètre sans planage ou avec un planage modéré. La tôle a une dureté comprise entre 280HB et 650HB. Cette dureté dépend principalement de la teneur en carbone libre C* = C - Ti/4 - Zr/8 + 7xN/8.This gives a sheet, whose thickness can be between 2 mm and 150 mm, having excellent flatness characterized by an arrow less than 12 mm per meter without planing or with moderate planing. The sheet has a hardness between 280HB and 650HB. This hardness depends mainly on the free carbon content C * = C - Ti / 4 - Zr / 8 + 7xN / 8.

En fonction des teneurs en carbone libre C*, on peut définir plusieurs domaine correspondant à des niveaux de dureté croissant, et en particulier :

  1. a) 0,1% ≤ C* ≤ 0,2%, la dureté est comprise entre 280HB et 450HB environ,
  2. b) 0,2% < C* ≤ 0,3%, la dureté est comprise entre 380HB et 550HB environ,
  3. c) 0,3% < C* ≤ 0,5%, la dureté est comprise entre 450HB et 650HB environ.
Depending on the free carbon contents C *, several domains corresponding to levels of increasing hardness can be defined, and in particular:
  1. a) 0.1% ≤ C * ≤ 0.2%, the hardness is between 280HB and 450HB approximately,
  2. b) 0.2% <C * ≤ 0.3%, the hardness is between 380HB and 550HB,
  3. c) 0.3% <C * ≤ 0.5%, the hardness is between 450HB and 650HB approximately.

La dureté étant fonction de la teneur en carbone libre C*, la même dureté peut être obtenue avec des teneurs en titane ou zirconium très différentes. A dureté égale, la résistance à l'abrasion est d'autant plus élevée que la teneur en titane ou zirconium est importante. De même, à teneur en titane ou zirconium égale, la résistance à l'abrasion est d'autant meilleure que la dureté est élevée. De plus, la mise en oeuvre de l'acier est d'autant plus facile que la teneur en carbone libre est faible, mais à teneur en carbone libre égale, la ductilité est d'autant meilleure que la teneur en titane est faible. L'ensemble de ces considérations permet de choisir les teneurs en carbone et titane ou zirconium qui conduisent à l'ensemble des propriétés les mieux adaptées à chaque domaine d'application.The hardness being a function of the free carbon content C *, the same hardness can be obtained with very different titanium or zirconium contents. With equal hardness, the resistance to abrasion is all the higher as the titanium or zirconium content is important. Similarly, titanium content or equal zirconium, the resistance to abrasion is even better than the hardness is high. In addition, the implementation of the steel is all the easier as the free carbon content is low, but with equal free carbon content, ductility is even better than the titanium content is low. All of these considerations make it possible to choose the carbon and titanium or zirconium contents which lead to all of the properties best suited to each field of application.

Selon les niveaux de dureté, les utilisations sont par exemple :

  • 280 à 450 HB : godets, bennes de camions et de dumpers, blindages de cyclones, trémies, moules à parpaings,
  • 380 à 550 HB : blindages de broyeurs à percussion, lame d'attaque de bulldozer, lames de benne preneuse, grilles de cribles,
  • 450 à 650 HB : plaques de blindage de broyeur à cylindres, renforts de godets, renforts sous lame d'attaque, bouclier de lame éperon, bord d'attaque.
Depending on the hardness levels, the uses are for example:
  • 280 to 450 HB: buckets, trucks and dump trucks, cyclone shields, hoppers, block molds,
  • 380 to 550 HB: hammer mill shields, bulldozer blade, clamshell blades, screen grates,
  • 450 to 650 HB: roll crusher shield plates, bucket reinforcements, reinforcements under attack blade, spur blade shield, leading edge.

A titre d'exemple, on considère des tôles en aciers repérés A à G selon l'invention et H à J selon l'art antérieur. Les compositions chimiques des aciers, exprimés en 10-3 % en poids, ainsi que la dureté, la teneur en austénite résiduelle de la structure et un indice de résistance à l'usure Rus, sont reportées au tableau 1. Tableau 1 C Si Al Mn Ni Cr Mo W Ti B N HB % aust Rus A 360 850 50 1300 500 700 100 500 400 2 6 460 10 1,42 B 640 850 50 400 1500 700 110 450 620 3 7 555 14 2,72 C 590 520 570 550 320 1850 470 - 540 - 7 570 12 2,24 D 705 460 630 1090 280 2450 430 100 825 - 7 580 13 3,14 E 690 370 25 740 310 2100 460 - 795 - 6 605 10 2,83 F 350 810 30 1200 270 1350 380 160 2 6 510 8 1,32 G 390 790 35 1210 250 1340 390 405 3 6 495 11 1,77 H 340 380 30 1260 470 820 370 - 410 3 6 475 1 0,86 I 315 330 25 1230 180 1360 395 165 2 6 515 2 0,7 J 367 315 30 1215 210 1375 405 430 2 5 500 2 1,01 By way of example, steel sheets identified A to G according to the invention and H to J according to the prior art are considered. The chemical compositions of the steels, expressed in 10 -3 % by weight, as well as the hardness, the residual austenite content of the structure and a wear resistance index Rus, are reported in Table 1. Table 1 VS Yes al mn Or Cr MB W Ti B NOT HB % aust Rus AT 360 850 50 1300 500 700 100 500 400 2 6 460 10 1.42 B 640 850 50 400 1500 700 110 450 620 3 7 555 14 2.72 VS 590 520 570 550 320 1850 470 - 540 - 7 570 12 2.24 D 705 460 630 1090 280 2450 430 100 825 - 7 580 13 3.14 E 690 370 25 740 310 2100 460 - 795 - 6 605 10 2.83 F 350 810 30 1200 270 1350 380 160 2 6 510 8 1.32 BOY WUT 390 790 35 1,210 250 1340 390 405 3 6 495 11 1.77 H 340 380 30 1260 470 820 370 - 410 3 6 475 1 0.86 I 315 330 25 1230 180 1360 395 165 2 6 515 2 0.7 J 367 315 30 1215 210 1375 405 430 2 5 500 2 1.01

L'indice de résistance à l'usure Rus varie comme le logarithme de l'inverse de la perte de poids d'une éprouvette prismatique mise en rotation dans un bac contenant des granulats calibrés de quartzite.The wear resistance index Rus varies as the logarithm of the inverse of the weight loss of a prismatic specimen rotated in a tank containing calibrated quartzite granules.

Toutes les tôles ont une épaisseur de 30 mm, et les tôles correspondant aux aciers A à G ont été trempées conformément à l'invention, après austénitisation à 900°C.All the sheets have a thickness of 30 mm, and the sheets corresponding to the steels A to G have been quenched according to the invention, after austenitization at 900 ° C.

A près austénitisation, les conditions de refroidissement sont :

  • pour les tôles en acier B et D: refroidissement à une vitesse moyenne de 0,7°C/s au-dessus de la température T définie plus haut, et à une vitesse moyenne de 0,13°C/s en dessous, conformément à l'invention;
  • pour les tôles en acier A, C, E, F, G : refroidissement à une vitesse moyenne de 6°C/s au-dessus de la température T définie plus haut, et à une vitesse moyenne de 1,4°C/s en dessous, conformément à l'invention ;
  • pour les tôles en acier H, I, J, données à titre de comparaison : austénitisation 900°C suivie de refroidissement à une vitesse moyenne de 20°C/s au dessus de la température T définie plus haut, et à une vitesse moyenne de 12°C/s en dessous.
At near austenitization, the cooling conditions are:
  • for steel sheets B and D: cooling at an average speed of 0.7 ° C / s above the temperature T defined above, and at an average speed of 0.13 ° C / s below, in accordance with to the invention;
  • for steel sheets A, C, E, F, G: cooling at an average speed of 6 ° C / s above the temperature T defined above, and at an average speed of 1.4 ° C / sec below, according to the invention;
  • for the steel sheets H, I, J, data for comparison: austenitization 900 ° C followed by cooling at an average speed of 20 ° C / s above the temperature T defined above, and at an average speed of 12 ° C / s below.

Les tôles selon l'invention ont une structure martensito-bainitique contenant de 5% à 20% d'austénite retenue, alors que les tôles données à titre de comparaison ont une structure entièrement martensitique, c'est à dire, martensitique et ne contenant pas plus de 2 ou 3% d'austénite retenue. Toutes les tôles contiennent des carbures.The sheets according to the invention have a martensite-bainitic structure containing from 5% to 20% retained austenite, whereas the sheets given for comparison have a completely martensitic structure, that is to say, martensitic and not containing more than 2 or 3% retained austenite. All plates contain carbides.

La comparaison des résistances à l'usure, montre que, à dureté et teneur en titane voisines, les tôles conformes à l'invention ont un coefficient Rus en moyenne supérieur de 0,5 à celui des tôles selon l'art antérieur. En particulier, la comparaison des exemples A et H qui diffèrent essentiellement par la structure (teneur en austénite résiduelle de 10% pour A, structure entièrement martensitique pour H) montre l'incidence de la présence d'austénite résiduelle dans la structure. Il est à noter que la différence de teneur en austénite résiduelle résulte à la fois de la différence entre les traitements thermiques et de la différence entre les teneurs en silicium.The comparison of the wear resistances, shows that, with similar hardness and titanium content, the sheets in accordance with the invention have an average coefficient Rus which is greater by 0.5 than that of the sheets according to the prior art. In particular, comparison of Examples A and H which differ essentially in structure (residual austenite content of 10% for A, fully martensitic structure for H) shows the incidence of the presence of residual austenite in the structure. It should be noted that the difference in residual austenite content results both from the difference between the heat treatments and the difference between the silicon contents.

On peut en outre observer que, toutes choses sensiblement égales par ailleurs, la contribution à la résistance à l'usure attribuable aux carbures de titane est significativement plus élevée quand leur présence est combinée avec celle d'austénite résiduelle, conformément à l'invention, que lorsque ces carbures sont précipités au sein d'une matrice essentiellement dépourvue d'austénite résiduelle. Ainsi pour des écarts similaires de teneurs en titane (et donc en TiC, le carbone étant toujours en excès), le couple d'aciers F,G (selon l'invention) se différencie nettement du couple d'aciers I,J, en terme de gain de tenue apporté par le titane. Pour F,G, le gain de résistance Rus apporté par 0,245% de Ti est de 0,46, alors qu'il n'est que de 0,31 pour un écart de 0,265% de Ti dans le cas du couple I,J.It may further be observed that, all else being substantially equal, the contribution to wear resistance attributable to titanium carbides is significantly greater when their presence is combined with that of residual austenite, according to the invention, only when these carbides are precipitated within a matrix essentially devoid of residual austenite. Thus, for similar differences in titanium content (and therefore in TiC, the carbon being always in excess), the pair of steels F, G (according to the invention) is clearly different from the pair of steels I, J, term of gain of holding brought by the titanium. For F, G, the resistance gain Rus supplied by 0.245% of Ti is 0.46, whereas it is only 0.31 for a difference of 0.265% of Ti in the case of the pair I, J. .

Cette observation est attribuable à l'effet de sertissage accru des carbures de titane par la matrice environnante, quand celle-ci contient de l'austénite résiduelle susceptible de se transformer en martensite dure avec gonflement sous l'effet des sollicitations abrasives.This observation is attributable to the increased crimping effect of the titanium carbides by the surrounding matrix, when it contains residual austenite capable of being transformed into hard martensite with swelling under the effect of abrasive stresses.

Par ailleurs, la déformation après refroidissement, sans planage, pour les tôles en acier selon l'invention est inférieure à 10mm/m, et est d'environ 15mm/m pour la tôle en acier H.Furthermore, the deformation after cooling, without planing, for the steel sheets according to the invention is less than 10 mm / m, and is about 15 mm / m for the steel sheet H.

Il en résulte en pratique, soit la possibilité de livrer les produits sans planage, soit l'exécution d'un planage pour satisfaire une exigence de planéité plus sévère (par exemple 5mm/m) mais réalisée plus facilement et en introduisant moins de contraintes du fait de la déformation originelle moindre des produits selon l'invention.This results in practice, either the possibility of delivering the products without planing, or the execution of a planing to satisfy a requirement of more severe flatness (for example 5mm / m) but achieved more easily and by introducing less constraints of the makes the original deformation less of the products according to the invention.

Claims (20)

  1. Process for manufacturing a part, and for example a plate, made of an abrasion-resistant steel, the chemical composition of which comprises, by weight: 0.35 % C 0.8 %
    Figure imgb0077
    0 % Si 2 % 0 % Al 2 %
    Figure imgb0078
    0.05 % Si + Al 2 %
    Figure imgb0079
    0 % Mn 2.5 %
    Figure imgb0080
    0 % Ni 5 %
    Figure imgb0081
    0 % Cr 5 %
    Figure imgb0082
    0 % Mo 0.50 %
    Figure imgb0083
    0 % W 1.00 %
    Figure imgb0084
    0.1 % Mo + W / 2 0.50 %
    Figure imgb0085
    0 % B 0.02 %
    Figure imgb0086
    0 % Ti 2 %
    Figure imgb0087
    0 % Zr 4 %
    Figure imgb0088
    0.05 % Ti + Zr / 2 2 %
    Figure imgb0089
    0 % S 0.15 %
    Figure imgb0090
    N < 0.03 %
    Figure imgb0091
    - optionally, 0% to 1.5% of copper;
    - optionally, at least one element taken from Nb, Ta and V in contents such that Nb/2 + Ta/4 + V ≤ 0.5%;
    - optionally, at least one element taken from Se, Te, Ca, Bi and Pb in contents of 0.1% or less, the balance being iron and impurities resulting from the smelting, the chemical composition furthermore satisfying the following relationships: 0.1 % C - Ti / 4 - Zr / 8 + 7 × N / 8 0.55 %
    Figure imgb0092
    and Ti + Zr / 2 - 7 × N / 2 0.05 %
    Figure imgb0093
    and 1.05 × Mn + 0.54 × Ni + 0.50 × Cr + 0.3 × ( Mo + W / 2 ) 1 / 2 + K > 1.8
    Figure imgb0094
    where K = 0.5 if B ≥ 0.0005% and K = 0 if B < 0.0005%,
    in which the part or the plate undergoes a hardening heat treatment carried out in the hot-forming heat, for example rolling heat, or after austenitization by reheating in a furnace, in order to carry out the hardening, in which:
    - the part or the plate is cooled at an average cooling rate of greater than 0.5°C/s between a temperature above AC3 and a temperature between T = 800 - 270×C* - 90×Mn - 37×Ni - 70×Cr - 83×(Mo+W/2), with C* = C - Ti/4 - Zr/8 + 7×N/8, and T-50°C;
    - then the part or the plate is cooled at a core cooling rate Vc < 1150 × th-1.7 and greater than 0.1°C/s between the temperature T and 100°C, th being the thickness of the part or plate expressed in mm; and
    - the part or the plate is cooled down to ambient temperature and, optionally, undergoes skin pass rolling.
  2. Process according to Claim 1, characterized in that: 1.05 × Mn + 0.54 × Ni + 0.50 × Cr + 0.3 × ( Mo + W / 2 ) 1 / 2 + K > 2.
    Figure imgb0095
  3. Process according to Claim 1 or Claim 2, characterized in that: C > 0.45 % .
    Figure imgb0096
  4. Process according to any one of Claims 1 to 3, characterized in that: Si + Al > 0.5 % .
    Figure imgb0097
  5. Process according to any one of Claims 1 to 4, characterized in that: Ti + Zr / 2 > 0.10 % .
    Figure imgb0098
  6. Process according to any one of Claims 1 to 5, characterized in that: Ti + Zr / 2 > 0.30 % .
    Figure imgb0099
  7. Process according to any one of Claims 1 to 6, characterized in that, C * 0.22 % .
    Figure imgb0100
  8. Process according to any one of Claims 1 to 7, characterized in that a tempering operation is also carried out at a temperature of 350°C or below.
  9. Process according to any one of Claims 1 to 8, characterized in that, to add titanium to the steel, a liquid steel is brought into contact with a titanium-containing slag and the titanium is made to diffuse slowly from the slag into the liquid steel.
  10. Part, and especially a plate, made of an abrasion-resistant steel, the chemical composition of which comprises, by weight: 0.35 % C 0.8 %
    Figure imgb0101
    0 % Si 2 %
    Figure imgb0102
    0 % Al 2 %
    Figure imgb0103
    0.35 % Si + Al 2 %
    Figure imgb0104
    0 % Mn 2.5 %
    Figure imgb0105
    0 % Ni 5 %
    Figure imgb0106
    0 % Cr 5 %
    Figure imgb0107
    0 % Mo 0.50 %
    Figure imgb0108
    0 % W 1.00 %
    Figure imgb0109
    0.1 % Mo + W / 2 0.50 %
    Figure imgb0110
    0 % B 0.02 %
    Figure imgb0111
    0 % Ti 2 %
    Figure imgb0112
    0 % Zr 4 %
    Figure imgb0113
    0.05 % Ti + Zr / 2 2 %
    Figure imgb0114
    0 % S 0.15 %
    Figure imgb0115
    N < 0.03 %
    Figure imgb0116
    - optionally, 0% to 1.5% of copper;
    - optionally, at least one element taken from Nb, Ta and V in contents such that Nb/2 + Ta/4 + V ≤ 0.5%;
    - optionally, at least one element taken from Se, Te, Ca, Bi and Pb in contents of 0.1% or less, the balance being iron and impurities resulting from the smelting, the chemical composition furthermore satisfying the following relationships: 0.1 % C - Ti / 4 - Zr / 8 + 7 × N / 8 0.55 %
    Figure imgb0117
    and Ti + Zr / 2 - 7 × N / 2 0.05 %
    Figure imgb0118
    and 1.05 × Mn + 0.54 × Ni + 0.50 × Cr + 0.3 × ( Mo + W / 2 ) 1 / 2 + K > 1.8
    Figure imgb0119
    where K = 0.5 if B ≥ 0.0005% and K = 0 if B < 0.0005%,
    the flatness of which is characterized by a bow of less than 12 mm/m, the steel having a martensitic or martensitic-bainitic structure, said structure also containing 5% to 20% residual austenite and carbides.
  11. Part according to Claim 10, characterized in that: 1.05 × Mn + 0.54 × Ni + 0.50 × Cr + 0.3 × ( Mo + W / 2 ) 1 / 2 + K > 2.
    Figure imgb0120
  12. Part according to Claim 10 or Claim 11, characterized in that: C > 0.45 % .
    Figure imgb0121
  13. Part according to any one of Claims 10 to 12, characterized in that: Si + Al > 0.5 % .
    Figure imgb0122
  14. Part according to any one of Claims 10 to 13, characterized in that: Ti + Zr / 2 > 0.10 % .
    Figure imgb0123
  15. Part according to any one of Claims 10 to 14, characterized in that: Ti + Zr / 2 > 0.30 % .
    Figure imgb0124
  16. Part according to any one of Claims 10 to 15, characterized in that: C * 0.22 % .
    Figure imgb0125
  17. Part according to any one of Claims 10 to 16, characterized in that it is a plate with a thickness between 2 mm and 150 mm and the flatness of which is characterized by a bow of less than 12 mm/m.
  18. Part according to any one of Claims 10 to 17, characterized in that the Brinell hardness is between 280 and 450 and: 0.1 % C - Ti / 4 - Zr / 8 + 7 × N / 8 0.2 % .
    Figure imgb0126
  19. Part according to any one of Claims 10 to 17, characterized in that the Brinell hardness is between 380 and 550 and: 0.2 % < C - Ti / 4 - Zr / 8 + 7 × N / 8 0.3 % .
    Figure imgb0127
  20. Part according to any one of Claims 10 to 17, characterized in that the Brinell hardness is between 450 and 650 and: 0.3 % < C - Ti / 4 - Zr / 8 + 7 × N / 8 0.5 % .
    Figure imgb0128
EP03782551A 2002-11-19 2003-11-13 Method for making an abrasion resistant steel plate and plate obtained Expired - Lifetime EP1563104B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SI200331362T SI1563104T1 (en) 2002-11-19 2003-11-13 Method for making an abrasion resistant steel plate and plate obtained

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0214424A FR2847270B1 (en) 2002-11-19 2002-11-19 METHOD FOR MANUFACTURING AN ABRASION RESISTANT STEEL SHEET AND OBTAINED SHEET
FR0214424 2002-11-19
PCT/FR2003/003359 WO2004048620A1 (en) 2002-11-19 2003-11-13 Method for making an abrasion resistant steel plate and plate obtained

Publications (2)

Publication Number Publication Date
EP1563104A1 EP1563104A1 (en) 2005-08-17
EP1563104B1 true EP1563104B1 (en) 2008-07-09

Family

ID=32187695

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03782551A Expired - Lifetime EP1563104B1 (en) 2002-11-19 2003-11-13 Method for making an abrasion resistant steel plate and plate obtained

Country Status (20)

Country Link
US (3) US7459041B2 (en)
EP (1) EP1563104B1 (en)
JP (1) JP4535877B2 (en)
KR (1) KR101010570B1 (en)
CN (1) CN100350061C (en)
AR (1) AR042071A1 (en)
AT (1) ATE400667T1 (en)
AU (1) AU2003290188B2 (en)
BR (2) BR122013002046B8 (en)
CA (1) CA2506351C (en)
DE (1) DE60322092D1 (en)
ES (1) ES2309377T3 (en)
FR (1) FR2847270B1 (en)
PE (1) PE20040487A1 (en)
PL (1) PL204080B1 (en)
RU (1) RU2327802C2 (en)
SI (1) SI1563104T1 (en)
UA (1) UA80308C2 (en)
WO (1) WO2004048620A1 (en)
ZA (1) ZA200504005B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010050499B3 (en) * 2010-11-08 2012-01-19 Benteler Automobiltechnik Gmbh Use of a wear-resistant steel component

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2847274B1 (en) * 2002-11-19 2005-08-19 Usinor SOLDERABLE CONSTRUCTION STEEL PIECE AND METHOD OF MANUFACTURE
FR2847272B1 (en) * 2002-11-19 2004-12-24 Usinor METHOD FOR MANUFACTURING AN ABRASION RESISTANT STEEL SHEET AND OBTAINED SHEET
US8669491B2 (en) * 2006-02-16 2014-03-11 Ravi Menon Hard-facing alloys having improved crack resistance
JP4894296B2 (en) * 2006-02-28 2012-03-14 Jfeスチール株式会社 Wear-resistant steel plate
JP4894297B2 (en) * 2006-02-28 2012-03-14 Jfeスチール株式会社 Wear-resistant steel plate
US20080073006A1 (en) * 2006-09-27 2008-03-27 Henn Eric D Low alloy steel plastic injection mold base plate, method of manufacture and use thereof
US8137483B2 (en) * 2008-05-20 2012-03-20 Fedchun Vladimir A Method of making a low cost, high strength, high toughness, martensitic steel
CN101775545B (en) * 2009-01-14 2011-10-12 宝山钢铁股份有限公司 Low-alloy high-strength high-toughness wear-resistant steel plate and manufacturing method thereof
CN102134682B (en) * 2010-01-22 2013-01-02 宝山钢铁股份有限公司 Wear resistant steel plate
CN102199737B (en) * 2010-03-26 2012-09-19 宝山钢铁股份有限公司 600HB-grade wear resistant steel plate and its manufacturing method
DE102010048209C5 (en) * 2010-10-15 2016-05-25 Benteler Automobiltechnik Gmbh Method for producing a hot-formed press-hardened metal component
RU2458177C1 (en) * 2010-12-03 2012-08-10 Открытое акционерное общество "Магнитогорский металлургический комбинат" Strip rolled products from boron-containing manganese steel
WO2012169640A1 (en) * 2011-06-10 2012-12-13 株式会社神戸製鋼所 Hot press molded article, method for producing same, and thin steel sheet for hot press molding
US8869972B2 (en) * 2011-08-20 2014-10-28 Caterpillar Inc. Bimaterial flight assembly for an elevator system for a wheel tractor scraper
UA109963C2 (en) 2011-09-06 2015-10-26 CATHANE STEEL, APPROVING CONSEQUENCES OF SEPARATION OF PARTS AFTER HOT FORMING AND / OR CUTTING IN TOOL, THAT HAS A HIGHER MACHINE
US9028745B2 (en) * 2011-11-01 2015-05-12 Honeywell International Inc. Low nickel austenitic stainless steel
CN102560272B (en) * 2011-11-25 2014-01-22 宝山钢铁股份有限公司 Ultrahigh-strength abrasion-resistant steel plate and manufacturing method thereof
CN102433505A (en) * 2011-12-14 2012-05-02 虞海盈 Material for producing rolling bearings
CN103205639B (en) * 2013-03-14 2015-02-18 长安大学 Shovel blade cutting edge of loader and method for manufacturing shovel blade cutting edge
RU2653032C2 (en) * 2013-06-07 2018-05-04 Ниппон Стил Энд Сумитомо Метал Корпорейшн Heat-treated steel material and method for producing same
CN103320695B (en) * 2013-06-19 2016-04-13 侯宇岷 A kind of Large-diameter wear-resistant steel ball and production technique thereof
US20150037198A1 (en) * 2013-07-30 2015-02-05 Caterpillar Inc. Wear resistant high toughness steel
EP2789699B1 (en) 2013-08-30 2016-12-28 Rautaruukki Oy A high-hardness hot-rolled steel product, and a method of manufacturing the same
CN103757552B (en) * 2013-12-17 2016-01-20 界首市华盛塑料机械有限公司 A kind of cutting tool alloy steel material and preparation method thereof
RU2546262C1 (en) * 2014-01-09 2015-04-10 Публичное акционерное общество "Северсталь" (ПАО "Северсталь") Wear-resistant steel and item made from it
CN103898299B (en) * 2014-04-04 2016-04-13 北京科技大学 A kind of preparation method of 2400MPa level low cost nanometer bainitic steel
CN104032216A (en) * 2014-06-27 2014-09-10 张家港市佳威机械有限公司 Composite manganese-steel alloy
CN104152820A (en) * 2014-07-16 2014-11-19 安徽省三方耐磨股份有限公司 Novel alloy lining plate
CN104131224A (en) * 2014-07-25 2014-11-05 合肥市东庐机械制造有限公司 Wear-resistant impact-resistant alloy steel and manufacturing method thereof
CN104099534B (en) * 2014-08-01 2016-08-17 宁国市南方耐磨材料有限公司 A kind of ball mill abrasion-proof steel ball
CN104152808B (en) * 2014-08-24 2017-02-15 长兴德田工程机械股份有限公司 Boron-containing high-silicon bainite wear-resistant corrosion-resistant alloy and manufacturing method thereof
CN104213041B (en) * 2014-08-28 2016-08-17 南京赛达机械制造有限公司 Turbine blade Abrasion Resistant Steels and production technology thereof
RU2556189C1 (en) * 2014-09-15 2015-07-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Южно-Уральский государственный университет" (национальный исследовательский университет) (ФГБОУ ВПО "ЮУрГУ" (НИУ)) Easy treated structural medium carbon chrome-manganese-nickel-molybdenum steel
RU2557860C1 (en) * 2014-09-15 2015-07-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Южно-Уральский государственный университет" (национальный исследовательский университет) (ФГБОУ ВПО "ЮУрГУ" (НИУ)) Easy-to-machine structural chromium-manganese-molybdenum steel
CN105506481B (en) * 2014-09-29 2018-03-20 铜陵有色金神耐磨材料有限责任公司 A kind of preparation method of impact resistance Alloy Balls In Milling
DE102014017273A1 (en) * 2014-11-18 2016-05-19 Salzgitter Flachstahl Gmbh High strength air hardening multiphase steel with excellent processing properties and method of making a strip of this steel
RU2586933C1 (en) * 2015-06-08 2016-06-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Южно-Уральский государственный университет" (национальный исследовательский университет) (ФГБОУ ВПО "ЮУрГУ" (НИУ)) Martensite corrosion-resistant chrome-containing steel with improved machinability
RU2606825C1 (en) * 2015-06-24 2017-01-10 Федеральное Государственное Унитарное Предприятие "Центральный Научно-Исследовательский Институт Конструкционных Материалов "Прометей" (Фгуп "Цнии Км "Прометей") High-strength wear-resistant steel for agricultural machines (versions)
CN105018863A (en) * 2015-07-13 2015-11-04 江苏曜曜铸业有限公司 Alloy used for clutch housing mould
CN105039864A (en) * 2015-07-13 2015-11-11 江苏曜曜铸业有限公司 Alloy used for spindle box mould
CN105316572A (en) * 2015-11-25 2016-02-10 怀宁县明月矿山开发有限责任公司 Wear-resistant steel plate for mining machinery
CN105568142B (en) * 2016-03-09 2017-07-28 桂林电子科技大学 A kind of high-obdurability low-alloy abrasion-resistant stee excavator bucket teeth and preparation method thereof
DE102016203969A1 (en) * 2016-03-10 2017-09-14 Thyssenkrupp Ag Process for the heat treatment of a flat steel product, heat-treated steel flat product and its use
CN105886946B (en) * 2016-04-15 2018-06-08 芜湖德业摩擦材料有限公司 A kind of preparation method of brake-pad friction block
CN105779891B (en) * 2016-04-15 2018-01-05 芜湖德业摩擦材料有限公司 A kind of preparation method of high rigidity brake pad for brake block
US11035017B2 (en) 2016-04-19 2021-06-15 Jfe Steel Corporation Abrasion-resistant steel plate and method of producing abrasion-resistant steel plate
CN106636919A (en) * 2016-12-09 2017-05-10 天长市天龙泵阀成套设备厂 Anti-abrasion alloy steel
CN106811680A (en) * 2016-12-28 2017-06-09 芜湖市永帆精密模具科技有限公司 A kind of low-alloy impact-resistant abrasion-proof steel ball and preparation method thereof
RU2660786C1 (en) * 2017-12-19 2018-07-09 Юлия Алексеевна Щепочкина Iron-based alloy
WO2020054553A1 (en) * 2018-09-12 2020-03-19 Jfeスチール株式会社 Steel material and production method therefor
KR102314432B1 (en) * 2019-12-16 2021-10-19 주식회사 포스코 Wear resistant steel havinh high hardness and excellent low-temperature impact toughness and method for manufacturing thereof
CN111647820B (en) * 2020-06-15 2022-01-11 山东建筑大学 Advanced high-strength steel and segmented preparation method and application thereof
CN111690880B (en) * 2020-08-08 2021-11-19 湖南长重机器股份有限公司 Impact-resistant lining plate of bucket wheel machine hopper
KR102498144B1 (en) * 2020-12-18 2023-02-08 주식회사 포스코 Armored steel havinh high hardness and excellent low-temperature impact toughness and method for manufacturing thereof
CN112695253B (en) * 2020-12-22 2021-12-03 江西耐普矿机股份有限公司 Carbide-containing high-strength high-toughness bainite wear-resistant steel and preparation method thereof
CN112899571B (en) * 2021-01-19 2022-03-08 山东钢铁股份有限公司 Fatigue-resistant corrosion-resistant round steel for forging and pressing and preparation method thereof
CN113444985B (en) * 2021-05-24 2022-10-21 北京中永业科技有限公司 Steel material and preparation method thereof

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE426177B (en) * 1979-12-03 1982-12-13 Uddeholms Ab Hot work tool steel
US4348800A (en) * 1980-04-14 1982-09-14 Republic Steel Corporation Production of steel products with medium to high contents of carbon and manganese and superior surface quality
JPS5861219A (en) * 1981-09-28 1983-04-12 Nippon Steel Corp High tensile tough steel with superior delayed rupture resistance
JPH075970B2 (en) * 1989-12-18 1995-01-25 住友金属工業株式会社 High carbon steel sheet manufacturing method
US5284529A (en) * 1990-06-06 1994-02-08 Nkk Corporation Abrasion-resistant steel
JPH0441616A (en) * 1990-06-06 1992-02-12 Nkk Corp Production of low-hardness water-resistant steel excellent in wear resistance and bendability
US5393358A (en) * 1990-12-03 1995-02-28 Nkk Corporation Method for producing abrasion-resistant steel having excellent surface property
JP3273391B2 (en) * 1993-12-16 2002-04-08 新日本製鐵株式会社 Manufacturing method of good workability wear-resistant steel plate
FR2726287B1 (en) 1994-10-31 1997-01-03 Creusot Loire LOW ALLOY STEEL FOR THE MANUFACTURE OF MOLDS FOR PLASTICS OR FOR RUBBER
FR2729974B1 (en) * 1995-01-31 1997-02-28 Creusot Loire HIGH DUCTILITY STEEL, MANUFACTURING PROCESS AND USE
FR2733516B1 (en) * 1995-04-27 1997-05-30 Creusot Loire STEEL AND PROCESS FOR THE MANUFACTURE OF PARTS WITH HIGH ABRASION RESISTANCE
JPH09249935A (en) * 1996-03-13 1997-09-22 Sumitomo Metal Ind Ltd High strength steel material excellent in sulfide stress cracking resistance and its production
GB9608108D0 (en) * 1996-04-19 1996-06-26 Naco Inc Steel Castings
CN1074468C (en) * 1997-01-28 2001-11-07 山东工业大学 Multielement micro-alloyed air cooled bainitic steel
US5865385A (en) * 1997-02-21 1999-02-02 Arnett; Charles R. Comminuting media comprising martensitic/austenitic steel containing retained work-transformable austenite
DE19710125A1 (en) * 1997-03-13 1998-09-17 Krupp Ag Hoesch Krupp Process for the production of a steel strip with high strength and good formability
JP3475706B2 (en) * 1997-03-28 2003-12-08 住友金属工業株式会社 High-strength, high-toughness tempered steel with excellent machinability
TW454040B (en) * 1997-12-19 2001-09-11 Exxon Production Research Co Ultra-high strength ausaged steels with excellent cryogenic temperature toughness
FR2796966B1 (en) * 1999-07-30 2001-09-21 Ugine Sa PROCESS FOR THE MANUFACTURE OF THIN STRIP OF TRIP-TYPE STEEL AND THIN STRIP THUS OBTAINED
JP2003027181A (en) * 2001-07-12 2003-01-29 Komatsu Ltd High-toughness, wear-resistant steel
FR2847272B1 (en) * 2002-11-19 2004-12-24 Usinor METHOD FOR MANUFACTURING AN ABRASION RESISTANT STEEL SHEET AND OBTAINED SHEET

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010050499B3 (en) * 2010-11-08 2012-01-19 Benteler Automobiltechnik Gmbh Use of a wear-resistant steel component

Also Published As

Publication number Publication date
KR101010570B1 (en) 2011-01-25
CN1714160A (en) 2005-12-28
PL204080B1 (en) 2009-12-31
US20080253920A1 (en) 2008-10-16
FR2847270B1 (en) 2004-12-24
AU2003290188B2 (en) 2009-01-08
AR042071A1 (en) 2005-06-08
PL375544A1 (en) 2005-11-28
JP4535877B2 (en) 2010-09-01
BR122013002046B8 (en) 2017-12-19
ES2309377T3 (en) 2008-12-16
FR2847270A1 (en) 2004-05-21
AU2003290188A1 (en) 2004-06-18
SI1563104T1 (en) 2008-12-31
BR0315697B1 (en) 2013-07-30
CN100350061C (en) 2007-11-21
CA2506351C (en) 2012-04-24
DE60322092D1 (en) 2008-08-21
US8709336B2 (en) 2014-04-29
CA2506351A1 (en) 2004-06-10
US20060137780A1 (en) 2006-06-29
BR122013002046B1 (en) 2017-04-25
UA80308C2 (en) 2007-09-10
RU2005119208A (en) 2006-02-10
RU2327802C2 (en) 2008-06-27
BR0315697A (en) 2005-09-20
EP1563104A1 (en) 2005-08-17
KR20050083913A (en) 2005-08-26
US20080247903A1 (en) 2008-10-09
PE20040487A1 (en) 2004-08-18
JP2006506528A (en) 2006-02-23
ATE400667T1 (en) 2008-07-15
US7459041B2 (en) 2008-12-02
ZA200504005B (en) 2006-07-26
WO2004048620A1 (en) 2004-06-10

Similar Documents

Publication Publication Date Title
EP1563104B1 (en) Method for making an abrasion resistant steel plate and plate obtained
EP1563103B1 (en) Method for making an abrasion resistant steel plate and steel plate obtained
EP1563105B1 (en) Method for making an abrasion resistant steel plate and plate obtained
EP2689045B1 (en) Hot-rolled steel sheet and associated production method
EP1649069B1 (en) Method of producing austenitic iron/carbon/manganese steel sheets having a high strength and excellent toughness and being suitable for cold forming, and sheets thus produced
JP4956146B2 (en) Case-hardened steel excellent in forgeability and prevention of grain coarsening, its manufacturing method, and carburized parts
JP5114689B2 (en) Case-hardened steel and method for producing the same
WO2009110607A1 (en) Cold-rolled steel sheets
JP6027302B2 (en) High strength tempered spring steel
JP2019522723A (en) Cold-rolled and annealed steel sheet, process for its production, and use of such steel for producing automotive parts
WO2020209275A9 (en) Steel sheet and method for manufacturing same
JP4688691B2 (en) Case-hardened steel with excellent low cycle fatigue strength
EP1563110B1 (en) Weldable structural steel component and method for making same
JP3864536B2 (en) High strength steel with excellent delayed fracture resistance and method for producing the same
EP1563109B1 (en) Weldable structural steel component and method for making same
EP1885900B1 (en) Steel for submarine hulls with improved weldability
JPH09256102A (en) Carburized parts excellent in bending strength and impact characteristic
JP4922971B2 (en) Composite roll for hot rolling and manufacturing method thereof
JP4807949B2 (en) Rolled steel bar for case hardening with excellent high-temperature carburizing characteristics
JP3581028B2 (en) Hot work tool steel and high temperature members made of the hot work tool steel
JP4339612B2 (en) Rolling roll for galvanized steel sheet excellent in spalling resistance and steel material for the rolling roll
JP5937852B2 (en) Case-hardening steel parts
JP4320764B2 (en) Gear case hardened steel with excellent impact fatigue strength and anti-pitting strength
JPH0681083A (en) Forged steel operating roll material for hot rolling
JP2007160391A (en) Rolling roll

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050512

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 60322092

Country of ref document: DE

Date of ref document: 20080821

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2309377

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081009

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080709

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080709

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080709

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080709

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081010

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 60322092

Country of ref document: DE

Owner name: INDUSTEEL FRANCE, FR

Free format text: FORMER OWNER: INDUSTEEL CREUSOT, PUTEAUX, FR

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 400667

Country of ref document: AT

Kind code of ref document: T

Owner name: INDUSTEEL FRANCE, FR

Effective date: 20150608

Ref country code: NL

Ref legal event code: SD

Effective date: 20150706

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: INDUSTEEL FRANCE

Effective date: 20150716

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20150625 AND 20150701

REG Reference to a national code

Ref country code: SI

Ref legal event code: SP73

Owner name: INDUSTEEL FRANCE; FR

Effective date: 20150701

REG Reference to a national code

Ref country code: SK

Ref legal event code: TE4A

Ref document number: E 4041

Country of ref document: SK

Owner name: INDUSTEEL CREUSOT, SAINT DENIS, FR

Effective date: 20150821

Ref country code: SK

Ref legal event code: PC4A

Ref document number: E 4041

Country of ref document: SK

Owner name: INDUSTEEL FRANCE, SAINT DENIS, FR

Free format text: FORMER OWNER: INDUSTEEL CREUSOT, SAINT DENIS, FR

Effective date: 20150821

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: INDUSTEEL FRANCE, FR

Effective date: 20150910

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20221020

Year of fee payment: 20

Ref country code: FR

Payment date: 20221021

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20221031

Year of fee payment: 20

Ref country code: SK

Payment date: 20221026

Year of fee payment: 20

Ref country code: SE

Payment date: 20221024

Year of fee payment: 20

Ref country code: RO

Payment date: 20221107

Year of fee payment: 20

Ref country code: LU

Payment date: 20221020

Year of fee payment: 20

Ref country code: IT

Payment date: 20221020

Year of fee payment: 20

Ref country code: GB

Payment date: 20221021

Year of fee payment: 20

Ref country code: FI

Payment date: 20221018

Year of fee payment: 20

Ref country code: ES

Payment date: 20221201

Year of fee payment: 20

Ref country code: DE

Payment date: 20220616

Year of fee payment: 20

Ref country code: CZ

Payment date: 20221025

Year of fee payment: 20

Ref country code: AT

Payment date: 20221024

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SI

Payment date: 20221026

Year of fee payment: 20

Ref country code: BE

Payment date: 20221020

Year of fee payment: 20

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230522

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 60322092

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20231112

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20231124

REG Reference to a national code

Ref country code: BE

Ref legal event code: MK

Effective date: 20231113

REG Reference to a national code

Ref country code: SK

Ref legal event code: MK4A

Ref document number: E 4041

Country of ref document: SK

Expiry date: 20231113

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20231112

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 400667

Country of ref document: AT

Kind code of ref document: T

Effective date: 20231113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20231113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20231112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20231114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20231113

Ref country code: SI

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20231114

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20231112

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20231114

Ref country code: CZ

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20231113