EP1549296A1 - Metformin-formulierungen mit verzögerter freisetzung - Google Patents

Metformin-formulierungen mit verzögerter freisetzung

Info

Publication number
EP1549296A1
EP1549296A1 EP03766979A EP03766979A EP1549296A1 EP 1549296 A1 EP1549296 A1 EP 1549296A1 EP 03766979 A EP03766979 A EP 03766979A EP 03766979 A EP03766979 A EP 03766979A EP 1549296 A1 EP1549296 A1 EP 1549296A1
Authority
EP
European Patent Office
Prior art keywords
sustained
delivery system
weight
metformin
pharmaceutical composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03766979A
Other languages
English (en)
French (fr)
Other versions
EP1549296A4 (de
Inventor
Pradeep P. Sanghvi
Sara Ketsela
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Penwest Pharmaceuticals Co
Original Assignee
Penwest Pharmaceuticals Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Penwest Pharmaceuticals Co filed Critical Penwest Pharmaceuticals Co
Publication of EP1549296A1 publication Critical patent/EP1549296A1/de
Publication of EP1549296A4 publication Critical patent/EP1549296A4/de
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/02Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/13Amines
    • A61K31/155Amidines (), e.g. guanidine (H2N—C(=NH)—NH2), isourea (N=C(OH)—NH2), isothiourea (—N=C(SH)—NH2)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/26Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • A61K47/38Cellulose; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2009Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2013Organic compounds, e.g. phospholipids, fats
    • A61K9/2018Sugars, or sugar alcohols, e.g. lactose, mannitol; Derivatives thereof, e.g. polysorbates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/205Polysaccharides, e.g. alginate, gums; Cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/205Polysaccharides, e.g. alginate, gums; Cyclodextrin
    • A61K9/2054Cellulose; Cellulose derivatives, e.g. hydroxypropyl methylcellulose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/28Dragees; Coated pills or tablets, e.g. with film or compression coating
    • A61K9/2806Coating materials
    • A61K9/2833Organic macromolecular compounds
    • A61K9/286Polysaccharides, e.g. gums; Cyclodextrin
    • A61K9/2866Cellulose; Cellulose derivatives, e.g. hydroxypropyl methylcellulose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics

Definitions

  • the invention provides sustained release formulations of metformin or a pharmaceutically acceptable salt thereof, and methods of treating diabetes by administering to a patient a therapeutically effective amount of a sustained release formulation of metformin or a pharmaceutically acceptable salt thereof.
  • Diabetes mellitus is a mammalian condition in which the amount of glucose in the blood plasma is abnormally high. Elevated glucose levels in some instances can lead to higher than normal amounts of a particular hemoglobin. This condition can be life- threatening and high glucose levels in the blood plasma (hyperglycemia) can lead to a number of chronic diabetes syndromes, for example, atherosclerosis, microangiopathy, kidney disorders or failure, cardiac disease, diabetic retinopathy and other ocular disorders, including blindness. Diabetes mellitus is known to affect at least 10 million Americans, and millions more can unknowingly have the disease. There are two forms of the disease.
  • Type LT non-insulin dependent diabetes mellitus
  • NIDDM non-insulin dependent diabetes mellitus
  • Type I adult-onset
  • the pancreas often continues to secrete normal amounts of insulin.
  • this insulin is ineffective in preventing the symptoms of diabetes which include cardiovascular risk factors such as hyperglycemia, impaired carbohydrate (particularly glucose) metabolism, glycosuria, decreased insulin sensitivity, centralized obesity hypertriglyceridemia, low HDL levels, elevated blood pressure and various cardiovascular effects attending these risk factors.
  • cardiovascular risk factors such as hyperglycemia, impaired carbohydrate (particularly glucose) metabolism, glycosuria, decreased insulin sensitivity, centralized obesity hypertriglyceridemia, low HDL levels, elevated blood pressure and various cardiovascular effects attending these risk factors.
  • cardiovascular risk factors such as hyperglycemia, impaired carbohydrate (particularly glucose) metabolism, glycosuria, decreased insulin sensitivity, centralized obesity hypertriglyceridemia, low HDL levels, elevated blood pressure and various cardiovascular effects attending these risk factors.
  • Insulin resistance is believed to be a precursor to overt NIDDM and strategies directed toward ameliorating insulin resistance can provide unique benefits to patients with NIDDM.
  • the biguanides e.g., metformin
  • the thiazolidinediones are believed to act by increasing the rate of peripheral glucose disposal.
  • the sulfonylureas e.g., tolbutamide and glyburide
  • the benzoic acid derivatives e.g. repaglinide
  • the alpha-glucosidase inhibitors e.g. acarbose
  • Metformin is an anti-diabetic agent that acts by reducing glucose production by the liver and by decreasing intestinal absorption of glucose. It is also believed to improve the insulin sensitivity of tissues elsewhere in the body (increases peripheral glucose uptake and utilization). Metformin improves glucose tolerance in impaired glucose tolerant (IGT) subjects and NIDDM subjects, lowering both basal and postprandial plasma glucose.
  • ITT impaired glucose tolerant
  • metformin does not produce hypoglycemia in either diabetic or non-diabetic subjects. With metformin therapy, insulin secretion remains unchanged while fasting insulin levels and day-long plasma insulin response can decrease. Metformin also has a favorable effect on serum lipids, which are often abnormal in NIDDM patients. In clinical studies, particularly when baseline levels of lipids were abnormally elevated, metformin lowered mean fasting serum triglycerides, total cholesterol, and LDL cholesterol levels and had no adverse effects on other lipid levels.
  • the invention provides sustained release formulations of metformin or a pharmaceutically acceptable salt thereof.
  • the sustained release formulations comprise a sustained-release delivery system.
  • the invention also provides methods of treating diabetes and related diseases using sustained release formulations of metformin or a pharmaceutically acceptable salt thereof.
  • Figure 1 is a graphic representation of the in vitro dissolution profile of Metformin HCl tablets according to certain embodiments of the invention, illustrating the effect of drug:gum ratio on dissolution time.
  • Figure 2 is a graphic representation of the in vitro dissolution profile of Metformin HCl tablets according to certain embodiments of the invention, illustrating the effect of percent gum in the sustained release delivery system on dissolution time.
  • Figure 3 is a graphic representation of the in vitro dissolution profile of coated Metformin HCl tablets according to certain embodiments of the invention, illustrating the effect of SURELEASE®:OPADRY ⁇ ® ratio in the coating on dissolution time.
  • Figure 4 is a graphic representation of the in vitro dissolution profile of coated Metformin HCl tablets according to certain embodiments of the invention, illustrating the effect of coating weight gain on dissolution time.
  • Figure 5 is a graphic representation of the in vitro dissolution profile of Metformin HCl tablets according to certain embodiments of the invention, illustrating the effect of coating and quantity of sustained release delivery system on dissolution time.
  • the invention provides compositions comprising metformin or a pharmaceutically acceptable salt thereof and a sustained release delivery system.
  • the sustained release delivery system comprises (1) at least one hydrophilic compound, at least one cross-linking agent, and at least one pharmaceutical diluent; (2) at least one hydrophilic compound, at least one cross -linking agent, at least one pharmaceutical diluent, and at least one hydrophobic polymer; (3) at least one hydrophilic compound, at least one cross-linking agent, at least one pharmaceutical diluent, and at least one cationic cross-linking agent; (4) at least one hydrophilic compound, at least one cross-linking agent, at least one pharmaceutical diluent, at least one cationic cross-linking compound, and at least one hydrophobic polymer; (5) at least one hydrophilic compound, at least one cationic cross- linking compound, and at least one pharmaceutical diluent; or (6) at least one hydrophilic compound, at least one cationic cross-linking compound, at least one pharmaceutical
  • the sustained release delivery system comprises at least one hydrophilic compound, at least one cross-linking agent, at least one pharmaceutical diluent, and at least one cationic cross-linking agent.
  • the sustained release delivery system comprises at least one hydrophilic compound, at least one cross-linking agent, at least one pharmaceutical diluent, at least one cationic cross-linking compound, and at least one hydrophobic polymer.
  • Metformin or a pharmaceutically acceptable salt thereof can be homogeneously dispersed in the sustained release delivery system.
  • the metformin or the pharmaceutically acceptable salt thereof can be present in the composition in an amount of about 1 milligram to about 2000 milligrams; in an amount of about 100 milligrams to about 1000 milligrams; in an amount of about 300 milligrams to about 700 milligrams; or in an amount of about 500 milligrams.
  • Metformin can also be called N,N-dimethylimidodicarbonimidicdiamide; 1,1- dimethylbiguanide; N,N-dimethylbiguanide; N,N-dimethyldiguanide; or N'- dimethylguanylguanidine; and is represented by the chemical structure:
  • Metformin can be in the form of any pharmaceutically acceptable salt known in the art.
  • exemplary pharmaceutically acceptable salts include hydrochloric, sulfuric, nitric, phosphoric, hydrobromic, maleric, malic, ascorbic, citric, tartaric, pamoic, lauric, stearic, palmitic, oleic, myristic, lauryl sulfuric, napthalinesulfonic, linoleic, linolenic acid, and the like.
  • the pharmaceutically acceptable salt of metformin is the hydrochloride salt, represented by the chemical structure:
  • metformin and pharmaceutically acceptable salts thereof are known in the art and are described, for example, in U.S. Patent Nos. 3,174,901 and 6,031,004, the disclosures of which are incorporated by reference herein in their entirety.
  • the sustained release delivery system comprises at least one hydrophilic compound.
  • the hydrophilic compound preferably forms a gel matrix that releases metformin at a sustained rate upon exposure to liquids.
  • "Liquids” includes, for example, gastrointestinal fluids, aqueous solutions (such as those used for in vitro dissolution testing), and mucosas (e.g., of the mouth, nose, lungs, esophagus, and the like).
  • the rate of release of metformin from the gel matrix depends on the drug's partition coefficient between the components of the gel matrix and the aqueous phase within the gastrointestinal tract.
  • the sustained release delivery system generally comprises the hydrophilic compound in an amount of about 2% to about 80% by weight; in an amount of about 5% to about 60% by weight; in an amount of about 10% to about 50% by weight; in an amount of about 20% to about 40% by weight, or in an amount of about 28% by weight.
  • the hydrophilic compound can be any known in the art. Exemplary hydrophilic compounds include gums, cellulose ethers, acrylic resins, polyvinyl pyrrolidone, protein- derived compounds, and mixtures of two or more thereof.
  • Exemplary gums include heteropolysacchari.de gums and homopolysaccharide gums, such as xanthan, tragacanth, pectins, acacia, karaya, alginates, agar, carrageenan, and gellan gums.
  • Exemplary cellulose ethers include hydroxyalkyl celluloses and carboxyalkyl celluloses. Preferred cellulose ethers include hydroxyethyl celluloses, hydroxypropyl celluloses, hydroxypropylmethyl- celluloses, carboxy methylcelluloses, and mixtures thereof.
  • Exemplary acrylic resins include polymers and copolymers of acrylic acid, methacrylic acid, methyl acrylate and methyl methacrylate.
  • the hydrophilic compound is a gum, more preferably a heteropolysaccharide gum, most preferably a xanthan gum, a derivative thereof, or a mixture thereof.
  • xanthan gum include, for example, deacylated xanthan gum, the carboxymethyl esters of xanthan gum, and the propylene glycol esters of xanthan gum.
  • the sustained release delivery system can further comprise at least one cross-linking agent.
  • the cross-linking agent is preferably a compound that is capable of cross-linking the hydrophilic compound to form a gel matrix in the presence of liquids.
  • the sustained release delivery system comprises the cross-linking agent in an amount of about 5% to about 80% by weight; in an amount of about 10% to about 75% by weight; in an amount of about 15% to about 70% by weight; in an amount of about 20% to about 60% by weight; or in an amount of about 42% by weight.
  • Exemplary cross-linking agents include homopolysaccharides.
  • Exemplary homopolysaccharides include galactomannan gums, such as guar gum, hydroxypropyl guar gum, and locust bean gum.
  • the cross-linking agent is a locust bean gum, a guar gum, or a mixture thereof.
  • the cross-linking agent is locust bean gum.
  • the cross-linking agent is alginic acid, an alginic acid derivative, a hydrocolloid, or a mixture of two or more thereof.
  • the total amount of hydrophilic compound and cross-linking agent can be from about 25% to about 95% by weight; from about 40% to about 90% by weight; from about 50% to about 85% by weight; from about 60% to about 80% by weight; from about 65% to about 75% by weight; or about 70% by weight.
  • the weight ratio of metformin to hydrophilic compound/cross- linking agent is generally in the range of about 1:0.1 to about 1:2, in the range of about 1:0.2 to about 1:1.5; in the range of about 1:0.3 to about 1:1; or in the range of about 1:0.5 to about 1:1.
  • the sustained release delivery system of the invention can further comprise one or more cationic cross-linking compounds.
  • the cationic cross-linking compound can be used instead of or in addition to the cross-linking agent.
  • the cationic cross-linking compounds can be used in an amount sufficient to cross-link the hydrophilic compound to form a gel matrix in the presence of liquids.
  • the cationic cross-linking compound is present in the sustained release delivery system in an amount of about 0.5% to about 30% by weight; in an amount of about 5% to about 20% by weight; or in an amount of about 10% by weight.
  • Exemplary cationic cross-linking compounds include monovalent metal cations, multivalent metal cations, and inorganic salts, including alkali metal and/or alkaline earth metal sulfates, chlorides, borates, bromides, citrates, acetates, lactates, and mixtures of two or more thereof.
  • the cationic cross-linking compound can be one or more of calcium sulfate, sodium chloride, potassium sulfate, sodium carbonate, lithium chloride, tripotassium phosphate, sodium borate, potassium bromide, potassium fluoride, sodium bicarbonate, calcium chloride, magnesium chloride, sodium citrate, sodium acetate, calcium lactate, magnesium sulfate, sodium fluoride, or mixtures of two or more thereof.
  • the cationic cross-linking agent is calcium sulfate.
  • the ratio of hydrophilic compound to cationic cross-linking compound can be from about 1:9 to about 9:1, from about 1:4 to about 4:1; or about 2.8:1.
  • Two properties of compounds e.g., the at least one hydrophilic compound and the at least one cross-linking agent; the at least one hydrophilic compound and at least one cationic cross-linking compound; or the at least one hydrophilic compound, the at least one cross-linking agent, and the at least one cationic cross-linking compound) that form a gel matrix upon exposure to liquids are fast hydration of the compounds and a gel matrix having a high gel strength.
  • hydrophilic compounds e.g., xanthan gum
  • hydrophilic compounds have excellent water- wicking properties which provide fast hydration.
  • hydrophilic compounds with materials that are capable of cross-linking the rigid helical ordered structure of the hydrophilic compound (e.g., cross- linking agents, such as locust bean gum, and/or cationic cross-linking compounds, such as calcium sulfate) act synergistically to provide an unexpectedly high viscosity (i.e., high gel strength) of the gel matrix.
  • cross- linking agents such as locust bean gum
  • cationic cross-linking compounds such as calcium sulfate
  • the sustained release delivery system can further comprise one or more pharmaceutical diluents known in the art.
  • exemplary pharmaceutical diluents include monosaccharides, disaccharides, polyhydric alcohols and mixtures of two or more thereof.
  • Preferred pharmaceutical diluents include, for example, starch, lactose, dextrose, mannitol, sucrose, microcrystalline cellulose, sorbitol, xylitol, fructose, and mixtures of two or more thereof.
  • the pharmaceutical diluent is water-soluble, such as lactose, dextrose, mannitol, sucrose, or mixtures of two or more thereof.
  • the sustained release delivery system comprises one or more pharmaceutical diluents in an amount of about 5% to about 80% by weight; from about 10% to about 50% by weight; or about 20% by weight.
  • the ratio of pharmaceutical diluent to hydrophilic compound is generally from about 1:8 to about 8:1; or from about 1:4 to about 4:1.
  • the sustained release delivery system of the invention can further comprise one or more hydrophobic polymers.
  • the hydrophobic polymers can be used in an amount sufficient to slow the hydration of the hydrophilic compound without disrupting it.
  • the hydrophobic polymer can be present in the sustained release delivery system in an amount of about 0.5% to about 20% by weight; in an amount of about 2% to about 10% by weight; in an amount of about 3% to about 7% by weight; or in an amount of about 5% by weight.
  • Exemplary hydrophobic polymers include alkyl celluloses (e.g., .
  • alkyl celluloses carboxymethylcellulose
  • other hydrophobic cellulosic materials or compounds e.g., cellulose acetate phthalate, hydroxypropylmethylcellulose phthalate
  • polyvinyl acetate polymers e.g., polyvinyl acetate phthalate
  • the hydrophobic polymer is methyl cellulose, ethyl cellulose or propyl cellulose, or a mixture of two or more thereof.
  • the hydrophobic polymer is ethyl cellulose.
  • compositions of the invention can be further admixed with one or more wetting agents (e.g., polyethoxylated castor oil, polyethoxylated hydrogenated castor oil, polyethoxylated fatty acid from castor oil, polyethoxylated fatty acid from hydrogenated castor oil, or a mixture of two or more thereof) one or more lubricants (e.g., magnesium stearate, sodium stearyl fumarate), one or more glidants (e.g., silicon dioxide), one or more buffering agents, one or more colorants, and/or other conventional ingredients.
  • wetting agents e.g., polyethoxylated castor oil, polyethoxylated hydrogenated castor oil, polyethoxylated fatty acid from castor oil, polyethoxylated fatty acid from hydrogenated castor oil, or a mixture of two or more thereof
  • one or more lubricants e.g., magnesium stearate, sodium stearyl fumarate
  • Exemplary orally administrable solid dosage compositions include tablets, capsules comprising a plurality of granules, sublingual tablets, powders, and granules.
  • the orally administrable solid dosage compositions is a tablet.
  • the tablets can be coated or uncoated.
  • the coating on the tablet can be a sustained release coating.
  • the sustained release delivery system in the compositions of the invention can be prepared by dry granulation or wet granulation, before metformin is added, although the components can be held together by an agglomeration technique to produce an acceptable product.
  • the components e.g., hydrophilic compounds, cross-linking agents, pharmaceutical diluents, cationic cross-linking compounds, hydrophobic polymers, etc.
  • the components can be mixed together and then moistened with one or more liquids (e.g., water, propylene glycol, glycerol, alcohol) to produce a moistened mass which is subsequently dried.
  • the dried mass can then be milled with conventional equipment into granules of the sustained release delivery system.
  • the sustained release delivery system can be mixed in the desired amounts with metformin and, optionally, one or more additional sustained-release delivery components, one or more wetting agents, one or more lubricants, one or more buffering agents, one or more coloring agents, or other conventional ingredients, to produce a granulated composition.
  • the sustained release delivery system and metformin can be blended with, for example, a high shear mixer.
  • Metformin is generally finely and homogeneously dispersed in the sustained release delivery system.
  • the granulated composition in an amount sufficient to make a uniform batch of tablets, can be subjected to tableting in a conventional production scale tableting machine at normal compression pressures, e.g., about 2,000-16,000 psi.
  • the average particle size of the granulated composition is from about 50 microns to about 800 microns, preferably from about 185 microns to about 400 microns.
  • the average density of the granulated composition is from about 0.2 g/ml to about 0.8 g/ml, preferably from about 0.4 g/ml to about 0.7 g/ml.
  • the tablets formed from the granulations are generally from about 2 to about 18 kp hardness; or from about 6 to about 12 kp hardness.
  • the average flow of the granulations are from about 20 to about 50 g/sec.
  • the invention provides sustained release coatings over an inner core comprising metformin.
  • the inner core comprising metformin can be coated with a sustained release film which, upon exposure to liquids, releases metformin from the core at a sustained rate.
  • the sustained release coating comprises at least one water insoluble compound.
  • the water insoluble compound can be a hydrophobic polymer.
  • the hydrophobic polymer can be the same as or different from the hydrophobic polymer used in the sustained release delivery system.
  • Exemplary hydrophobic polymers include alkyl celluloses (e.g., C ⁇ alkyl celluloses, carboxymethylcellulose), other hydrophobic cellulosic materials or compounds (e.g., cellulose acetate phthalate, hydroxypropylmethylcellulose phthalate), polyvinyl acetate polymers (e.g., polyvinyl acetate phthalate), polymers or copolymers derived from acrylic and/or methacrylic acid esters, zein, waxes (alone or in admixture with fatty alcohols), shellac, hydrogenated vegetable oils, and mixtures of two or more thereof.
  • the hydrophobic polymer is methyl cellulose, ethyl cellulose, propyl cellulose or a mixture of two or more thereof. In another embodiment, the hydrophobic polymer is ethyl cellulose.
  • the compositions of the invention can be coated with a water insoluble compound to a weight gain from about 1 to about 20% by weight.
  • the sustained release coating can further comprise at least one plasticizer such as triethyl citrate, dibutyl phthalate, propylene glycol, polyethylene glycol, or mixtures of two or more thereof.
  • the sustained release coating can also contain at least one water soluble compound, such as polyvinylpyrrolidones, hydroxypropylmethylcelluloses, or mixtures thereof.
  • the sustained release coating can comprise at least one water soluble compound in an amount from about 1% to about 6% by weight, preferably in an amount of about 3% by weight.
  • the sustained release coating can be applied to the metformin core by spraying an aqueous dispersion of the water insoluble compound onto the metformin core.
  • the metformin core can be a granulated composition made, for example, by dry or wet granulation of mixed powders of metformin and at least one binding agent; by coating an inert bead with metformin and at least one binding agent; or by spheronizing mixed powders of metformin and at least one spheronizing agent.
  • Exemplary binding agents include hydroxypropylmethylcelluloses.
  • Exemplary spheronizing agents include microcrystalline celluloses.
  • the inner core can be a tablet made by compressing the granules or by compressing a powder comprising metformin.
  • compositions comprising metformin and a sustained release delivery system are coated with a sustained release coating, as described herein.
  • the compositions comprising metformin and a sustained release delivery system, as described herein are coated with a hydrophobic polymer, as described herein.
  • the compositions comprising metformin and a sustained release delivery system, as described herein are coated with an enteric coating.
  • Exemplary enteric coatings include cellulose acetate phthalate, hydroxypropylmethylcellulose phthalate, polyvinylacetate phthalate, methacrylic acid copolymer, shellac, hydroxypropylmethylcellulose succinate, cellulose acetate trimelliate, or a mixture of two or more thereof.
  • the compositions comprising metformin and a sustained release delivery system, as described herein are coated with a hydrophobic polymer, as described herein, and further coated with an enteric coating, as described herein.
  • compositions comprising metformin and a sustained release delivery system can optionally be coated with a hydrophilic coating which can be applied above or beneath the sustained release film, above or beneath the hydrophobic coating, and/or above or beneath the enteric coating.
  • a hydrophilic coating include hydroxypropylmethylcelluloses .
  • compositions comprising metformin and a sustained release delivery system and contact of the compositions with gastrointestinal fluids
  • the compositions swell and gel to form a hydrophilic gel matrix from which metformin is released.
  • the swelling of the gel matrix causes a reduction in the bulk density of the composition and provides the buoyancy necessary to allow the gel matrix to float on the stomach contents to provide a slow delivery of metformin.
  • the hydrophilic matrix the size of which is dependent upon the size of the original formulation, can swell considerably and become obstructed near the opening of the pylorus.
  • metformin is dispersed throughout the formulation (and consequently throughout the gel matrix), a constant amount of metformin can be released per unit time in vivo by dispersion or erosion of the outer portions of the hydrophilic gel matrix. This phenomenon is referred to as a zero order release profile or zero order kinetics. The process continues, with the gel matrix remaining buoyant in the stomach, until substantially all of the metformin is released.
  • the chemistry of certain of the components of the sustained release delivery system is such that the components are considered to be self- buffering agents which are substantially insensitive to the solubility of metformin and the pH changes along the length of the gastrointestinal tract.
  • the chemistry of the components is believed to be similar to certain known muco-adhesive substances, such as polycarbophil. Muco-adhesive properties are desirable for buccal delivery systems.
  • the compositions could potentially loosely interact with the mucin in the gastrointestinal tract and thereby provide another mode by which a constant rate of delivery of metformin is achieved.
  • compositions of the invention could interact with the mucin and fluids of the gastrointestinal tract and provide a constant rate of delivery of metformin.
  • the invention provides methods for treating diabetes mellitus by administering to a patient a therapeutically effective amount of the compositions comprising metformin and a sustained release delivery system.
  • the diabetes mellitus is Type II diabetes mellitus.
  • the invention provides methods for treating hyperglycemia by administering to a patient a therapeutically effective amount of the compositions comprising metformin and a sustained release delivery system.
  • the invention provides methods for treating insulin resistance by administering to a patient a therapeutically effective amount of the compositions comprising metformin and a sustained release delivery system.
  • the invention provides methods for treating precursor syndromes of diabetes mellitus by administering to a patient a therapeutically effective amount of the compositions comprising metformin and a sustained release delivery system.
  • sustained release means that metformin is released from the composition at a controlled rate so that therapeutically beneficial blood levels of metformin are maintained over an extended period of time, e.g., 1 to 24 hours; 8 to 24 hours; 12 to 24 hours.
  • the metformin sustained release oral solid dosage formulations of the invention can be administered once or twice daily, preferably once daily.
  • the patient can be an animal, preferably a mammal, more preferably a human.
  • the invention provides pharmaceutical kits comprising one or more containers filled with one or more of the compositions of the invention.
  • the kits can comprise other pharmaceutical compounds known in the art to be therapeutically effective against diabetes, and instructions for use.
  • a sustained release delivery system of the invention was prepared as shown in Table 1.
  • An ethylcellulose slurry was prepared by placing a 16 kilo batch of anhydrous alcohol in a Coulter Kettle and warming the alcohol to 40°C to 60°C. While stirring with a Lightnin Mixer, a 4 kilo batch of ethylcellulose was added to the warm alcohol and mixed for at least 5 minutes.
  • the mixture of locust bean gum, xanthan gum, dextrose and calcium dihydrate was then mixed with the ethylcellulose slurry for 3 minutes at speed I in a PMA300 Mixer, followed by mixing at 1 minute at speed LI in a Lightnin Mixer, to produce a granulate.
  • the resulting granulate was put in a Fluid Bed Drier (Calmic) to an LOD of 3-5%.
  • the dried granules were then milled in a Fluid Air Granumill using a 1.00 mm screen at 800 rpm impeller speed.
  • the resulting granules of the sustained release delivery system comprised 25% by weight locust bean gum; 25% by weight xanthan gum; 35% by weight dextrose; 10% by weight calcium sulfate dihydrate; and 5% by weight ethylcellulose.
  • Example 2
  • a sustained release composition comprising 500 mg metformin was prepared as shown in Table 2.
  • Metformin HCl 500 mg Metformin HCl was passed through a No. 20 screen.
  • the metformin HCl, water, and 300 mg of the sustained release delivery system from Example 1 were charged in a high shear granulator (PP1) to produce a granulated mixture of the sustained release delivery system and metformin HCl. Water was added as needed to produce consistent granules.
  • the resulting granules were dried in a Fluid Bed Drier (Niro Aeromatic Strea 1) and then milled with a FizMill using screen #1521-0050.
  • the sodium stearyl fumarate granules were compress blended with the metformin HCl/sustained release delivery system granules into tablets with a Korsh table press using 0.374 x 0.748 inch modified oval shaped punches.
  • the resulting sustained release tablet weighed 808 mg; contained the sustained release delivery system in an amount of 37% by weight, contained 18.6% gum (i.e., locust bean gum plus xanthan gum), and the ratio of metformin HCl to gum (i.e., locust bean gum plus xanthan gum) was 1:0.3.
  • a sustained release composition comprising 500 mg metformin was prepared as shown in Table 2.
  • Metformin HCl was passed through a No. 20 screen.
  • the metformin HCl, water, and 500 mg of the sustained release delivery system from Example 1 were charged in a high shear granulator (PP1) to produce a granulated mixture of the sustained release delivery system and metformin HCl. Water was added as needed to produce consistent granules.
  • the resulting granules were dried in a Fluid Bed Drier (Niro Aeromatic Strea 1) and then milled with a FizMill using screen #1521-0050.
  • the silicon dioxide/sodium stearyl fumarate granules were compress blended with the metformin HCl/sustained release delivery system granules into tablets with a Korsh table press using 0.374 x 0.748 inch modified oval shaped punches.
  • the resulting sustained release tablet weighed 1020 mg; contained the sustained release delivery system in an amount of 49% by weight, contained 24.5% gum (i.e., locust bean gum plus xanthan gum), and the ratio of metformin HCl to gum (i.e., locust bean gum plus xanthan gum) was 1:0.5.
  • Example 4
  • a sustained release composition comprising 500 mg metformin was prepared as shown in Table 2.
  • Metformin HCl 500 mg Metformin HCl was passed through a No. 20 screen.
  • the metformin HCl, water, and 700 mg of the sustained release delivery system from Example 1 were charged in a high shear granulator (PP1) to produce a granulated mixture of the sustained release delivery system and metformin HCl. Water was added as needed to produce consistent granules.
  • the resulting granules were dried in a Fluid Bed Drier (Niro Aeromatic Strea 1) and then milled with a FizMill using screen #1521-0050.
  • the sodium stearyl fumarate granules were compress blended with the metformin HCl/sustained release delivery system granules into tablets with a Korsh table press using 0.374 x 0.748 inch modified oval shaped punches.
  • the resulting sustained release tablet weighed 1212 mg; contained the sustained release delivery system in an amount of 57.8% by weight, contained 28.9% gum (i.e., locust bean gum plus xanthan gum), and the ratio of metformin HCl to gum (i.e., locust bean gum plus xanthan gum) was 1:0.7.
  • Example 5
  • a sustained release composition comprising 500 mg metformin was prepared as shown in Table 2.
  • 500 mg Metformin HCl was passed through a No. 20 screen.
  • the metformin HCl, water, and 900 mg of the sustained release delivery system from Example 1 were charged in a high shear granulator (PP1) to produce a granulated mixture of the sustained release delivery system and metformin HCl.
  • Water was added as needed to produce consistent granules.
  • the resulting granules were dried in a Fluid Bed Drier (Niro Aeromatic Strea 1) and then milled with a FizMill using screen #1521-0050.
  • the silicon dioxide/sodium stearyl fumarate granules were compress blended with the metformin HCl/sustained release delivery system granules into tablets with a Korsh table press using 0.374 x 0.748 inch modified oval shaped punches.
  • the resulting sustained release tablet weighed 1428 mg; contained the sustained release delivery system in an amount of 63% by weight, contained 31.5% gum (i.e., locust bean gum plus xanthan gum), and the ratio of metformin HCl to gum (i.e., locust bean gum plus xanthan gum) was 1 :0.9.
  • Example 6
  • a sustained release composition comprising 500 mg metformin was prepared as shown in Table 2.
  • Metformin HCl was passed through a No. 20 screen.
  • the metformin HCl, water, and 500 mg of the sustained release delivery system from Example 1 were charged in a high shear granulator (PP1) to produce a granulated mixture of the sustained release delivery system and metformin HCl. Water was added as needed to produce consistent granules.
  • the resulting granules were dried in a Fluid Bed Drier (Niro Aeromatic Strea 1) and then milled with a FizMill using screen #1521-0050. 10 mg silicon dioxide and 10 mg sodium stearyl fumarate was dry blended using a Patterson Kelly Blendmaster N-blender to produce milled granules.
  • the silicon dioxide/sodium stearyl fumarate granules were compress blended with the metformin HCl/sustained release delivery system granules into tablets with a Korsh table press using 0.374 x 0.748 inch modified oval shaped punches.
  • the sustained release tablet was then coated with a SURELEASE®:OPADRY ⁇ ® coating in a ratio of 70:30, which was prepared by dispersing the OPADRY ⁇ ® in purified water with stirring until a solution was formed.
  • SURELEASE® was mixed with an appropriate amount of purified water to achieve the desired solids content until a uniform suspension was obtained. The solution and suspension were mixed thoroughly together.
  • SURELEASE® and OPADRY LT® are commercially available from Colorcon, West Point, PA.
  • SURELEASE® is a plasticized aqueous ethylcellulose dispersion.
  • OPADRY T® comprises polymer, polysaccharide and pigment.
  • the sustained release tablets were spray coated using Vector LDCS 20/30 to a weight gain of 5%.
  • the coated tablets were allowed to dry and cool at room temperature.
  • the resulting sustained release tablet weighed 1071 mg; contained the sustained release delivery system in an amount of 46.7% by weight, contained 23.3% gum (i.e., locust bean gum plus xanthan gum), and the ratio of metformin HCl to gum (i.e., locust bean gum plus xanthan gum) was 1:0.5.
  • Example 7
  • a sustained release delivery system of the invention was prepared as shown in Table
  • a 1 kilo batch of locust bean gum, xanthan gum, mannitol, and calcium sulfate dihydrate was charged in an Aeromatic-Fielder PP1 granulator and mixed to form granules. The resulting granules were mixed with water to achieve consistent granules. The granules were then dried in a Fluid Bed Drier (Niro Aeromatic Strea 1), and subsequently milled with a FizMill using screen #1521-0033.
  • the resulting granules of the sustained release delivery system comprised 30% by weight locust bean gum; 20% by weight xanthan gum; 40% by weight mannitol; and 10% by weight calcium sulfate dihydrate.
  • a sustained release composition comprising 500 mg metformin was prepared as shown in Table 4.
  • Metformin HCl was passed through a No. 20 screen.
  • the metformin HCl, water, and 500 mg of the sustained release delivery system from Example 7 were charged in a high shear granulator (PP1) to produce a granulated mixture of the sustained release delivery system and metformin HCl. Water was added as needed to produce consistent granules.
  • the resulting granules were dried in a Fluid Bed Drier (Niro Aeromatic Strea 1) and then milled with a FizMill using screen #1521-0050.
  • the silicon dioxide/sodium stearyl fumarate granules were compressed blended with the metformin HCl/sustained release delivery system granules into tablets with a Korsh table press using 0.374 x 0.748 inch modified oval shaped punches.
  • the resulting sustained release tablet weighed 1020 mg; contained the sustained release delivery system in an amount of 49% by weight, contained 24.5% gum (i.e., locust bean gum plus xanthan gum), and the ratio of metformin HCl to gum (i.e., locust bean gum plus xanthan gum) was 1:0.5.
  • a sustained release composition comprising 500 mg metformin was prepared as shown in Table 4.
  • Metformin HCl was passed through a No. 20 screen.
  • the metformin HCl, water, and 500 mg of the sustained release delivery system from Example 7 were charged in a high shear granulator (PP1) to produce a granulated mixture of the sustained release delivery system and metformin HCl. Water was added as needed to produce consistent granules.
  • the resulting granules were dried in a Fluid Bed Drier (Niro Aeromatic Strea 1) and then milled with a FizMill using screen #1521-0050.
  • the silicon dioxide/sodium stearyl fumarate granules were compressed blended with the metformin HCl/sustained release delivery system granules into tablets with a Korsh table press using 0.374 x 0.748 inch modified oval shaped punches.
  • the sustained release tablet was then coated with a SURELEASE®: OPADRY LT® coating in a ratio of 80:20 (i.e., 24.5 grams SURELEASE® and 6.1 grams OPADRY IT® clear), which was prepared by dispersing the OPADRY LT® in purified water with stirring until a solution was formed.
  • SURELEASE® was mixed with an appropriate amount of purified water to achieve the desired solids content until a uniform suspension was obtained. The solution and suspension were mixed thoroughly together.
  • SURELEASE® is a plasticized aqueous ethylcellulose dispersion.
  • OPADRY LT® is a combination of polymer, polysaccharide and pigment.
  • the sustained release tablets were spray coated using Vector LDCS 20/30 to a weight gain of 3%.
  • the coated tablets were allowed to dry and cool at room temperature.
  • the resulting sustained release tablet weighed 1050.6 mg; contained the sustained release delivery system in an amount of 47.6% by weight, contained 23.8% gum (i.e., locust bean gum plus xanthan gum), and the ratio of metformin HCl to gum (i.e., locust bean gum plus xanthan gum) was 1:0.5.
  • a sustained release composition comprising 500 mg metformin was prepared as shown in Table 4.
  • Metformin HCl was passed through a No. 20 screen.
  • the metformin HCl, water, and 500 mg of the sustained release delivery system from Example 7 were charged in a high shear granulator (PP1) to produce a granulated mixture of the sustained release delivery system and metformin HCl. Water was added as needed to produce consistent granules.
  • the resulting granules were dried in a Fluid Bed Drier (Niro Aeromatic Strea 1) and then milled with a FizMill using screen #1521-0050. 10 mg silicon dioxide and 10 mg sodium stearyl fumarate were dry blended using a
  • the silicon dioxide/sodium stearyl fumarate granules were compressed blended with the metformin HCl/sustained release delivery system granules into tablets with a Korsh table press using 0.374 x 0.748 inch modified oval shaped punches.
  • the sustained release tablet was then coated with a SURELEASE®:OPADRY LT® coating in a ratio of 80:20 (i.e., 40.8 mg SURELEASE® and 10.2 mg OPADRY LT® clear), which was prepared by dispersing the OPADRY LT® in purified water with stirring until a solution was formed.
  • SURELEASE® was mixed with an appropriate amount of purified water to achieve the desired solids content until a uniform suspension was obtained. The solution and suspension were mixed thoroughly together.
  • the sustained release tablets were spray coated using Vector LDCS 20/30 to a weight gain of 5%.
  • the coated tablets were allowed to dry and cool at room temperature.
  • the resulting sustained release tablet weighed 1071 mg; contained the sustained release delivery system in an amount of 46.7% by weight, contained 23.3% gum (i.e., locust bean gum plus xanthan gum), and the ratio of metformin HCl to gum (i.e., locust bean gum plus xanthan gum) was 1:0.5.
  • Example 11
  • a sustained release delivery system of the invention was prepared as shown in Table 5. Table 5
  • a 1 kilo batch of locust bean gum, xanthan gum, mannitol, and calcium sulfate dihydrate was charged in an Aeromatic-Fielder PPl granulator and mixed to form granules. The resulting granules were mixed with water to achieve consistent granules. The granules were then dried in a Fluid Bed Drier (Niro Aeromatic Strea 1), and subsequently milled with a FizMill using screen #1521-0033.
  • the resulting granules of the sustained release delivery system comprised 42% by weight locust bean gum; 28% by weight xanthan gum; 20% by weight mannitol; and 10% by weight calcium sulfate dihydrate.
  • a sustained release composition comprising 500 mg metformin was prepared as shown in Table 6.
  • Metformin HCl was passed through a No. 20 screen.
  • the metformin HCl, water, and 500 mg of the sustained release delivery system from Example 11 were charged in a high shear granulator (PPl) to produce a granulated mixture of the sustained release delivery system and metformin HCl. Water was added as needed to produce consistent granules.
  • the resulting granules were dried in a Fluid Bed Drier (Niro Aeromatic Strea 1) and then milled with a FizMill using screen #1521-0050.
  • the silicon dioxide/sodium stearyl fumarate granules were compressed blended with the metformin HCl/sustained release delivery system granules into tablets with a Korsh table press using 0.374 x 0.748 inch modified oval shaped punches.
  • the resulting sustained release tablet weighed 1020 mg; contained the sustained release delivery system in an amount of 49% by weight, contained 34.3% gum (i.e., locust bean gum plus xanthan gum), and the ratio of metformin HCl to gum (i.e., locust bean gum plus xanthan gum) was 1:0.7.
  • gum i.e., locust bean gum plus xanthan gum
  • metformin HCl i.e., locust bean gum plus xanthan gum
  • a sustained release composition comprising 500 mg metformin was prepared as shown in Table 7.
  • Metformin HCl was passed through a No. 20 screen.
  • a hydroxypropyl methylcellulose suspension was prepared by adding 60 mg hydroxypropyl methylcellulose to water while stirring.
  • the metformin HCl and 700 mg of the sustained release delivery system from Example 11, and the hydroxypropyl methylcellulose suspension were charged in a high shear granulator (PMA 25) to produce a granulated mixture.
  • PMA 25 high shear granulator
  • Water was added as needed to produce consistent granules.
  • the resulting granules were dried in a Fluid Bed Drier (MP-1) and then milled with a FizMill using screen #1521-0050.
  • the resulting granules, 6 mg silicon dioxide, and 12 mg sodium stearyl fumarate were dry blended using a Patterson Kelly Blendmaster V-blender to produce milled granules.
  • the resulting milled granules were compressed into tablets using a Cadmach press using 0.374 x 0.748 inch modified oval shaped punches.
  • the resulting sustained release tablet weighed 1278 mg; contained the sustained release delivery system in an amount of 54.8% by weight, contained 38.3% gum (i.e., locust bean gum plus xanthan gum), and the ratio of metformin HCl to gum (i.e., locust bean gum plus xanthan gum) was 1:0.98 .
  • Example 14
  • a sustained release composition comprising 500 mg metformin was prepared as shown in Table 7.
  • a hydroxypropyl methylcellulose suspension was prepared by adding 45 mg hydroxypropyl methylcellulose to water while stirring.
  • the metformin HCl and 400 mg of the sustained release delivery system from Example 11, and the hydroxypropyl methylcellulose suspension were charged in a high shear granulator (PMA 25) to produce a granulated mixture. Water was added as needed to produce consistent granules. The resulting granules were dried in a Fluid Bed Drier (MP-1) and then milled with a FizMill using screen #1521-0050.
  • PMA 25 high shear granulator
  • the resulting granules, 5 mg silicon dioxide, and 9 mg sodium stearyl fumarate were dry blended using a Patterson Kelly Blendmaster V-blender to produce milled granules.
  • the resulting milled granules were compressed into tablets using a Cadmach press using 0.374 x 0.748 inch modified oval shaped punches.
  • the resulting sustained release tablet weighed 959 mg; contained the sustained release delivery system in an amount of 41.7% by weight, contained 29.2% gum (i.e., locust bean gum plus xanthan gum), and the ratio of metformin HCl to gum (i.e., locust bean gum plus xanthan gum) was 1 :0.56.
  • a sustained release composition comprising 500 mg metformin was prepared as shown in Table 7.
  • Metformin HCl 500 mg Metformin HCl was passed through a No. 20 screen.
  • a hydroxypropyl methylcellulose suspension was prepared by adding 60 mg hydroxypropyl methylcellulose to water while stirring.
  • the metformin HCl and 700 mg of the sustained release delivery system from Example 11, and the hydroxypropyl methylcellulose suspension were charged in a high shear granulator (PMA 25) to produce a granulated mixture. Water was added as needed to produce consistent granules. The resulting granules were dried in a Fluid Bed Drier (MP-1) and then milled with a FizMill using screen #1521-0050.
  • PMA 25 high shear granulator
  • the resulting granules, 6 mg silicon dioxide, and 12 mg sodium stearyl fumarate were dry blended using a Patterson Kelly Blendmaster V-blender to produce milled granules.
  • the resulting milled granules were compressed into tablets using a Cadmach press using 0.374 x 0.748 inch modified oval shaped punches.
  • the sustained release tablet was then coated with a SURELEASE®: OPADRY LT® coating in a ratio of 70:30 (i.e., 44.7 mg SURELEASE® and 19.2 mg OPADRY LT® clear), which was prepared by dispersing the OPADRY LT® in purified water with stirring until a solution was formed.
  • SURELEASE® was mixed with an appropriate amount of purified water to achieve the desired solids content until a uniform suspension was obtained. The solution and suspension were mixed thoroughly together.
  • the sustained release tablets were spray coated using Vector LDCS 20/30 to a weight gain of 5%.
  • the coated tablets were allowed to dry and cool at room temperature.
  • the resulting sustained release tablet weighed 1341.9 mg; contained the sustained release delivery system in an amount of 52.2% by weight, contained 36.5% gum (i.e., locust bean gum plus xanthan gum), and the ratio of metformin HCl to gum (i.e., locust bean gum plus xanthan gum) was 1:0.98.
  • Example 16 A dissolution study was performed to evaluate the effect of drug: gum ratio on the drug release profile of various metformin formulations. A comparison was performed among tablets prepared as described in Example 2 (19% gum), Example 3 (25% gum), Example 4 (29% gum), and Example 5 (32% gum).
  • the tablets were dissolved using a USP HI apparatus in 250 ml of media at pH 6.8 (sodium phosphate monobasic/NaOH). Dissolution was performed at 37 °C with 15 dpm agitation. Percent dissolution measurements were taken at 0, 1, 2, 4, 8, 12, and 16 hour time points.
  • Table 8 and Figure 1 show the dissolution results, which indicate that increasing the drug: gum ratio decreases the drug release rate.
  • Example 16 A dissolution study was performed to evaluate the effect that the ratio of SURELEASE® to OPADRY ⁇ ® in the coating has on the drug release profile of coated metformin formulations. A comparison was performed between tablets prepared as described in Example 6 (70:30 SURELEASE®: OPADRY LT®) and Example 10 (80:20 SURELEASE®:OPADRY LT®), both of which had same weight gain (5%) due to the coating. Dissolution was performed as described in Example 16.
  • Table 10 and Figure 3 show the dissolution results, which indicate that increasing the percentage of SURELEASE® for the same weight gain of coating decreases the drug release rate.
  • Table 11 and Figure 4 show the dissolution results, which indicate that increasing the weight gain of coating decreases the drug release rate.
  • Example 13 700 mg sustained release delivery system
  • Example 14 400 mg sustained release delivery system
  • Example 15 coated to 5% weight gain
  • Table 12 and Figure 5 show the dissolution results, which indicate that drug release rate is slower for the formulation containing more of the sustained release delivery system (Example 13), and for the coated formulation (Example 15).
  • a Phase I, randomized, analytical blind, four-way crossover study was conducted to compare the oral bioavailability of single doses of 500 mg Metformin HCl extended release formulations prepared as described in Examples 13, 14, and 15 to the oral bioavailability of a single dose of Glucophage XR 500 mg tablets (Bristol-Myers Squibb Co., Princeton, NJ).
  • a fasted and fed (following a standard breakfast) study was performed on 12 healthy volunteers. Table 13 describes the results obtained from the blood plasma analysis.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Diabetes (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Emergency Medicine (AREA)
  • Endocrinology (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Medicinal Preparation (AREA)
EP03766979A 2002-08-02 2003-07-30 Metformin-formulierungen mit verzögerter freisetzung Withdrawn EP1549296A4 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US40004602P 2002-08-02 2002-08-02
US400046P 2002-08-02
PCT/US2003/023787 WO2004012715A1 (en) 2002-08-02 2003-07-30 Sustained release formulations of metformin

Publications (2)

Publication Number Publication Date
EP1549296A1 true EP1549296A1 (de) 2005-07-06
EP1549296A4 EP1549296A4 (de) 2006-08-09

Family

ID=31495775

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03766979A Withdrawn EP1549296A4 (de) 2002-08-02 2003-07-30 Metformin-formulierungen mit verzögerter freisetzung

Country Status (7)

Country Link
US (1) US7214387B2 (de)
EP (1) EP1549296A4 (de)
JP (1) JP2005537298A (de)
AU (1) AU2003261298A1 (de)
CA (1) CA2494281A1 (de)
TW (1) TW200413031A (de)
WO (1) WO2004012715A1 (de)

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8323692B2 (en) * 2002-02-21 2012-12-04 Valeant International Bermuda Controlled release dosage forms
KR100772980B1 (ko) * 2004-04-01 2007-11-02 한미약품 주식회사 메트포르민의 경구투여용 서방성 제제
US20060193911A1 (en) * 2005-02-28 2006-08-31 Penwest Pharmaceuticals Co., Controlled release venlafaxine formulations
KR100780553B1 (ko) * 2005-08-18 2007-11-29 한올제약주식회사 메트포르민 서방정 및 그의 제조방법
ES2441766T3 (es) 2005-08-24 2014-02-06 Endo Pharmaceuticals Inc. Formulaciones de nalbufina de liberación sostenida
US8394812B2 (en) 2005-08-24 2013-03-12 Penwest Pharmaceuticals Co. Sustained release formulations of nalbuphine
WO2007031887A2 (en) * 2005-08-30 2007-03-22 Nicholas Piramal India Limited Extended release pharmaceutical composition of metformin and a process for producing it
US20070178155A1 (en) * 2006-01-31 2007-08-02 Jiang David Yihai Preparation for gastric buoyant sustained drug release dosage form
JP2007210905A (ja) * 2006-02-07 2007-08-23 Asahi Breweries Ltd 口腔内用顆粒、錠剤およびその製造方法
KR100858848B1 (ko) * 2006-05-23 2008-09-17 한올제약주식회사 메트포르민 서방정
WO2008037807A1 (en) * 2006-09-29 2008-04-03 Novo Nordisk A/S Pharmaceutical formulation comprising metformin and repaglinide
WO2010017358A1 (en) * 2008-08-07 2010-02-11 Mallinckrodt Baker, Inc. Sustained release compositions comprising gums and sugar alcohols
MX2012005365A (es) 2009-11-13 2012-05-29 Bristol Myers Squibb Co Formulaciones de tableta de liberacion inmediata.
JP5798123B2 (ja) * 2009-11-13 2015-10-21 ブリストル−マイヤーズ スクイブ カンパニーBristol−Myers Squibb Company 低質量のメトホルミン製剤
RU2583920C2 (ru) 2009-11-13 2016-05-10 Астразенека Аб Композиция двухслойной таблетки
CN103037849A (zh) * 2010-06-22 2013-04-10 安成国际药业股份有限公司 具有减少的食物效应的控释组合物
US11759441B2 (en) 2011-01-07 2023-09-19 Anji Pharmaceuticals Inc. Biguanide compositions and methods of treating metabolic disorders
US11974971B2 (en) 2011-01-07 2024-05-07 Anji Pharmaceuticals Inc. Compositions and methods for treating metabolic disorders
US9572784B2 (en) 2011-01-07 2017-02-21 Elcelyx Therapeutics, Inc. Compositions comprising statins, biguanides and further agents for reducing cardiometabolic risk
US8796338B2 (en) 2011-01-07 2014-08-05 Elcelyx Therapeutics, Inc Biguanide compositions and methods of treating metabolic disorders
ES2834986T3 (es) 2011-01-07 2021-06-21 Anji Pharma Us Llc Terapias basadas en ligandos de receptores quimiosensoriales
US9211263B2 (en) 2012-01-06 2015-12-15 Elcelyx Therapeutics, Inc. Compositions and methods of treating metabolic disorders
US9480663B2 (en) 2011-01-07 2016-11-01 Elcelyx Therapeutics, Inc. Biguanide compositions and methods of treating metabolic disorders
WO2014011926A1 (en) * 2012-07-11 2014-01-16 Elcelyx Therapeutics, Inc. Compositions comprising statins, biguanides and further agents for reducing cardiometabolic risk
AU2012297569B2 (en) 2011-08-16 2017-11-09 Baker Heart and Diabetes Institute Controlled-release formulation
BR112014016810A8 (pt) * 2012-01-06 2017-07-04 Elcelyx Therapeutics Inc composições e métodos para tratamento de distúrbios metabólicos
JP2015503582A (ja) 2012-01-06 2015-02-02 エルセリクス セラピューティクス インコーポレイテッド ビグアナイド組成物および代謝障害を治療する方法
KR20130136718A (ko) * 2012-06-05 2013-12-13 한미약품 주식회사 메트포르민 서방성 장용제제 및 이의 제조방법
US8765811B2 (en) 2012-07-10 2014-07-01 Thetis Pharmaceuticals Llc Tri-salt form of metformin
US9382187B2 (en) 2012-07-10 2016-07-05 Thetis Pharmaceuticals Llc Tri-salt form of metformin
EP2941245A1 (de) * 2013-01-05 2015-11-11 Elcelyx Therapeutics, Inc. Retard-zusammensetzung mit biguanid
WO2015164950A1 (en) * 2014-04-29 2015-11-05 Matripharm Inc. Monolithic tablets based on carboxyl polymeric complexes for controlled drug release
CA2947515A1 (en) * 2014-05-01 2015-11-05 Sun Pharmaceutical Industries Limited Extended release liquid compositions of metformin
US10258583B2 (en) 2014-05-01 2019-04-16 Sun Pharmaceutical Industries Limited Extended release liquid compositions of guanfacine
US20180104197A9 (en) 2014-05-01 2018-04-19 Sun Pharmaceutical Industries Limited Extended release liquid compositions of metformin
JP2017514903A (ja) * 2014-05-01 2017-06-08 サン ファーマシューティカル インダストリーズ リミテッドSun Pharmaceutical Industries Ltd. 徐放性懸濁組成物
US9962336B2 (en) 2014-05-01 2018-05-08 Sun Pharmaceutical Industries Limited Extended release suspension compositions
EP3140316A1 (de) 2014-05-05 2017-03-15 Thetis Pharmaceuticals LLC Zusammensetzungen und verfahren im zusammenhang mit ionischen salzen von peptiden
WO2015195491A1 (en) 2014-06-18 2015-12-23 Thetis Pharmaceuticals Llc Mineral amino-acid complexes of active agents
US9242008B2 (en) 2014-06-18 2016-01-26 Thetis Pharmaceuticals Llc Mineral amino-acid complexes of fatty acids
JP2017524471A (ja) 2014-07-30 2017-08-31 サン ファーマシューティカル インダストリーズ リミテッドSun Pharmaceutical Industries Ltd. 二重室の包装体
WO2016042567A1 (en) * 2014-09-16 2016-03-24 Suresh Pareek Extended release formulation of metformin
EA201791455A1 (ru) 2014-12-22 2017-12-29 Кардиора Пти Лтд. Способ лечения
EP3288539A4 (de) * 2015-05-01 2019-07-10 Sun Pharmaceutical Industries Ltd Flüssige retard-zusammensetzungen von metformin
US10369078B2 (en) 2016-05-02 2019-08-06 Sun Pharmaceutical Industries Limited Dual-chamber pack for pharmaceutical compositions
US10238803B2 (en) 2016-05-02 2019-03-26 Sun Pharmaceutical Industries Limited Drug delivery device for pharmaceutical compositions
EP3795179A1 (de) 2016-06-03 2021-03-24 Thetis Pharmaceuticals LLC Zusammensetzungen und verfahren in zusammenhang mit salzen von specialised pro-resolving mediatoren von entzündung
WO2018035408A1 (en) 2016-08-18 2018-02-22 Ovid Therapeutics Inc. Methods of treating developmental disorders with biguanides
CN109044988B (zh) * 2018-09-29 2021-03-23 哈尔滨珍宝制药有限公司 一种盐酸二甲双胍药物组合物及其制备方法和应用
US11253495B2 (en) 2018-11-21 2022-02-22 Yanming Wang Pharmaceutical composition for treating excessive lactate production and acidemia
WO2023275891A1 (en) * 2021-06-29 2023-01-05 Vergo Pharma Research Laboratories Pvt. Ltd. Prolonged release tablet containing metformin hydrochloride

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0360562A2 (de) * 1988-09-19 1990-03-28 Edward Mendell Co., Inc. Direkt verpressbare Füllstoffe zur verzögerten Freisetzung
WO1993001803A1 (en) * 1991-07-25 1993-02-04 Edward Mendell Co., Inc. Controlled release verapamil tablet
EP0642785A2 (de) * 1993-09-09 1995-03-15 Edward Mendell Co., Inc. Heterodisperse Hydrogelsysteme zur verzögerten Freisetzung unlöslicher Arzneistoffe
US5399358A (en) * 1993-11-12 1995-03-21 Edward Mendell Co., Inc. Sustained release formulations for 24 hour release of metroprolol
WO1997016172A1 (en) * 1995-11-03 1997-05-09 Edward Mendell Co., Inc. Controlled release formulation (albuterol)
WO1997039050A1 (en) * 1996-04-18 1997-10-23 Edward Mendell Co., Inc. Sustained release heterodisperse hydrogel systems - amorphous drugs
WO1998001117A1 (en) * 1996-07-08 1998-01-15 Edward Mendell Co., Inc. Sustained release matrix for high-dose insoluble drugs
US6056977A (en) * 1997-10-15 2000-05-02 Edward Mendell Co., Inc. Once-a-day controlled release sulfonylurea formulation
WO2001022940A1 (en) * 1999-09-30 2001-04-05 Edward Mendell Co., Inc. Sustained release matrix systems for highly soluble drugs

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3629393A (en) * 1969-09-11 1971-12-21 Nikken Chemicals Co Ltd Release-sustaining-tablet
FI63335B (fi) * 1979-02-02 1983-02-28 Orion Yhtymae Oy Foerfarande foer framstaellning av tabletter med foerdroejd loslighet av effektaemne
JPS60100516A (ja) * 1983-11-04 1985-06-04 Takeda Chem Ind Ltd 徐放型マイクロカプセルの製造法
EP0190833B1 (de) * 1985-02-07 1991-03-27 Takeda Chemical Industries, Ltd. Verfahren zur Herstellung von Mikrokapseln
GB8613689D0 (en) * 1986-06-05 1986-07-09 Euro Celtique Sa Pharmaceutical composition
GB8613688D0 (en) 1986-06-05 1986-07-09 Euro Celtique Sa Pharmaceutical composition
GB8724763D0 (en) * 1987-10-22 1987-11-25 Aps Research Ltd Sustained-release formulations
US5128143A (en) * 1988-09-19 1992-07-07 Edward Mendell Co., Inc. Sustained release excipient and tablet formulation
US5135757A (en) * 1988-09-19 1992-08-04 Edward Mendell Co., Inc. Compressible sustained release solid dosage forms
WO1992017167A1 (en) 1991-04-02 1992-10-15 Biotech Australia Pty. Ltd. Oral delivery systems for microparticles
CA2079509C (en) * 1991-10-01 2002-05-14 Shigeyuki Takada Prolonged release microparticle preparation and production of the same
AU4198793A (en) 1992-07-24 1994-01-27 Takeda Chemical Industries Ltd. Microparticle preparation and production thereof
US5472711A (en) * 1992-07-30 1995-12-05 Edward Mendell Co., Inc. Agglomerated hydrophilic complexes with multi-phasic release characteristics
DE69316101T2 (de) * 1992-08-07 1998-10-22 Takeda Chemical Industries Ltd Herstellung von Mikrokapseln, die wasserlösliche Arzneimittel enthalten
US5399359A (en) * 1994-03-04 1995-03-21 Edward Mendell Co., Inc. Controlled release oxybutynin formulations
DE4432757A1 (de) * 1994-09-14 1996-03-21 Boehringer Mannheim Gmbh Pharmazeutische Zubereitung enthaltend Metformin und Verfahren zu deren Herstellung
US6117455A (en) 1994-09-30 2000-09-12 Takeda Chemical Industries, Ltd. Sustained-release microcapsule of amorphous water-soluble pharmaceutical active agent
TWI238064B (en) 1995-06-20 2005-08-21 Takeda Chemical Industries Ltd A pharmaceutical composition for prophylaxis and treatment of diabetes
IT1276130B1 (it) 1995-11-14 1997-10-27 Gentili Ist Spa Associazione glibenclamide-metformina, composizioni farmaceutiche che la contengono e loro uso nel trattamento del diabete mellito di tipo
CA2290624C (en) * 1997-06-06 2006-12-05 John W. Shell Gastric-retentive oral drug dosage forms for controlled release of highly soluble drugs
NZ506202A (en) 1998-03-19 2003-10-31 Bristol Myers Squibb Co Biphasic controlled release delivery system for high solubility pharmaceuticals and method
KR20000011247A (ko) * 1998-07-23 2000-02-25 김윤 다당류를이용한대장선택성약물전달조성물및약학제제

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0360562A2 (de) * 1988-09-19 1990-03-28 Edward Mendell Co., Inc. Direkt verpressbare Füllstoffe zur verzögerten Freisetzung
WO1993001803A1 (en) * 1991-07-25 1993-02-04 Edward Mendell Co., Inc. Controlled release verapamil tablet
EP0642785A2 (de) * 1993-09-09 1995-03-15 Edward Mendell Co., Inc. Heterodisperse Hydrogelsysteme zur verzögerten Freisetzung unlöslicher Arzneistoffe
US5399358A (en) * 1993-11-12 1995-03-21 Edward Mendell Co., Inc. Sustained release formulations for 24 hour release of metroprolol
WO1997016172A1 (en) * 1995-11-03 1997-05-09 Edward Mendell Co., Inc. Controlled release formulation (albuterol)
WO1997039050A1 (en) * 1996-04-18 1997-10-23 Edward Mendell Co., Inc. Sustained release heterodisperse hydrogel systems - amorphous drugs
WO1998001117A1 (en) * 1996-07-08 1998-01-15 Edward Mendell Co., Inc. Sustained release matrix for high-dose insoluble drugs
US6056977A (en) * 1997-10-15 2000-05-02 Edward Mendell Co., Inc. Once-a-day controlled release sulfonylurea formulation
WO2001022940A1 (en) * 1999-09-30 2001-04-05 Edward Mendell Co., Inc. Sustained release matrix systems for highly soluble drugs

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2004012715A1 *

Also Published As

Publication number Publication date
TW200413031A (en) 2004-08-01
WO2004012715A1 (en) 2004-02-12
AU2003261298A1 (en) 2004-02-23
US7214387B2 (en) 2007-05-08
CA2494281A1 (en) 2004-02-12
US20040109891A1 (en) 2004-06-10
JP2005537298A (ja) 2005-12-08
EP1549296A4 (de) 2006-08-09

Similar Documents

Publication Publication Date Title
US7214387B2 (en) Sustained release formulations of metformin
KR0184339B1 (ko) 1일-1회 메토프롤롤 경구용 제형
AU675370B2 (en) Sustained release formulations for 24 hour release of metoprolol
EP1931315B1 (de) Nalbuphin-formulierungen mit verzögerter freisetzung
KR100463496B1 (ko) 고가용성 약물용 서방성 메트리스 시스템
US20060088594A1 (en) Highly compressible controlled delivery compositions of metformin
JP2001519377A (ja) 新規な一日単回投与型制御放出スルホニル尿素製剤
EP1435931A2 (de) Dosierform für die behandlung von diabetes mellitus
EP1404332A1 (de) Herstellung von verzögert freisetzenden oxymorphon formulierungen
IE59333B1 (en) Therapeutic agents
EP1499295A1 (de) Metoprolol-formulierungen mit verzögerter freisetzung
EP1815850B1 (de) Formulierung zur verzögerten Freisetzung von Valproinsäure und deren Derivate
EP2181705A1 (de) Gliclazid-Formulierung mit verlängerter Freisetzung
US20150037424A1 (en) Sustained release oral solid preparation
AU2002348712A1 (en) Dosage form for treatment of diabetes mellitus
MXPA94008792A (en) Sustained release formulations for 24 hours of metopro release
MXPA96000024A (en) Form of oral dosing of metoprolol one time

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050301

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1079439

Country of ref document: HK

A4 Supplementary search report drawn up and despatched

Effective date: 20060711

17Q First examination report despatched

Effective date: 20071218

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20080429

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1079439

Country of ref document: HK