EP1531262B1 - Einrichtung und Verfahren zur Steuerung der Kraftstoffeinspritzung für eine Brennkraftmaschine - Google Patents

Einrichtung und Verfahren zur Steuerung der Kraftstoffeinspritzung für eine Brennkraftmaschine Download PDF

Info

Publication number
EP1531262B1
EP1531262B1 EP04026749A EP04026749A EP1531262B1 EP 1531262 B1 EP1531262 B1 EP 1531262B1 EP 04026749 A EP04026749 A EP 04026749A EP 04026749 A EP04026749 A EP 04026749A EP 1531262 B1 EP1531262 B1 EP 1531262B1
Authority
EP
European Patent Office
Prior art keywords
fuel
fuel injection
injection valve
engine
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP04026749A
Other languages
English (en)
French (fr)
Other versions
EP1531262A2 (de
EP1531262A3 (de
Inventor
Motoki Ohtani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of EP1531262A2 publication Critical patent/EP1531262A2/de
Publication of EP1531262A3 publication Critical patent/EP1531262A3/de
Application granted granted Critical
Publication of EP1531262B1 publication Critical patent/EP1531262B1/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3094Controlling fuel injection the fuel injection being effected by at least two different injectors, e.g. one in the intake manifold and one in the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3023Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode
    • F02D41/3029Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode further comprising a homogeneous charge spark-ignited mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/12Other methods of operation
    • F02B2075/125Direct injection in the combustion chamber for spark ignition engines, i.e. not in pre-combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/025Engine noise, e.g. determined by using an acoustic sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/31Control of the fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/023Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the cylinder pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/04Injectors peculiar thereto
    • F02M69/042Positioning of injectors with respect to engine, e.g. in the air intake conduit
    • F02M69/044Positioning of injectors with respect to engine, e.g. in the air intake conduit for injecting into the intake conduit downstream of an air throttle valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/04Injectors peculiar thereto
    • F02M69/042Positioning of injectors with respect to engine, e.g. in the air intake conduit
    • F02M69/045Positioning of injectors with respect to engine, e.g. in the air intake conduit for injecting into the combustion chamber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an apparatus and a method for controlling fuel injection in an internal combustion engine that includes a first fuel injection valve for injecting fuel into a cylinder and a second fuel injection valve for injecting fuel into an intake passage.
  • Japanese Laid-Open Patent Publication No. 5-231221 discloses an internal combustion engine that has an in-cylinder injection valve for injecting fuel into a cylinder and an intake port injection valve for injecting fuel toward an intake port, and switches the fuel injection mode of each injection valve as necessary.
  • the pressure of fuel injected from the in-cylinder injection valve that is, the pressure of fuel that is supplied to the in-cylinder injection valve
  • the in-cylinder injection valve needs to inject fuel against the high pressure in the cylinder, and because fuel needs to be adequately atomized to maintain a favorable combustion state.
  • a fuel pressurizing and supplying system for supplying highly pressurized fuel to the in-cylinder injection valve
  • fuel drawn up from a fuel tank is pressurized by a high pressure pump to a high pressure.
  • the pressurized fuel is supplied to a delivery pipe and then to the in-cylinder injection valve connected to the delivery pipe.
  • mechanical noise due to supplying of highly pressurized fuel is generated.
  • valve noise, or noise of a valve body hitting a valve seat in a spill valve, in the high pressure fuel pump and similar noise in the in-cylinder injection valve are generated.
  • Such noise generated in the fuel pressurizing and supplying system disturbs a driver of the vehicle particularly when the engine is idling or operated at a low load.
  • the combustion rate of fuel injected from an in-cylinder injection valve is generally greater than the combustion rate of fuel injected from an intake port injection valve. Therefore, in addition to the mechanical noise generated in the fuel pressurizing and supplying system, combustion noise due to increase in the combustion rate becomes a problem.
  • Measures for suppressing noise generated in fuel pressurizing and supplying systems and noise due to combustion rate include, for example, a method for lowering the pressure of fuel supplied to an in-cylinder injection valve.
  • Such control for lowering the fuel pressure suppresses the valve noise of a spill valve and that of an in-cylinder injection valve. Further, since such control lowers the pressure of fuel injected from an in-cylinder injection valve, the combustion rate is lowered, and the combustion noise is suppressed, accordingly.
  • Japanese Laid-Open Patent Publication No. 2000-249020 discloses such control for lowering fuel pressure.
  • EP 0849455 discloses an engine that includes a main injector to inject fuel directly into the cylinder and a sub-injector to inject fuel into the intake passage. At engine start, the main injector is used. However, if both the fuel pressure is low and coolant temperature is lower than a reference temperature, it is estimated that fuel will not properly vaporize in the combustion chamber and both the main injector and the sub-injector are used.
  • a fuel injection control apparatus for an internal combustion engine is provided as claimed in claim 1.
  • Another fuel injection control apparatus is provided as in claim 6.
  • the engine has a first fuel injection valve for injecting fuel into a cylinder of the engine, and a second fuel injection valve for injecting fuel into an intake passage connected to the cylinder.
  • the apparatus includes control means, detecting means, and switching means.
  • the control means controls the fuel injection valves in a fuel injection mode that corresponds to an operational state of the engine.
  • the detecting means detects a combustion state in the cylinder.
  • the switching means switches the fuel injection mode such that the ratio of the amount of fuel injected from the first fuel injection valve to the entire amount of fuel supplied to the cylinder is decreased.
  • the present invention also provides a fuel injection control method for an internal combustion engine as in claim 8.
  • Another fuel injection control method is provided as in claim 9.
  • the engine has a first fuel injection valve for injecting fuel into a cylinder of the engine, and a second fuel injection valve for injecting fuel into an intake passage connected to the cylinder.
  • the method includes: controlling the fuel injection valves in a fuel injection mode that corresponds to an operational state of the engine; detecting a combustion state in the cylinder; and decreasing the ratio of the amount of fuel injected from the first fuel injection valve to the entire amount of fuel supplied to the cylinder when deterioration of the combustion state is detected while the engine operational state is in a predetermined operational region where fuel is injected at least from the first fuel injection valve.
  • a fuel injection control apparatus is applied to a four-cycle cylinder injection internal combustion engine 11.
  • the engine 11 includes a piston 13 accommodated in a cylinder 12.
  • the piston 13 is connected via a connecting rod 15 to a crankshaft 14, which is the output shaft for the engine 11.
  • the connecting rod 15 converts reciprocation of the piston 13 into rotation of the crankshaft 14.
  • a combustion chamber 16 is defined in the cylinder 12 above the piston 13.
  • the engine 11 includes a first fuel injection valve, which is an in-cylinder injection valve 17.
  • the in-cylinder injection valve 17 directly injects fuel into the combustion chamber 16.
  • the in-cylinder injection valve 17 is connected to a high pressure fuel pipe, which is a delivery pipe 18.
  • the delivery pipe 18 supplies highly pressurized fuel to the in-cylinder injection valve 17.
  • Fuel is drawn up from a fuel tank (not shown) and then sent to a high pressure fuel pump, which is a supply pump 19.
  • the supply pump 19 pressurizes the fuel and supplies it to the delivery pipe 18.
  • Fuel injection pressure of the in-cylinder injection valve 17 is set based on the fuel pressure in the delivery pipe 18. When the in-cylinder injection valve 17 is actuated to open, fuel is injected into the combustion chamber 16.
  • the engine 11 includes an ignition plug 21 that ignites the air-fuel mixture generated in the combustion chamber 16.
  • the timing for igniting the air-fuel mixture by the ignition plug 21 is adjusted by an igniter 22 provided above the ignition plug 21.
  • the upper end face of the piston 13 is shaped to be suitable for generation of stratified air-fuel mixture with fuel injected from the in-cylinder injection valve 17, and permitting the air-fuel mixture to reach the vicinity of the ignition plug 21 at the ignition timing.
  • the combustion chamber 16 is connected to an intake passage 23 and an exhaust passage 24.
  • the joint between the combustion chamber 16 and the intake passage 23 forms an intake port 23a.
  • a second fuel injection valve which is an intake port injection valve 25, is provided to be exposed to the intake passage 23.
  • the intake port injection valve 25 injects fuel toward the intake port 23a.
  • the intake port injection valve 25 receives highly pressurized fuel through a fuel supply mechanism (not shown). The pressure of the supplied fuel is adjusted to a predetermined value.
  • the second fuel injection valve is not limited to the intake port injection valve 25 provided in the vicinity of the intake port 23a, but may be provided in a surge tank in the intake passage 23.
  • the fuel injection apparatus includes an electronic control unit (ECU) 30 that controls the ignition plug 21 and the igniter 22, and various sensors used in control executed by the ECU 30.
  • the ECU 30 is constructed with a microcomputer as the dominant constituent, and includes a central processing unit (CPU), read only memory (ROM), and random access memory (RAM).
  • a rotational speed sensor 31 and a pedal sensor 32 are provided as sensors for detecting the operational state of the engine 11.
  • the rotational speed sensor 31 detects the number of revolutions of the crankshaft 14 per unit time, or the engine speed
  • the pedal sensor 32 detects the depression amount of an acceleration pedal (not shown).
  • the rotational speed sensor 31 also functions as a sensor that detects the combustion state of the engine 11.
  • the rotational speed sensor 31 and the ECU 30 form detecting means.
  • a fuel pressure sensor 33 is located in the delivery pipe 18 to detect the fuel pressure in the delivery pipe 18. Detection signals of these sensors 31 to 33 are sent to the ECU 30.
  • the ECU 30 Based on detection signals from the rotational speed sensor 31 and the pedal sensor 32, the ECU 30 detects the engine operational state and determines a fuel injection mode according to the detected engine operational state. The ECU 30 then sets the fuel injection timing and the fuel injection amount according to the determined fuel injection mode. In accordance with the set fuel injection timing and fuel injection amount, the ECU 30 causes at least one of the in-cylinder injection valve 17 and the intake port injection valve 25 to inject fuel. The fuel injection amount is determined based on the fuel injection pressure and the fuel injection duration.
  • the ECU 30 controls the fuel pressure in the delivery pipe 18. Specifically, the ECU 30 computes a target value of the fuel pressure in the delivery pipe 18 based on the engine operational state at every given point in time, and compares the target fuel pressure with the fuel pressure in the delivery pipe 18 that is actually detected. Then, based on the result of the comparison, the ECU 30 adjusts the amount of fuel supplied by the supply pump 19 such that the fuel pressure in the delivery pipe 18 seeks the target pressure value. The adjustment of the amount of supplied fuel in this manner permits the fuel pressure in the delivery pipe 18, in other words, the fuel injection pressure of the in-cylinder injection valve 17, to correspond to the engine operational state.
  • the target fuel pressure values are obtained in advance as pressure values each suitable for a given operational state of the engine.
  • Function data defining the relationship of the target fuel pressure with the engine rotational speed and the fuel injection amount is stored as a map shown in Fig. 2 in ROM in the ECU 30.
  • the ECU 30 refers to the map of Fig. 2 .
  • pressurizing and supplying operations of fuel generates mechanical noise, for example, noise of a valve body contacting a valve seat of a spill valve in the supply pump 19 and similar noise in the in-cylinder injection valve 17.
  • mechanical noise for example, noise of a valve body contacting a valve seat of a spill valve in the supply pump 19 and similar noise in the in-cylinder injection valve 17.
  • the fuel pressure in the delivery pipe 18 is adjusted to be the highest target fuel pressure value PFH (for example, 10 MPa to 12 MPa).
  • PFH for example, 10 MPa to 12 MPa
  • the fuel pressure in the delivery pipe 18 is adjusted to be a lower target fuel pressure value PFL '(for example, 4 MPa). Therefore, noise generated in the fuel pressurizing and supplying system is relatively great when the engine operational state is in the high rotation and high load region than when the engine operational state is in the low rotational speed and low load region.
  • the idling region is set as the noise region in this embodiment.
  • the target fuel pressure value when the engine operational state is in the noise region is a value PFI (for example, 2 MPa), which is lower than the value PFL for the engine operational state being in the low rotational speed and low load region. Therefore, when the engine operational state is in the cross-hatched region in Fig. 2 , the ECU 30 lowers the fuel pressure in the delivery pipe 18 to the target fuel pressure value PFI.
  • PFI for example, 2 MPa
  • the ECU 30 monitors the engine combustion state based on detection signals from the rotational speed sensor 31. When detecting that the engine combustion state has deteriorated or when deterioration is predicted, the ECU 30 lowers the ratio of the amount of fuel injected from the in-cylinder injection valve 17 to the entire fuel injection amount.
  • Fig. 3 is a flowchart showing a procedure of fuel injection control according to this embodiment.
  • the control routine shown in Fig. 3 is executed by the ECU 30, which functions as switching means that switches the fuel injection mode according to a program stored in the ROM of the ECU 30.
  • the ECU 30 at step S110 determines whether the engine operational state is in a region where fuel needs to be injected into the cylinder, or in an in-cylinder injection region. When determining that the engine operational state is in the in-cylinder injection region, the ECU 30 proceeds to step S111. At step S111, the ECU 30 determines whether the engine operational state is in the noise region. Specifically, the ECU 30 determines whether the engine is idling.
  • step S111 When determining that the engine operational state is in the noise region at step S111, the ECU 30 proceeds to step S112. At step S112, the ECU 30 executes fuel pressure lowering control as a measure against noise generated in the fuel pressurizing and supplying system. Specifically, the ECU 30 lowers the fuel pressure in the delivery pipe 18 to the target fuel pressure value PFI.
  • the ECU 30 determines whether the fuel combustion state has deteriorated based on a detection signal from the rotational speed sensor 31.
  • the ECU 30 lowers the ratio of the amount of fuel injected from the in-cylinder injection valve 17 to the entire fuel injection amount, thereby suppressing fuel injection from the in-cylinder injection valve 17, which is susceptible to the fuel pressure lowering control.
  • the ECU 30 lowers the ratio of the amount of fuel injected from the in-cylinder injection valve 17 until the combustion state is improved, while increasing the ratio of the amount of fuel injected from the intake port injection valve 25.
  • the ECU 30 lowers the ratio of the amount of fuel injected from the in-cylinder injection valve 17 until the combustion state is improved, while starting fuel injection from the intake port injection valve 25.
  • the ECU 30 continues operating the engine 11 while maintaining the ratio of the amount of fuel injected from the in-cylinder injection valve 17 to the entire fuel injection amount, that is, without changing the fuel injection mode. In this case, a favorable engine combustion state is maintained.
  • This embodiment provides the following advantages.
  • the combustion rate is lowered as a measure against the combustion noise.
  • This embodiment is characterized in that during the control for lowering the combustion rate, the fuel injection mode is switched such that the ratio of the amount of fuel injected from the in-cylinder injection valve 17 to the entire fuel injection amount is lowered, thereby preventing the combustion state from deteriorating due to the combustion rate lowering control.
  • combustion rate lowering control is executed. Specifically, the ECU 30 lowers the combustion rate by retarding the timing at which the ignition plug 21 ignites fuel or by causing the in-cylinder injection valve 17 to inject fuel in several times per cycle. Such combustion rate lowering control can be performed by lowering the fuel pressure in the delivery pipe 18 as described in the first embodiment.
  • the ECU 30 monitors the combustion state based on a detection signal from the rotational speed sensor 31.
  • the ECU 30 lowers the ratio of the amount of fuel injected from the in-cylinder injection valve 17 to the entire fuel injection amount.
  • Fig. 4 is a flowchart showing a procedure of fuel injection control according to this embodiment. As in the first embodiment, the control routine shown in Fig.4 is executed by the ECU 30 according to a program stored in the ROM of the ECU 30.
  • the ECU 30 at step S210 determines whether the engine operational state is in the in-cylinder injection region. When determining that the engine operational state is in the in-cylinder injection region, the ECU 30 proceeds to step S211. At step S211, the ECU 30 determines whether the engine operational state is in the combustion noise region. Specifically, the ECU 30 determines whether the engine operational state is in the high rotational speed and high load region.
  • step S212 the ECU 30 executes combustion rate lowering control as a measure against combustion noise. Specifically, the ECU 30 retards the ignition timing of fuel, thereby lowering the combustion rate.
  • the ECU 30 determines whether the fuel combustion state has deteriorated based on a detection signal from the rotational speed sensor 31.
  • the ECU 30 lowers the ratio of the amount of fuel injected from the in-cylinder injection valve 17 to the entire fuel injection amount, thereby suppressing fuel injection from the in-cylinder injection valve 17, which is susceptible to the combustion lowering control.
  • the ECU 30 lowers the ratio of the amount of fuel injected from the in-cylinder injection fuel 17 until the combustion state is improved, while increasing the ratio of the amount of fuel injected from the intake port injection valve 25.
  • the ECU 30 lowers the ratio of the amount of fuel injected from the in-cylinder injection fuel 17 until the combustion state is improved, while starting fuel injection from the intake port injection valve 25.
  • the ECU 30 continues operating the engine 11 while maintaining the ratio of the amount of fuel injected from the in-cylinder injection valve 17 to the entire fuel injection amount, that is, without changing the fuel injection mode. In this case, a favorable combustion state is maintained.
  • This embodiment provides the following advantages.
  • the sensor for detecting deterioration of combustion state is not limited to the rotational speed sensor 31.
  • a combustion pressure sensor for detecting the combustion pressure in the combustion chamber 16 may be used. The configuration with such a combustion pressure sensor improves the detection accuracy of combustion state.
  • the region where a measure against noise is taken is not limited to the idling region of the engine.
  • the fuel pressure may be lowered to the target fuel pressure value PFI, which is the same for the idling region, to take a measure against noise.
  • PFI target fuel pressure value
  • the engine combustion state is likely to deteriorate as the fuel pressure is lowered.
  • the ratio of the amount of fuel injected from the in-cylinder injection valve 17 is decreased in accordance with the degree of deterioration of the combustion state. As a result, the engine combustion state is improved.
  • the ratio of the amount of fuel injected from the in-cylinder injection valve 17 to the entire fuel injection amount is decreased.
  • the ratio of the amount of fuel injected from the in-cylinder injection valve 17 may be lowered irrespective of the fuel pressure lowering control.
  • whether the engine operational state is in the noise region is determined based on the map shown in Fig. 2 .
  • a noise sensor 41 for detecting noise generated in the fuel pressurizing and supplying system may be provided, and the ECU 30 may determine that the engine operational state is in the noise region when noise that surpasses a reference value is detected based on a detection signal from the noise sensor 41.
  • the ECU 30 lowers the fuel pressure until the detected noise falls below the reference value. If deterioration of combustion state is detected in the course of lowering the fuel pressure, the ECU 30 lowers the ratio of the amount of fuel injected from the in-cylinder injection valve 17 to the entire fuel injection amount.
  • a measure against noise is taken not only against noise in the predetermined noise region but also against noise generated in the fuel pressuring system. Also, deterioration of the combustion state due to the measures against noise is prevented.
  • the sensor for detecting noise generated in the fuel pressurizing and supplying system is not limited to the noise sensor 41. At portions where noise is generated due to the transfer of highly pressurized fuel, mechanical vibration is generated. For example, vibration accompanying the action of a spill valve is generated. A vibration sensor for detecting such vibration may be provided, and noise may be detected based on a detection signal of such a sensor.
  • the map shown in Fig. 2 and the noise sensor 41 may be used in combination.
  • the region where a measure against combustion noise is taken is not limited to the high rotational speed and high load region of the engine.
  • the combustion rate may be lowered to take a measure against combustion noise.
  • combustion noise may be detected by the noise sensor 41.
  • the two cases where the fuel combustion mode is switched are described. That is, in the first embodiment, a case is described in which the fuel injection mode is switched if the combustion state deteriorates due to the fuel pressure lowering control as a measure against noise generated in the fuel pressurizing and supplying system. In the second embodiment, a case is described in which the fuel injection mode is switched if the combustion state deteriorates due to the combustion rate lowering control as a measure against combustion noise.
  • the ratio of the amount of fuel injected from the in-cylinder injection valve 17 to the entire fuel injection amount may be decreased.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Claims (9)

  1. Kraftstoffeinspritzungs-Steuerungsvorrichtung für einen Verbrennungsmotor (11), wobei der Motor (11) ein erstes Kraftstoffeinspritzventil (17) zum Einspritzen von Kraftstoff in einen Zylinder des Motors (11) und ein zweites Kraftstoffeinspritzventil (25) zum Einspritzen von Kraftstoff in eine Saugleitung (23), die mit dem Zylinder verbunden ist, aufweist, wobei die Vorrichtung aufweist:
    eine Steuerungseinrichtung (30) zum Steuern der Kraftstoffeinspritzventile (17, 25) in einem Kraftstoffeinspritzmodus, der einem Betriebszustand des Motors (11) entspricht,
    wobei, wenn der Motorbetriebszustand sich in einem Zylinder-Inneneinspritzbereich, wo der Kraftstoff zumindest aus dem ersten Kraftstoffeinspritzventil (17) eingespritzt wird, und in dem niedrigen Drehzahl- und Niederlastbereich befindet, wo Geräusche, die in einem System entstehen, das den Kraftstoff unter Druck setzt und dem ersten Kraftstoffeinspritzventil (17) zuführt, ein Problem darstellen, die Steuerungseinrichtung (30) eine Steuerung zum Verringern des Drucks des dem ersten Kraftstoffeinspritzventil (17) zugeführten Kraftstoffs ausführt;
    wobei die Kraftstoffeinspritzungs-Steuerungsvorrichtung für einen Verbrennungsmotor (11) dadurch gekennzeichnet ist, dass sie ferner aufweist:
    eine Erfassungseinrichtung (30, 31) zum Erfassen einer Verschlechterung eines Verbrennungszustands in dem Zylinder, wenn die Steuerungseinrichtung (30) die Steuerung zum Verringern des Drucks des Kraftstoffs ausführt; und
    eine Schalteinrichtung (30),
    wobei, wenn eine Verschlechterung des Verbrennungszustands durch die Erfassungseinrichtung (30, 31) erfasst wird, wenn die Steuerungseinrichtung (30) die Steuerung zum Verringern des Drucks des Kraftstoffs ausführt, die Schalteinrichtung (30) den Kraftstoffeinspritzmodus so schaltet, dass das Verhältnis der Menge des aus dem ersten Kraftstoffeinspritzventil (17) eingespritzten Kraftstoffs zu der Gesamtmenge des dem Zylinder zugeführten Kraftstoffs verringert wird.
  2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass, wenn der Motorbetriebszustand sich in dem Zylinder-Inneneinspritzbereich befindet, der Kraftstoff aus sowohl dem ersten Kraftstoffeinspritzventil (17) als auch dem zweiten Kraftstoffeinspritzventil (25) eingespritzt wird, wobei, wenn eine Verschlechterung des Verbrennungszustands durch die Erfassungseinrichtung (30, 31) erfasst wird, die Schalteinrichtung (30) das Verhältnis der Menge des aus dem zweiten Kraftstoffeinspritzventil (25) eingespritzten Kraftstoffs erhöht, während das Verhältnis der Menge des aus dem ersten Kraftstoffeinspritzventil (17) eingespritzten Kraftstoffs verringert wird.
  3. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass, wenn sich der Motorbetriebszustand in dem Zylinder-Inneneinspritzbereich befindet, der Kraftstoff nur aus dem ersten Kraftstoffeinspritzventil (17) eingespritzt wird, wobei, wenn eine Verschlechterung des Verbrennungszustands durch die Erfassungseinrichtung (30, 31) erfasst wird, die Schalteinrichtung (30) bewirkt, dass das zweite Kraftstoffeinspritzventil (25) mit der Kraftstoffeinspritzung beginnt, während das Verhältnis der Menge des aus dem ersten Kraftstoffeinspritzventil (17) eingespritzten Kraftstoffs verringert wird.
  4. Vorrichtung nach Anspruch 1 bis 3, dadurch gekennzeichnet, dass die Steuerungseinrichtung (30) die Steuerung zum Verringern des Drucks des Kraftstoffs ausführt, wenn der Motorbetriebszustand sich in einem Leerlaufbereich befindet.
  5. Vorrichtung nach einem der Ansprüche 1 bis 3, gekennzeichnet durch einen Geräuschsensor (41) zum Erfassen von Geräuschen, die in dem System entstehen, das den Kraftstoff unter Druck setzt und den Kraftstoff dem ersten Kraftstoffeinspritzventil (17) zuführt, wobei, wenn der Pegel der erfassten Geräusche höher als ein vorbestimmter Referenzwert ist, die Steuerungseinrichtung (30) den Druck des Kraftstoffs, der dem ersten Kraftstoffeinspritzventil (17) zugeführt wird, verringert, bis der Pegel der Geräusche kleiner oder gleich dem Referenzwert wird.
  6. Kraftstoffeinspritzungs-Steuerungsvorrichtung für einen Verbrennungsmotor (11), wobei der Motor (11) ein erstes Kraftstoffeinspritzventil (17) zum Einspritzen von Kraftstoff in einen Zylinder des Motors (11), und ein zweites Kraftstoffeinspritzventil (25) zum Einspritzen von Kraftstoff in eine Saugleitung (23), die mit dem Zylinder verbunden ist, aufweist, wobei die Vorrichtung aufweist:
    eine Steuerungseinrichtung (30) zum Steuern der Kraftstoffeinspritzventile (17, 25) in einem Kraftstoffeinspritzmodus, der einem Betriebzustand des Motors entspricht,
    wobei, wenn der Motorbetriebszustand sich in einem Zylinder-Inneneinspritzbereich befindet, wo der Kraftstoff zumindest aus dem ersten Kraftstoffeinspritzventil (17) eingespritzt wird und sich in einem hohen Drehzahl- und Lastbereich befindet, die Steuerungseinrichtung (30) eine Steuerung zum Verringern des Drucks des Kraftstoffs, der dem ersten Kraftstoffeinspritzventil (17) zugeführt wird, ausführt;
    wobei die Kraftstoffeinspritzungs-Steuerungsvorrichtung für einen Verbrennungsmotor (11) dadurch gekennzeichnet ist, dass sie ferner aufweist:
    eine Erfassungseinrichtung (30, 31) zum Erfassen einer Verschlechterung eines Verbrennungszustands in dem Zylinder, wenn die Steuerungseinrichtung (30) die Steuerung zum Verringern des Drucks des Kraftstoffs ausführt; und
    eine Schalteinrichtung (30),
    wobei, wenn eine Verschlechterung des Verbrennungszustands durch die Erfassungseinrichtung (30, 31) erfasst wird, wenn die Steuerungseinrichtung (30) die Steuerung zum Verringern des Drucks des Kraftstoffs ausführt, die Schalteinrichtung (30) den Kraftstoffeinspritzmodus derart schaltet, dass das Verhältnis der Menge des aus dem ersten Kraftstoffeinspritzventil (17) eingespritzten Kraftstoffs zu der Gesamtmenge des dem Zylinder zugeführten Kraftstoffs verringert wird.
  7. Vorrichtung nach Anspruch 6, gekennzeichnet durch einen Verbrennungsgeräuschsensor (41) zum Erfassen von Verbrennungsgeräuschen des Kraftstoffs in dem Zylinder, wobei, wenn der Pegel der erfassten Verbrennungsgeräusche höher ist als ein vorbestimmter Referenzwert, die Steuerungsvorrichtung (30) den Druck des dem ersten Kraftstoffeinspritzventil (17) zugeführten Kraftstoffs verringert, bis der Pegel der Verbrennungsgeräusche kleiner oder gleich dem Referenzwert wird.
  8. Kraftstoffeinspritzungs-Steuerungsverfahren für einen Verbrennungsmotor (11), wobei der Motor (11) ein erstes Kraftstoffeinspritzventil (17) zum Einspritzen von Kraftstoff in einen Zylinder des Motors (11) und ein zweites Kraftstoffeinspritzventil (25) zum Einspritzen von Kraftstoff in eine Saugleitung (23), die mit dem Zylinder verbunden ist, aufweist, wobei das Verfahren folgende Schritte beinhaltet:
    Steuern der Kraftstoffeinspritzventile (17, 25) in einem Kraftstoffeinspritzmodus, der einem Betriebszustand des Motors (11) entspricht;
    Ausführen einer Steuerung (S112) zum Verringern des Drucks des Kraftstoffs, der dem ersten Kraftstoffeinspritzventil (17) zugeführt wird, wenn der Motorbetriebszustand sich in einem Zylinder-Inneneinspritzbereich befindet, wo der Kraftstoff zumindest aus dem Kraftstoffeinspritzventil (17, S110) eingespritzt wird und sich in dem niedrigen Drehzahl- und Niederlastbereich befindet, in dem Geräusche, die in einem System entstehen, das den Kraftstoff unter Druck setzt und den Kraftstoff dem ersten Kraftstoffeinspritzventil (17) zuführt, ein Problem (S 111) darstellen;
    wobei das Verfahren dadurch gekennzeichnet ist, dass es ferner folgende Schritte beinhaltet:
    Erfassen einer Verschlechterung eines Verbrennungszustands in dem Zylinder (S113), wenn der Steuerungsvorgang zum Verringern des Drucks des Kraftstoffs ausgeführt wird (S 112); und
    Verringern (S114) des Verhältnisses der Menge des aus dem ersten Kraftstoffeinspritzventil (17) eingespritzten Kraftstoffs zu der Gesamtmenge des dem Zylinder zugeführten Kraftstoff, wenn die Verschlechterung des Verbrennungszustands erfasst wird, wenn die Steuerung zum Verringern des Drucks des Kraftstoffs ausgeführt wird.
  9. Kraftstoffeinspritzungs-Steuerungsverfahren für einen Verbrennungsmotor (11) wobei der Motor (11) ein erstes Kraftstoffeinspritzventil (17) zum Einspritzen von Kraftstoff in einen Zylinder des Motors (11) und ein zweites Kraftstoffeinspritzventil (25) zum Einspritzen von Kraftstoff in eine Saugleitung (23), die mit dem Zylinder verbunden ist, aufweist, wobei das Verfahren folgende Schritte beinhaltet:
    Steuern der Kraftstoffeinspritzventile (17, 25) in einem Kraftstoffeinspritzmodus, der einem Betriebzustand des Motors (11) entspricht,
    Ausführen einer Steuerung (S212) zum Verringern des Drucks des Kraftstoffs, der dem ersten Kraftstoffeinspritzventil (17) zugeführt wird, wenn der Motorbetriebszustand sich in einem Zylinder-Inneneinspritzbereich befindet, wo der Kraftstoff zumindest aus dem ersten Kraftstoffeinspritzventil (17, S210) eingespritzt wird und sich in einem hohen Drehzahl- und Lastbereich (S211) befindet;
    wobei das Verfahren dadurch gekennzeichnet ist, dass es ferner folgende Schritte aufweist:
    Erfassen einer Verschlechterung eines Verbrennungszustands in dem Zylinder (S213), wenn die Steuerung zum Verringern des Drucks des Kraftstoffs ausgeführt wird (S212); und
    Verringern (S214) des Verhältnisses der Menge des aus dem ersten Kraftstoffeinspritzventil (17) eingespritzten Kraftstoffs zu der Gesamtmenge des dem Zylinder zugeführten Kraftstoffs, wenn eine Verschlechterung des Verbrennungszustands erfasst wird, wenn die Steuerung zum Verringern des Drucks des Kraftstoffs ausgeführt wird.
EP04026749A 2003-11-11 2004-11-10 Einrichtung und Verfahren zur Steuerung der Kraftstoffeinspritzung für eine Brennkraftmaschine Expired - Fee Related EP1531262B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003381537A JP4120567B2 (ja) 2003-11-11 2003-11-11 内燃機関の噴射制御装置
JP2003381537 2003-11-11

Publications (3)

Publication Number Publication Date
EP1531262A2 EP1531262A2 (de) 2005-05-18
EP1531262A3 EP1531262A3 (de) 2006-11-08
EP1531262B1 true EP1531262B1 (de) 2011-01-26

Family

ID=34431429

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04026749A Expired - Fee Related EP1531262B1 (de) 2003-11-11 2004-11-10 Einrichtung und Verfahren zur Steuerung der Kraftstoffeinspritzung für eine Brennkraftmaschine

Country Status (6)

Country Link
US (1) US7044108B2 (de)
EP (1) EP1531262B1 (de)
JP (1) JP4120567B2 (de)
KR (1) KR100609104B1 (de)
CN (1) CN100402821C (de)
DE (1) DE602004031186D1 (de)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4513615B2 (ja) * 2004-11-02 2010-07-28 トヨタ自動車株式会社 内燃機関の制御装置
US7314033B2 (en) 2004-11-18 2008-01-01 Massachusetts Institute Of Technology Fuel management system for variable ethanol octane enhancement of gasoline engines
US20080060627A1 (en) 2004-11-18 2008-03-13 Massachusetts Institute Of Technology Optimized fuel management system for direct injection ethanol enhancement of gasoline engines
JP4407827B2 (ja) * 2005-08-08 2010-02-03 株式会社デンソー 筒内噴射式の内燃機関の制御装置
JP2007056849A (ja) 2005-08-26 2007-03-08 Toyota Motor Corp エンジンの制御装置
JP4685638B2 (ja) * 2006-01-11 2011-05-18 トヨタ自動車株式会社 燃料噴射量制御装置及びその制御装置を備えた内燃機関
DE102007042577B3 (de) * 2007-09-07 2009-04-02 Continental Automotive Gmbh Verfahren zum Regeln eines Verbrennungsvorganges und Steuergerät
DE102010064184B4 (de) * 2010-12-27 2023-02-09 Robert Bosch Gmbh Verfahren zum Betrieb einer Einspritzanlage für eine Brennkraftmaschine
US9309849B2 (en) * 2011-03-23 2016-04-12 Hitachi, Ltd Method and apparatus for reducing the number of separately distinguishable noise peaks in a direct injection engine
CN103958871B (zh) * 2011-12-02 2017-02-15 丰田自动车株式会社 内燃机的燃料喷射系统
DE102012004585A1 (de) * 2012-03-09 2013-09-12 Man Truck & Bus Ag Schallabstrahlreduziertes Kraftfahrzeug
DE102012009008A1 (de) * 2012-05-05 2013-11-07 Daimler Ag Verfahren zum Betreiben einer Brennkraftmaschine
JP5976410B2 (ja) * 2012-06-20 2016-08-23 日立オートモティブシステムズ株式会社 内燃機関の燃料噴射装置
DE102012212464A1 (de) * 2012-07-17 2014-01-23 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine mit Saugrohreinspritzung
JP6024882B2 (ja) * 2012-09-12 2016-11-16 三菱自動車工業株式会社 エンジンの燃料噴射制御装置
KR101417390B1 (ko) * 2012-11-05 2014-07-08 현대자동차주식회사 듀얼 인젝터 엔진의 연료량 분배 방법 및 장치
JP6015575B2 (ja) * 2013-06-28 2016-10-26 三菱自動車工業株式会社 エンジンの制御装置
JP6111899B2 (ja) * 2013-06-28 2017-04-12 三菱自動車工業株式会社 エンジンの制御装置
US10436144B2 (en) * 2014-11-27 2019-10-08 Nissan Motor Co., Ltd. Internal combustion engine control device and control method
EP3037294B1 (de) * 2014-12-25 2019-05-01 Toyota Jidosha Kabushiki Kaisha Drucksteuerungsvorrichtung für den kraftstofftank eines fahrzeugs
DE102015211571A1 (de) * 2015-06-23 2016-12-29 Robert Bosch Gmbh Verfahren zur Diagnose einer Funktion eines Verbrennungsmotors
CN105422344A (zh) * 2015-11-27 2016-03-23 上汽通用汽车有限公司 进气道喷油系统、涡轮增压发动机及涡轮增压发动机的控制方法
US10677143B2 (en) * 2016-11-22 2020-06-09 Mazda Motor Corporation Control device for compression self-ignition engine

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61250361A (ja) 1985-04-26 1986-11-07 Mazda Motor Corp 火花点火式エンジン
JPH0430358Y2 (de) 1985-06-04 1992-07-22
JP2557640B2 (ja) 1987-04-10 1996-11-27 マツダ株式会社 エンジンの燃料噴射装置
JPH01313672A (ja) 1988-06-13 1989-12-19 Mazda Motor Corp エンジンの制御装置
JP3047594B2 (ja) 1992-02-18 2000-05-29 トヨタ自動車株式会社 燃料噴射式内燃機関
JP3087538B2 (ja) * 1993-10-12 2000-09-11 トヨタ自動車株式会社 内燃機関
JPH10176574A (ja) * 1996-12-19 1998-06-30 Toyota Motor Corp 内燃機関の燃料噴射制御装置
JP3090073B2 (ja) * 1996-12-19 2000-09-18 トヨタ自動車株式会社 筒内噴射式内燃機関の燃料噴射制御装置
JPH1193731A (ja) 1997-09-18 1999-04-06 Toyota Motor Corp 筒内噴射内燃機関の燃料噴射制御装置
GB2332241B (en) * 1997-12-11 2001-12-19 Denso Corp Accumulator fuel injection system for diesel engine of automotive vehicles
JP3551837B2 (ja) 1998-05-29 2004-08-11 トヨタ自動車株式会社 内燃機関の燃料供給装置
JP2000227043A (ja) 1999-02-05 2000-08-15 Toyota Motor Corp 内燃機関の制御装置
JP2001020837A (ja) 1999-07-07 2001-01-23 Nissan Motor Co Ltd エンジンの燃料噴射制御装置
JP2003013785A (ja) * 2001-06-28 2003-01-15 Nissan Motor Co Ltd 直噴火花点火式内燃機関の制御装置
JP2005083277A (ja) * 2003-09-09 2005-03-31 Toyota Motor Corp 火花点火内燃機関の制御装置

Also Published As

Publication number Publication date
EP1531262A2 (de) 2005-05-18
US7044108B2 (en) 2006-05-16
KR100609104B1 (ko) 2006-08-09
CN1616808A (zh) 2005-05-18
US20050098157A1 (en) 2005-05-12
JP4120567B2 (ja) 2008-07-16
DE602004031186D1 (de) 2011-03-10
CN100402821C (zh) 2008-07-16
KR20050045915A (ko) 2005-05-17
JP2005146884A (ja) 2005-06-09
EP1531262A3 (de) 2006-11-08

Similar Documents

Publication Publication Date Title
EP1531262B1 (de) Einrichtung und Verfahren zur Steuerung der Kraftstoffeinspritzung für eine Brennkraftmaschine
EP1531324B1 (de) Klopferkennungsgerät für eine Brennkraftmaschine
EP1766217B1 (de) Kraftstoffeinspritzsteuervorrichtung für einen verbrennungsmotor
US6647948B2 (en) Fuel injection control apparatus and fuel injection control method for direct injection engine
US6973910B2 (en) Fuel injection control apparatus and fuel injection control method for internal combustion engine
US7207315B2 (en) Device and method for controlling internal combustion engine
EP1443197B1 (de) Regelsystem für die Direkteinspritzung des Kraftstoffs
US7331333B2 (en) Direct fuel injection/spark ignition engine control device
US20040007209A1 (en) Fuel injection control apparatus of cylinder injection type internal combustion engine
EP1304470B1 (de) Einrichtung zur Brennstoffdrucksteuerung
US7168410B2 (en) Idle speed controller for internal combustion engine
US5970955A (en) Fuel injection control method and system in a cylinder-inside direct injection type spark ignition combustion engine
JP4228799B2 (ja) ノック判定装置付き内燃機関
JP4135254B2 (ja) 内燃機関用燃料噴射装置
JP4421451B2 (ja) 内燃機関用燃料供給システムの異常検出装置
JP3852217B2 (ja) エンジンの燃料噴射装置
US10995690B2 (en) Control device of internal combustion engine
JP3890703B2 (ja) ディーゼル機関の燃料噴射制御装置および燃料噴射制御方法、記録媒体
JP3924991B2 (ja) 内燃機関制御装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20041110

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK YU

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK YU

AKX Designation fees paid

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 20070726

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 602004031186

Country of ref document: DE

Date of ref document: 20110310

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602004031186

Country of ref document: DE

Effective date: 20110310

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20111027

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602004031186

Country of ref document: DE

Effective date: 20111027

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20121130

Year of fee payment: 9

Ref country code: DE

Payment date: 20121107

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20121107

Year of fee payment: 9

Ref country code: IT

Payment date: 20121113

Year of fee payment: 9

REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 20130827

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 602004031186

Country of ref document: DE

Effective date: 20130829

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20131110

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602004031186

Country of ref document: DE

Effective date: 20140603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140603

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131110

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131202