EP1509687A1 - Procede de regulation thermique de moteur a combustion interne pour vehicules - Google Patents

Procede de regulation thermique de moteur a combustion interne pour vehicules

Info

Publication number
EP1509687A1
EP1509687A1 EP03714903A EP03714903A EP1509687A1 EP 1509687 A1 EP1509687 A1 EP 1509687A1 EP 03714903 A EP03714903 A EP 03714903A EP 03714903 A EP03714903 A EP 03714903A EP 1509687 A1 EP1509687 A1 EP 1509687A1
Authority
EP
European Patent Office
Prior art keywords
internal combustion
combustion engine
coolant
temperature
coolant temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP03714903A
Other languages
German (de)
English (en)
Other versions
EP1509687B1 (fr
Inventor
Marco Braun
Christoph Burckhardt
Michael Haas
Roland LÜTZE
Alexander Müller
Michael Reusch
Ulrich Springer
Jens Von Gregory
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mercedes Benz Group AG
Original Assignee
DaimlerChrysler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DaimlerChrysler AG filed Critical DaimlerChrysler AG
Publication of EP1509687A1 publication Critical patent/EP1509687A1/fr
Application granted granted Critical
Publication of EP1509687B1 publication Critical patent/EP1509687B1/fr
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/167Controlling of coolant flow the coolant being liquid by thermostatic control by adjusting the pre-set temperature according to engine parameters, e.g. engine load, engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/28Layout, e.g. schematics with liquid-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • F01P2005/105Using two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P2007/146Controlling of coolant flow the coolant being liquid using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2023/00Signal processing; Details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2023/00Signal processing; Details thereof
    • F01P2023/08Microprocessor; Microcomputer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/04Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/13Ambient temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/32Engine outcoming fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/33Cylinder head temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/42Intake manifold temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/46Engine parts temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/50Temperature using two or more temperature sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/02Intercooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/08Cabin heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/02Controlling of coolant flow the coolant being cooling-air
    • F01P7/04Controlling of coolant flow the coolant being cooling-air by varying pump speed, e.g. by changing pump-drive gear ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/02Controlling of coolant flow the coolant being cooling-air
    • F01P7/10Controlling of coolant flow the coolant being cooling-air by throttling amount of air flowing through liquid-to-air heat exchangers
    • F01P7/12Controlling of coolant flow the coolant being cooling-air by throttling amount of air flowing through liquid-to-air heat exchangers by thermostatic control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/164Controlling of coolant flow the coolant being liquid by thermostatic control by varying pump speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures

Definitions

  • the invention relates to a method for heat regulation of an internal combustion engine for vehicles with a coolant circuit and controllable devices for influencing the heat balance of the internal combustion engine, wherein a coolant temperature and other operating parameters of the internal combustion engine are recorded and the controllable devices as a function of the coolant temperature and the further operating parameters of the internal combustion engine can be controlled.
  • the water pumps are first put into operation and regulated with increasing temperature or increasing heat, then the thermostats, the radiator blind and finally the fan in Put into operation and regulated. If the temperatures of the internal combustion engine cannot be controlled by means of the coolant circuit, provision is made to reduce the performance of the internal combustion engine for safety.
  • the invention is intended to provide a method for regulating the heat of an internal combustion engine for vehicles, which can be used with minor changes for different internal combustion engines with different components.
  • a method for regulating the heat of an internal combustion engine for vehicles with a coolant circuit and controllable devices for influencing the heat balance of the internal combustion engine wherein a coolant temperature and further operating parameters of the internal combustion engine are recorded and the controllable devices are controlled as a function of the coolant temperature and the further operating parameters of the internal combustion engine in which the coolant temperature and / or the further operating parameters are regulated in such a way that at least two output values for determining a manipulated variable for the controllable devices are determined on the basis of at least two different reference variables, the at least two output values are compared and the larger output value in the manipulated variable is implemented and transferred to the controllable devices.
  • a maximum linkage of the determined output values is provided, in that only the larger output value is converted into the manipulated variable.
  • Such a Max link creates an interface for expanding the control structure. Additional functionalities or requirements can be fed into the Max link without requiring any further changes to the rest of the regulatory structure. For example, requirements from climate control or engine issues due to cooling of the exhaust gas recirculation or charge air cooling are taken into account by determining an output value based on these requirements, comparing it with the other output values and then taking it into account if it is greater than the other determined output values.
  • the problem underlying the invention is also solved by a method for heat regulation of an internal combustion engine for vehicles with a coolant circuit and controllable devices for influencing the heat balance of the internal combustion engine, wherein a coolant temperature and other operating parameters of the internal combustion engine are recorded and the controllable devices as a function of the coolant temperature and further operating parameters of the internal combustion engine can be controlled, in which the coolant temperature and / or the further operating parameters are regulated in such a way that an output value for determining a manipulated variable is specified by means of a basic map as a function of the speed and load of the internal combustion engine, and this output value is determined by means of a Controller depending on the coolant temperature and / or the other operating parameters is corrected.
  • control structure Since the regulation is carried out via the correction of a basic map, the control structure is suitable for different applications, since only the basic map or the correction controller need be changed to adapt to different internal combustion engines. This means that different motors with different components can be operated with the same control structure.
  • a hysteresis characteristic curve is used when determining a manipulated variable.
  • Such a hysteresis characteristic curve can be applied both to the controllers and to the basic characteristic diagram, especially in transition areas, for example when switching on the coolant pump to prevent uncontrolled switching.
  • setpoints of a coolant temperature and a component temperature of the internal combustion engine are determined by means of characteristic maps as a function of a speed and an injection quantity of the internal combustion engine.
  • the setpoints for coolant and component temperature can be specified depending on the operating point.
  • a clear regulatory structure can be achieved through these measures.
  • different control characteristics can be provided in the different states or controllable devices can be set to maximum or zero throughput without any control.
  • a change in the various states is triggered by exceeding or falling below predefined limit values, an ambient temperature, a component temperature of the internal combustion engine, a coolant temperature, a charge air temperature and / or a pressure of an air conditioning compressor, and in the individual states a coolant temperature and are regulated in order to regulate a component temperature of the internal combustion engine settings of a coolant pump, a heating pump, a mixing valve between a cooler and a bypass circuit, a radiator blind, a cooler fan, an air conditioning compressor and / or an injection system of the internal combustion engine.
  • FIG. 1 shows a schematic representation of an internal combustion engine for a vehicle for carrying out the method according to the invention
  • Fig. 3 shows a more detailed representation of the formation of
  • Fig. 4 shows the various possible states that the system of internal combustion engine and coolant circuit can assume.
  • an internal combustion engine 10 which is provided with a coolant circuit and is arranged in a motor vehicle.
  • a coolant circulates in the coolant circuit shown, a direction of flow of the coolant in the coolant circuit being indicated at different points by an arrow.
  • coolant reaches a controllable mixing valve 14 which is designed as a rotary slide valve.
  • the mixing valve 14 is adjusted by means of an electric motor 16, which in turn is controlled by a central control device 18.
  • a control by means of pulse-width modulated signals (PWM) is indicated in the illustration in FIG. 1.
  • PWM pulse-width modulated signals
  • the bypass line 18 opens again into a main line 24, which leads to a coolant pump 26.
  • the coolant pump 26 is driven mechanically by the internal combustion engine 10 and is provided with a magnetic coupling 28 which can be controlled by the control unit 18. By means of the magnetic coupling 28, the coolant pump 26 can also be switched on or off while the internal combustion engine 10 is running. Instead of a mechanically driven coolant pump, an electrically driven coolant pump could also be used. Starting from the coolant pump 26, the coolant returns to the internal combustion engine 10.
  • a heating circuit line 30 branches off from the line connecting the coolant outlet 12 and the mixing valve 14.
  • the heating circuit line 30 first leads to a heating pump 32, which is driven by an electric motor 34.
  • the electric motor 34 is controlled by the control unit 18 by means of pulse width modulated signals.
  • the heating circuit line 30 leads to an exhaust gas recirculation heat exchanger 36.
  • the exhaust gas recirculation heat exchanger 36 is connected in series is a heating heat exchanger 38. Starting from the heating heat exchanger 38, the heating circuit line 30 then leads to the main line 24, which leads to the coolant pump 26.
  • the vehicle radiator 22 is provided with a radiator blind 40, which can be adjusted by means of an electric motor 42, and a fan 44, which is driven by means of an electric motor 46. By actuating the electric motors 42 and 46, an adjustment of the radiator blind 40 or a speed of the fan 44 can be changed by means of the control device 18.
  • the central control unit 18 receives input signals from a coolant temperature sensor 48 and a land temperature sensor 50 in the internal combustion engine 10.
  • the coolant temperature sensor 48 measures a temperature of the coolant at the outlet 12 of the internal combustion engine 10 and the land temperature sensor 50 measures a temperature of a material area between the exhaust valves of the internal combustion engine 10
  • a connection 52 shown in dashed lines illustrates a data exchange between the internal combustion engine 10 and the central control unit 18.
  • the central control device 18 receives actual values of operating parameters of the internal combustion engine 10, and sets manipulated variables for the operation of the internal combustion engine 10, for example the injection quantity, throttle valve position, ignition timing and the like.
  • control unit 18 receives input signals from a block 54 which relate to heating and air conditioning requirements. If, for example, an increased air conditioning output is requested from block 54, control unit 18 can increase an engine load on the one hand and take measures on the other to be able to dissipate the then increased amount of heat via the coolant circuit.
  • a control structure is implemented in the control unit 18, with which, depending on the coolant temperature and others, a control structure is implemented.
  • Operating parameters of the internal combustion engine 10, the mixing valve 14, the coolant pump 26, the heating pump 32, the radiator blind 40, the fan 44 and possibly an injection system of the internal combustion engine 10 can be controlled differently.
  • several states of the system comprising the internal combustion engine 10 and the coolant circuit are defined, in each of which different measures for regulating the coolant temperature or the web temperature are taken.
  • control structure implemented in the control unit 18 is constructed in such a way that it can be adapted to different internal combustion engines 10 and / or additional requirements for operation with little effort.
  • the requirements of block 54 regarding heating and air conditioning requirements are additionally processed.
  • the central control device 18 is shown schematically in the illustration in FIG. 2. 2 serves to clarify the input variables available to the control unit 18 and the signals output as part of the control of the coolant and component temperature of the internal combustion engine 10.
  • a coolant temperature T ⁇ from the coolant temperature sensor 48 and a component temperature T B from the web temperature sensor 50 are fed to the control device 18.
  • the control unit 18 has the current engine speed n and a current injection quantity rrie available. The control of the coolant and component temperature on the basis of these input variables T ⁇ , T B , n and never is explained in detail with reference to FIG. 3.
  • the control unit 18 also has an outside air temperature T AL , a charge air temperature T LL , an exhaust gas recirculation rate AGR, the already mentioned climate requirements K, a vehicle speed v and an accelerator pedal position p available as input variables. These input variables are used to determine a state of the system from internal combustion engine 10 and to determine the coolant circuit, different measures being taken in the individual states in order to regulate the coolant and component temperature.
  • a coolant volume flow requirement is determined for the control, which is represented by block 60.
  • the volume flow requirement 60 is converted into a manipulated variable 62 for the setting of the heating pump 32 and a manipulated variable 64 for the setting of the coolant pump 26.
  • a rotary slide valve positioning 66 is requested, which is converted into a manipulated variable 68 for the setting of the mixing valve 14.
  • a cooling air mass requirement 70 is determined, which is set in a manipulated variable 72 for controlling the radiator blind 40 and in a manipulated variable 74 for controlling the fan 44.
  • a basic characteristic map 80 is used to determine a basic value for a required volume flow of the coolant on the basis of the input quantities injection quantity m e and engine speed n. This basic value from block 80 is transferred to a block 82, in which a hysteresis characteristic is applied to this basic value in order to prevent uncontrolled switching in transition areas.
  • a volume flow request is thus available at the output of block 82 and is transferred to the link units 84 and 86.
  • the determined basic value of the volume flow is corrected using the linking units.
  • the basic value is corrected by means of a controller which uses the coolant temperature T ⁇ as a reference variable and by means of the linking unit 86 the basic value is corrected by means of a controller. rigged, which uses the component temperature T B as a reference variable.
  • a setpoint T Kso ⁇ for the coolant temperature as a function of the current injection quantity m ⁇ of the current engine speed n is specified by a block 88.
  • the target value T Kso ⁇ is transferred to a linking unit 90, which also the current actual value of the coolant temperature T K ⁇ st is available from the coolant sensor 48 and which determines a control difference from these values.
  • the control difference determined in this way is transferred to a block 92, in which a hysteresis characteristic curve is applied to the control difference determined.
  • Block 92 thus transfers a correction value for the volume flow request to the linking unit 84 and adds it there to the previously determined basic value.
  • a setpoint T B soi ⁇ is first determined in a block 94 on the basis of a basic map, taking into account the injection quantity m e and the engine speed n, and in a linking unit 96 from an actual value T B i st and the setpoint T B s o i ⁇ determined a control difference.
  • a hysteresis characteristic curve is applied to the determined control difference in block 98, so that a correction value for a volume flow request is transferred from block 98 to the linking unit 86.
  • a temporal change in the component temperature is taken into account in block 100 in order to achieve a satisfactory regulation of the component temperature which is more dynamic compared to the coolant temperature.
  • the volume flow request issued by block 100 is also supplied to the linking unit 86.
  • Blocks 102 and 104 are checked to determine whether they exceed a maximum or minimum applicable value and, if necessary, limit them to these values.
  • the volume flow requests are then transferred from blocks 102 and 104 to a max-linking unit 106.
  • the max logic unit 106 it is checked which of the volume flow requests from block 102 or from block 104 is larger, and only the larger volume flow request is passed to block 108, in which a conversion characteristic is applied to the volume flow request.
  • the volume flow requirement is converted into a control signal for the coolant pump 26, which is finally amplified by means of an output stage 110 and passed on to the coolant pump 26.
  • the basic map 80 can be changed to match different internal combustion engines.
  • fundamentally different volume flow requirements could be achieved even without changing the controller taking the coolant temperature T ⁇ or the component temperature T B into account.
  • the control structure shown in FIG. 3, which can be used in the same way for the determination of manipulated variables for the control of the mixing valve 14, the radiator blind 40, the fan 44, the heating circuit pump 32 and optionally the injection system of the internal combustion engine 10, is thereby simpler Adaptable to different engines.
  • the Max logic unit 106 creates an interface into which further requirements can be fed.
  • the max link 106 gives the those regulators have access to the actuators of the coolant pump 26, the heating circuit pump 32, the mixing valve 14, the fan 44 or the radiator blind 40, which transfers the greatest demand value to the max logic unit 106.
  • Further requirements for example from a climate control system or from a cooling of the exhaust gas recirculation required at a special operating point, can thus be fed into the maximum link 106, which ensures that these requirements are taken into account when determining the manipulated variables.
  • the central control unit 18 uses the input variables available to it to determine which predetermined state the system of internal combustion engine 10 and coolant circuit is currently in.
  • seven states are predefined which the system of internal combustion engine 10 and coolant circuit can assume and in which different measures are provided in order to achieve control of the coolant temperature and the land temperature.
  • FIG. 4 shows in a column in each case the conditions for a certain state or a certain level to be assumed, as well as the measures taken in the respective state.
  • a first state corresponds to a cold start, in which a component temperature is in the range from -20 ° C to 120 ° C and a coolant temperature at the outlet from the internal combustion engine is in the range from -20 ° C to 80 ° C.
  • a temperature of the charge air after a charge air cooler is less than 60 ° C and a pressure of a refrigerant in an air conditioning circuit is below 12 bar. For example, there are low Ambient temperatures in the range of -20 ° C.
  • the objective is to accelerate the warm-up of the internal combustion engine 10 and to reach an acceptable interior temperature as quickly as possible.
  • the volume flow flowing through the heating pump 32 is regulated by means of the motor 34 via the central control unit 18.
  • the magnetic coupling 28 of the coolant pump 26 is decoupled, so that the coolant pump 26 is only passed passively but does not itself contribute to the promotion of a volume flow.
  • the mixing valve 14 is set in the first state such that the bypass line 18 is completely open and the line leading to the cooler 22 is completely closed.
  • the radiator blind 40 is completely closed, the fan 44 is switched off and an air conditioning compressor is also switched off.
  • a so-called cook protection which, when used, reduces the power of the internal combustion engine in order to reduce the amount of heat generated, is switched off.
  • a second state which, like the first state, is associated with a warm-up of the internal combustion engine and in which the interior is to be heated, the cooling water and the web between the exhaust valves are already heated.
  • the state of the system is classified by the control device 18 in the second state when low ambient temperatures, for example -20 ° C., a land temperature in the range from 120 ° C. to 160 ° C., a temperature at the cooling water outlet 12 in the range of 80 ° C. up to 90 ° C, a charge air temperature after the charge air cooler is less than 60 ° C and a refrigerant pressure of less than 12 bar.
  • the heating pump 32 is switched on and supplies 100% of the possible volume flow.
  • the exhaust gas recirculation cooler 36 and the heating heat exchanger 38 have a maximum flow.
  • the coolant pump 26 is switched on or off by optional switch the magnetic coupling on or off. This takes place depending on the coolant or web temperature.
  • the mixing valve 14 is set in the second state such that the bypass line 18 is fully open and the line leading to the cooler 22 is completely closed.
  • the radiator blind 44 and possibly further blinds in front of the charge air cooler and a condenser are closed.
  • the electric fan 44, the air conditioning compressor and the cook protection are switched off.
  • a change to a third state occurs when the internal combustion engine is already warm from operation and the land temperature and the coolant temperature are in the desired range.
  • heating in the vehicle interior is still required.
  • the system assumes the third state when low ambient temperatures, for example -20 ° C, a land temperature in the range from 140 ° C to 180 ° C, a coolant temperature at the outlet 12 in the range from 90 ° C to 95 ° C, a Charge air temperature of less than 60 ° C and a refrigerant pressure of less than 12 bar.
  • the heating pump 32 is switched on and supplies 100% of its possible volume flow.
  • the coolant pump 26 is switched on because the magnetic clutch 28 is not energized.
  • the mixing valve 14 is operated in regular operation and consequently conducts the coolant flow depending on the coolant temperature at the coolant sensor 48 and the land temperature at the component sensor 50 through the bypass line 18 and / or to the cooler 22. Since the mixing valve 14 is designed as a rotary slide valve, each Distribution of the coolant to the bypass line 18 and the cooler 22 can be set continuously in control operation. As in states one and two, the radiator blind 40 and any other blinds are closed, the fan 44, the air conditioning compressor and a cooker protection are switched off.
  • the fourth state is characterized by a land temperature in the range from 160 ° to 200 ° C, a coolant temperature from 95 ° C to 100 ° C, a charge air temperature after the charge air cooler of more than 60 ° C and a refrigerant pressure of less than 12 bar ,
  • the heating pump 32 is switched on and supplies 100% of its possible volume flow.
  • the coolant pump 26 is switched on because the magnetic coupling 28 is not energized.
  • the mixing valve 14 assumes an end position, closes the bypass line 18 completely and directs the coolant flow completely to the vehicle radiator 22.
  • the radiator blind 40 and possibly further blinds are regulated as a function of the coolant temperature and the web temperature.
  • the fan 44, the air conditioning compressor and the cook protection are switched off.
  • the system changes to a fifth state when there are higher ambient temperatures, for example around 20 ° C., so that heating in the vehicle interior is no longer necessary but also no air conditioning is necessary.
  • the fifth state is characterized by web temperatures in the range of 160 ° C to 200 ° C, coolant temperatures between 100 ° C and 115 ° C, charge air temperatures of more than 60 ° C and a refrigerant pressure of less than 12 bar.
  • the heating pump 32 is switched off, the coolant pump 26 is switched on and the mixing valve 14 closes the bypass line 18 and directs the coolant flow completely to the cooler 22.
  • the cooler blind 40 and optionally further blinds in front of the charge air cooler and the condenser are fully open.
  • the fan 44 is regulated depending on the coolant temperature and the web temperature.
  • the air conditioning compressor and the cook protection are switched off. If the ambient temperature continues to rise, the interior becomes air-conditioned and the system changes to a sixth state.
  • the sixth state is due to ambient temperatures in the range from 20 ° C to 30 ° C, land temperatures in the range from 160 ° C to 200 ° C, coolant temperatures in the range from 100 ° C to 115 ° C, charge air temperatures of more than 60 ° C and a refrigerant pressure in the range of 12 bar to 20 bar.
  • the system still tries to meet all requirements with regard to engine performance and climate performance and mobilizes all reserves that are available for heat dissipation from the internal combustion engine 10.
  • the heating pump 32 is switched off, while the coolant pump 26 is switched on.
  • the mixing valve 14 keeps the bypass line 18 closed and directs the coolant flow completely to the cooler 22.
  • the cooler blind 40 and any other blinds are fully open.
  • the fan 44 runs at maximum power and thereby enables a maximum air throughput through the cooler 22.
  • the air conditioning compressor is regulated as a function of the desired interior temperature.
  • the cook protection is switched off.
  • the operating temperatures of the engine can continue to rise and into the critical range.
  • measures must therefore be taken to protect the internal combustion engine 10 from thermal damage.
  • the seventh state is due to a high ambient temperature, for example between 30 ° C and 35 ° C, a land temperature in the range 160 ° C to 200 ° C, a coolant temperature in the critical range of more than 115 ° C, a charge air temperature of more than 60 ° C and a refrigerant pressure of more than 20 bar.
  • the heating pump 32 is switched off, the coolant pump 26 is switched on, the mixing valve closes the bypass line 18 completely and conducted the coolant flow completely to the cooler 22, the cooler blind 40 and possibly further blinds are fully open and the fan 44 runs at maximum power.
  • the air conditioning compressor is operated with reduced output and at the same time a reduced motor output is set via the cook protection. This can be done, for example, by reducing an injection quantity. If the operating temperatures drop, the system can switch back to the sixth state and the full engine and air conditioning performance is available again.
  • prioritization can take place such that the system assumes a certain state if selected operating parameters lie within a range defined for this state.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

L'invention concerne un procédé de régulation thermique de moteur à combustion interne pour véhicules, avec un circuit de liquide de refroidissement et des dispositifs pilotables pour influer sur l'économie thermique du moteur à combustion interne. Une température d'agent de refroidissement et d'autres paramètres de fonctionnement du moteur à combustion interne sont détectés et les dispositifs pilotables sont régulés en fonction de la température de l'agent de refroidissement et des autres paramètres de fonctionnement du moteur à combustion interne. Selon l'invention, une régulation de la température de l'agent de refroidissement et/ou des autres paramètres de fonctionnement s'effectue de sorte qu'une valeur initiale pour déterminer une valeur de réglage à l'aide d'un champ caractéristique de base soit prédéfinie en fonction du régime et de la charge du moteur à combustion interne et que cette valeur initiale soit corrigée à l'aide d'un régulateur en fonction de la température de l'agent de refroidissement et/ou des autres paramètres de fonctionnement. Ledit procédé s'utilise par ex. pour la gestion de la chaleur dans des moteurs Diesel à injection directe, à rendement optimisé.
EP03714903A 2002-05-31 2003-03-29 Procede de regulation thermique de moteur a combustion interne pour vehicules Expired - Fee Related EP1509687B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10224063A DE10224063A1 (de) 2002-05-31 2002-05-31 Verfahren zur Wärmeregulierung einer Brennkraftmaschine für Fahrzeuge
DE10224063 2002-05-31
PCT/EP2003/003301 WO2003102394A1 (fr) 2002-05-31 2003-03-29 Procede de regulation thermique de moteur a combustion interne pour vehicules

Publications (2)

Publication Number Publication Date
EP1509687A1 true EP1509687A1 (fr) 2005-03-02
EP1509687B1 EP1509687B1 (fr) 2010-09-01

Family

ID=29432461

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03714903A Expired - Fee Related EP1509687B1 (fr) 2002-05-31 2003-03-29 Procede de regulation thermique de moteur a combustion interne pour vehicules

Country Status (5)

Country Link
US (1) US7128026B2 (fr)
EP (1) EP1509687B1 (fr)
JP (1) JP4164690B2 (fr)
DE (2) DE10224063A1 (fr)
WO (1) WO2003102394A1 (fr)

Families Citing this family (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10336599B4 (de) * 2003-08-08 2016-08-04 Daimler Ag Verfahren zur Ansteuerung eines Thermostaten in einem Kühlkreislauf eines Verbrennungsmotors
DE102004006591A1 (de) * 2004-02-10 2005-08-25 Behr Gmbh & Co. Kg Heizungsanordnung und Verfahren zur Heizungsregelung
DE112005001389B4 (de) * 2004-06-17 2018-01-04 Avl List Gmbh Kühlkreisläufe für eine Brennkraftmaschine mit flüssigkeitsgekühlter Abgasrückführung
DE102004034066B4 (de) * 2004-07-15 2012-10-31 Bayerische Motoren Werke Aktiengesellschaft Vorrichtung zur Steuerung der Kühlung einer Brennkraftmaschine für Kraftfahrzeuge
DE102004059004A1 (de) * 2004-12-08 2006-06-14 Daimlerchrysler Ag Aufheizbetrieb einer Brennkraftmaschine
EP1828559B2 (fr) * 2004-12-23 2017-01-25 Valeo Thermique Moteur Systeme de gestion de l'energie thermique d'un moteur de vehicule automobile par regulation des actionneurs des fluides de ce systeme
FR2890700B1 (fr) * 2005-09-13 2007-11-02 Renault Sas Moteur de vehicule comprenant un circuit de gaz recircules refroidis a basse temperature
JP2009515088A (ja) * 2005-11-10 2009-04-09 ベール ゲーエムベーハー ウント コー カーゲー 回路システム、混合器
US7409928B2 (en) * 2006-01-27 2008-08-12 Gm Global Technology Operations, Inc. Method for designing an engine component temperature estimator
DE112007001140B4 (de) * 2006-05-08 2021-02-18 Magna Powertrain Fpc Limited Partnership Fahrzeug-Kühlungssystem mit gelenkten Strömen
GB2442742A (en) * 2006-10-12 2008-04-16 Ford Global Tech Llc Cooling system for an internal combustion engine comprising an exhaust gas cooler
US8430068B2 (en) * 2007-05-31 2013-04-30 James Wallace Harris Cooling system having inlet control and outlet regulation
EP2096276A1 (fr) * 2008-02-28 2009-09-02 Behr GmbH & Co. KG Procédé de contrôle d'un système de suralimentation de moteur, système de contrôle, produit de programme informatique, support de stockage et système de suralimentation de moteur
DE102008052014A1 (de) 2008-10-17 2010-04-22 Daimler Ag Wärmetauscheranordnung und Verfahren zum Betreiben einer Wärmetauscheranordnung
US20100114463A1 (en) * 2008-10-30 2010-05-06 Caterpillar Inc. System for cold starting machine
DE202009003807U1 (de) 2009-03-20 2010-08-12 Voss Automotive Gmbh Elektrisches Heizsystem für ein Fluid-Leitungssystem
US8256387B2 (en) * 2009-04-28 2012-09-04 Denso International America, Inc. Radiator shutter using film door technology
DE102009054783B4 (de) * 2009-12-16 2017-06-01 Ford Global Technologies, Llc Verfahren zur Durchführung eines Temperaturmanagements in einem Kühlsystem basierend auf einem Matrixregler
DE102009058585A1 (de) * 2009-12-17 2011-06-22 Bayerische Motoren Werke Aktiengesellschaft, 80809 Kühlanordnung für eine Kraftfahrzeug-Brennkraftmaschine sowie Verfahren zum Betreiben derselben
DE102010002605B4 (de) * 2010-03-05 2013-12-12 Ford Global Technologies, Llc Verfahren zur Verkürzung der Warmlaufphase mittels Wärmerückgewinnung aus rückgeführten Abgasen
DE102010010624A1 (de) * 2010-03-09 2011-09-15 GM Global Technology Operations LLC , (n. d. Ges. d. Staates Delaware) Koaxialer Wärmetauscher für eine Kraftfahrzeug-Abgasanlage
KR20110120766A (ko) * 2010-04-29 2011-11-04 현대자동차주식회사 하이브리드 자동차의 워터펌프 제어장치 및 방법
FR2961264B1 (fr) * 2010-06-09 2015-10-09 Peugeot Citroen Automobiles Sa Procede de controle de la combustion d'un moteur thermique et procede de detection d'un dysfonctionnement dudit moteur
US20120097464A1 (en) * 2010-10-22 2012-04-26 Gm Global Technology Operations, Inc. Control of a shutter via bi-directional communication using a single wire
US8689917B2 (en) 2010-10-22 2014-04-08 GM Global Technology Operations LLC Method for monitoring operation of a shutter
JP5500264B2 (ja) * 2010-11-01 2014-05-21 トヨタ自動車株式会社 内燃機関の冷却システム
DE102010060319B4 (de) * 2010-11-03 2012-05-31 Ford Global Technologies, Llc. Kühlsystem
US8443921B2 (en) * 2010-11-09 2013-05-21 GM Global Technology Operations LLC System and method for increasing operating efficiency of a powertrain by controlling an aero shutter
KR20120060508A (ko) * 2010-12-02 2012-06-12 현대자동차주식회사 전자식 서모스탯의 제어방법 및 그 제어장치
DE102011004327A1 (de) * 2011-02-17 2012-08-23 Siemens Aktiengesellschaft Verfahren zum Betreiben eines Schienenfahrzeugs
DE102011108953B4 (de) * 2011-07-29 2014-11-27 Audi Ag Kühlmittelkreislauf für eine Brennkraftmaschine und Verfahren zum Betreiben eines Kühlmittelkreislaufs
US9416720B2 (en) 2011-12-01 2016-08-16 Paccar Inc Systems and methods for controlling a variable speed water pump
DE102012200003B4 (de) * 2012-01-02 2015-04-30 Ford Global Technologies, Llc Flüssigkeitsgekühlte Brennkraftmaschine und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
DE102012200746A1 (de) * 2012-01-19 2013-07-25 Ford Global Technologies, Llc Brennkraftmaschine mit im Kühlmittelkreislauf angeordneter Pumpe und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
JP5892469B2 (ja) * 2012-03-09 2016-03-23 スズキ株式会社 車両用内燃機関の冷却装置
US8997483B2 (en) * 2012-05-21 2015-04-07 GM Global Technology Operations LLC Engine thermal management system and method for split cooling and integrated exhaust manifold applications
US9657632B2 (en) 2012-08-01 2017-05-23 GM Global Technology Operations LLC Method and apparatus for remote torque control of an aerodynamic air shutter mechanism
FR3001797A1 (fr) * 2013-02-06 2014-08-08 Peugeot Citroen Automobiles Sa Procede de refroidissement et de protection d'un echangeur de chaleur air/fluide
US9394858B2 (en) * 2013-03-11 2016-07-19 Ford Global Technologies, Llc Charge air cooling control for boosted engines to actively maintain targeted intake manifold air temperature
US9115635B2 (en) 2013-03-22 2015-08-25 Ford Global Technologies, Llc Inferred engine local temperature estimator
FR3008175A1 (fr) * 2013-07-04 2015-01-09 Valeo Systemes Thermiques Dispositif de regulation de la circulation d'un liquide de refroidissement pour un echangeur de chaleur, en particulier refroidisseur d'air de suralimentation de moteur de vehicule automobile
US20150041229A1 (en) * 2013-08-08 2015-02-12 Honda Motor Co., Ltd. Front end arrangement with active radiator damper and active radiator control method
DE102013219144B4 (de) * 2013-09-24 2022-02-03 Bayerische Motoren Werke Aktiengesellschaft Wärmemanagement-System für Kraftfahrzeuge
JP6201888B2 (ja) * 2014-05-14 2017-09-27 トヨタ自動車株式会社 内燃機関の冷却装置
FR3022591B1 (fr) * 2014-06-20 2016-06-10 Renault Sa Procede de pilotage d'un moteur a combustion interne
DE102014015638A1 (de) * 2014-10-22 2016-04-28 GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) Steuern einer Kühlmittelpumpe und/oder eines Stellventils eines Kühlsystems für eine ...
JP6072752B2 (ja) 2014-11-12 2017-02-01 本田技研工業株式会社 内燃機関の冷却制御装置
GB2535159A (en) * 2015-02-09 2016-08-17 Gm Global Tech Operations Llc Method of controlling a cooling circuit of an internal combustion engine
EP3056706A1 (fr) 2015-02-16 2016-08-17 Honeywell International Inc. Approche de modélisation de système de post-traitement et d'identification de modèle
EP3125052B1 (fr) 2015-07-31 2020-09-02 Garrett Transportation I Inc. Résolveur de programme quadratique pour mpc utilisant une commande variable
US10272779B2 (en) 2015-08-05 2019-04-30 Garrett Transportation I Inc. System and approach for dynamic vehicle speed optimization
DE102015117592A1 (de) 2015-10-15 2017-04-20 Volkswagen Aktiengesellschaft Steuern einer ein Kühlmittel fördernden Pumpe in einem Ladegaskühlkreis
KR101807046B1 (ko) * 2016-04-01 2017-12-08 현대자동차 주식회사 냉각수온 센서를 구비한 엔진 냉각시스템
US10124750B2 (en) 2016-04-26 2018-11-13 Honeywell International Inc. Vehicle security module system
US10728249B2 (en) 2016-04-26 2020-07-28 Garrett Transporation I Inc. Approach for securing a vehicle access port
US10036338B2 (en) * 2016-04-26 2018-07-31 Honeywell International Inc. Condition-based powertrain control system
US11199120B2 (en) 2016-11-29 2021-12-14 Garrett Transportation I, Inc. Inferential flow sensor
JP6589906B2 (ja) * 2017-02-16 2019-10-16 トヨタ自動車株式会社 内燃機関の制御装置
DE102017202638B4 (de) 2017-02-20 2022-04-28 Ford Global Technologies, Llc Vorrausschauendes Wärmemanagement für Kraftfahrzeuge
US20190010858A1 (en) 2017-07-10 2019-01-10 GM Global Technology Operations LLC Controlling engine coolant fluid temperature
DE102017123468A1 (de) 2017-10-10 2019-04-11 Volkswagen Aktiengesellschaft Verfahren zum Betreiben einer Brennkraftmaschine, Brennkraftmaschine und Kraftfahrzeug
US11057213B2 (en) 2017-10-13 2021-07-06 Garrett Transportation I, Inc. Authentication system for electronic control unit on a bus
DE102018104409A1 (de) * 2018-02-27 2019-08-29 Volkswagen Aktiengesellschaft Kühlsystem und Brennkraftmaschine
KR102496812B1 (ko) * 2018-08-06 2023-02-06 현대자동차 주식회사 냉각 시스템의 제어 방법
DE102019208959A1 (de) * 2019-06-19 2020-12-24 Volkswagen Aktiengesellschaft Brennkraftmaschine mit einem einen AGR-Kühler umfassenden Kühlsystem
DE102020128706B4 (de) 2020-11-02 2023-06-15 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren und Steuerung zur Regelung eines Lüfters einer Kühleinrichtung eines Verbrennungsmotors eines Kraftfahrzeugs
US11578642B1 (en) 2021-08-05 2023-02-14 Garrett Transportation I Inc. Thermostat leak detection
CN113969820A (zh) * 2021-11-01 2022-01-25 郭福海 一种具有环境温度监测功能的发动机智能热管理系统

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3024209A1 (de) * 1979-07-02 1981-01-22 Guenter Dr Rinnerthaler Fluessigkeitskuehlung fuer verbrennungsmotoren
DE3231766A1 (de) * 1982-08-26 1984-03-01 Robert Bosch Gmbh, 7000 Stuttgart Einrichtung zum regeln der leerlaufdrehzahl bei einer brennkraftmaschine
DE3408215A1 (de) * 1984-02-01 1985-08-01 Robert Bosch Gmbh, 7000 Stuttgart Steuer- und regelverfahren fuer die betriebskenngroessen einer brennkraftmaschine
US4489680A (en) * 1984-01-23 1984-12-25 Borg-Warner Corporation Engine temperature control system
US4549504A (en) * 1984-07-19 1985-10-29 Evans Products Company Electronic controller for regulating temperature within an internal combustion engine system
US4930455A (en) * 1986-07-07 1990-06-05 Eaton Corporation Controlling engine coolant flow and valve assembly therefor
DE3625375A1 (de) * 1986-07-26 1988-02-04 Porsche Ag Kuehlluftklappen- und geblaesesteuerung fuer kraftfahrzeuge
DE3810174C2 (de) * 1988-03-25 1996-09-19 Hella Kg Hueck & Co Einrichtung zur Regelung der Kühlmitteltemperatur einer Brennkraftmaschine, insbesondere in Kraftfahrzeugen
DE69325044T2 (de) * 1992-02-19 1999-09-30 Honda Motor Co Ltd Maschinenkühlanlage
DE4324178A1 (de) * 1993-07-19 1995-01-26 Bayerische Motoren Werke Ag Kühlanlage für einen Verbrennungsmotor eines Kraftfahrzeuges mit einem Thermostatventil, das ein elektrisch beheizbares Dehnstoffelement enthält
ES2112717B1 (es) * 1993-07-19 1998-12-01 Bayerische Motoren Werke Ag Disposicion de refrigeracion para un motor de combustion interna de un automovil.
DE4337717A1 (de) * 1993-11-05 1995-05-11 Graf Peter Von Ingelheim Steuerungseinrichtung für Kühlkreisläufe von Verbrennungsmotoren mit Drossel- oder Wegeventilen, die zwei Positionen einnehmen können
DE19500648B4 (de) * 1995-01-12 2010-12-30 Behr Thermot-Tronik Gmbh Kühlanlage für einen Verbrennungsmotor eines Kraftfahrzeuges mit einem Thermostatventil
DE19508104C2 (de) * 1995-03-08 2000-05-25 Volkswagen Ag Verfahren zur Regelung eines Kühlkreislaufes eines Verbrennungskraftmotors
DE19719792B4 (de) * 1997-05-10 2004-03-25 Behr Gmbh & Co. Verfahren und Vorrichtung zur Regulierung der Temperatur eines Mediums
EP0889211B1 (fr) * 1997-07-02 2006-09-13 Nippon Thermostat Co., Ltd. Dispositif et procédé pour commander le refroidissement d'un moteur de combustion interne
DE19728351B4 (de) 1997-07-03 2004-07-22 Daimlerchrysler Ag Verfahren zur Wärmeregulierung einer Brennkraftmaschine
DE19939138A1 (de) * 1999-08-18 2001-02-22 Bosch Gmbh Robert Verfahren zur Temperaturregelung des Kühlmittels eines Verbrennungsmotors mittels einer elektrisch betriebenen Kühlmittelpumpe
DE19951362A1 (de) * 1999-10-26 2001-05-03 Bosch Gmbh Robert Verfahren zur Regelung der Kühlwassertemperatur eines Kraftfahrzeugs mit einem Verbrennungsmotor
US6352055B1 (en) * 1999-11-24 2002-03-05 Caterpillar Inc. Engine water pump control system
JP4337207B2 (ja) * 2000-02-10 2009-09-30 株式会社デンソー 液冷式内燃機関の冷却装置
DE10016405A1 (de) * 2000-04-01 2001-10-11 Bosch Gmbh Robert Kühlkreislauf
JP2002222018A (ja) * 2001-01-26 2002-08-09 Honda Motor Co Ltd 熱交換器における作動媒体の供給制御装置
DE10155339A1 (de) * 2001-11-10 2003-05-22 Daimler Chrysler Ag Verfahren zum Betreiben eines Verbrennungsmotors und Kraftfahrzeug
DE50111700D1 (de) * 2001-11-30 2007-02-01 Borgwarner Inc Regelung für einen Lüfter eines Kühlsystems eines Verbrennungsmotors
JP4241211B2 (ja) * 2003-06-19 2009-03-18 トヨタ自動車株式会社 2次空気供給装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03102394A1 *

Also Published As

Publication number Publication date
DE50313040D1 (de) 2010-10-14
WO2003102394A1 (fr) 2003-12-11
US20060005790A1 (en) 2006-01-12
EP1509687B1 (fr) 2010-09-01
JP2005529269A (ja) 2005-09-29
DE10224063A1 (de) 2003-12-11
US7128026B2 (en) 2006-10-31
JP4164690B2 (ja) 2008-10-15

Similar Documents

Publication Publication Date Title
EP1509687B1 (fr) Procede de regulation thermique de moteur a combustion interne pour vehicules
EP0744539B1 (fr) Système de refroidissement avec un actuateur commandé électriquement
DE69925671T2 (de) Regelsystem für totale Kühlung einer Brennkraftmaschine
DE602004004016T3 (de) Verfahren zur Ventilsteuerung eines Abgassystems
DE10155339A1 (de) Verfahren zum Betreiben eines Verbrennungsmotors und Kraftfahrzeug
DE102012202531A1 (de) Kühlsystem für einen Verbrennungsmotor
DE102007056360B4 (de) Verfahren zur Regelung einer Brennkraftmaschine
WO2017055017A1 (fr) Procédé de climatisation d'un véhicule
EP1319815A2 (fr) Circuit de refroidissement d'un moteur à combustion interne refroidi par liquide
EP0512298B1 (fr) Dispositif de chauffage pour véhicules
WO2003016690A1 (fr) Dispositif pour refroidir et chauffer un vehicule automobile
DE10332949A1 (de) Vorrichtung zum Kühlen und Vorwärmen
EP1947308A1 (fr) Système de refroidissement de moteur intégré
EP1461517B1 (fr) Procede de commande de composants d'un systeme de refroidissement pouvant etre actionnes electriquement, programme informatique, appareil de commande, systeme de refroidissement et moteur a combustion interne
EP1561020A1 (fr) Soupape thermostatique destinee a un systeme de refroidissement d'un moteur a combustion interne
DE10311188B4 (de) Verfahren und Vorrichtung zur bedarfsgerechten Kühlung von Verbrennungskraftmaschinen unter Verwendung eines Bypassventils und mindestens einer Wärmesenke
EP1524418A1 (fr) Procédé de commande d'un ventilateur avec plusieurs charactéristiques et progamme de commande pour la commande de puissance de ventilateur
EP2530273B1 (fr) Engin doté d'un réglage de régime de ventilateur automatique
EP2507080B1 (fr) Véhicule doté d'un circuit de réfrigérant servant à distribuer la chaleur à des organes de véhicule
EP1505323B1 (fr) Valve avec pleine position d'interruption
DE10228355A1 (de) Verfahren zur Wärmeregulierung einer Brennkraftmaschine
EP1461516B1 (fr) Procede de commande de composants d'un systeme de refroidissement pouvant etre actionnes electriquement, programme informatique, appareil de commande, systeme de refroidissement et moteur a combustion interne
DE102019204045A1 (de) Kühlgerät für fahrzeugantriebsgeräte
DE19519378A1 (de) Kühlanlage mit elektrisch regelbarem Stellglied
WO2005017327A1 (fr) Procede de commande d'un thermostat

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20041124

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DAIMLERCHRYSLER AG

17Q First examination report despatched

Effective date: 20071108

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DAIMLER AG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50313040

Country of ref document: DE

Date of ref document: 20101014

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100901

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110606

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50313040

Country of ref document: DE

Effective date: 20110606

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20170327

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170330

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170531

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50313040

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331