EP1461517B1 - Procede de commande de composants d'un systeme de refroidissement pouvant etre actionnes electriquement, programme informatique, appareil de commande, systeme de refroidissement et moteur a combustion interne - Google Patents

Procede de commande de composants d'un systeme de refroidissement pouvant etre actionnes electriquement, programme informatique, appareil de commande, systeme de refroidissement et moteur a combustion interne Download PDF

Info

Publication number
EP1461517B1
EP1461517B1 EP02787350A EP02787350A EP1461517B1 EP 1461517 B1 EP1461517 B1 EP 1461517B1 EP 02787350 A EP02787350 A EP 02787350A EP 02787350 A EP02787350 A EP 02787350A EP 1461517 B1 EP1461517 B1 EP 1461517B1
Authority
EP
European Patent Office
Prior art keywords
components
values
cooling system
engine
controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02787350A
Other languages
German (de)
English (en)
Other versions
EP1461517A1 (fr
Inventor
Manfred Schmitt
Peter Deuble
Karsten Mann
Oliver Kaefer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1461517A1 publication Critical patent/EP1461517A1/fr
Application granted granted Critical
Publication of EP1461517B1 publication Critical patent/EP1461517B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/167Controlling of coolant flow the coolant being liquid by thermostatic control by adjusting the pre-set temperature according to engine parameters, e.g. engine load, engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/02Controlling of coolant flow the coolant being cooling-air
    • F01P7/04Controlling of coolant flow the coolant being cooling-air by varying pump speed, e.g. by changing pump-drive gear ratio
    • F01P7/048Controlling of coolant flow the coolant being cooling-air by varying pump speed, e.g. by changing pump-drive gear ratio using electrical drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/02Controlling of coolant flow the coolant being cooling-air
    • F01P7/10Controlling of coolant flow the coolant being cooling-air by throttling amount of air flowing through liquid-to-air heat exchangers
    • F01P7/12Controlling of coolant flow the coolant being cooling-air by throttling amount of air flowing through liquid-to-air heat exchangers by thermostatic control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/164Controlling of coolant flow the coolant being liquid by thermostatic control by varying pump speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2023/00Signal processing; Details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2023/00Signal processing; Details thereof
    • F01P2023/08Microprocessor; Microcomputer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/13Ambient temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/60Operating parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/60Operating parameters
    • F01P2025/66Vehicle speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/70Input parameters for engine control said parameters being related to the vehicle exterior
    • F02D2200/701Information about vehicle position, e.g. from navigation system or GPS signal

Definitions

  • the US 5,619,957 discloses a method for controlling a refrigeration cycle for an internal combustion engine, wherein the energy consumption of a coolant pump and a blower is minimized while maintaining an optimum coolant temperature.
  • the method determines the heat flow transmitted by the coolant pump and the blower to a cooler module and uses these determined variables to control the speed of the pump and of the blower.
  • a device for actuating a arranged on the radiator of a water-cooled internal combustion engine of a motor vehicle blind is known.
  • the radiator shutter is connected to an electric motor via a drive shaft, which makes it possible to move the blind between two settings.
  • the one setting releases the radiator completely and is thus associated with an upper operating limit temperature of the coolant and in the second setting, the radiator shutter is completely closed, which is assigned in principle to low coolant temperatures.
  • the control of the radiator shutter takes place in dependence on the coolant temperature and additionally by an expansion element that responds at high cooling water temperatures and releases a clutch, so that the shutter under load automatically reaches its radiator release position, at high cooling water temperatures damage to the cooling system and / or of the internal combustion engine.
  • a device and a method for engine cooling is known in which the engine to be cooled is associated with a mechanical and an electric coolant pump, wherein the electric coolant pump is controlled by an electronic switching device.
  • the capacity of the electric pump is determined depending on operating characteristics of the engine to be cooled and other sizes, while the mechanical pump is designed for a basic flow rate.
  • the cooling system according to the DE 37 38 412 A1 consists of two coolant paths, wherein in the first coolant path operated as a cooler heat exchanger is arranged, the cooling capacity with the help of a radiator shutter and a fan or a fan is variable.
  • the waste heat is used for heating purposes or for further engine cooling.
  • the second cooling circuit can be used in particular for engine cooling, that an air damper can be opened by the electronic switching device, the air damper blocks the Schu Kunststoffkanal and releases an open air duct outdoors. In other words, the waste heat of the engine is not released into the interior of the motor vehicle, but to the environment.
  • the electronic switching device controlling the electric pump and the remaining components, shutter, blowers and mixing valves receives, in addition to the coolant temperature, further information such as the engine operating temperature, engine compartment temperature, engine parts temperatures, ambient temperature, engine speed, vehicle speed, and coolant pressure signal fed.
  • thermal management system with its components was presented.
  • the prerequisites for situation-specific temperature control are electromotive-driven, continuously variable components: a water pump, proportional control valves, an adapted radiator fan and a radiator shutter, all of which are controlled by an electronic unit integrated in an engine control unit. Decoupled from engine speed, this system controls coolant temperature and flow better than thermostatic and belt driven water pumps. Rapid adaptation to thermal changes even when the engine is switched off and permanent monitoring of functions avoid problems such as permanent "undercooled” running engines and unnoticed overheating at peak load.
  • motors modified with thermal management can be kept at a desirable higher temperature level during idling or part-load operation. Reduced friction losses, improved combustion and thus reduced exhaust emissions, but also fuel consumption and increased heating comfort in the vehicle interior are the result.
  • Such a thermal management system can be flexibly expanded with additional components such as an electric heater. Networking with electronically controlled air conditioning systems is possible.
  • the DE 198 31 901 A1 discloses an apparatus for cooling an engine for a motor vehicle.
  • the distribution ofméatoriströme.in individual partial circuits is not achieved via thermostatic valves as active elements, but at least one further, in addition to a main water pump operated pump. By using such additional water pump, the main water pump is supported. The main water pump can thus be operated with smaller power or smaller dimensions.
  • the DE 198 31 901 A1 It is also possible to use several, similar in terms of their performance pumps in the coolant circuit, which then perceive specifically assigned cooling tasks. By way of example, it is stated that the cylinder head of the engine is cooled separately and controllably, or that individual cylinders are supplied with coolant from one pump each.
  • setpoint values for controlling the components in characteristic maps are stored in a memory of the control device. These predefined setpoint values can be used to optimally control the electrically actuated Components of the cooling system to be ensured.
  • the map data are stored particularly advantageously at least as a function of one of the following influencing variables: vehicle speed, ambient temperature, temperature of the coolant, engine temperature, engine load or valve positions in the cooling system.
  • the preferred development of the method according to the invention provides that the desired values taken from the characteristic diagrams are used for a precontrol of the electrically actuated component.
  • the pre-control improves the control quality of the control.
  • the feedforward control provides, for each operating point, a configuration for controlling the respective electrically actuatable component, which is optimized for a minimum point energy of the component.
  • the preferred development of the method according to the invention provides that an optimum efficiency of the cooling system is achieved by optimizing the setting of a desired operating state of the cooling system to the minimum point energy of the components.
  • the components are assigned different priorities depending on the operating point of the motor vehicle. If according to the invention the determination of the priorities in dependence on the necessary job energy or drive energy of the respective electrically actuated component in the respective operating point, it is particularly reliably ensured that the setting of the Sott sessShes the cooling system is achieved with minimal point energy of the electrically actuated components.
  • the control of the components takes place under predefinable boundary conditions, whereby the control of the components is limited to operating point-dependent minimum and maximum values.
  • the overall efficiency of the motor vehicle is also optimized.
  • the Boundary condition can be specified that a radiator fan is only activated when a radiator mixing valve is opened more than 80% to the radiator.
  • a radiator mixing valve is to be understood in the context of this invention, a 3-way valve that adjusts the mixing ratio between radiator and bypass branch.
  • a radiator shutter can only be opened further if the valve opening to the bypass branch is smaller than a predefinable value. It should be noted that the radiator shutter is in any case a little opened, as a fully closed radiator shutter causes no heat can be dissipated through the radiator; a valve intervention would be ineffective in this case.
  • a control value for a component results from a sum of a precontrol value and a controller value associated with a priority.
  • This way of forming a drive value ideally combines the benefits of a pilot value (power-optimized pilot values, less overhead, etc.) with the benefits of controller values associated with a priority.
  • the control values are filtered in time, so that only a limited response to jerky load changes.
  • the cooling system is preset as a setpoint temperature.
  • a further embodiment provides that the absolute value, temporal change of the setpoint temperature is limited, whereby the control quality can be improved and also has to respond to jerky load changes only conditionally.
  • the computer program comprises a sequence of commands suitable for carrying out the method according to the invention when executed on a computer. Furthermore, the sequence of commands on a computer-readable medium stored, for example on a floppy disk, a compact disk, a so-called flash memory or the like.
  • the computer program may be distributed together with other computer programs as a software product, for example to a manufacturer of engine control units.
  • the transmission of the software product can be done by sending a floppy disk or a CD, the contents of the controller manufacturer then transfers to the controller.
  • a flash memory is sent to the ECU manufacturer, who uses this directly in the control unit.
  • the software product is transmitted via an electronic communication network, in particular via the Internet, to the ECU manufacturer.
  • the software product as such - ie independent of an electronic storage medium - represents the sales product.
  • the ECU manufacturer in this case loads the software product, e.g. from the Internet to save it, for example, on a flash memory and insert it into the control unit.
  • the computer program can also be distributed as a separate software product, which a manufacturer of control devices transmits together with other software products of others (third manufacturer) into the control unit.
  • the software product according to the invention represents a module which is compatible with other modules of a foreign manufacturer.
  • the invention is realized by the computer program, so that this computer program represents the invention in the same way as the method which the computer program is suitable for executing. This applies regardless of whether the computer program is stored on a storage medium, or whether it as such - that is independent of a storage medium - is present.
  • control device for controlling electrically operable components of a cooling system for an internal combustion engine of a motor vehicle according to claim 16.
  • a cooling circuit usually includes a heat source to be cooled, e.g. the vehicle engine, which are cooled by means of a cooling medium by free or forced convection.
  • the temperature difference across the heat source is dependent on the heat input and on the size of the volume flow of the coolant, while the absolute temperature of the cooling medium is determined by the heat input of the heat source, the heat removal via circulating cooler and the heat capacities of the materials.
  • a controllable coolant pump is used according to the invention.
  • the thermostat is replaced by an adjustable proportional valve.
  • infinitely variable radiator fans and / or radiator shutters are provided for the system.
  • the cooling system according to the invention enables a needs-driven control or regulation of the engine cooling system with the aim to reduce fuel consumption and reduce emissions or Comply with emission limits and also increase comfort.
  • critical limits of the component load are not exceeded. This is achieved by optimizing the coolant volume flow and the load-dependent control of the temperature level of the engine.
  • the coolant temperature is raised, for example, in partial load operation and lowered in full load operation. Due to the associated higher degree of filling, the engine power is also increased.
  • the invention is a logic integrated in the engine control, which performs the distribution of heat flows intelligent and priority-dependent. This will be described in the description of the FIGS. 1 to 3 explained in more detail.
  • FIGS. 1 and 2 show embodiments of the method according to the invention, wherein FIG. 1 a general and FIG. 2 represents a specific embodiment.
  • FIG. 1 is started in a step 101 with the actual or measured value acquisition.
  • values such as engine speed, engine load, cooling circuit condition, vehicle speed, driver type, vehicle condition, radiator outlet temperature, engine input temperature, engine output temperature, or engine temperature itself are determined.
  • coolant temperatures at the engine outlet and at the radiator outlet are taken into account for precontrol. It lies within the framework of Invention, that also other temperatures or volume flows - both measured and observed - can be considered.
  • the vehicle state is understood to mean various vehicle state quantities (e.g., vehicle speed, acceleration, load, slope, etc.). It is within the scope of the invention to modify the embodiments so that future, expected sizes are taken into account. For example, an imminent uphill or downhill journey could be taken into account by means of a navigation system. If, for example, Downhill immediately before, the system needs not be cooled down so far and it could be dispensed with an energy-intensive startup of coolant pump and radiator fan, since a short-term reduction in the coolant temperature can be realized only by engaging in the radiator mixing valve.
  • vehicle state quantities e.g., vehicle speed, acceleration, load, slope, etc.
  • target values are formed in step 102. These may be, for example, setpoint values for the engine temperature, for the engine difference temperature or the so-called cooling reserve, which represents the differential temperature from the setpoint value of the engine inlet temperature and the radiator outlet setpoint temperature. These desired values are taken from the maps stored in the memory of the control unit in accordance with the previously determined actual values. Subsequent to the setpoint formation, the setpoint-actual deviation of the previously determined setpoint values is determined in step 103. These desired-actual deviations corresponding to step 103 are used as controller input quantities for the determination of the controller values in step 104. The controller values are optionally determined taking into account further parameters, for example the coolant volume flow.
  • PI controller proportional-integral controller
  • PID controller proportional-integral controller
  • the controller values determined in step 104 are linked to a prioritization in a subsequent step 105. The determination of the prioritization made in steps 111 and 112 will be discussed later.
  • a pre-control value for the respective component is determined in a step 106 subsequent to step 101.
  • This can be, for example, a pilot value for a radiator mixing valve, a coolant pump, a radiator fan or a radiator shutter.
  • the pre-control values are taken from the maps stored in the memory of the control unit analogously to the desired values in accordance with specific input parameters.
  • the precontrol values after step 106 are linked to the prioritized controller values in a step 107. That is to say, step 107 also receives the prioritized controller values after step 105 in addition to the pilot control values after step 106.
  • the combination of the precontrol values with prioritized controller values after step 107 can be additive or multiplicative.
  • step 108 a filtering of the previously determined activation signals takes place in step 108.
  • step 108 the respective activation signal for the various electrically actuable components, for example the radiator mixing valve, the coolant pump, the radiator fan or the radiator shutter, results.
  • step 110 which follows step 109, the components are driven directly or indirectly (via output stages) by the engine control unit in accordance with the determined activation signal.
  • step 111 which is also the one in step 101 certain actual or measured values are supplied.
  • the respective position energy of the respective electrically actuated component is determined in step 111 by means of an observer.
  • step 112 based on the previously determined point energy of the respective electrically actuatable component and further input variables, such as the vehicle state, a prioritization is made in accordance with the necessary point energy of the various electrical components.
  • a special attention is paid to the water pump and the fan, since these electrically actuated components represent those with the greatest energy requirements.
  • the initial value of the prioritization after step 112 flows into step 105, which has already been described above.
  • FIG. 2 shows a practical example or a practical embodiment of the in FIG. 1 More generally described embodiment of the method according to the invention for controlling electrically operable components of a cooling system for an internal combustion engine of a motor vehicle.
  • the first range of "actual values” corresponds to method step 101 according to FIG FIG. 1
  • the second area “precontrol” corresponds to method step 106 FIG. 1
  • the area “setpoint values” corresponds to method step 102 according to FIG FIG. 1
  • the area “controller” corresponds to the method steps 103 and 104 after FIG. 1
  • the subsequent "prioritization" area corresponds to method steps 112, 105 and 107 FIG.
  • the area "Filtering” corresponds to the method step 108 and the last area “Control” corresponds to the method steps 109 and 110 after FIG. 1 ,
  • the method step 111 after FIG. 1 corresponds to the method step 233 FIG. 2 , which will be discussed in more detail later.
  • FIG. 2 begins the inventive method with the actual or measured value.
  • the values engine speed, engine load, cooling circuit condition, engine output temperature T_MA, the speed of the vehicle V_Vehicle and the driver type detected are distinguished, for example between a sporting and a more conservative driver, can usually be taken from a transmission control, where this signal is present.
  • the setpoint engine temperature Tmot, setpoint is determined in a step 201.
  • the engine setpoint temperature is taken from a map stored in the memory of the control unit of the motor vehicle.
  • the target value for the engine temperature Tmot, is determined in step 201 is passed to a node 202, where the target-actual deviation is determined.
  • the current measured (or otherwise calculated, or determined) engine temperature Tmot is to be subtracted in step 202 or at the connection point 202 from the previously determined engine setpoint temperature Tmot.
  • the result of this desired-actual deviation determination in step 202 is fed to a controller 203.
  • the controller may be, for example, a proportional integral controller (PI), a PID controller or a fuzzy controller.
  • the controller is supplied as a further input variable, a signal that makes a statement about the coolant flow rate. This signal is determined in a step 233, which will be discussed later becomes.
  • the result of the prioritization is fed in step 204.
  • the controller value is linked to a prioritization after step 203.
  • the prioritization of the individual electrically operable components was previously performed in step 234, which will also be discussed later.
  • the linkage takes place, for example multiplicatively, whereby the previously determined controller value can fall in extreme cases to zero.
  • step 205 Parallel to the method steps 201, 202, 203 and 204, in a step 205 from the input variables engine load, engine speed and cooling circuit state, a pilot value for a radiator mixing valve X_Ventil (see reference numeral 302 in FIG FIG. 3 ) certainly.
  • the result of step 205 the predetermined precontrol value for the radiator mixing valve X_Valve, is supplied to a node 206 to which the prioritized controller value is also supplied after step 204.
  • point 206 or step 206 the link is now made, for example by addition, of the pilot control and the prioritized controller value for the radiator mixing valve.
  • the result of this step 206 is applied to a filtering in step 207.
  • the filtering can in this case take place, for example, in that the time change of the control value for the radiator mixing valve is limited by an upper barrier. This avoids reacting too quickly to sudden load changes.
  • the drive signal for the radiator mixing valve 208 results, or in step 208, the radiator mixing valve is driven with the previously determined drive signal.
  • the steps 201 to 208 represent the determination of the drive signal for the radiator mixing valve.
  • a desired value for the engine difference temperature ⁇ Tmot, soll is determined from a characteristic map stored in the memory of the control unit from the input variables engine load and temperature at the engine output T_MA. This particular motor difference setpoint ⁇ Tmot, soll is supplied to a node 210.
  • the target actual deviation of the engine difference temperature ⁇ Tmot shall be determined in the motor differential temperature setpoint ⁇ Tmot supplied from step 209, the real, measured engine differential temperature (temperature at the engine output minus temperature at the engine input, T_MA - T_ME) is subtracted.
  • the result of step 210 is fed in step 211 to a controller, which may be designed as a PI controller, for example.
  • the controller value after step 211 is fed to a node 212, where the controller value after step 211 is associated with a prioritization. This prioritization is determined in a step 213 and is based on the controller value after step 203 and the prioritization after step 234.
  • the linkage in step 212 is typically multiplicative.
  • the result of linking the controller value after step 211 with the prioritization after step 213 is supplied to a further node 214.
  • the further input variable of the connection point 214 is the pilot control value of the control variable (for example number of revolutions) of the coolant pump U_pump, which is supplied by a step 215.
  • the pre-control value for the coolant pump U_Pumpe is taken from a map stored in the memory of the engine control unit based on the input variables engine load and temperature at the engine output T_MA.
  • the result of the linkage in node 214 or in step 214 is fed to a maximum value selection 216. In this case, the maximum value selection 216 is next to Input signal from the node 214 is fed to another input signal.
  • This further input signal for the maximum value selection 216 is the minimum volume flow taken in step 217 from the input signals engine load and temperature at the engine output T_MA from a characteristic map in the memory of the engine control unit, which ensures a certain minimum volume flow of the coolant.
  • This maximum value selection in step 216 ensures that a certain minimum volume flow is ensured in accordance with the respective operating situation.
  • the result of the maximum value selection after step 216 is fed to a filter in step 218.
  • the filter in step 218, which is equivalent to step 207 the drive signal for the coolant pump is available in step 219.
  • the drive signal for the radiator fan (reference numeral 317 in FIG. 3 ) generated.
  • a pre-control value for the activation of the fan U_ventilator (for example, number of revolutions or drive voltage) is determined from a map stored in the memory of the engine control unit. This pre-control value for the activation of the fan after step 220 is supplied to a node 221, to which a prioritized controller value is additionally supplied after step 222.
  • the prioritization unit 222 is supplied as input variables of the controller output after step 203, the output signal of the prioritization after step 234, and the output of a controller unit 227, which will be discussed further below. Based on these input variables, a prioritized controller value is generated in step 222, which together with the pilot control value for the activation of the fan after step 220, the node 221 is merged. The output of node 221 is applied to a filter 223, which functions analogous to the filters after steps 207 and 218. The output signal of the filter 223 is the cooling fan motor drive signal 224.
  • the prioritization step 222 has also been supplied with the output signal of a regulator 227, which will now be explained in the following:
  • the setpoint value for the radiator differential temperature ⁇ T_cooler which is determined according to step 225, is supplied to a connection point 226, at which the radiator differential temperature setpoint value ⁇ T_cooler is to be subtracted from the so-called cooling reserve.
  • the cooling reserve is generally understood to be the difference between engine temperature Tmot and temperature at the radiator outlet T_KA (in particular, for example, T_MA, should-T_KA, should or T_ME, should-T_KA, shall).
  • the result of this node 226 is fed to the already mentioned controller in step 227.
  • the controller is supplied with a signal representing the coolant volume flow from step 233 in step 227.
  • the controller after step 227 may be implemented as a PI controller, for example.
  • Steps 228 to 232 represent the control signal determination for a radiator shutter (reference numeral 316 in FIG. 3 ).
  • the output of the Controller after step 227 of a prioritization 228 supplied.
  • the prioritization in step 228 is supplied with the output signal of the prioritization 234, which will be discussed in detail later.
  • the output signal of the prioritization after step 228, ie the prioritized controller value after step 227 is supplied to a node 230.
  • a pre-control value for the control of the radiator shutter X_Jalousie is determined from a characteristic map in a step 229 from the input signals engine load and vehicle speed V_vehicle.
  • the linkage after step 230 may be additive.
  • the output of the link after step 230 is supplied in step 231 to a filter analogous to steps 207, 218 and 223 in step 231.
  • the output of the filter after step 231 finally represents the drive signal 232 for the radiator shutter.
  • Step 233 represents an observer to which, in addition to the engine load, the drive signals for the radiator mixing valve 208, for the coolant pump 219, for the radiator fan 224 and for the blind 232 are supplied as an input signal.
  • the observer determines the currently prevailing coolant volume flow and makes it available as an output signal.
  • This output signal is, as already described above, fed to the regulators 203 and 227.
  • the job energy required for the respective components is output and passed to the prioritization in step 234.
  • the prioritization in step 234 is supplied to the vehicle state. With knowledge of the vehicle condition and the respective job energy, in step 234 a for the respective electrically operable components generate an individual priority signal and transmit it to the respective prioritizations in step 204, step 213, steps 222 and 228.
  • FIG. 3 shows an embodiment of a device according to the invention.
  • a block 300 is shown, which should symbolize the engine block of an internal combustion engine.
  • a cooling medium which serves to cool the engine block 300, flows out of the engine block 300 via a line 301.
  • This cooling medium in the line 301 is passed through a radiator mixing valve 302 in a line 303.
  • the cooling medium continues to flow, starting from the line 303, into a cooler 304. After the cooler 304, the cooling medium continues to flow through a line 305 in the direction of the coolant pump 307.
  • the coolant pump 307 pumps the cooling medium back into the engine block 300 via a line 308 Part of the cooling medium from line 301 is passed from the radiator mixing valve 302 via a line 306, the so-called bypass line, past the radiator 304 directly into the line 305.
  • a temperature sensor 312 detects the engine temperature Tmot
  • a temperature sensor 313 detects the engine output temperature T_MA
  • a temperature sensor 314 detects the radiator outlet temperature T_KA
  • a temperature sensor 315 detects the engine inlet temperature T_ME.
  • Tmot could e.g. an engine-internal coolant or component temperature or the engine outlet temperature.
  • radiator shutter 316 serves to foreclose the radiator 304 from the cooling wind during certain operating conditions, whereas the radiator fan 317 results in increased cooling of the cooling fluid in the radiator 304.
  • control unit 318 which is usually the engine control unit of the internal combustion engine and in addition to the control of the cooling system further tasks, such as the control of engine combustion takes over.
  • the control unit 318 is supplied with the signals of the temperature sensors 312, 313, 314 and 315 via the signal lines 321, 323, 324 and 326.
  • output signals for controlling the electrically actuatable components 302, 304, 316 and 317 are output by the control unit 318.
  • These are in detail the control signal for controlling the radiator mixing valve 302 via the signal line 319, the signal line 320 for controlling the radiator shutter 316, the signal line 322 for controlling the radiator fan 317 and the signal line 325 for controlling the coolant pump 307.
  • the engine control unit 318 is an in FIG. 3 not shown storage element in which the in FIG. 2 maps are stored.
  • the others in FIG. 2 The functions shown, such as the controller, prioritization, observer, maximum value selection and filters, are all functionally integrated in the 318 control unit. It is not essential to the invention whether the functions in the control unit are integrated as hardware, ie via circuits, or via software.
  • a software integrated in the control unit 318 which is suitable for carrying out the method according to the invention for controlling electrically actuatable components of the cooling system, thus fulfills the invention in the same way as a hard-wired circuit model.
  • the prioritization decides whether and, if appropriate, to what extent the controller intervention is added to the signal of the precontrol added as a control signal to the actuator or whether instead another actuator is controlled or whether the current control deviation should not be reduced.
  • the prioritization can also decide if a Realization of the desired cooling circuit state from the current cooling circuit state from energetically meaningful. However, deviations from the target specifications are only permitted for less critical operating conditions.
  • the cooling system By prioritizing the control of the cooling system is approximated to the energetic optimum. As far as possible, the cooling system is operated with a minimum coolant volume flow, a switched-off radiator fan and as far as possible a closed radiator shutter.
  • the dissipated cooling capacity is preferably regulated by the radiator valve or the radiator mixing valve. Only when the required cooling capacity can no longer be achieved with these specifications is a set-energy-optimal combination of the position of the radiator shutter, coolant pump and radiator fan actuated.
  • the invention ensures that the component load and the formation of so-called hot spots do not exceed the permissible level.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

L'invention concerne un procédé de commande de composants, pouvant être actionnés électriquement, d'un système de refroidissement d'un moteur à combustion interne d'un véhicule. L'invention concerne également un programme informatique destiné à un moteur à combustion interne d'un véhicule, un appareil de commande destiné à la commande de composants, pouvant être actionnés électriquement, d'un système de refroidissement d'un moteur à combustion interne d'un véhicule, un système de refroidissement destiné à un moteur à combustion interne d'un véhicule, comportant des composants commandables, pouvant être actionnés électriquement, ainsi qu'un moteur à combustion interne d'un véhicule.

Claims (16)

  1. Procédé de commande de composants à actionnement électrique d'un système de refroidissement d'un moteur à combustion interne de véhicule automobile, selon lequel les composants sont commandés par un appareil de commande (318) suivant l'état de fonctionnement actuel du véhicule, pour avoir un rendement global optimum du véhicule et/ou du système de refroidissement,
    - les valeurs de commande pilotes (106) et les valeurs de régulation (104) étant déterminées en tenant compte des valeurs réelles (101) obtenues et
    - on effectue une détermination de priorité (112) des composants en fonction de l'énergie d'actionnement requise, des valeurs réelles obtenues et d'autres grandeurs d'entrées,
    caractérisé en ce qu'
    on combine les valeurs de commande pilote (106), les valeurs de régulation (104) et les priorités des composants (112) (106, 107) et on en déduit les signaux de commande pour les différents composants à actionnement électrique.
  2. Procédé selon la revendication 1,
    caractérisé en ce que
    les valeurs de consigne de commande des composants sont enregistrées dans les champs de caractéristiques d'une mémoire de l'appareil de commande (318).
  3. Procédé selon la revendication 2,
    caractérisé en ce que
    les données de champ de caractéristiques sont enregistrées au moins en fonction de l'une des grandeurs d'influence suivantes:
    - vitesse du véhicule,
    - température ambiante,
    - température de l'agent de refroidissement en différents points du circuit de refroidissement,
    - température du moteur,
    - charge du moteur
    - type de conducteur,
    - réglage des soupapes, notamment de la soupape mélangeuse du radiateur,
    - trajet futur, prévisible selon le système de navigation.
  4. Procédé selon la revendication 2 ou 3,
    caractérisé en ce qu'
    on utilise les valeurs de consigne pour une commande pilote (205, 215, 217, 220, 229) des composants.
  5. Procédé selon la revendication 4,
    caractérisé en ce que
    la commande préalable (205, 215, 217, 220, 229) pour chaque point de fonctionnement donne une configuration pour commander (208, 219, 224, 232) les composants, cette configuration étant optimisée pour une énergie d'actionnement minimale des composants.
  6. Procédé selon la revendication 1,
    caractérisé en ce qu'
    on obtient un rendement optimum du système de refroidissement en ce qu'on optimise le réglage d'un état de fonctionnement de consigne du système de refroidissement sur l'énergie d'actionnement minimale des composants.
  7. Procédé selon la revendication 1 ou 6,
    caractérisé en ce que
    différentes priorités (234, 204, 213, 222, 228) sont associées aux composants selon le point de fonctionnement du véhicule.
  8. Procédé selon la revendication 7,
    caractérisé en ce que
    la constatation des priorités (234) se fait en fonction de l'énergie d'actionnement nécessaire (233) des composants respectifs aux points de fonctionnement correspondants.
  9. Procédé selon l'une des revendications précédentes,
    caractérisé en ce que
    la commande des composants se fait dans des conditions limites prédéfinies et la commande des composants est limitée à des valeurs minimales et maximales dépendant du point de fonctionnement.
  10. Procédé selon l'une des revendications précédentes,
    caractérisé en ce qu'
    on obtient une valeur de commande pour un composant à partir de la somme d'une valeur de commande pilote et d'une valeur de régulation (203, 211, 227) combinée avec une priorité.
  11. Procédé selon la revendication 10,
    caractérisé en ce qu'
    on filtre les valeurs de commande dans le temps (207, 218, 223, 231) pour réagir seulement de façon nécessaire à des variations de charge brusques.
  12. Procédé selon l'une des revendications précédentes,
    caractérisé en ce qu'
    on prédéfinit une température de consigne (201) comme grandeur de consigne pour le système de refroidissement du moteur.
  13. Procédé selon la revendication 12,
    caractérisé en ce que
    la variation de la température de consigne en fonction du temps est limitée en amplitude.
  14. Programme d'ordinateur pour un moteur à combustion interne,
    caractérisé en ce qu'
    il est programmé pour l'application d'un procédé selon l'une des revendications précédentes.
  15. Programme d'ordinateur selon la revendication 14 dans lequel la succession des ordres est enregistrée sur un support de données lisible par un ordinateur.
  16. Appareil de commande pour commander les composants à actionnement électrique d'un système de refroidissement d'un moteur à combustion interne d'un véhicule automobile selon lequel les composants sont commandés par l'appareil de commande (318) suivant le point de fonctionnement actuel du véhicule automobile et donnant un rendement optimum du véhicule automobile et/ou du système de refroidissement,
    - les valeurs de commande pilote (106) et les valeurs de régulation (104) se déterminent en tenant compte des valeurs réelles (101) obtenues,
    - et on attribue une priorité (112) aux composants selon l'énergie d'actionnement requise, les valeurs réelles obtenues et d'autres grandeurs d'entrée,
    caractérisé en ce qu'
    on combine (106, 107) les valeurs de commande pilote (106), les valeurs de régulation (104) et la priorité des composants (112) pour obtenir des signaux de commande pour les différents composants à actionnement électrique.
EP02787350A 2001-12-22 2002-10-23 Procede de commande de composants d'un systeme de refroidissement pouvant etre actionnes electriquement, programme informatique, appareil de commande, systeme de refroidissement et moteur a combustion interne Expired - Lifetime EP1461517B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE2001163943 DE10163943A1 (de) 2001-12-22 2001-12-22 Verfahren zur Ansteuerung von elektrisch betätigbaren Komponenten eines Kühlsystems, Computerprogramm, Steuergerät, Kühlsystem und Brennkraftmaschine
DE10163943 2001-12-22
PCT/DE2002/003991 WO2003056153A1 (fr) 2001-12-22 2002-10-23 Procede de commande de composants d'un systeme de refroidissement pouvant etre actionnes electriquement, programme informatique, appareil de commande, systeme de refroidissement et moteur a combustion interne

Publications (2)

Publication Number Publication Date
EP1461517A1 EP1461517A1 (fr) 2004-09-29
EP1461517B1 true EP1461517B1 (fr) 2008-03-05

Family

ID=7710853

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02787350A Expired - Lifetime EP1461517B1 (fr) 2001-12-22 2002-10-23 Procede de commande de composants d'un systeme de refroidissement pouvant etre actionnes electriquement, programme informatique, appareil de commande, systeme de refroidissement et moteur a combustion interne

Country Status (3)

Country Link
EP (1) EP1461517B1 (fr)
DE (2) DE10163943A1 (fr)
WO (1) WO2003056153A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4245585A4 (fr) * 2020-11-30 2024-05-01 Huawei Technologies Co., Ltd. Système de refroidissement par liquide, procédé de commande et dispositif de commande appliqué à celui-ci, et véhicule

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3912104B2 (ja) * 2001-12-25 2007-05-09 三菱自動車工業株式会社 エンジンの冷却装置
DE10337412A1 (de) * 2003-08-14 2005-03-10 Daimler Chrysler Ag Verfahren zur Ansteuerung eines Thermostaten
DE10348130A1 (de) 2003-10-16 2005-05-12 Daimler Chrysler Ag Kühlanlage für einen Verbrennungsmotor eines Kraftfahrzeugs
DE10351148A1 (de) * 2003-11-03 2005-06-02 Bayerische Motoren Werke Ag Kühlanlage für einen Verbrennungsmotor eines Fahrzeugs mit einer abschaltbaren Wasserpumpe
FR2866604B1 (fr) * 2004-02-19 2007-06-01 Plastic Omnium Cie Dispositif d'amenee d'air de refroidissement pour vehicule, procede d'asservissement d'un dispositif d'obturation d'une entree d'air et calculateur mettant en oeuvre le procede
WO2006042648A1 (fr) * 2004-10-15 2006-04-27 Behr Gmbh & Co. Kg Systeme de ventilation pour automobile
DE102005045499B4 (de) * 2005-09-23 2011-06-30 Audi Ag, 85057 Kühlmittelkreislauf für einen Verbrennungsmotor und Verfahren zur Regelung eines Kühlmittelstroms durch einen Kühlmittelkreislauf
DE102005062294A1 (de) * 2005-12-24 2007-06-28 Dr.Ing.H.C. F. Porsche Ag Verfahren zur Kühlung einer Brennkraftmaschine
DE102008049803B4 (de) * 2008-09-30 2018-04-12 Bayerische Motoren Werke Aktiengesellschaft Temperaturführung eines Kühlmittels mit optimierterAusnutzung einer verbleibenden Stressfähigkeit eines Motors
DE102009054401A1 (de) * 2009-11-24 2011-06-01 Continental Automotive Gmbh Verfahren zum Überwachen eines Kühlmittel-Temperatursensors sowie Steuereinrichtung
DE102010049868B4 (de) 2010-10-28 2023-06-15 Volkswagen Ag Steuern einer Kühlung einer Antriebsquelle eines Kraftfahrzeugs
DE102010054526A1 (de) 2010-12-15 2012-07-05 Volkswagen Ag Verfahren zur Steuerung einer Fahrzeuggeschwindigkeit und von Wärmeströmen für ein Fahrzeug sowie entsprechendes Fahrzeug
DE102011006350A1 (de) * 2011-03-29 2012-10-04 Behr Gmbh & Co. Kg Lüftungsvorrichtung für ein Kühlmodul insbesondere in einem Fahrzeug, Verfahren zum Betreiben einer Lüftungsvorrichtung und Kühlsystem insbesondere für ein Fahrzeug
DE102013205331A1 (de) * 2013-03-26 2014-10-02 Zf Friedrichshafen Ag Verfahren und Steuerungseinrichtung zum Betreiben eines Motorlüfters
DE102013216627A1 (de) * 2013-08-22 2015-02-26 Robert Bosch Gmbh Drehzahlvariable Fluid-Kühl-Filter-Anordnung
DE102014007303A1 (de) * 2014-05-17 2015-11-19 Man Truck & Bus Ag Steuer- oder Regelverfahren für ein Kraftfahrzeug
GB2529162B (en) * 2014-08-11 2017-11-08 Jaguar Land Rover Ltd A vehicle arrangement
DE102014015638A1 (de) 2014-10-22 2016-04-28 GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) Steuern einer Kühlmittelpumpe und/oder eines Stellventils eines Kühlsystems für eine ...
DE102021112242A1 (de) * 2021-05-11 2022-11-17 Volkswagen Aktiengesellschaft Verfahren zum elektrischen Laden einer Antriebsbatterie, Computerprogrammprodukt und Speichermittel

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3701584C2 (de) 1987-01-21 1996-02-15 Bosch Gmbh Robert Vorrichtung zum Betätigen einer am Kühler eines wassergekühlten Verbrennungsmotors eines Kraftfahrzeuges angeordneten Jalousie
DE3738412A1 (de) 1987-11-12 1989-05-24 Bosch Gmbh Robert Vorrichtung und verfahren zur motorkuehlung
DE19508102C1 (de) * 1995-03-08 1996-07-25 Volkswagen Ag Verfahren zur Regelung eines Kühlkreislaufes eines Verbrennungskraftmotors, insbesondere für Kraftfahrzeuge
DE69718111T2 (de) * 1996-08-26 2009-09-17 Sanden Corp., Isesaki Fahrzeugklimaanlage
DE19719792B4 (de) * 1997-05-10 2004-03-25 Behr Gmbh & Co. Verfahren und Vorrichtung zur Regulierung der Temperatur eines Mediums
ITTO980348A1 (it) * 1998-04-24 1999-10-24 Gate Spa Sistema di controllo a consumo elettrico minimo per un impianto di raf freddamento per un motore a combustione interna.
US6178928B1 (en) * 1998-06-17 2001-01-30 Siemens Canada Limited Internal combustion engine total cooling control system
DE19831901A1 (de) 1998-07-16 2000-01-20 Bosch Gmbh Robert Vorrichtung zum Kühlen eines Motors für ein Kraftfahrzeug
DE19951362A1 (de) * 1999-10-26 2001-05-03 Bosch Gmbh Robert Verfahren zur Regelung der Kühlwassertemperatur eines Kraftfahrzeugs mit einem Verbrennungsmotor
FR2808304B1 (fr) * 2000-04-27 2002-11-15 Valeo Thermique Moteur Sa Dispositif de refroidissement a l'arret d'un moteur thermique de vehicule automobile

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4245585A4 (fr) * 2020-11-30 2024-05-01 Huawei Technologies Co., Ltd. Système de refroidissement par liquide, procédé de commande et dispositif de commande appliqué à celui-ci, et véhicule

Also Published As

Publication number Publication date
DE10163943A1 (de) 2003-07-03
DE50211859D1 (de) 2008-04-17
WO2003056153A1 (fr) 2003-07-10
EP1461517A1 (fr) 2004-09-29

Similar Documents

Publication Publication Date Title
EP1461517B1 (fr) Procede de commande de composants d'un systeme de refroidissement pouvant etre actionnes electriquement, programme informatique, appareil de commande, systeme de refroidissement et moteur a combustion interne
EP1509687B1 (fr) Procede de regulation thermique de moteur a combustion interne pour vehicules
DE69925671T2 (de) Regelsystem für totale Kühlung einer Brennkraftmaschine
DE602006000188T2 (de) Verfahren, Computerprogrammprodukt und System zur Steuerung der Kühlungslüfter
DE102007056360B4 (de) Verfahren zur Regelung einer Brennkraftmaschine
DE102019102235A1 (de) System und verfahren zur motorkühlung
EP1387933B1 (fr) Procede pour reguler la temperature du liquide de refroidissement d'un moteur a combustion interne
DE10155339A1 (de) Verfahren zum Betreiben eines Verbrennungsmotors und Kraftfahrzeug
DE102007060670B4 (de) Verfahren zur Regelung einer Brennkraftmaschine
WO2017055017A1 (fr) Procédé de climatisation d'un véhicule
DE10234608A1 (de) Verfahren zum Betrieb eines Kühl- und Heizkreislaufs eines Kraftfahrzeugs
DE102011015260A1 (de) Antriebsstrang-Wärmeregelung mittels Kühlergrill-Luftstromverschlussklappen
EP1611325B1 (fr) Systeme d'entrainement et procede d'optimisation de la fourniture d'energie au systeme de refroidissement d'un systeme d'entrainement
EP1461516B1 (fr) Procede de commande de composants d'un systeme de refroidissement pouvant etre actionnes electriquement, programme informatique, appareil de commande, systeme de refroidissement et moteur a combustion interne
DE102019107193B4 (de) Steuerung für eine Wärmeverteilung sowie Verfahren zum Betrieb einer Wärmeverteilung
EP1524418A1 (fr) Procédé de commande d'un ventilateur avec plusieurs charactéristiques et progamme de commande pour la commande de puissance de ventilateur
DE19710384A1 (de) Drehzahlregeleinrichtung für eine Flüssigkeitsreibungskupplung
EP2530273B1 (fr) Engin doté d'un réglage de régime de ventilateur automatique
DE10260260B4 (de) Maschinenkühlsystem
WO2011066951A1 (fr) Véhicule doté d'un circuit de réfrigérant servant à distribuer la chaleur à des organes de véhicule
DE10228355A1 (de) Verfahren zur Wärmeregulierung einer Brennkraftmaschine
WO2005017326A1 (fr) Gestion de la chaleur d'un moteur a combustion interne
WO2006007958A1 (fr) Dispositif pour reguler le refroidissement d'un moteur a combustion interne de vehicules motorises
EP1308610B1 (fr) Procédé et dispositif pour commander un système de refroidissement d'un moteur à combustion interne
DE102008032102A1 (de) Steuersystem für Fahrzeuginnenraumheizung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040722

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

17Q First examination report despatched

Effective date: 20070112

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT

REF Corresponds to:

Ref document number: 50211859

Country of ref document: DE

Date of ref document: 20080417

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20081208

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20081025

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20081021

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20081222

Year of fee payment: 7

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091102

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091023