EP1507612B1 - Method for the galvanic coating of a continuous casting mould - Google Patents

Method for the galvanic coating of a continuous casting mould Download PDF

Info

Publication number
EP1507612B1
EP1507612B1 EP03735416.4A EP03735416A EP1507612B1 EP 1507612 B1 EP1507612 B1 EP 1507612B1 EP 03735416 A EP03735416 A EP 03735416A EP 1507612 B1 EP1507612 B1 EP 1507612B1
Authority
EP
European Patent Office
Prior art keywords
process according
coating
anode
casting mould
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03735416.4A
Other languages
German (de)
French (fr)
Other versions
EP1507612A1 (en
Inventor
Adrian Stilli
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMS Concast AG
Original Assignee
Concast AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Concast AG filed Critical Concast AG
Publication of EP1507612A1 publication Critical patent/EP1507612A1/en
Application granted granted Critical
Publication of EP1507612B1 publication Critical patent/EP1507612B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/08Electroplating with moving electrolyte e.g. jet electroplating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/059Mould materials or platings
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/10Agitating of electrolytes; Moving of racks
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/04Electroplating with moving electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/18Electroplating using modulated, pulsed or reversing current
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/04Tubes; Rings; Hollow bodies
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode

Definitions

  • the invention relates to a process for the galvanic coating of a continuous casting mold according to the preamble of claim 1.
  • Continuous casting molds are subject to continuous abrasive wear during casting operation, so that the mold cavity and thus also the cross-sectional dimensions of the cast strands become larger and larger. After a certain number of working cycles, therefore, the respective continuous casting mold must be replaced by a new or reworked.
  • the post-processing of the molds for the purpose of restoring the original geometry of the mold cavity or of the desired mold cavity.
  • the post-processing can be done, for example, by an explosion deformation of the mold on a mandrel.
  • This method is not only relatively complicated, expensive and polluting, but also means a deformation of Kokillenaussenform, which in turn brings an enlargement of existing at Kokillen express water gap and thus a negative impact on the Kokillenkühlung with it.
  • the latter disadvantage also has other known pressing method for recovering the molds, in which first the mold is compressed from the outside and then the mold cavity is brought to the original internal dimensions by internal grinding or internal milling.
  • a further disadvantage of the immersion electroplating coating is that the outer surfaces of the mold have to be covered with a material that is inert to the electrolytic treatment.
  • the present invention has for its object to provide a method of the type mentioned, with which the desired mold cavity can be achieved as easy as possible or even re-achieved in Stranggiesskokillen with polygonal polygonal mold cavity without problem areas in the corner regions of the mold cavity arise. Furthermore, it should be ensured that the continuous casting molds to be coated remain as unchanged as possible in their external dimensions.
  • both a thin layer of the wear-resistant material can be dimensionally accurate, without any need for reworking is, as well as a thick film (in which at best minimal rework occurs) are applied, since the layer structure evenly, without corner weaknesses occurs.
  • a significant advantage of the inventive method is that in the galvanic coating, only the inner surfaces of the mold cavity come into contact with the electrolyte and therefore the outer surfaces of the continuous casting mold need not be covered.
  • an intermittent pole reversal anode / cathode is possible with which a pulsating deposition of the coating material can be achieved and the coating can be influenced.
  • the coating can be achieved faster than with the conventional methods. A cartilage formation on the coated surfaces can be largely prevented.
  • a device 1 is shown, which is provided for the galvanic coating of a mold cavity 3 of a continuous casting 2 limiting inner surfaces 4 with a wear-resistant coating material in order to achieve or re-reaching a desired mold cavity.
  • the mold cavity 3 may for example have a rectangular or square cross-section and thus be limited by four inner surfaces 4. But it could also be a mold with a different mold cavity cross section (eg, round, polygonal, langckförmig) or a so-called dogbone mold.
  • the Stranggiesskokille 2 are the front side of a head and a bottom piece 5, 6 associated with each other, the projecting through a cavity 3 anode 7 with each other are connected. Sealing elements 8, 9 at the end faces of the continuous casting mold 2 seal the mold cavity 3 from. Also, the anode 7 is in the top and bottom piece 5, 6 sealingly inserted, see. Seals 13, 14. Both the bottom piece 6 and the head piece 5 are provided with at least one each, preferably with a number of openings 11 and 12 (in Fig. 1 each one opening 11, 12 indicated), the inlet or outlet openings for insertion or outlet of an electrode provided for the galvanic coating 25 into or form the otherwise sealed, forming a reactor space mold cavity 3.
  • This is pumped hydrodynamically controllable from a storage tank 15 by means of a pump 16 from below through the bottom piece 6 into the reactor chamber and passed with overflow (without pressure) on the head piece 5 back to the feed tank 15 and the pump 16.
  • the electrolyte 25, the coating material is metered as oxide from a container 18.
  • the continuous casting mold 2 as the cathode and the anode 7 with indicated wings 7 ' can be connected to a direct current source 20 and thereby form a direct current circuit.
  • Either the sealing elements 8, 9 or the seals 13, 14 act simultaneously electrically insulating.
  • the anode is adapted in its cross-sectional shape of the cross-sectional shape of the mold cavity 3.
  • prismatic anodes are used.
  • the anode consists in particular of a platinum or mixed ceramic-coated titanium material or of lead. It can also be designed as a multiple anode. In principle, however, the coating material, such as copper, nickel or chromium may be contained in the anode, where it would be provided in solid or piece form.
  • the inventive method is suitable for applying, for example, copper, nickel or chromium layers.
  • the coating material is supplied by the electrolyte 25 alone.
  • the anode itself is insoluble.
  • platinum coated titanium anodes, Pb sheet metal anodes, coated mixed ceramic, and other materials may be used.
  • methanesulfonic acid, cyanide or sulfuric acid electrolyte types it is possible to use methanesulfonic acid, cyanide or sulfuric acid electrolyte types. With these high-speed electrolytes, a current density of 20 to 40 A / dm 2 can be achieved during intensive electrolytic movement.
  • both a thin layer of the wear-resistant material can be mass-accurately applied without the need for reworking, as well as a thick layer (which requires minimal reworking if necessary), since the layer build-up is uniform and without corner weaknesses.
  • the process according to the invention brings significant advantages, in particular in the case of chromium plating, since particularly corner problems arise particularly with chromium in the conventional galvanic coating (layer 5 to 10 times smaller than on the surfaces), and the chromium can only be refinished with grinding.
  • a significant advantage of the inventive method is that in the galvanic coating, only the inner surfaces of the mold cavity come into contact with the electrolyte 25 and therefore the outer surfaces of the continuous casting mold do not need to be covered.
  • the anode and / or the continuous casting mold could in principle be designed to be rotatable about its longitudinal axis, so that a rotation during the coating and thus an improved coating could be made possible.
  • the continuous casting mold 2 is cleaned before coating by a rinsing process, in particular a cascade rinse, which is not explained in detail. It is involved here for the coating and preferably for this rinse in a closed system.
  • the continuous casting mold consists of a metallic material or material composite, such as copper, aluminum, nickel, of a plastic or composite plastic or of a ceramic material or other materials.
  • a rectifier device can be provided, by means of which the current direction can be reversed in order to achieve a uniform layer application.
  • the continuous casting mold 2 may alternatively be reinforced only in certain areas or areas, i. coated with a greater layer thickness, in which a relatively higher wear occurs during operation, for example in the region of the bath surface, in which an additional wear occurs in particular by the covering material. This achieves an efficient coating.
  • Such partial coating can be achieved by partially covering the anode or by inserting non-conductive diaphragms or by similar means.
  • electromagnetic fields can be generated by magnets not shown in detail by which the particles of the coating material are conducted or guided such that in certain areas, preferably in the edge regions of the continuous casting mold, an equally thick layer deposits as in the other areas.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Continuous Casting (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Mold Materials And Core Materials (AREA)

Description

Die Erfindung betrifft ein Verfahren zur galvanischen Beschichtung einer Stranggiesskokille gemäss dem Oberbegriff des Anspruches 1.The invention relates to a process for the galvanic coating of a continuous casting mold according to the preamble of claim 1.

Stranggiesskokillen unterliegen beim Giessbetrieb einem ständigen abrasiven Verschleiss, so dass der Formhohlraum und somit auch die Querschnittabmasse der gegossenen Stränge immer grösser wird. Nach einer bestimmten Anzahl von Arbeitszyklen muss daher die jeweilige Stranggiesskokille durch eine neue ersetzt oder nachbearbeitet werden.Continuous casting molds are subject to continuous abrasive wear during casting operation, so that the mold cavity and thus also the cross-sectional dimensions of the cast strands become larger and larger. After a certain number of working cycles, therefore, the respective continuous casting mold must be replaced by a new or reworked.

Es sind verschiedene Methoden für die Nachbearbeitung der Kokillen zwecks Wiederherstellung der ursprünglichen Geometrie des Formhohlraumes bzw. des Formhohlraum-Sollmasses bekannt. Die Nachbearbeitung kann zum Beispiel durch eine Explosionsverformung der Kokille auf einen Dorn erfolgen. Diese Methode ist nicht nur relativ kompliziert, teuer und umweltbelastend, sondern bedeutet auch eine Deformation der Kokillenaussenform, was wiederum eine Vergrösserung eines am Kokillenumfang vorhandenen Wasserspaltes und dadurch einen negativen Einfluss auf die Kokillenkühlung mit sich bringt. Den letztgenannten Nachteil haben auch andere bekannte Pressverfahren zum Zurückformen der Kokillen, bei welchen zuerst die Kokille von aussen zusammengedrückt und anschliessend der Formhohlraum auf das ursprüngliche Innenmass durch Innenschleifen oder Innenfräsen gebracht wird.There are various methods for the post-processing of the molds for the purpose of restoring the original geometry of the mold cavity or of the desired mold cavity. The post-processing can be done, for example, by an explosion deformation of the mold on a mandrel. This method is not only relatively complicated, expensive and polluting, but also means a deformation of Kokillenaussenform, which in turn brings an enlargement of existing at Kokillenumfang water gap and thus a negative impact on the Kokillenkühlung with it. The latter disadvantage also has other known pressing method for recovering the molds, in which first the mold is compressed from the outside and then the mold cavity is brought to the original internal dimensions by internal grinding or internal milling.

Schliesslich ist aus der EP-A-0 282 759 bekannt, den Formhohlraum einer Stranggiesskokille durch galvanische Beschichtung der den Formhohlraum begrenzenden Innenflächen auf das Sollmass wiederzubringen. Bei diesem gattungsbildenden Verfahren wird die als Kathode dienende Kokille mitsamt eines mit löslichen Kupferstücken (Würfel, Kugeln, Scheiben) gefüllten, im Formhohlraum angeordneten gelochten Anodenkorbes in ein Elektrolytbad (Cu-Sulfatbad) eingetaucht. Bei einem Gleichstromanschluss findet eine Abscheidung des Kupfers aus dem Elektrolytbad und Ablagerung desselben auf den Kokillenflächen statt, wobei das aus dem Elektrolytbad abgeschiedene Kupfer durch das aufgelöste Anodenkupfer ersetzt wird. Bei diesem Tauchgalvanik-Verfahren wird eine relativ niedrige Stromdichte, beispielsweise von etwa 15 A/dm2, erreicht. Bei der Tauchgalvanik-Beschichtung von meistens im Querschnitt polygonalen Formhohlräumen besteht erfahrungsgemäss die Gefahr, dass in den Eckbereichen die Schicht unzureichend dick wird, das heisst, dass die Schichtdicke nur etwa 1/4 bis 1/10 derjenigen in den übrigen Bereichen beträgt. Diesem ungleichmässigen Schichtaufbau kann mit speziellen Anodengeometrien nur teilweise abgeholfen werden. Dies bedeutet, dass eine weitere mechanische Nachbearbeitung notwendig ist.Finally is from the EP-A-0 282 759 It is known to restore the mold cavity of a continuous casting mold to the desired dimension by electroplating the inner surfaces delimiting the mold cavity. In this generic process, the mold serving as a cathode is immersed in an electrolyte bath (Cu sulphate bath) together with a perforated anode basket filled with soluble copper pieces (cubes, spheres, disks) and arranged in the mold cavity. In a DC connection, a deposition of the copper from the electrolyte bath and deposition of the same takes place on the Kokillenflächen, wherein the deposited from the electrolyte bath copper is replaced by the dissolved anode copper. In this Tauchvanvanik process is a relatively low current density, for example, of about 15 A / dm 2 , achieved. In the dipping electroplating of mostly polygonal cross-sectional mold cavities experience has shown that the risk that in the corner regions, the layer is insufficiently thick, that is, the layer thickness is only about 1/4 to 1/10 of that in the other areas. This uneven layer structure can be remedied only partially with special anode geometries. This means that further mechanical post-processing is necessary.

Bei Anfertigung von Dickschichten besteht zudem die Gefahr, dass sich Eckbrücken mit eingeschlossenen Hohlräumen bilden, wodurch die Kokille unbrauchbar wird. Ein weiterer Nachteil der Tauchgalvanik-Beschichtung besteht darin, dass die Aussenflächen der Kokille mit einem gegenüber der elektrolytischen Behandlung inerten Material abgedeckt werden müssen.When making thick layers there is also the danger that corner bridges form with enclosed cavities, whereby the mold is unusable. A further disadvantage of the immersion electroplating coating is that the outer surfaces of the mold have to be covered with a material that is inert to the electrolytic treatment.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art vorzuschlagen, mit welchem das Formhohlraum-Sollmass auch bei Stranggiesskokillen mit im Querschnitt polygonalen Formhohlraum möglichst einfach erreicht oder wiedererreicht werden kann, ohne dass Problemzonen in den Eckbereichen des Formhohlraumes entstehen. Ferner soll erreicht werden, dass die zu beschichtenden Stranggiesskokillen in ihren Aussenabmessungen möglichst unverändert bleiben.The present invention has for its object to provide a method of the type mentioned, with which the desired mold cavity can be achieved as easy as possible or even re-achieved in Stranggiesskokillen with polygonal polygonal mold cavity without problem areas in the corner regions of the mold cavity arise. Furthermore, it should be ensured that the continuous casting molds to be coated remain as unchanged as possible in their external dimensions.

Diese Aufgabe wird erfindungsgemäss durch ein Verfahren mit den Merkmalen des Anspruches 1 gelöst.This object is achieved according to the invention by a method having the features of claim 1.

Bevorzugte Weitergestaltungen der Erfindung bilden den Gegenstand der abhängigen Ansprüche.Preferred embodiments of the invention form the subject of the dependent claims.

Mit dem erfindungsgemässen Verfahren, bei welchem der Formhohlraum der kathodebildenden Stranggiesskokille unter Verwendung einer unlöslichen Anode vom Elektrolyt hydrodynamisch kontrollierbar durchströmt wird, wobei der Elektrolyt allein das Beschichtungsmaterial liefert, kann sowohl eine Dünnschicht des verschleissfesten Materials massgenau, ohne dass eine Nachbearbeitung notwendig ist, als auch eine Dickschicht (bei der allenfalls minimale Nacharbeit anfällt) aufgetragen werden, da der Schichtaufbau gleichmässig, ohne Eckschwächen, erfolgt. Ein wesentlicher Vorteil des erfindungsgemässen Verfahrens besteht darin, dass bei der galvanischen Beschichtung lediglich die Innenflächen des Formhohlraumes mit dem Elektrolyt in Kontakt kommen und daher die Aussenflächen der Stranggiesskokille nicht abgedeckt werden müssen. Zudem ist auch eine intermittierende Polumkehr Anode/Kathode möglich, mit der ein pulsierendes Abscheiden des Beschichtungsmaterials erreicht und die Beschichtung beeinflusst werden kann.With the method according to the invention, in which the mold cavity of the cathode-forming continuous casting mold is flowed through hydrodynamically controllable by the electrolyte using an insoluble anode, wherein the electrolyte alone supplies the coating material, both a thin layer of the wear-resistant material can be dimensionally accurate, without any need for reworking is, as well as a thick film (in which at best minimal rework occurs) are applied, since the layer structure evenly, without corner weaknesses occurs. A significant advantage of the inventive method is that in the galvanic coating, only the inner surfaces of the mold cavity come into contact with the electrolyte and therefore the outer surfaces of the continuous casting mold need not be covered. In addition, an intermittent pole reversal anode / cathode is possible with which a pulsating deposition of the coating material can be achieved and the coating can be influenced.

Als besonderer Vorteil sei hervorzuheben, dass die mechanischen Eigenschaften, wie beispielsweise die Härte, und insbesondere auch die Gefügestruktur der Beschichtung über den gesamten Bereich weitgehend gleichmässig gehalten werden können. Die Beschichtung kann schneller als mit den herkömmlichen Verfahren erzielt werden. Auch eine Knorpelbildung an den beschichteten Oberflächen kann weitgehend verhindert werden.A particular advantage should be emphasized that the mechanical properties, such as hardness, and in particular the microstructure of the coating over the entire area can be kept substantially uniform. The coating can be achieved faster than with the conventional methods. A cartilage formation on the coated surfaces can be largely prevented.

Die Erfindung wird nachfolgend anhand der Zeichnung näher erläutert.The invention will be explained in more detail with reference to the drawing.

Es zeigt:

  • Fig. 1 ein Prinzipschema des erfindungsgemässen Verfahrens.
It shows:
  • Fig. 1 a schematic diagram of the inventive method.

In Fig. 1 ist rein schematisch eine Vorrichtung 1 dargestellt, die zur galvanischen Beschichtung von einen Formhohlraum 3 einer Stranggiessanlage 2 begrenzenden Innenflächen 4 mit einem verschleissfesten Beschichtungsmaterial zwecks Erreichen oder Wiedererreichen eines Formhohlraum-Sollmasses vorgesehen ist. Der Formhohlraum 3 kann beispielsweise einen rechteckförmigen oder quadratischen Querschnitt aufweisen und somit durch vier Innenflächen 4 begrenzt sein. Es könnte sich aber auch um eine Kokille mit einem anderen Formhohlraumquerschnitt (z.B. rund, vieleckig, langeckförmig) oder um eine sogenannte Dogbone-Kokille handeln.In Fig. 1 is purely schematically a device 1 is shown, which is provided for the galvanic coating of a mold cavity 3 of a continuous casting 2 limiting inner surfaces 4 with a wear-resistant coating material in order to achieve or re-reaching a desired mold cavity. The mold cavity 3 may for example have a rectangular or square cross-section and thus be limited by four inner surfaces 4. But it could also be a mold with a different mold cavity cross section (eg, round, polygonal, langckförmig) or a so-called dogbone mold.

Der Stranggiesskokille 2 sind stirnseitig ein Kopf- sowie ein Bodenstück 5, 6 zugeordnet, die über eine den Formhohlraum 3 durchragende Anode 7 miteinander verbunden sind. Dichtungselemente 8, 9 an den Stirnflächen der Stranggiesskokille 2 dichten den Formhohlraum 3 ab. Auch die Anode 7 ist im Kopf- und Bodenstück 5, 6 dichtend eingesetzt, vgl. Dichtungen 13, 14. Sowohl das Bodenstück 6 als auch das Kopfstück 5 sind mit mindestens je einer, vorzugsweise mit einer Anzahl von Oeffnungen 11 bzw. 12 versehen (in Fig. 1 ist je eine Oeffnung 11, 12 angedeutet), die Eintritts- bzw. Austrittsöffnungen zum Einführen bzw. Auslass eines zur galvanischen Beschichtung vorgesehenen Elektrolyten 25 in den bzw. aus dem ansonsten dicht verschlossenen, einen Reaktorraum bildenden Formhohlraum 3 bilden. Dieser wird aus einem Vorlagebehälter 15 mit Hilfe einer Pumpe 16 von unten durch das Bodenstück 6 hydrodynamisch kontrollierbar in den Reaktorraum gepumpt und mit Ueberlauf (drucklos) am Kopfstück 5 zurück zum Vorlagebehälter 15 bzw. zur Pumpe 16 geführt. Dem Elektrolyt 25 wird das Beschichtungsmaterial als Oxyd aus einem Behälter 18 zudosiert.The Stranggiesskokille 2 are the front side of a head and a bottom piece 5, 6 associated with each other, the projecting through a cavity 3 anode 7 with each other are connected. Sealing elements 8, 9 at the end faces of the continuous casting mold 2 seal the mold cavity 3 from. Also, the anode 7 is in the top and bottom piece 5, 6 sealingly inserted, see. Seals 13, 14. Both the bottom piece 6 and the head piece 5 are provided with at least one each, preferably with a number of openings 11 and 12 (in Fig. 1 each one opening 11, 12 indicated), the inlet or outlet openings for insertion or outlet of an electrode provided for the galvanic coating 25 into or form the otherwise sealed, forming a reactor space mold cavity 3. This is pumped hydrodynamically controllable from a storage tank 15 by means of a pump 16 from below through the bottom piece 6 into the reactor chamber and passed with overflow (without pressure) on the head piece 5 back to the feed tank 15 and the pump 16. The electrolyte 25, the coating material is metered as oxide from a container 18.

Für die galvanische Beschichtung ist die Stranggiesskokille 2 als Kathode und die Anode 7 mit angedeuteten Flügeln 7' an eine Gleichstromquelle 20 anschliessbar und bilden hierdurch einen Gleichstromkreis. Entweder die Dichtungselemente 8, 9 oder die Dichtungen 13, 14 wirken gleichzeitig elektrisch isolierend. Die Anode ist in ihrer Querschnittsform der Querschnittsform des Formhohlraumes 3 angepasst. Für polygonale Formhohlräume werden entsprechende prismatische Anoden verwendet. Die Anode besteht insbesondere aus einem Platin- oder Mischkeramik-beschichteten Titanmaterial oder aus Blei. Sie kann auch als Mehrfachanode ausgebildet sein. Grundsätzlich kann aber auch das Beschichtungsmaterial, wie zum Beispiel Kupfer, Nickel oder Chrom in der Anode enthalten sein, wobei es in Massiv- oder Stückform vorgesehen wäre.For the galvanic coating, the continuous casting mold 2 as the cathode and the anode 7 with indicated wings 7 'can be connected to a direct current source 20 and thereby form a direct current circuit. Either the sealing elements 8, 9 or the seals 13, 14 act simultaneously electrically insulating. The anode is adapted in its cross-sectional shape of the cross-sectional shape of the mold cavity 3. For polygonal mold cavities corresponding prismatic anodes are used. The anode consists in particular of a platinum or mixed ceramic-coated titanium material or of lead. It can also be designed as a multiple anode. In principle, however, the coating material, such as copper, nickel or chromium may be contained in the anode, where it would be provided in solid or piece form.

Das erfindungsgemässe Verfahren ist zum Auftragen von beispielsweise Kupfer-, Nickel- oder Chromschichten geeignet. Das Beschichtungsmaterial wird durch den Elektrolyt 25 allein geliefert. Die Anode an sich ist unlöslich. Es kann sich zum Beispiel um platinbeschichtete Anoden aus Titan, Anoden aus Pb-Blech, beschichtete Mischkeramik und andere Materialien handeln. Bei den Elektrolyten können methansulfonsaure, cyanidische oder schwefelsaure Elektrolyttypen Anwendung finden. Mit diesen Hochgeschwindigkeitselektrolyten kann bei der intensiven Elektrolytbewegung eine Stromdichte von 20 bis 40 A/dm2 erreicht werden. Mit einer effizienten hydrodynamischen Steuerung des Elektrolytdurchflusses durch den Reaktorraum kann sowohl eine Dünnschicht des verschleissfesten Materials massgenau, ohne dass eine Nachbearbeitung notwendig ist, als auch eine Dickschicht (bei der allenfalls minimale Nacharbeit anfällt) aufgetragen werden, da der Schichtaufbau gleichmässig und ohne Eckschwächen erfolgt. Das erfindungsgemässe Verfahren bringt insbesondere bei Chrombeschichtung wesentliche Vorteile, da gerade bei Chrom bei der herkömmlichen galvanischen Beschichtung besonders stark Eckprobleme entstehen (Schicht 5 bis 10 mal kleiner als auf den Flächen), und der Chrom nur mit schleifen nachgearbeitet werden kann.The inventive method is suitable for applying, for example, copper, nickel or chromium layers. The coating material is supplied by the electrolyte 25 alone. The anode itself is insoluble. For example, platinum coated titanium anodes, Pb sheet metal anodes, coated mixed ceramic, and other materials may be used. In the case of the electrolytes, it is possible to use methanesulfonic acid, cyanide or sulfuric acid electrolyte types. With these high-speed electrolytes, a current density of 20 to 40 A / dm 2 can be achieved during intensive electrolytic movement. With an efficient hydrodynamic control of the electrolyte flow through the reactor space, both a thin layer of the wear-resistant material can be mass-accurately applied without the need for reworking, as well as a thick layer (which requires minimal reworking if necessary), since the layer build-up is uniform and without corner weaknesses. The process according to the invention brings significant advantages, in particular in the case of chromium plating, since particularly corner problems arise particularly with chromium in the conventional galvanic coating (layer 5 to 10 times smaller than on the surfaces), and the chromium can only be refinished with grinding.

Mit dem erfindungsgemässen Verfahren, bei welchem der Elektrolyt 25 allein das Beschichtungsmaterial liefert, kann auch pulsierendes Abscheiden des Beschichtungsmaterials erreicht werden, da neben der hydrodynamischen Steuerung auch eine intermittierende Polumkehr Anode/Kathode möglich ist und die Beschichtung beeinflussen kann.With the method according to the invention, in which the electrolyte 25 alone provides the coating material, it is also possible to achieve pulsating deposition of the coating material, since in addition to the hydrodynamic control, an intermittent pole reversal anode / cathode is also possible and can influence the coating.

Ein wesentlicher Vorteil des erfindungsgemässen Verfahrens besteht darin, dass bei der galvanischen Beschichtung lediglich die Innenflächen des Formholraumes mit dem Elektrolyt 25 in Kontakt kommen und daher die Aussenflächen der Stranggiesskokille nicht abgedeckt werden müssen.A significant advantage of the inventive method is that in the galvanic coating, only the inner surfaces of the mold cavity come into contact with the electrolyte 25 and therefore the outer surfaces of the continuous casting mold do not need to be covered.

Die Anode und/oder die Stranggiesskokille könnten im Prinzip um ihre Längsachse rotierbar ausgebildet sein, so dass eine Rotation während der Beschichtung und damit eine verbesserte Beschichtung ermöglicht werden könnte.The anode and / or the continuous casting mold could in principle be designed to be rotatable about its longitudinal axis, so that a rotation during the coating and thus an improved coating could be made possible.

Die Stranggiesskokille 2 wird vor der Beschichtung durch einen Spülprozess, insbesondere eine Kaskadenspülung, gereinigt, was nicht näher erläutert ist. Sie ist hierbei für die Beschichtung und vorzugsweise für diese Spülung in einem geschlossenen System eingebunden.The continuous casting mold 2 is cleaned before coating by a rinsing process, in particular a cascade rinse, which is not explained in detail. It is involved here for the coating and preferably for this rinse in a closed system.

Die Stranggiesskokille besteht aus einem metallischen Werkstoff oder Werkstoffverbund, wie Kupfer, Aluminium, Nickel, aus einem Kunststoff oder Verbundkunststoff oder aus einem Keramikwerkstoff oder anderen Werkstoffen.The continuous casting mold consists of a metallic material or material composite, such as copper, aluminum, nickel, of a plastic or composite plastic or of a ceramic material or other materials.

Es kann ferner eine Gleichrichtereinrichtung vorgesehen sein, mittels der die Stromrichtung zwecks Erzielung eines gleichmässigen Schichtauftragens umkehrbar ist.Furthermore, a rectifier device can be provided, by means of which the current direction can be reversed in order to achieve a uniform layer application.

Ferner wird bei Verwendung von Kupfer als Beschichtungsmaterial vorgängig ein käufliches Kupferoxyd genommen, bei welchem der zu grosse Chlorgehalt mittels eines Wasch-/Löse-Prozesses reduziert wird.Furthermore, when using copper as the coating material, a commercially available copper oxide is previously taken, in which the excessively high chlorine content is reduced by means of a washing / dissolving process.

Die Stranggiesskokille 2 kann alternativ nur in bestimmten Bereichen oder bei diesen Bereichen verstärkt, d.h. mit einer grösseren Schichtdicke, beschichtet werden, bei denen im Betrieb ein verhältnismässig höherer Verschleiss auftritt, beispielsweise im Bereich der Badoberfläche, bei dem insbesondere durch das Abdeckmaterial ein zusätzlicher Verschleiss auftritt. Damit wird eine effiziente Beschichtung erzielt. Ein solches partielles Beschichten kann durch teilweises Abdecken der Anode oder durch Einschieben von nicht leitenden Blenden oder durch ähnliche Massnahmen erzielt werden.The continuous casting mold 2 may alternatively be reinforced only in certain areas or areas, i. coated with a greater layer thickness, in which a relatively higher wear occurs during operation, for example in the region of the bath surface, in which an additional wear occurs in particular by the covering material. This achieves an efficient coating. Such partial coating can be achieved by partially covering the anode or by inserting non-conductive diaphragms or by similar means.

Während des Beschichtungsvorganges können elektromagnetische Felder von nicht näher gezeigten Magneten erzeugt werden, durch welche die Partikel des Beschichtungsmaterials derart geleitet oder geführt werden, dass sich in bestimmten Bereichen, vorzugsweise in den Kantenbereichen der Stranggiesskokille, eine gleich dicke Schicht wie in den übrigen Bereichen abscheidet.During the coating process, electromagnetic fields can be generated by magnets not shown in detail by which the particles of the coating material are conducted or guided such that in certain areas, preferably in the edge regions of the continuous casting mold, an equally thick layer deposits as in the other areas.

Die Erfindung ist mit den obigen Ausführungen ausreichend dargetan. Sie könnte selbstverständlich noch in anderen Varianten veranschaulicht werden.The invention is sufficiently demonstrated with the above statements. It could of course be illustrated in other variants.

Claims (13)

  1. Process for electrolytic coating of a strand casting mould (2), in which the internal surfaces (4) of the strand casting mould (2), which demarcate a mould cavity (3), are coated with a coating material for the purpose of achieving or re-achieving intended mould cavity dimensions, the strand casting mould (2), as the cathode, an anode (7) positioned in the mould cavity (3) and an electrolyte (25) which contains the coating material being used, characterized in that an insoluble anode (7) having a cross sectional shape, which is adapted to the cross sectional shape of mold cavity (3), is introduced into the mold cavity (3), the mold cavity (3) is sealed at the face side with sealing elements (8, 9) and with a head - (5) and a bottom piece (6) and will be controlled flowed through by the electrolyte serving as carrier of the coating material, and that the current direction is changed periodically by means of a rectifier device or the like with pole-changing function, and by a corresponding choice of this periodic change a uniform layer application is achieved by this means.
  2. Process according to claim 1, characterized in that copper, nickel or chromium is used as the coating material and each is metered into the electrolyte (25) as oxide.
  3. Process according to claim 1 or 2, characterized in that an electrolyte (25) containing methanesulfonic acid, cyanide or sulfuric acid is used.
  4. Process according to any one of claims 1 to 3, characterized in that the anode (7) used in insoluble form, which can be also constructed as a multiple anode, is constructed from a platinum- or mixed ceramic-coated titanium material or from lead.
  5. Process according to any one of the claims 1 to 4, characterized in that the electrolyte (25) is pumped by means of a pump (16) into a reactor space which is surrounded by the internal surfaces (4) of the mould cavity (3) and is closed off at the faces by a base - and a head piece (6, 5), and is fed from this back to the pump (16).
  6. Process according to any one of the claims 1 to 5, characterized in that the anode (7) and/or the strand casting mould (2) are constructed rotatably around their longitudinal axis, so that rotation during the coating is rendered possible.
  7. Process according to any one of the claims 1 to 6, characterized in that the strand casting mould (2) is cleaned by a rinsing process, in particular a cascade rinsing, before the coating.
  8. Process according to any one of the claims 1 to 7, characterized in that the strand casting mould (2) is integrated in a closed system for the coating and preferably for the rinsing.
  9. Process according to any one of the claims 1 to 8, characterized in that the strand casting mould (2) is made from a metallic material or composite material, such as copper, aluminum, nickel, from a plastic or composite plastic or from a ceramic material or other materials.
  10. Process according to claim 1, characterized in that if copper is used, a commercially available copper oxide is used beforehand, in which the too high chlorine content is reduced by means of a washing-/dissolving process.
  11. Process according to any one of the claims 1 to 10, characterized in that the inner surfaces of a polygonal rectangular mold cavity cross section will be coated.
  12. Process according to claim 1, characterized in that the coating material, such as for example, copper, nickel or chromium, is employed as the anode.
  13. Process according to any one of the claims 1 to 12, characterized in that during the coating operation the particles of the coating material are conducted by electromagnetic fields such that in certain regions, in particular in the edge regions of the strand casting mould, a layer of the same thickness as in the other regions is deposited.
EP03735416.4A 2002-05-27 2003-05-19 Method for the galvanic coating of a continuous casting mould Expired - Lifetime EP1507612B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH8762002 2002-05-27
CH8762002 2002-05-27
PCT/EP2003/005238 WO2003099490A1 (en) 2002-05-27 2003-05-19 Method for the galvanic coating of a continuous casting mould

Publications (2)

Publication Number Publication Date
EP1507612A1 EP1507612A1 (en) 2005-02-23
EP1507612B1 true EP1507612B1 (en) 2013-12-11

Family

ID=29555531

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03735416.4A Expired - Lifetime EP1507612B1 (en) 2002-05-27 2003-05-19 Method for the galvanic coating of a continuous casting mould

Country Status (13)

Country Link
EP (1) EP1507612B1 (en)
JP (1) JP5008111B2 (en)
KR (1) KR101082896B1 (en)
CN (1) CN100335200C (en)
AU (1) AU2003236679B2 (en)
BR (1) BR0311374B1 (en)
CA (1) CA2504369C (en)
ES (1) ES2452727T3 (en)
MX (1) MXPA04011734A (en)
PL (1) PL206254B1 (en)
RU (1) RU2318631C2 (en)
WO (1) WO2003099490A1 (en)
ZA (1) ZA200408991B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9307648B2 (en) 2004-01-21 2016-04-05 Microcontinuum, Inc. Roll-to-roll patterning of transparent and metallic layers
US7329334B2 (en) * 2004-09-16 2008-02-12 Herdman Roderick D Controlling the hardness of electrodeposited copper coatings by variation of current profile
EP1849181A4 (en) * 2005-01-21 2009-03-18 Microcontinuum Inc Replication tools and related fabrication methods and apparatus
EA008676B1 (en) * 2005-08-22 2007-06-29 Республиканское Унитарное Предприятие "Белорусский Металлургический Завод" Method for applying two-layer galvanic coating on copper sleeve and crystallizer plate
CA2643510C (en) 2006-02-27 2014-04-29 Microcontinuum, Inc. Formation of pattern replicating tools
DE102006037728A1 (en) * 2006-08-11 2008-02-14 Sms Demag Ag Mold for the continuous casting of liquid metal, in particular of steel materials
DE202009013126U1 (en) 2009-09-29 2009-12-10 Egon Evertz Kg (Gmbh & Co.) Mold for continuous casting
US9589797B2 (en) 2013-05-17 2017-03-07 Microcontinuum, Inc. Tools and methods for producing nanoantenna electronic devices
CN107034497A (en) * 2017-04-28 2017-08-11 长安大学 A kind of electroplanting device for oil well pipe box cupling inner surface

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51116123A (en) * 1975-04-04 1976-10-13 Pioneer Electronic Corp Electrocasting mold drawing method
DE2936177A1 (en) * 1979-09-07 1981-05-21 Evertz, Egon, 5650 Solingen Chill mould wall plating system - using currentless plating soln. for cooling grooves and electroplating inside wall
JPS5647592A (en) * 1979-09-25 1981-04-30 Satoosen:Kk Plating method of inner surface of casting mold for continuous casting
JPS5937704B2 (en) * 1980-06-02 1984-09-11 川崎製鉄株式会社 Manufacturing method for continuous casting molds
JPS60145247A (en) * 1983-12-29 1985-07-31 Kawasaki Steel Corp Mold for continuous casting and its production
JPS63104752A (en) * 1986-10-22 1988-05-10 Sumitomo Metal Ind Ltd Surface treating method for mold for continuous casting
JPH0222495A (en) * 1988-07-11 1990-01-25 Mitsubishi Heavy Ind Ltd Method for plating mold for continuous casting
JPH02149696A (en) * 1988-11-30 1990-06-08 Kawasaki Steel Corp Method for controlling plating amount at plate edge in electroplating
JPH071086A (en) * 1993-06-15 1995-01-06 Daido Steel Co Ltd Method for repairing copper-made casting mold
JPH07118889A (en) * 1993-09-02 1995-05-09 Yamaha Motor Co Ltd Plating solution, plating method and interior plated engine cylinder
US5516415A (en) * 1993-11-16 1996-05-14 Ontario Hydro Process and apparatus for in situ electroforming a structural layer of metal bonded to an internal wall of a metal tube
JP3333025B2 (en) * 1993-12-08 2002-10-07 日本パーカライジング株式会社 Electro-composite plating method and apparatus for metal material
JPH07169714A (en) * 1993-12-15 1995-07-04 Casio Comput Co Ltd Method and device for plating
TW318320B (en) * 1995-08-07 1997-10-21 Eltech Systems Corp
FR2750438B1 (en) * 1996-06-27 1998-08-07 Usinor Sacilor METHOD AND INSTALLATION FOR ELECTROLYTIC COATING WITH A METAL LAYER OF THE SURFACE OF A CYLINDER FOR CONTINUOUS CASTING OF THIN METAL STRIPS
US6071398A (en) * 1997-10-06 2000-06-06 Learonal, Inc. Programmed pulse electroplating process
JP3375549B2 (en) * 1998-09-29 2003-02-10 本田技研工業株式会社 Composite plating method for cylindrical members
FR2806098B1 (en) * 2000-03-09 2002-08-16 Usinor DEVICE FOR ELECTRODEPOSITION OF AN ANNULAR METAL PART OF COMPLEX FORM

Also Published As

Publication number Publication date
CN100335200C (en) 2007-09-05
BR0311374A (en) 2005-03-15
EP1507612A1 (en) 2005-02-23
WO2003099490A1 (en) 2003-12-04
RU2004138096A (en) 2005-06-10
MXPA04011734A (en) 2005-11-04
RU2318631C2 (en) 2008-03-10
ZA200408991B (en) 2007-08-29
PL206254B1 (en) 2010-07-30
KR20050004877A (en) 2005-01-12
BR0311374B1 (en) 2011-08-23
CA2504369C (en) 2008-11-18
AU2003236679B2 (en) 2008-08-28
AU2003236679A1 (en) 2003-12-12
CA2504369A1 (en) 2003-12-04
JP5008111B2 (en) 2012-08-22
ES2452727T3 (en) 2014-04-02
CN1655893A (en) 2005-08-17
JP2005527705A (en) 2005-09-15
PL371684A1 (en) 2005-06-27
KR101082896B1 (en) 2011-11-11

Similar Documents

Publication Publication Date Title
DE758779C (en) Process for protecting metal surfaces subject to friction, in particular cylinder bores
DE69104134T2 (en) Electrolytic processing using a pulsating current.
DE69024554T2 (en) Mandrel for electrography, its manufacturing process and its application
EP1507612B1 (en) Method for the galvanic coating of a continuous casting mould
DE1771323A1 (en) Process for coating metal surfaces with a fluorine-containing polymer
CH688282A5 (en) Galvanic plating apparatus.
WO2000023637A1 (en) Method and device for electrodialytic regeneration of an electroless metal deposition bath
LU83676A1 (en) METHOD FOR DEPOSITING METAL LAYERS ON THE WALLS OF CHILLERS
EP1379712A2 (en) Method and device for recovering metals with pulsating cathode currents also combined with anode coupling processes
CH658206A5 (en) MOLD FOR STEEL CASTING.
DE69923956T2 (en) Anode structure for the production of metal foils
DE3312905C2 (en) Device for galvanic internal coating of hollow parts
WO2009152915A2 (en) Copper electroplating method and device for carrying out a method of this type
DE2404097A1 (en) METHOD AND DEVICE FOR APPLYING A FINALLY DISTRIBUTED POWDER CONTAINING COMPOSITE COATING TO OBJECTS
DE3325316A1 (en) Metal-coating process and device, in particular for copper-plating cylindrical bodies
DE2212099B2 (en) DEVICE FOR THE RECOVERY OF METAL FROM A LIQUID CONTAINING IONS OF THIS METAL
DE69702064T2 (en) CONTINUOUS MOLDING PART WITH A METAL COVER, COOLED WALL MADE OF COPPER OR COPPER ALLOY AND METHOD FOR THE PRODUCTION THEREOF
DE69602373T2 (en) MANUFACTURE OF GRINDING TOOLS
EP0115791A1 (en) Process and apparatus for regenerating a copper-containing etching solution
DE2729423A1 (en) WEAR RESISTANT ZINC OBJECTS AND PROCESS FOR THEIR PRODUCTION
DE2048562A1 (en) Apparatus and method for electroplating
DE4430652A1 (en) Galvanic process for galvanic or chemical treatment, in particular for the continuous application of metallic layers to a body
DE3624695A1 (en) ARRANGEMENT FOR ELECTROLYTIC TREATMENT OF PROFILED WORKPIECES
DE3619336C2 (en)
EP3517655A1 (en) Method for black chromium plating

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20041110

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20080130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 50314957

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B22D0011059000

Ipc: C25D0005000000

RIC1 Information provided on ipc code assigned before grant

Ipc: C25D 7/04 20060101ALI20130603BHEP

Ipc: B22D 11/059 20060101ALI20130603BHEP

Ipc: C25D 5/18 20060101ALI20130603BHEP

Ipc: C25D 5/00 20060101AFI20130603BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130719

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 644664

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 50314957

Country of ref document: DE

Effective date: 20140130

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: LUCHS AND PARTNER AG PATENTANWAELTE, CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20131211

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2452727

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20140402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140411

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50314957

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

26N No opposition filed

Effective date: 20140912

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50314957

Country of ref document: DE

Effective date: 20140912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140519

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140602

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140519

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20150521

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140531

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20030519

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20160527

Year of fee payment: 14

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 644664

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160519

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20170426

Year of fee payment: 15

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20180625

Year of fee payment: 16

Ref country code: DE

Payment date: 20180522

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20180528

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50314957

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191203

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190519

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20200928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180519