JP3375549B2 - Composite plating method for cylindrical members - Google Patents

Composite plating method for cylindrical members

Info

Publication number
JP3375549B2
JP3375549B2 JP27550998A JP27550998A JP3375549B2 JP 3375549 B2 JP3375549 B2 JP 3375549B2 JP 27550998 A JP27550998 A JP 27550998A JP 27550998 A JP27550998 A JP 27550998A JP 3375549 B2 JP3375549 B2 JP 3375549B2
Authority
JP
Japan
Prior art keywords
composite plating
current density
cylindrical
particles
cylindrical electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27550998A
Other languages
Japanese (ja)
Other versions
JP2000104196A (en
Inventor
均 唐澤
義光 小川
貴康 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP27550998A priority Critical patent/JP3375549B2/en
Publication of JP2000104196A publication Critical patent/JP2000104196A/en
Application granted granted Critical
Publication of JP3375549B2 publication Critical patent/JP3375549B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は筒状部材の内面に複
合メッキ皮膜を施す複合メッキ方法に関する。 【0002】 【従来の技術】内燃機関用のシリンダブロックには、シ
リンダをシリンダブロックと一体に鋳造成形し、シリン
ダ内面にNi/SiC複合メッキ皮膜を施したものがあ
る。Ni/SiC複合メッキ皮膜は、金属相(Niマト
リックス)中にセラミックス粒子(SiC粒子)を共析
させて耐摩耗性を高めたものである。このNi/SiC
複合メッキ方法の一例を以下に説明する。 【0003】図6は従来の代表的なNi/SiC複合メ
ッキ方法を示す断面図である。シリンダブロック100
のシリンダ101と筒形電極102との間の隙間を流路
103とし、この流路103にNi/SiC複合メッキ
液104を矢印a,aの如く流しつつ、筒形電極102
とシリンダブロック100とに通電する。通電により発
生した電流密度で、シリンダ内面101aにNiマトリ
ックス106を析出し、かつNiマトリックス106中
にSiC粒子107…(…は複数(個)を示す。以下同
様。)を共析する。以下、SiC粒子107…の共析と
電流密度との関係について説明する。 【0004】図7は従来の複合メッキ方法における電流
密度とSiC粒子の共析との関係を示すグラフであり、
縦軸は電流密度(A/dm2)を示し、横軸はメッキ処
理時間(分)を示す。メッキ処理当初からメッキ処理完
了(時間T3)まで、電流密度を比較的高いA3(A/
dm2)に維持した状態でメッキ処理を行う。図6に戻
って、メッキ処理当初から、Ni/SiC複合メッキ液
104中のSiC粒子107…が矢印b…の如く移動し
てNiマトリックス106中に共析する。 【0005】 【発明が解決しようとする課題】メッキ処理当初からS
iC粒子107…がNiマトリックス106中に共析す
ると、SiC粒子107…がシリンダ内面101aに接
触する場合がある。このため、SiC粒子107…が邪
魔になりNiマトリックス106を析出させることがで
きないので、その部分でNiマトリックス106がシリ
ンダ内面101aから浮いた状態になる。この結果、複
合メッキ皮膜105の密着性を十分に確保することがで
きない虞れがある。 【0006】そこで、本発明の目的は、複合メッキ皮膜
の密着性を高めることができる技術を提供することにあ
る。 【0007】 【課題を解決するための手段】上記課題を解決するため
に本発明の請求項1は、筒状部材の中空部に、複数の噴
射孔を有する筒形電極を配置し、複数の噴射孔から筒状
部材の内面へ向けて、メッキ液に粒子を混合した複合メ
ッキ液を一定量噴き出しながら、筒形電極と筒状部材と
に通電し、この通電により発生する電流密度を当初低く
設定して、筒状部材の内面に金属相のみを析出し、所定
時間経過後、電流密度を高く設定して金属相中に粒子を
共析する筒状部材の複合メッキ方法であって、前記複合
メッキ液を一定量噴き出す際に、前記筒形電極を一定速
度で回転させることを特徴とする。 【0008】電流密度を当初低く設定して筒状部材の内
面に金属相のみを析出させることで、筒状部材の内面全
域に金属相を付着させることができる。このため、金属
相は筒状部材の内面から浮いた部分がないので、金属相
を筒状部材の内面に強固に付着することができる。ま
た、所定時間経過後、電流密度を高く設定して金属相中
に粒子を共析させることにより、通常の複合メッキ皮膜
と同様に耐摩耗性を高めることができる。 【0009】さらに、筒形電極を一定速度で回転させる
ことにより、筒状部材の内面に複合メッキ液を均一に当
てることができるので、筒状部材の内面に金属相を均一
に析出させることができる。この結果、金属相の密着性
を十分に高めることができる。 【0010】 【発明の実施の形態】本発明の実施の形態を添付図に基
づいて以下に説明する。図1は本発明に係る筒状部材の
複合メッキ装置を示す全体図である。筒状部材の複合メ
ッキ装置1は、筒状部材(シリンダブロック)2を載せ
た載置台4と、シリンダブロック2の中空部(シリン
ダ)2a内に配置した筒形電極10と、この筒形電極1
0を回転させる回転手段20と、筒形電極10の内孔1
1に複合メッキ液26を供給するメッキ液循環手段30
と、シリンダブロック2と筒形電極10とを通電する通
電手段40とからなる。2bはシリンダ2aの内面(シ
リンダ内面)である。36は戻り流路であり、戻り流路
36はシリンダ2aと筒形電極10との間の隙間で形成
したものである。41は通電用のロータリコネクタであ
る。 【0011】載置台4は、筒形電極10を配置する取付
孔5を中央に開け、取付孔5の側方下側に供給孔6を開
け、取付孔5の側方上側に排出孔7を開けたものであ
る。筒形電極10は、載置台4の取付孔5内に軸受1
2,13を介して回転自在に取付けた筒状部材であっ
て、載置台4側の筒状の周壁14に導入孔15を形成
し、シリンダ内面2bに対向する周壁14に複数の噴射
孔16…を形成したものである。 【0012】回転手段20は、モータ21と、モータ軸
22に取り付けた駆動ギヤ23と、駆動ギヤ23に噛み
合い且つ筒形電極10の下部17に取り付けたギヤ24
とからなる。メッキ液循環手段30は、複合メッキ液2
6を蓄えるタンク31と、このタンク31の複合メッキ
液26を供給孔6に導く供給路32と、供給路32の途
中に設けたポンプ33と、排出孔7まで流れた複合メッ
キ液26をタンク31に戻す回収路34とからなる。 【0013】以上に述べた本発明に係る筒状部材の複合
メッキ方法を次に説明する。先ず、シリンダブロック2
を載置台4に載せた後、モータ21を駆動して、その回
転力をモータ軸22→駆動ギヤ23→ギヤ24に伝えて
筒形電極10を矢印の如く回転する。次に、ポンプ3
3を駆動して、タンク31内の複合メッキ液26を矢印
,の如く供給路32→導入孔6を通じて筒形電極1
0の内孔11に供給する。 【0014】内孔11の複合メッキ液26は噴射孔16
…を通じて矢印…の如く筒形電極10の外側に噴射し
てシリンダ内面2bに当る。その後、戻り流路36の複
合メッキ液26を矢印,の如く→排出孔7→回収路
34を通じてタンク31に戻す。複合メッキ液26を循
環させた状態で通電手段40を操作して筒形電極10と
シリンダブロック2とに通電することにより、電流密度
を発生させてシリンダ内面2bに複合メッキ皮膜を施
す。以下に、複合メッキ方法の電流密度とセラミックス
粒子との関係について説明する。 【0015】図2は本発明に係る電流密度とセラミック
ス粒子の共析との関係を示すグラフであり、縦軸は電流
密度(A/dm2)を示し、横軸はメッキ処理時間
(分)を示す。複合メッキ開始時〜時間T1の初期運転
において、電流密度をA1(A/dm2)と低く設定す
る。次に、時間T1〜メッキ完了時T2の定常運転を電
流密度A2(A/dm2)と高く設定する。 【0016】図3(a),(b)は本発明に係る電流密
度とセラミックス粒子の共析との関係を説明した図であ
り、(a)は初期運転を示し、(b)は定常運転を示
す。(a)において、矢印の如く流れる複合メッキ液
26に比較的低い電流密度A1(A/dm2)が発生す
る。複合メッキ液26中の金属イオンは比較的低い電流
密度A1でもシリンダ内面2bに金属相(金属マトリッ
クス)27として析出する。一方、複合メッキ液26中
の粒子(セラミックス粒子)28…は、シリンダ内面2
bに向って移動することなく矢印の如く流れる。 【0017】(b)において、矢印の如く流れる複合
メッキ液26に比較的高い電流密度A2(A/dm2
が発生する。複合メッキ液26中のセラミックス粒子2
8…が矢印…の如く移動して、金属マトリックス27
中にセラミックス粒子28…を共析する。 【0018】メッキ処理当初の電流密度をA1(A/d
2)と低く設定してシリンダ内面2bに金属マトリッ
クス27のみを析出させることで、シリンダ内面2b全
域に金属マトリックス27を付着させることができる。
このため、金属マトリックス27をシリンダ内面2bに
強固に付着することができる。また、所定時間経過後、
電流密度をA2(A/dm2)と高く設定して金属マト
リックス27中にセラミックス粒子28…を共析させる
ことにより、通常の複合メッキ皮膜と同様に耐摩耗性を
高めることができる。 【0019】さらに、図1の筒形電極10を回転させて
複合メッキ液26をシリンダ内面2bに均一に当てるこ
とができるので、シリンダ内面2bに金属マトリックス
27を均一に析出させて金属マトリックス27の密着性
を十分に高めることができる。 【0020】[実験例]以下に、本発明に係る筒状部材
の複合メッキ方法の実験例を、図4(a),(b)、図
5、表1〜表3を参照の上説明する。しかし、本発明は
これらの実験例に限るものではない。 【0021】 【表1】 【0022】第1実験例;複合メッキ液26は、硫酸ニ
ッケル(NiSO4)45〜70g/l(リットル)、
硫酸ナトリウム(Na2SO4)250g/l、ホウ酸4
0g/l、亜リン酸40g/lを加えたpH=2.5の
ものに、窒化ケイ素(Si34)粒子45g/lを懸濁
させたものである。筒形電極10(図1に示す)は、周
壁14に孔径2.0mmの噴射孔16…を101個開け
たもので、筒形電極10の内径は17.0mmである。 【0023】筒形電極10の回転数を初期運転及び定常
運転において5rpmと一定速度に設定し、複合メッキ
液26の噴射量を初期運転及び定常運転において流量3
0l/分と一定量に設定した。また、電流密度は、初期
運転(4分30秒)でA1=5A/dm2に設定し定常
運転(73分20秒)でA2=10A/dm2に設定し
た。なお、電流密度A1の好適な範囲は、4(A/dm
2)≦A1≦6(A/dm2)である。 【0024】ここで、電流密度A1を4(A/dm2
≦A1≦6(A/dm2)と設定した理由は、電流密度
A1が4(A/dm2)より小さと金属マトリックス2
7の析出に時間がかかり過ぎて初期運転時間が長くな
り、A1が6(A/dm2)より大きいと初期運転中に
セラミックス粒子28…が共析してしまうからである。
また、電流密度A2を10(A/dm2)に設定した理
由は、定常運転(73分20秒)の時間でセラミックス
粒子28…を好適に共析することができるからである。 【0025】図4(a),(b)は本発明に係る筒状部
材の複合メッキ方法の新旧比較図であり、(a)は第1
実験例、(b)は比較例を示す。なお、縦軸は電流密度
(A/dm2)を示し、横軸はメッキ処理時間(分)を
示す。(a)において、初期運転(4分30秒)で電流
密度A1を5A/dm2と低く設定して、複合メッキ液
中の金属イオン(NiイオンやPイオン)を析出させる
ことによりシリンダ内面2bに金属マトリックス(Ni
−9Pマトリックス)27のみを形成する。次に、定常
運転(4分30秒〜77分50秒)で電流密度A2を1
0A/dm2と高く設定して、Ni−9Pマトリックス
27中にセラミックス粒子(Si3 4粒子)28…を共
析する。(b)において、複合メッキ処理の当初から電
流密度を10A/dm2と高く設定して、Ni−9Pマ
トリックス27中にSi34粒子28…を共析する。以
下、複合メッキ皮膜の密着性の評価試験法について説明
する。 【0026】図5(a),(b)は複合メッキ皮膜の密
着性評価試験法の説明図である。(a)において、シリ
ンダブロック2に開けた孔51に押出しピン50を矢印
の如く差し込む。一例として、孔51の径D1は6.5
mm、押出しピン50の外径D2は6.0mm、薄肉部
52の肉厚Tは1.0〜1.5mmとする。 【0027】(b)において、押出しピン50に荷重F
をかけてシリンダブロック2の薄肉部52を破壊すると
共にシリンダ内面の複合メッキ皮膜(金属マトリックス
27及びセラミックス粒子28…)を剥し、剥離幅xで
複合メッキ皮膜の密着性を判定する。この複合メッキ皮
膜の密着性評価試験法を、図4(a)の第1実験例及び
図4(b)の比較例について各10回づつ実施した。そ
の結果を表2に示す。 【0028】 【表2】 【0029】第1実験例の平均剥離幅Ave.xは、 Ave.x=(0.0+0.1+0.0+0.05+0.0+0.1+0.0+0.0
+0.05+0.0)/10=0.03mm と小さく、複合メッキ皮膜の密着性がよく、評価は
「良」である。 【0030】比較例の平均剥離幅Ave.xは、 Ave.x=(0.1+0.5+0.1+0.8+0.2+0.0+0.3+0.5+
0.2+0.5)/10=0.32mm と大きく、複合メッキ皮膜の密着性は好ましくなく、評
価は「不良」である。 【0031】 【表3】 【0032】第2実験例;複合メッキ液26は、硫酸ニ
ッケル(NiSO4)400g/l、ホウ酸35g/
l、サッカリンナトリウム2.5g/lを加えたpH=
2.5のものに、炭化ケイ素(SiC)粒子60gを懸
濁させたものである。筒形電極10(図1に示す)は、
第1実験例と同様に、周壁14に孔径2.0mmの噴射
孔16…を101個開けたもので、筒形電極10の内径
は17.0mmである。 【0033】筒形電極10の回転数を初期運転及び定常
運転において5rpmと一定速度に設定し、複合メッキ
液26の噴射量を初期運転及び定常運転において流量3
0l/分と一定量に設定した。第2実験例は、第1実験
例と比較して、電流密度A1,A2を高く設定して、初
期運転時間及び定常運転時間を短くしたことを特徴とす
る。すなわち、電流密度は、初期運転(70秒)でA1
=14A/dm2に設定し、定常運転(235秒)でA
2=64A/dm2に設定した。なお、電流密度A1の
好適な範囲は、10(A/dm2)≦A1≦18(A/
dm2)である。 【0034】ここで、10(A/dm2)≦A1≦18
(A/dm2)と設定した理由は、電流密度A1が10
(A/dm2)より小さと金属マトリックス27の析出
に時間がかかり過ぎて初期運転時間が長くなり、A1が
18(A/dm2)より大きいと初期運転中にセラミッ
クス粒子28…が共析してしまうからである。また、電
流密度A2を64(A/dm2)に設定した理由は、定
常運転(235秒)の時間でセラミックス粒子28…を
好適に共析することができるからである。 【0035】初期運転(70秒)で電流密度A1を14
A/dm2と低く設定して、複合メッキ液中の金属イオ
ン(Niイオン)を析出させることによりシリンダ内面
2bに金属マトリックス(Niマトリックス)のみを析
出する。次に、定常運転(235秒)で電流密度A2を
64A/dm2と高く設定して、Niマトリックス中に
セラミックス粒子(SiC粒子)28…を共析する。 【0036】第2実験例においても、第1実験例と同様
に複合メッキ皮膜の密着性評価試験を行った。第2実験
例は、第1実験例と比較して複合メッキ液の成分が異な
るが、初期運転の電流密度を低く設定することにより、
平均剥離幅Ave.xが略第1実験例の値と同一になること
が判明した。この結果、複合メッキ皮膜の密着性につい
て、「良」の評価を得た。 【0037】なお、前記第1実験例では、初期運転時の
電流密度A1を4(A/dm2)≦A1≦6(A/d
2)に設定し、定常運転時の電流密度A2を10(A
/dm2)に設定し、また、第2実験例では、初期運転
時の電流密度A1を10(A/dm2)≦A1≦18
(A/dm2)に設定し、定常運転時の電流密度A2を
64(A/dm2)に設定したが、電流密度A1及び電
流密度A2はこの値に限らない。また、筒状部材をシリ
ンダブロック2として説明したが、その他の筒状部材に
適用させることも可能である。 【0038】 【発明の効果】本発明は上記構成により次の効果を発揮
する。請求項1は、電流密度を当初低く設定して筒状部
材の内面に金属相のみを析出させることで、筒状部材の
内面全域に金属相を付着させることができる。このた
め、金属相は筒状部材の内面から浮いた部分がないの
で、金属相を筒状部材の内面に強固に付着することがで
きる。この結果、複合メッキ皮膜の密着性を高めること
ができる。また、所定時間経過後、電流密度を高く設定
して金属相中に粒子を共析させることにより、通常の複
合メッキ皮膜と同様に耐摩耗性を高めることができる。 【0039】さらに、筒状部材の内面に複合メッキ液を
均一に当てることができるので、筒状部材の内面に金属
相を均一に析出させることができる。この結果、金属相
の密着性を十分に高めることができる。
DETAILED DESCRIPTION OF THE INVENTION [0001] BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to
The present invention relates to a composite plating method for forming a composite plating film. [0002] 2. Description of the Related Art A cylinder block for an internal combustion engine includes a cylinder block.
The cylinder is cast and formed integrally with the cylinder block,
Some have a Ni / SiC composite plating film on the inner surface
You. The Ni / SiC composite plating film is a metal phase (Ni
Rix) with eutectoid ceramic particles (SiC particles)
Thus, the wear resistance is improved. This Ni / SiC
An example of the composite plating method will be described below. FIG. 6 shows a conventional typical Ni / SiC composite method.
It is sectional drawing which shows a hook method. Cylinder block 100
Between the cylinder 101 and the cylindrical electrode 102
103, and Ni / SiC composite plating
While flowing the liquid 104 as indicated by arrows a and a, the cylindrical electrode 102
And the cylinder block 100 are energized. Departs when energized
With the generated current density, Ni matrix
Deposits 106 in the Ni matrix 106
Shows a plurality (pieces) of SiC particles 107.
Mr. ). Hereinafter, the eutectoid of SiC particles 107.
The relationship with the current density will be described. FIG. 7 shows current in a conventional composite plating method.
It is a graph which shows the relationship between density and eutectoid of SiC particle,
The vertical axis represents the current density (A / dmTwo) And the horizontal axis is the plating process.
Indicates the processing time (minutes). Complete plating from the beginning of plating
Until the end (time T3), the current density was increased to A3 (A /
dmTwoThe plating process is performed while maintaining the above conditions. Return to FIG.
From the beginning of the plating process, Ni / SiC composite plating solution
The SiC particles 107 in 104 move as shown by arrows b.
Eutectoid in the Ni matrix 106. [0005] SUMMARY OF THE INVENTION S from the beginning of the plating process
The iC particles 107 eutect into the Ni matrix 106
Then, the SiC particles 107 contact the cylinder inner surface 101a.
May touch. For this reason, the SiC particles 107
It becomes a magic, and the Ni matrix 106 can be deposited.
The Ni matrix 106 is not
Floats from the inner surface 101a. As a result,
It is possible to ensure sufficient adhesion of the plating film 105.
It may not be possible. Accordingly, an object of the present invention is to provide a composite plating film
To provide technology that can enhance the adhesion of
You. [0007] [MEANS FOR SOLVING THE PROBLEMS]
In the first aspect of the present invention, a plurality of injections are provided in the hollow portion of the cylindrical member.
Arrange a cylindrical electrode with injection holes, and form a cylindrical from multiple injection holes
Toward the inner surface of the member, a composite
While spraying a certain amount of liquid, the cylindrical electrode and cylindrical member
And reduce the current density generated by this
Set and deposit only the metal phase on the inner surface of the cylindrical member,
After the time has elapsed, set the current density to a high value to
EutectA composite plating method for a cylindrical member, comprising:
When spraying a certain amount of plating solution, the cylindrical electrode is rotated at a constant speed.
Rotate in degreesIt is characterized by the following. The current density is initially set low, so that the
By depositing only the metal phase on the surface, the entire inner surface of the cylindrical member
A metal phase can be deposited in the area. For this reason, metal
Since there is no part floating from the inner surface of the cylindrical member, the metal phase
Can be firmly attached to the inner surface of the tubular member. Ma
After the lapse of a predetermined time, set the current density to a high
Co-deposited particles into the normal composite plating film
In the same manner as described above, the wear resistance can be improved. [0009]further,Rotate the cylindrical electrode at a constant speed
thingByEvenly apply the composite plating solution to the inner surface of the cylindrical member.
Metal phase on the inner surface of the tubular member
Can be precipitated. As a result, the adhesion of the metal phase
Can be increased sufficiently. [0010] DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described with reference to the accompanying drawings.
This will be described below. FIG. 1 shows a cylindrical member according to the present invention.
It is an overall view showing a composite plating apparatus. Composite member of cylindrical member
The stick device 1 places a tubular member (cylinder block) 2 thereon.
Mounting table 4 and the hollow part of cylinder block 2
(D) a cylindrical electrode 10 disposed in 2a and a cylindrical electrode 1
0, and the inner hole 1 of the cylindrical electrode 10.
1 circulating means 30 for supplying a composite plating solution 26
Through which the cylinder block 2 and the cylindrical electrode 10 are energized.
And electric means 40. 2b is the inner surface of cylinder 2a
Inner surface of the cylinder). 36 is a return flow path,
36 is formed by a gap between the cylinder 2a and the cylindrical electrode 10.
It was done. 41 is a rotary connector for energization.
You. The mounting table 4 is used for mounting the cylindrical electrode 10 thereon.
Open the hole 5 in the center and open the supply hole 6 below the side of the mounting hole 5.
And a discharge hole 7 is formed on the upper side of the mounting hole 5.
You. The cylindrical electrode 10 has the bearing 1 in the mounting hole 5 of the mounting table 4.
A cylindrical member rotatably mounted via
To form an introduction hole 15 in the cylindrical peripheral wall 14 on the mounting table 4 side.
Then, a plurality of injections are performed on the peripheral wall 14 facing the cylinder inner surface 2b.
The holes 16 are formed. The rotating means 20 includes a motor 21 and a motor shaft.
Drive gear 23 attached to 22 and meshes with drive gear 23
Gear 24 fitted to the lower part 17 of the cylindrical electrode 10
Consists of The plating solution circulating means 30 includes the composite plating solution 2
6 and a composite plating of this tank 31
A supply path 32 for guiding the liquid 26 to the supply hole 6,
The pump 33 provided inside and the composite
The recovery path 34 returns the liquid 26 to the tank 31. A composite of the above-described tubular member according to the present invention.
Next, the plating method will be described. First, cylinder block 2
Is mounted on the mounting table 4 and then the motor 21 is driven to
Transfer the rolling force to the motor shaft 22 → drive gear 23 → gear 24
The cylindrical electrode 10 is rotated as shown by the arrow. Next, pump 3
3 to drive the composite plating solution 26 in the tank 31 with an arrow.
, The supply electrode 32 → the cylindrical electrode 1 through the introduction hole 6.
0 is supplied to the inner hole 11. The composite plating solution 26 in the inner hole 11 is
… Through the outside of the cylindrical electrode 10 as shown by the arrow
To the cylinder inner surface 2b. Thereafter, the return flow path 36 is duplicated.
As shown by the arrow, the plating solution 26 is → the discharge hole 7 → the recovery path.
Return to the tank 31 through. Circulate composite plating solution 26
By operating the energizing means 40 in the ringed state, the cylindrical electrode 10
By energizing the cylinder block 2, the current density
And apply a composite plating film to the cylinder inner surface 2b.
You. Below, the current density of the composite plating method and ceramics
The relationship with particles will be described. FIG. 2 shows current density and ceramic according to the present invention.
4 is a graph showing the relationship between the particle and the eutectoid.
Density (A / dmTwo) And the horizontal axis is the plating time
(Minutes). Initial operation from the start of composite plating to time T1
, The current density is set to A1 (A / dmTwo) And lower
You. Next, the steady operation from time T1 to plating completion T2 is performed.
Flow density A2 (A / dmTwo) And set it high. FIGS. 3A and 3B show current densities according to the present invention.
FIG. 3 is a diagram illustrating the relationship between the degree and the eutectoid of ceramic particles.
(A) shows the initial operation and (b) shows the steady operation.
You. In (a), a composite plating solution flowing as indicated by an arrow
26 has a relatively low current density A1 (A / dmTwo) Occurs
You. Metal ions in the composite plating solution 26 have a relatively low current
Even at the density A1, the metal phase (metal matrix)
G) as 27. On the other hand, in the composite plating solution 26
(Ceramic particles) 28 of the cylinder inner surface 2
It flows like an arrow without moving toward b. In (b), the composite flowing as indicated by the arrow
A relatively high current density A2 (A / dmTwo)
Occurs. Ceramic particles 2 in composite plating solution 26
8 moves as indicated by an arrow and the metal matrix 27 moves.
Ceramic particles 28 are eutectoid therein. The current density at the beginning of the plating process is A1 (A / d
mTwo) And set a low metal mat on the cylinder inner surface 2b.
By depositing only the gas 27, the entire cylinder inner surface 2b
A metal matrix 27 can be applied to the area.
For this reason, the metal matrix 27 is applied to the cylinder inner surface 2b.
Can be firmly attached. After a lapse of a predetermined time,
The current density is A2 (A / dmTwo) And set the metal mat high
The ceramic particles 28 are eutectoid in the liquor 27.
As a result, abrasion resistance can be
Can be enhanced. Further, by rotating the cylindrical electrode 10 of FIG.
Apply the composite plating solution 26 evenly to the cylinder inner surface 2b.
So that a metal matrix can be applied to the cylinder inner surface 2b.
27 is deposited uniformly and adhesion of metal matrix 27
Can be increased sufficiently. [Experimental Example] A tubular member according to the present invention will be described below.
4 (a) and 4 (b) show an experimental example of the composite plating method of FIG.
5, will be described with reference to Tables 1 to 3. However, the present invention
It is not limited to these experimental examples. [0021] [Table 1] First Experimental Example: The composite plating solution 26 was
Kernel (NiSOFour) 45-70 g / l (liter),
Sodium sulfate (NaTwoSOFour) 250 g / l, boric acid 4
0 g / l, pH = 2.5 with addition of phosphorous acid 40 g / l
In addition, silicon nitride (SiThreeNFour) 45 g / l particles suspended
It was made. The cylindrical electrode 10 (shown in FIG. 1)
101 injection holes 16 having a hole diameter of 2.0 mm are formed in the wall 14.
The inner diameter of the cylindrical electrode 10 is 17.0 mm. The rotational speed of the cylindrical electrode 10 is set to an initial operation and a steady state.
In operation, set to 5 rpm and constant speed, composite plating
The injection amount of the liquid 26 is set to 3
It was set to a fixed amount of 0 l / min. Also, the current density
A1 = 5A / dm during operation (4 minutes 30 seconds)TwoSet to steady
A2 = 10A / dm during operation (73 minutes 20 seconds)TwoSet to
Was. The preferred range of the current density A1 is 4 (A / dm
Two) ≦ A1 ≦ 6 (A / dmTwo). Here, the current density A1 is set to 4 (A / dmTwo)
≦ A1 ≦ 6 (A / dmTwo) Because the current density
A1 is 4 (A / dmTwo) Smaller and metal matrix 2
7. It takes too much time to precipitate 7 and the initial operation time is long
A1 is 6 (A / dmTwoLarger than during initial operation
This is because the ceramic particles 28 are eutectoid.
Further, the current density A2 is set to 10 (A / dmTwo)
The reason is that in the time of steady operation (73 minutes 20 seconds), ceramics
This is because the particles 28 can be preferably eutectoid. FIGS. 4A and 4B show a cylindrical portion according to the present invention.
FIG. 4 is a comparison diagram of a new and an old method of composite plating of a material, wherein FIG.
An experimental example and (b) show a comparative example. The vertical axis is the current density
(A / dmTwo) And the horizontal axis represents the plating time (min).
Show. (A) In the initial operation (4 minutes 30 seconds)
Density A1 is 5 A / dmTwoAnd set a low, complex plating solution
Precipitates metal ions (Ni ions and P ions) in
As a result, a metal matrix (Ni
-9P matrix) 27 only. Next, stationary
During the operation (4 minutes 30 seconds to 77 minutes 50 seconds), the current density A2 was set to 1
0A / dmTwoAnd high setting, Ni-9P matrix
Ceramic particles (SiThreeN FourParticles) 28 ...
Analyze. (B), from the beginning of the composite plating process,
Flow density of 10 A / dmTwoAnd set high, Ni-9P
Si in trix 27ThreeNFourThe particles 28 are eutectoid. Less than
Below, the evaluation test method of adhesion of composite plating film is explained.
I do. FIGS. 5A and 5B show the density of the composite plating film.
It is explanatory drawing of the adhesion evaluation test method. (A)
Push the pin 50 into the hole 51 formed in the
Insert like this. As an example, the diameter D1 of the hole 51 is 6.5.
mm, the outer diameter D2 of the extrusion pin 50 is 6.0 mm, and the thin portion
52 has a thickness T of 1.0 to 1.5 mm. In (b), a load F is applied to the pushing pin 50.
To break the thin portion 52 of the cylinder block 2
In both cases, the composite plating film (metal matrix)
27 and ceramic particles 28...)
Determine the adhesion of the composite plating film. This composite plating skin
The test method for evaluating the adhesion of the film was carried out according to the first experimental example shown in FIG.
Each of the comparative examples shown in FIG. 4B was performed 10 times. So
Table 2 shows the results. [0028] [Table 2] The average peel width Ave.x of the first experimental example is: Ave.x = (0.0 + 0.1 + 0.0 + 0.05 + 0.0 + 0.1 + 0.0 + 0.0
+ 0.05 + 0.0) /10=0.03mm And the adhesion of the composite plating film is good.
"Good". The average peel width Ave.x of the comparative example is: Ave.x = (0.1 + 0.5 + 0.1 + 0.8 + 0.2 + 0.0 + 0.3 + 0.5 +
0.2 + 0.5) /10=0.32mm The adhesion of the composite plating film is not favorable,
The value is "bad". [0031] [Table 3] Second Experimental Example: The composite plating solution 26 was
Kernel (NiSOFour) 400 g / l, boric acid 35 g /
l, pH with addition of 2.5 g / l of saccharin sodium =
2.5 g of silicon carbide (SiC) particles
It is turbid. The cylindrical electrode 10 (shown in FIG. 1)
In the same manner as in the first experimental example, the peripheral wall 14 is sprayed with a hole diameter of 2.0 mm.
It has 101 holes 16 and has an inner diameter of the cylindrical electrode 10.
Is 17.0 mm. The rotational speed of the cylindrical electrode 10 is set to an initial operation and a steady state.
In operation, set to 5 rpm and constant speed, composite plating
The injection amount of the liquid 26 is set at the flow rate 3 in the initial operation and the steady operation.
It was set to a fixed amount of 0 l / min. The second experimental example is the first experimental
The current densities A1 and A2 are set higher than
The initial operation time and the steady operation time are shortened.
You. That is, the current density is A1 in the initial operation (70 seconds).
= 14A / dmTwo, And A in normal operation (235 seconds)
2 = 64 A / dmTwoSet to. The current density A1
A preferred range is 10 (A / dmTwo) ≦ A1 ≦ 18 (A /
dmTwo). Here, 10 (A / dmTwo) ≦ A1 ≦ 18
(A / dmTwo) Is because the current density A1 is 10
(A / dmTwo) Smaller and precipitation of metal matrix 27
Takes too much time and the initial operation time becomes longer.
18 (A / dmTwo) Larger than during the initial operation
This is because the particles 28 are eutectoid. In addition,
The flow density A2 is 64 (A / dmTwo)
Ceramic particles 28 ... in normal operation (235 seconds)
This is because eutectoids can be suitably used. In the initial operation (70 seconds), the current density A1 was increased to 14
A / dmTwoTo lower the metal ion in the composite plating solution.
The inner surface of the cylinder by depositing
Deposit only metal matrix (Ni matrix) on 2b
Put out. Next, the current density A2 in the steady operation (235 seconds)
64A / dmTwoAnd set it high
The ceramic particles (SiC particles) 28 are eutectoid. The second experimental example is similar to the first experimental example.
A test was conducted to evaluate the adhesion of the composite plating film. Second experiment
In the example, the components of the composite plating solution are different from those in the first experimental example.
However, by setting the current density in the initial operation low,
The average peel width Ave.x should be approximately the same as the value in the first experimental example
There was found. As a result, the adhesion of the composite plating film
And got a rating of “good”. In the first experimental example, in the initial operation,
When the current density A1 is 4 (A / dmTwo) ≦ A1 ≦ 6 (A / d
mTwo), And the current density A2 during the steady operation is set to 10 (A
/ DmTwo), And in the second experimental example, the initial operation
Current density A1 at 10 (A / dmTwo) ≦ A1 ≦ 18
(A / dmTwo), And set the current density A2 during steady operation to
64 (A / dmTwo), But the current density A1
The flow density A2 is not limited to this value. In addition, the cylindrical member
Although it has been described as the dust block 2, other cylindrical members may be used.
It is also possible to apply. [0038] According to the present invention, the following effects are exhibited by the above configuration.
I do. A first aspect of the present invention is to set the current density to a low value at the beginning, and
By depositing only the metal phase on the inner surface of the material,
A metal phase can be deposited on the entire inner surface. others
Because there is no part floating from the inner surface of the cylindrical member
Thus, the metal phase can be firmly adhered to the inner surface of the tubular member.
Wear. As a result, the adhesion of the composite plating film is improved.
Can be. Also, after a predetermined time has elapsed, set the current density to a high value
By eutectoid particles in the metal phase
Abrasion resistance can be enhanced as in the case of the combined plating film. [0039]further,Apply a composite plating solution to the inner surface of the cylindrical member.
Since it can be applied evenly, metal
The phase can be deposited uniformly. As a result, the metal phase
Can be sufficiently enhanced.

【図面の簡単な説明】 【図1】本発明に係る筒状部材の複合メッキ装置 【図2】本発明に係る電流密度とセラミックス粒子の共
析との関係を示すグラフ 【図3】本発明に係る電流密度とセラミックス粒子の共
析との関係を説明した図 【図4】本発明に係る筒状部材の複合メッキ方法の新旧
比較図 【図5】複合メッキ皮膜の密着性評価試験法の説明図 【図6】従来の代表的な複合メッキ方法を示す断面図 【図7】従来の複合メッキ方法における電流密度とSi
C粒子の共析との関係を示すグラフ 【符号の説明】 1…筒状部材の複合メッキ装置、2…筒状部材(シリン
ダブロック)、2a…中空部(シリンダ)、2b…筒状
部材の内面(シリンダ内面)、10…筒形電極、16…
噴射孔、26…複合メッキ液、27…金属相(Niマト
リックス)、28…粒子(セラミックス粒子)。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a composite plating apparatus for a cylindrical member according to the present invention. FIG. 2 is a graph showing the relationship between current density and eutectoid of ceramic particles according to the present invention. FIG. 4 is a graph showing the relationship between current density and eutectoid deposition of ceramic particles according to the present invention. FIG. 4 is a comparison diagram of a new and an old method of composite plating of a cylindrical member according to the present invention. FIG. 6 is a cross-sectional view showing a typical conventional composite plating method. FIG. 7 is a graph showing current density and Si in a conventional composite plating method.
Graph showing relationship with eutectoid of C particles [Explanation of symbols] 1 ... composite plating apparatus for cylindrical member, 2 ... cylindrical member (cylinder block), 2a ... hollow portion (cylinder), 2b ... cylindrical member Inner surface (cylinder inner surface), 10 ... cylindrical electrode, 16 ...
Injection holes, 26: composite plating solution, 27: metal phase (Ni matrix), 28: particles (ceramic particles).

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平10−140390(JP,A) 特開 昭52−109439(JP,A) (58)調査した分野(Int.Cl.7,DB名) C25D 15/02 C25D 7/04 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-10-140390 (JP, A) JP-A-52-109439 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C25D 15/02 C25D 7/04

Claims (1)

(57)【特許請求の範囲】 【請求項1】 筒状部材の中空部に、複数の噴射孔を有
する筒形電極を配置し、複数の噴射孔から筒状部材の内
面へ向けて、メッキ液に粒子を混合した複合メッキ液を
一定量噴き出しながら、筒形電極と筒状部材とに通電
し、この通電により発生する電流密度を当初低く設定し
て、筒状部材の内面に金属相のみを析出し、所定時間経
過後、電流密度を高く設定して金属相中に粒子を共析す
筒状部材の複合メッキ方法であって、 前記複合メッキ液を一定量噴き出す際に、前記筒形電極
を一定速度で回転させる ことを特徴とする筒状部材の複
合メッキ方法。
(57) [Claim 1] A cylindrical electrode having a plurality of injection holes is disposed in a hollow portion of a cylindrical member, and plating is performed from the plurality of injection holes toward the inner surface of the cylindrical member. While spraying a fixed amount of the composite plating solution mixed with particles into the solution, current is applied to the cylindrical electrode and the cylindrical member, the current density generated by this energization is initially set low, and only the metal phase is applied to the inner surface of the cylindrical member. precipitating, after a predetermined time has elapsed, a composite plating method of the tubular member which eutectoid particles set high current density in the metal phase, when spewing a certain amount of the composite plating solution, the cylindrical electrode
A composite plating method for a tubular member, characterized in that the substrate is rotated at a constant speed .
JP27550998A 1998-09-29 1998-09-29 Composite plating method for cylindrical members Expired - Fee Related JP3375549B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27550998A JP3375549B2 (en) 1998-09-29 1998-09-29 Composite plating method for cylindrical members

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27550998A JP3375549B2 (en) 1998-09-29 1998-09-29 Composite plating method for cylindrical members

Publications (2)

Publication Number Publication Date
JP2000104196A JP2000104196A (en) 2000-04-11
JP3375549B2 true JP3375549B2 (en) 2003-02-10

Family

ID=17556480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27550998A Expired - Fee Related JP3375549B2 (en) 1998-09-29 1998-09-29 Composite plating method for cylindrical members

Country Status (1)

Country Link
JP (1) JP3375549B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101082896B1 (en) * 2002-05-27 2011-11-11 에스엠에스 콘캐스트 에이지 Method for the galvanic coating of a continuous casting mould

Also Published As

Publication number Publication date
JP2000104196A (en) 2000-04-11

Similar Documents

Publication Publication Date Title
US8500986B1 (en) Methods for the implementation of nanocrystalline and amorphous metals and alloys as coatings
US5074970A (en) Method for applying an abrasive layer to titanium alloy compressor airfoils
AU2002321112B2 (en) Process for electroplating metallic and metall matrix composite foils, coatings and microcomponents
EP3009532A1 (en) Electrodeposited nanolaminate coatings and claddings for corrosion protection
US4592808A (en) Method for plating conductive plastics
JP3342697B2 (en) Electroplating method for metal coating on particles at high coating speed using high current density
EP1335038A1 (en) Device and method for electroless plating
EP0641872A1 (en) Plating method, plating liquid and plated engine component
JP3375549B2 (en) Composite plating method for cylindrical members
JP3939124B2 (en) Wiring formation method
US20050056542A1 (en) Plating tool, plating method, electroplating apparatus, plated product, and method for producing plated product
JP2001192850A (en) Surface treating solution for sliding parts, surface treating method for sliding parts and sliding parts
JP4346593B2 (en) Wiring formation method
NabiRahni et al. The electrolytic plating of compositionally modulated alloys and laminated metal nano-structures based on an automated computer-controlled dual-bath system
JP2000017482A (en) Laminated chromium plating film excellent in wear resistance and fatigue strength
Tench et al. On the Functioning and Malfunctioning of Dimercaptothiadiazoles as Leveling Agents in Circuit Board Plating from Copper Pyrophosphate Baths
Tang Utilising electrochemical deposition for micro manufacturing
JPH11350195A (en) Composite plating apparatus
JP2001158996A (en) Cylinder block for internal combustion engine
JP3351710B2 (en) Plating method
JPH11140687A (en) Method of plating cylindrical member for eddy current type decelerating device, and its device
JPH0885117A (en) Molding die and production thereof
JP2000212800A (en) Plating method of piercing needle, and its device
JP3492449B2 (en) Plating method and plating apparatus
US6376088B1 (en) Non-magnetic photoreceptor substrate and method of making a non-magnetic photoreceptor substrate

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071129

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081129

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081129

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091129

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091129

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101129

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101129

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111129

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111129

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121129

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131129

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees