EP1507612A1 - Method for the galvanic coating of a continuous casting mould - Google Patents

Method for the galvanic coating of a continuous casting mould

Info

Publication number
EP1507612A1
EP1507612A1 EP03735416A EP03735416A EP1507612A1 EP 1507612 A1 EP1507612 A1 EP 1507612A1 EP 03735416 A EP03735416 A EP 03735416A EP 03735416 A EP03735416 A EP 03735416A EP 1507612 A1 EP1507612 A1 EP 1507612A1
Authority
EP
European Patent Office
Prior art keywords
continuous casting
coating
casting mold
electrolyte
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP03735416A
Other languages
German (de)
French (fr)
Other versions
EP1507612B1 (en
Inventor
Adrian Stilli
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMS Concast AG
Original Assignee
Concast AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Concast AG filed Critical Concast AG
Publication of EP1507612A1 publication Critical patent/EP1507612A1/en
Application granted granted Critical
Publication of EP1507612B1 publication Critical patent/EP1507612B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/08Electroplating with moving electrolyte e.g. jet electroplating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/059Mould materials or platings
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/10Agitating of electrolytes; Moving of racks
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/04Electroplating with moving electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/18Electroplating using modulated, pulsed or reversing current
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/04Tubes; Rings; Hollow bodies
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode

Definitions

  • the invention relates to a method for the galvanic coating of a continuous casting mold according to the preamble of claim 1.
  • Continuous casting molds are subject to constant abrasive wear during the casting operation, so that the mold cavity and thus also the cross-sectional dimension of the cast strands becomes ever larger. After a certain number of work cycles, the respective continuous casting mold must therefore be replaced by a new one or reworked.
  • Post-processing can be done, for example, by exploding the mold on a mandrel.
  • This method is not only relatively complicated, expensive and polluting, but also means a deformation of the outer mold shape, which in turn enlarges a water gap on the mold circumference and thus has a negative impact on the mold cooling.
  • the last-mentioned disadvantage also has other known pressing methods for reshaping the molds, in which the mold is first compressed from the outside and then the mold cavity is brought to the original internal dimensions by internal grinding or internal milling.
  • EP-A-0 282 759 discloses the mold cavity
  • the mold which serves as the cathode, is immersed in an electrolyte bath (Cu sulfate bath) together with a perforated anode basket filled with soluble copper pieces (cubes, spheres, disks) arranged in the mold cavity.
  • an electrolyte bath Cu sulfate bath
  • a perforated anode basket filled with soluble copper pieces (cubes, spheres, disks) arranged in the mold cavity.
  • the copper is deposited from the electrolyte bath and deposited on the mold surfaces, the copper separated from the electrolyte bath being replaced by the dissolved anode copper.
  • a relatively low current density for example of about 15 A / dm 2 .
  • the present invention is based on the object of proposing a method of the type mentioned at the outset with which the desired cavity dimension can be achieved or attained again as easily as possible, even in the case of continuous casting molds with a cavity having a polygonal cross section, without problem zones occurring in the corner regions of the cavity. Furthermore, the aim is to ensure that the continuous casting molds to be coated remain as unchanged as possible in their external dimensions.
  • both a thin layer of the wear-resistant material can be dimensionally accurate without the need for post-processing. is maneuverable, as well as applying a thick layer (with minimal reworking if necessary), since the layer build-up takes place evenly, without corner weaknesses.
  • a major advantage of the method according to the invention is that only the inner surfaces of the mold cavity come into contact with the electrolyte during the galvanic coating and therefore the outer surfaces of the continuous casting mold do not have to be covered.
  • an intermittent pole reversal anode / cathode is also possible, with which a pulsating deposition of the coating material can be achieved and the coating can be influenced.
  • the mechanical properties such as the hardness, and in particular also the structural structure of the coating, can be kept largely uniform over the entire area.
  • the coating can be achieved faster than with the conventional methods. Cartilage formation on the coated surfaces can also be largely prevented.
  • Fig. 1 shows a schematic diagram of the inventive method.
  • a device 1 is shown purely schematically, which is provided for the galvanic coating of inner surfaces 4 delimiting a mold cavity 3 of a continuous casting installation 2 with a wear-resistant coating material for the purpose of reaching or reaching a desired mold cavity dimension.
  • the mold cavity 3 can, for example, have a rectangular or square cross section and can therefore be delimited by four inner surfaces 4. However, it could also be a mold with a different mold cavity cross-section (e.g. round, polygonal, elongated) or a so-called dogbone mold.
  • the end of the continuous casting mold 2 is assigned a head piece and a base piece 5, 6, which are connected to one another via an anode 7 which projects through the mold cavity 3 are connected. Sealing elements 8, 9 on the end faces of the continuous casting mold 2 seal the mold cavity 3.
  • the anode 7 is also inserted sealingly in the head and bottom pieces 5, 6, cf. Seals 13, 14. Both the bottom piece 6 and the head piece 5 are each provided with at least one, preferably with a number of openings 11 and 12 (in FIG. 1, one opening 1, 12 is indicated), the entrance and Form outlet openings for the introduction or outlet of an electrolyte 25 provided for galvanic coating into or out of the otherwise tightly closed mold cavity 3 forming a reactor space.
  • This is pumped from a storage tank 15 with the help of a pump 16 from below through the bottom piece 6 in a hydrodynamically controllable manner into the reactor space and is led back to the storage tank 15 or the pump 16 with an overflow (without pressure) on the head piece 5.
  • the coating material is added to the electrolyte 25 as an oxide from a container 18.
  • the continuous casting mold 2 can be connected as a cathode and the anode 7 with indicated wings 7 'to a direct current source 20 and thereby form a direct current circuit.
  • Either the sealing elements 8, 9 or the seals 13, 14 have an electrically insulating effect at the same time.
  • the cross-sectional shape of the anode is adapted to the cross-sectional shape of the mold cavity 3.
  • Appropriate prismatic anodes are used for polygonal mold cavities.
  • the anode consists in particular of a platinum or mixed ceramic coated titanium material or of lead. It can also be designed as a multiple anode. In principle, however, the coating material, such as copper, nickel or chromium, can also be contained in the anode, whereby it would be provided in solid or piece form.
  • the method according to the invention is suitable for applying, for example, copper, nickel or chrome layers.
  • the coating material is supplied by the electrolyte 25 alone.
  • the anode itself is insoluble.
  • it can be platinum-coated anodes made of titanium, anodes made of Pb sheet metal, coated mixed ceramics and other materials.
  • Methane sulfonic acid, cyanide or sulfuric acid electrolyte types can be used for the electrolytes. With these high-speed electrolytes, a current density of 20 to 40 A / dm 2 can be achieved during intensive electrolyte movement the.
  • both a thin layer of the wear-resistant material can be applied with dimensional accuracy, without the need for reworking, and a thick layer (which requires minimal reworking), since the layer structure is uniform and without corner weaknesses he follows.
  • the method according to the invention has significant advantages, in particular in the case of chrome plating, since corner problems in particular occur particularly severely with chromium in the case of conventional galvanic plating (layer 5 to 10 times smaller than on the surfaces), and the chromium can only be reworked with grinding.
  • a major advantage of the method according to the invention is that only the inner surfaces of the mold cavity come into contact with the electrolyte 25 during the galvanic coating and therefore the outer surfaces of the continuous casting mold do not have to be covered.
  • the anode and / or the continuous casting mold could be made rotatable about its longitudinal axis, so that rotation during the coating and thus an improved coating could be made possible.
  • the continuous casting mold 2 is cleaned before the coating by a rinsing process, in particular a cascade rinsing, which is not explained in more detail.
  • a rinsing process in particular a cascade rinsing, which is not explained in more detail.
  • a rinsing process in particular a cascade rinsing, which is not explained in more detail.
  • the coating and preferably for this rinsing, it is integrated in a closed system.
  • the continuous casting mold consists of a metallic material or material composite, such as copper, aluminum, nickel, a plastic or composite plastic or a ceramic material or other materials.
  • a rectifier device can also be provided, by means of which the current direction can be reversed in order to achieve a uniform layer application.
  • the continuous casting mold 2 can alternatively only be reinforced in certain areas or in these areas, i.e. coated with a greater layer thickness, in which a relatively higher wear occurs during operation, for example in the area of the bath surface, in which additional wear occurs in particular due to the covering material. This achieves an efficient coating.
  • a partial coating can be achieved by partially covering the anode or by inserting non-conductive screens or by similar measures.
  • electromagnetic fields can be generated by magnets (not shown in more detail), through which the particles of the coating material are guided or guided in such a way that in certain areas, preferably in the edge areas of the continuous casting mold, a layer of the same thickness is deposited as in the other areas.

Abstract

The invention relates to a method for the galvanic coating of a continuous casting mould (2), according to which the inner surfaces (4) of said continuous casting mould (2) that delimit a mould cavity (3) are coated with a coating material to obtain or re-establish target dimensions for the mould cavity. The method uses the continuous casting mould (2) as the cathode, an anode (7) that is located in the mould cavity (3) and an electrolyte (25) that contains the coating material. The electrolyte (25) that acts as the carrier for the coating material is controlled in its passage through the mould cavity (3) of the continuous casting mould (2). During the galvanic coating process, only the inner surfaces of the mould cavity come into contact with the electrolyte and no covering of the outer surfaces of the continuous casting mould is therefore required. The mechanical characteristics can to a great extent be uniformly maintained over the entire area. Said coating can be achieved more rapidly than with conventional methods.

Description

Verfahren zur galvanischen Beschichtunq einer Stranggiesskokille Process for the galvanic coating of a continuous casting mold
Die Erfindung betrifft ein Verfahren zur galvanischen Beschichtung einer Stranggiesskokille gemäss dem Oberbegriff des Anspruches 1.The invention relates to a method for the galvanic coating of a continuous casting mold according to the preamble of claim 1.
Stranggiesskokillen unterliegen beim Giessbetrieb einem ständigen abrasiven Verschleiss, so dass der Formhohlraum und somit auch die Querschnittabmasse der gegossenen Stränge immer grösser wird. Nach einer bestimmten Anzahl von Arbeitszyklen muss daher die jeweilige Stranggiesskokille durch eine neue er- setzt oder nachbearbeitet werden.Continuous casting molds are subject to constant abrasive wear during the casting operation, so that the mold cavity and thus also the cross-sectional dimension of the cast strands becomes ever larger. After a certain number of work cycles, the respective continuous casting mold must therefore be replaced by a new one or reworked.
Es sind verschiedene Methoden für die Nachbearbeitung der Kokillen zwecks Wiederherstellung der ursprünglichen Geometrie des Formhohlraumes bzw. des Formhohlraum-Sollmasses bekannt. Die Nachbearbeitung kann zum Beispiel durch eine Explosionsverformung der Kokille auf einen Dorn erfolgen. Diese Methode ist nicht nur relativ kompliziert, teuer und umweltbelastend, sondern bedeutet auch eine Deformation der Kokillenaussenform, was wiederum eine Ver- grösserung eines am Kokillenumfang vorhandenen Wasserspaltes und dadurch einen negativen Einfluss auf die Kokillenkühlung mit sich bringt. Den letztge- nannten Nachteil haben auch andere bekannte Pressverfahren zum Zurückformen der Kokillen, bei welchen zuerst die Kokille von aussen zusammengedrückt und anschliessend der Formhohlraum auf das ursprüngliche Innenmass durch Innenschleifen oder Innenfräsen gebracht wird.Various methods are known for the post-processing of the molds in order to restore the original geometry of the mold cavity or the desired shape of the cavity. Post-processing can be done, for example, by exploding the mold on a mandrel. This method is not only relatively complicated, expensive and polluting, but also means a deformation of the outer mold shape, which in turn enlarges a water gap on the mold circumference and thus has a negative impact on the mold cooling. The last-mentioned disadvantage also has other known pressing methods for reshaping the molds, in which the mold is first compressed from the outside and then the mold cavity is brought to the original internal dimensions by internal grinding or internal milling.
Schliesslich ist aus der EP-A-0 282 759 bekannt, den Formhohlraum einerFinally, EP-A-0 282 759 discloses the mold cavity
Stranggiesskokille durch galvanische Beschichtung der den Formhohlraum begrenzenden Innenflächen auf das Sollmass wiederzubringen. Bei diesem gattungsbildenden Verfahren wird die als Kathode dienende Kokille mitsamt eines mit löslichen Kupferstücken (Würfel, Kugeln, Scheiben) gefüllten, im Formhohl- räum angeordneten gelochten Anodenkorbes in ein Elektrolytbad (Cu-Sulfatbad) eingetaucht. Bei einem Gleichstromanschluss findet eine Abscheidung des Kupfers aus dem Elektrolytbad und Ablagerung desselben auf den Kokillenflächen statt, wobei das aus dem Elektrolytbad abgeschiedene Kupfer durch das aufgelöste Anodenkupfer ersetzt wird. Bei diesem Tauchgalvanik-Verfahren wird eine relativ niedrige Stromdichte, beispielsweise von etwa 15 A/dm2, erreicht. Bei der Tauchgalvanik-Beschichtung von meistens im Querschnitt polygonalen Formhohlräumen besteht erfahrungsgemäss die Gefahr, dass in den Eckbereichen die Schicht unzureichend dick wird, das heisst, dass die Schichtdicke nur etwa 1/4 bis 1/10 derjenigen in den übrigen Bereichen beträgt. Diesem ungleichmässigen Schichtaufbau kann mit speziellen Anodengeometrien nur teilweise abgeholfen werden. Dies bedeutet, dass eine weitere mechanische Nachbearbeitung notwendig ist.To bring the continuous casting mold back to the desired dimension by galvanically coating the inner surfaces delimiting the mold cavity. In this generic process, the mold, which serves as the cathode, is immersed in an electrolyte bath (Cu sulfate bath) together with a perforated anode basket filled with soluble copper pieces (cubes, spheres, disks) arranged in the mold cavity. In the case of a direct current connection, the copper is deposited from the electrolyte bath and deposited on the mold surfaces, the copper separated from the electrolyte bath being replaced by the dissolved anode copper. In this electroplating process, a relatively low current density, for example of about 15 A / dm 2 . Experience has shown that when plating electroplating mostly with polygonal cross-sectional cavities, there is a risk that the layer in the corner areas will become insufficiently thick, i.e. that the layer thickness will only be approximately 1/4 to 1/10 of that in the other areas. This uneven layer structure can only be partially remedied with special anode geometries. This means that further mechanical post-processing is necessary.
Bei Anfertigung von Dickschichten besteht zudem die Gefahr, dass sich Eckbrücken mit eingeschlossenen Hohlräumen bilden, wodurch die Kokille unbrauchbar wird. Ein weiterer Nachteil der Tauchgalvanik-Beschichtung besteht darin, dass die Aussenflächen der Kokille mit einem gegenüber der elektrolytischen Behandlung inerten Material abgedeckt werden müssen.When thick layers are made, there is also the danger that corner bridges with enclosed cavities will form, making the mold unusable. Another disadvantage of the electroplating coating is that the outer surfaces of the mold have to be covered with a material that is inert to the electrolytic treatment.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art vorzuschlagen, mit welchem das Formhohlraum-Sollmass auch bei Stranggiesskokillen mit im Querschnitt polygonalen Formhohlraum möglichst einfach erreicht oder wiedererreicht werden kann, ohne dass Problemzonen in den Eckbereichen des Formhohlraumes entstehen. Ferner soll erreicht werden, dass die zu beschichtenden Stranggiesskokillen in ihren Aussenabmessun- gen möglichst unverändert bleiben.The present invention is based on the object of proposing a method of the type mentioned at the outset with which the desired cavity dimension can be achieved or attained again as easily as possible, even in the case of continuous casting molds with a cavity having a polygonal cross section, without problem zones occurring in the corner regions of the cavity. Furthermore, the aim is to ensure that the continuous casting molds to be coated remain as unchanged as possible in their external dimensions.
Diese Aufgabe wird erfindungsgemäss durch ein Verfahren mit den Merkmalen des Anspruches 1 gelöst.According to the invention, this object is achieved by a method having the features of claim 1.
Bevorzugte Weitergestaltungen der Erfindung bilden den Gegenstand der abhängigen Ansprüche.Preferred developments of the invention form the subject of the dependent claims.
Mit dem erfindungsgemässen Verfahren, bei welchem der Formhohlraum der kathodebildenden Stranggiesskokille unter Verwendung einer unlöslichen Anode vom Elektrolyt hydrodynamisch kontrollierbar durchströmt wird, wobei der Elektrolyt allein das Beschichtungsmaterial liefert, kann sowohl eine Dünnschicht des verschleissfesten Materials massgenau, ohne dass eine Nachbearbeitung not- wendig ist, als auch eine Dickschicht (bei der allenfalls minimale Nacharbeit anfällt) aufgetragen werden, da der Schichtaufbau gleichmässig, ohne Eckschwächen, erfolgt. Ein wesentlicher Vorteil des erfindungsgemässen Verfahrens besteht darin, dass bei der galvanischen Beschichtung lediglich die Innenflächen des Formhohlraumes mit dem Elektrolyt in Kontakt kommen und daher die Aussenfiächen der Stranggiesskokille nicht abgedeckt werden müssen. Zudem ist auch eine intermittierende Polumkehr Anode/Kathode möglich, mit der ein pulsierendes Abscheiden des Beschichtungsmaterials erreicht und die Beschichtung beeinflusst werden kann.With the method according to the invention, in which the mold cavity of the cathode-forming continuous casting mold is flowed through in a hydrodynamically controllable manner by the electrolyte using an insoluble anode, the electrolyte alone supplying the coating material, both a thin layer of the wear-resistant material can be dimensionally accurate without the need for post-processing. is maneuverable, as well as applying a thick layer (with minimal reworking if necessary), since the layer build-up takes place evenly, without corner weaknesses. A major advantage of the method according to the invention is that only the inner surfaces of the mold cavity come into contact with the electrolyte during the galvanic coating and therefore the outer surfaces of the continuous casting mold do not have to be covered. In addition, an intermittent pole reversal anode / cathode is also possible, with which a pulsating deposition of the coating material can be achieved and the coating can be influenced.
Als besonderer Vorteil sei hervorzuheben, dass die mechanischen Eigenschaften, wie beispielsweise die Härte, und insbesondere auch die Gefügestruktur der Beschichtung über den gesamten Bereich weitgehend gleichmässig gehalten werden können. Die Beschichtung kann schneller als mit den herkömmlichen Verfahren erzielt werden. Auch eine Knorpelbildung an den beschichteten Oberflächen kann weitgehend verhindert werden.It should be emphasized as a particular advantage that the mechanical properties, such as the hardness, and in particular also the structural structure of the coating, can be kept largely uniform over the entire area. The coating can be achieved faster than with the conventional methods. Cartilage formation on the coated surfaces can also be largely prevented.
Die Erfindung wird nachfolgend anhand der Zeichnung näher erläutert.The invention is explained below with reference to the drawing.
Es zeigt:It shows:
Fig. 1 ein Prinzipschema des erfindungsgemässen Verfahrens.Fig. 1 shows a schematic diagram of the inventive method.
In Fig. 1 ist rein schematisch eine Vorrichtung 1 dargestellt, die zur galvanischen Beschichtung von einen Formhohlraum 3 einer Stranggiessanlage 2 begrenzen- den Innenflächen 4 mit einem verschleissfesten Beschichtungsmatenal zwecks Erreichen oder Wiedererreichen eines Formhohlraum-Sollmasses vorgesehen ist. Der Formhohlraum 3 kann beispielsweise einen rechteckförmigen oder quadratischen Querschnitt aufweisen und somit durch vier Innenflächen 4 begrenzt sein. Es könnte sich aber auch um eine Kokille mit einem anderen Formhohlraumquer- schnitt (z.B. rund, vieleckig, langeckförmig) oder um eine sogenannte Dogbone- Kokille handeln.In FIG. 1, a device 1 is shown purely schematically, which is provided for the galvanic coating of inner surfaces 4 delimiting a mold cavity 3 of a continuous casting installation 2 with a wear-resistant coating material for the purpose of reaching or reaching a desired mold cavity dimension. The mold cavity 3 can, for example, have a rectangular or square cross section and can therefore be delimited by four inner surfaces 4. However, it could also be a mold with a different mold cavity cross-section (e.g. round, polygonal, elongated) or a so-called dogbone mold.
Der Stranggiesskokille 2 sind stirnseitig ein Kopf- sowie ein Bodenstück 5, 6 zugeordnet, die über eine den Formhohlraum 3 durchragende Anode 7 miteinander verbunden sind. Dichtungselemente 8, 9 an den Stirnflächen der Stranggiesskokille 2 dichten den Formhohlraum 3 ab. Auch die Anode 7 ist im Kopf- und Bodenstück 5, 6 dichtend eingesetzt, vgl. Dichtungen 13, 14. Sowohl das Bodenstück 6 als auch das Kopfstück 5 sind mit mindestens je einer, vorzugsweise mit einer Anzahl von Oeffnungen 11 bzw. 12 versehen (in Fig. 1 ist je eine Oeffnung 1 , 12 angedeutet), die Eintritts- bzw. Austrittsöffnungen zum Einführen bzw. Auslass eines zur galvanischen Beschichtung vorgesehenen Elektrolyten 25 in den bzw. aus dem ansonsten dicht verschlossenen, einen Reaktorraum bildenden Formhohlraum 3 bilden. Dieser wird aus einem Vorlagebehälter 15 mit Hilfe einer Pumpe 16 von unten durch das Bodenstück 6 hydrodynamisch kontrollierbar in den Reaktorraum gepumpt und mit Ueberlauf (drucklos) am Kopfstück 5 zurück zum Vorlagebehälter 15 bzw. zur Pumpe 16 geführt. Dem Elektrolyt 25 wird das Beschichtungsmatenal als Oxyd aus einem Behälter 18 zudosϊert.The end of the continuous casting mold 2 is assigned a head piece and a base piece 5, 6, which are connected to one another via an anode 7 which projects through the mold cavity 3 are connected. Sealing elements 8, 9 on the end faces of the continuous casting mold 2 seal the mold cavity 3. The anode 7 is also inserted sealingly in the head and bottom pieces 5, 6, cf. Seals 13, 14. Both the bottom piece 6 and the head piece 5 are each provided with at least one, preferably with a number of openings 11 and 12 (in FIG. 1, one opening 1, 12 is indicated), the entrance and Form outlet openings for the introduction or outlet of an electrolyte 25 provided for galvanic coating into or out of the otherwise tightly closed mold cavity 3 forming a reactor space. This is pumped from a storage tank 15 with the help of a pump 16 from below through the bottom piece 6 in a hydrodynamically controllable manner into the reactor space and is led back to the storage tank 15 or the pump 16 with an overflow (without pressure) on the head piece 5. The coating material is added to the electrolyte 25 as an oxide from a container 18.
Für die galvanische Beschichtung ist die Stranggiesskokille 2 als Kathode und die Anode 7 mit angedeuteten Flügeln 7' an eine Gleichstromquelle 20 anschliessbar und bilden hierdurch einen Gleichstromkreis. Entweder die Dichtungselemente 8, 9 oder die Dichtungen 13, 14 wirken gleichzeitig elektrisch isolierend. Die Anode ist in ihrer Querschnittsform der Querschnittsform des Formhohlraumes 3 ange- passt. Für polygonale Formhohlräume werden entsprechende prismatische Anoden verwendet. Die Anode besteht insbesondere aus einem Platin- oder Mischkeramik-beschichteten Titanmaterial oder aus Blei. Sie kann auch als Mehrfachanode ausgebildet sein. Grundsätzlich kann aber auch das Beschichtungs- materialj wie zum Beispiel Kupfer, Nickel oder Chrom in der Anode enthalten sein, wobei es in Massiv- oder Stückform vorgesehen wäre.For the galvanic coating, the continuous casting mold 2 can be connected as a cathode and the anode 7 with indicated wings 7 'to a direct current source 20 and thereby form a direct current circuit. Either the sealing elements 8, 9 or the seals 13, 14 have an electrically insulating effect at the same time. The cross-sectional shape of the anode is adapted to the cross-sectional shape of the mold cavity 3. Appropriate prismatic anodes are used for polygonal mold cavities. The anode consists in particular of a platinum or mixed ceramic coated titanium material or of lead. It can also be designed as a multiple anode. In principle, however, the coating material, such as copper, nickel or chromium, can also be contained in the anode, whereby it would be provided in solid or piece form.
Das erfindungsgemässe Verfahren ist zum Auftragen von beispielsweise Kupfer-, Nickel- oder Chromschichten geeignet. Das Beschichtungsmatenal wird durch den Elektrolyt 25 allein geliefert. Die Anode an sich ist unlöslich. Es kann sich zum Beispiel um platinbeschichtete Anoden aus Titan, Anoden aus Pb-Blech, beschichtete Mischkeramik und andere Materialien handeln. Bei den Elektrolyten können methansulfonsaure, cyanidische oder schwefelsaure Elektrolyttypen Anwendung finden. Mit diesen Hochgeschwindigkeitselektrolyten kann bei der intensiven Elektrolytbewegung eine Stromdichte von 20 bis 40 A/dm2 erreicht wer- den. Mit einer effizienten hydrodynamischen Steuerung des Elektrolytdurchflusses durch den Reaktorraum kann sowohl eine Dünnschicht des verschleissfesten Materials massgenau, ohne dass eine Nachbearbeitung notwendig ist, als auch eine Dickschicht (bei der allenfalls minimale Nacharbeit anfällt) aufgetragen wer- den, da der Schichtaufbau gleichmässig und ohne Eckschwächen erfolgt. Das erfindungsgemässe Verfahren bringt insbesondere bei Chrombeschichtung wesentliche Vorteile, da gerade bei Chrom bei der herkömmlichen galvanischen Beschichtung besonders stark Eckprobleme entstehen (Schicht 5 bis 10 mal kleiner als auf den Flächen), und der Chrom nur mit schleifen nachgearbeitet werden kann.The method according to the invention is suitable for applying, for example, copper, nickel or chrome layers. The coating material is supplied by the electrolyte 25 alone. The anode itself is insoluble. For example, it can be platinum-coated anodes made of titanium, anodes made of Pb sheet metal, coated mixed ceramics and other materials. Methane sulfonic acid, cyanide or sulfuric acid electrolyte types can be used for the electrolytes. With these high-speed electrolytes, a current density of 20 to 40 A / dm 2 can be achieved during intensive electrolyte movement the. With an efficient hydrodynamic control of the electrolyte flow through the reactor space, both a thin layer of the wear-resistant material can be applied with dimensional accuracy, without the need for reworking, and a thick layer (which requires minimal reworking), since the layer structure is uniform and without corner weaknesses he follows. The method according to the invention has significant advantages, in particular in the case of chrome plating, since corner problems in particular occur particularly severely with chromium in the case of conventional galvanic plating (layer 5 to 10 times smaller than on the surfaces), and the chromium can only be reworked with grinding.
Mit dem erfindungsgemässen Verfahren, bei welchem der Elektrolyt 25 allein das Beschichtungsmatenal liefert, kann auch pulsierendes Abscheiden des Beschichtungsmaterials erreicht werden, da neben der hydrodynamischen Steue- rung auch eine intermittierende Polumkehr Anode/Kathode möglich ist und die Beschichtung beeinflussen kann.With the method according to the invention, in which the electrolyte 25 alone supplies the coating material, pulsating deposition of the coating material can also be achieved, since in addition to the hydrodynamic control, intermittent anode / cathode pole reversal is also possible and can influence the coating.
Ein wesentlicher Vorteil des erfindungsgemässen Verfahrens besteht darin, dass bei der galvanischen Beschichtung lediglich die Innenflächen des Formholraumes mit dem Elektrolyt 25 in Kontakt kommen und daher die Aussenflächen der Stranggiesskokille nicht abgedeckt werden müssen.A major advantage of the method according to the invention is that only the inner surfaces of the mold cavity come into contact with the electrolyte 25 during the galvanic coating and therefore the outer surfaces of the continuous casting mold do not have to be covered.
Die Anode und/oder die Stranggiesskokille könnten im Prinzip um ihre Längsachse rotierbar ausgebildet sein, so dass eine Rotation während der Beschichtung und damit eine verbesserte Beschichtung ermöglicht werden könnte.In principle, the anode and / or the continuous casting mold could be made rotatable about its longitudinal axis, so that rotation during the coating and thus an improved coating could be made possible.
Die Stranggiesskokille 2 wird vor der Beschichtung durch einen Spülprozess, insbesondere eine Kaskadenspülung, gereinigt, was nicht näher erläutert ist. Sie ist hierbei für die Beschichtung und vorzugsweise für diese Spülung in einem ge- schlossenen System eingebunden.The continuous casting mold 2 is cleaned before the coating by a rinsing process, in particular a cascade rinsing, which is not explained in more detail. For the coating and preferably for this rinsing, it is integrated in a closed system.
Die Stranggiesskokille besteht aus einem metallischen Werkstoff oder Werkstoff- verbünd, wie Kupfer, Aluminium, Nickel, aus einem Kunststoff oder Verbundkunststoff oder aus einem Keramikwerkstoff oder anderen Werkstoffen. Es kann femer eine Gleichrichtereinrichtung vorgesehen sein, mittels der die Stromrichtung zwecks Erzielung eines gleichmässigen Schichtauftragens umkehrbar ist.The continuous casting mold consists of a metallic material or material composite, such as copper, aluminum, nickel, a plastic or composite plastic or a ceramic material or other materials. A rectifier device can also be provided, by means of which the current direction can be reversed in order to achieve a uniform layer application.
Ferner wird bei Verwendung von Kupfer als Beschichtungsmatenal vorgängig ein käufliches Kupferoxyd genommen, bei welchem der zu grosse Chlorgehalt mittels eines Wasch-/Löse-Prozesses reduziert wird.Furthermore, when copper is used as the coating material, a commercially available copper oxide is used beforehand, in which the excessively high chlorine content is reduced by means of a washing / dissolving process.
Die Stranggiesskokille 2 kann alternativ nur in bestimmten Bereichen oder bei diesen Bereichen verstärkt, d.h. mit einer grösseren Schichtdicke, beschichtet werden, bei denen im Betrieb ein verhältnismässig höherer Verschleiss auftritt, beispielsweise im Bereich der Badoberfläche, bei dem insbesondere durch das Abdeckmaterial ein zusätzlicher Verschleiss auftritt. Damit wird eine effiziente Beschichtung erzielt. Ein solches partielles Beschichten kann durch teilweises Abdecken der Anode oder durch Einschieben von nicht leitenden Blenden oder durch ähnliche Massnahmen erzielt werden.The continuous casting mold 2 can alternatively only be reinforced in certain areas or in these areas, i.e. coated with a greater layer thickness, in which a relatively higher wear occurs during operation, for example in the area of the bath surface, in which additional wear occurs in particular due to the covering material. This achieves an efficient coating. Such a partial coating can be achieved by partially covering the anode or by inserting non-conductive screens or by similar measures.
Während des Beschichtungsvorganges können elektromagnetische Felder von nicht näher gezeigten Magneten erzeugt werden, durch welche die Partikel des Beschichtungsmaterials derart geleitet oder geführt werden, dass sich in bestimmten Bereichen, vorzugsweise in den Kantenbereichen der Stranggiesskokille, eine gleich dicke Schicht wie in den übrigen Bereichen abscheidet.During the coating process, electromagnetic fields can be generated by magnets (not shown in more detail), through which the particles of the coating material are guided or guided in such a way that in certain areas, preferably in the edge areas of the continuous casting mold, a layer of the same thickness is deposited as in the other areas.
Die Erfindung ist mit den obigen Ausführungen ausreichend dargetan. Sie könnte selbstverständlich noch in anderen Varianten veranschaulicht werden. The invention is sufficiently demonstrated with the above statements. Of course, it could also be illustrated in other variants.

Claims

Patentansprüche claims
1. Verfahren zur galvanischen Beschichtung einer Stranggiesskokille (2), bei dem die einen Formhohlraum (3) begrenzenden Innenflächen (4) der Stranggiesskokille (2) mit einem Beschichtungsmatenal zwecks Erreichen oder Wiedererreichen eines Formhohlraum-Sollmasses beschichtet werden, wobei die Stranggiesskokille (2) als Kathode, eine im Formhohlraum (3) angeordnete Anode (7) und ein das Beschichtungsmaterial enthaltender Elektrolyt (25) verwendet wird, dadurch gekennzeichnet, dass der Formhohi- rau (3) der Stranggiesskokille (2) von dem als Träger des Beschichtungs- materials dienenden Elektrolyt (25) gesteuert durchströmt wird.1. A method for the galvanic coating of a continuous casting mold (2), in which the inner surfaces (4) of the continuous casting mold (2) delimiting a mold cavity (3) are coated with a coating material for the purpose of achieving or re-achieving a desired mold cavity mass, the continuous casting mold (2) as cathode, an anode (7) arranged in the mold cavity (3) and an electrolyte (25) containing the coating material is used, characterized in that the mold cavity (3) of the continuous casting mold (2) is used as the carrier of the coating material serving electrolyte (25) is controlled flow.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass als Beschich- tungsmaterial Kupfer, Nickel oder Chrom verwendet und dem Elektrolyt (25) jeweils als Oxyd zudosiert wird.2. The method according to claim 1, characterized in that copper, nickel or chromium is used as the coating material and the electrolyte (25) is metered in as an oxide.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass ein methansulfonsaurer, cyanidischer oder schwefelsaurer Elektrolyt (25) verwendet wird.3. The method according to claim 1 or 2, characterized in that a methanesulfonic acid, cyanide or sulfuric acid electrolyte (25) is used.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die als unlöslich verwendete Anode (7), welche auch als Mehrfachanode ausgebildet sein kann, aus einem Platin- oder Mischkeramik- beschichteten Titanmateriai oder aus Blei ausgebildet wird.4. The method according to any one of claims 1 to 3, characterized in that the as an insoluble anode (7), which can also be designed as a multiple anode, is formed from a platinum or mixed ceramic-coated titanium material or from lead.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Elektrolyt (25) mitteis einer Pumpe (16) in einen von den Innenflächen (4) des Formhohlraumes (3) umschlossenen, stirnseitig durch ein Boden- sowie ein Kopfstück (6, 5) abgeschlossenen Reaktorraum gepumpt und aus diesem zurück zur Pumpe (16) geführt wird.5. The method according to any one of claims 1 to 4, characterized in that the electrolyte (25) by means of a pump (16) in one of the inner surfaces (4) of the mold cavity (3) enclosed, the front by a bottom and a head piece ( 6, 5) is pumped into the closed reactor space and is led out of this back to the pump (16).
Verfahren nach einem der Ansprüche 1 - 5, dadurch gekennzeichnet, dass die Anode (7) und/oder die Stranggiesskokille (2) um ihre Längsachse rotierbar ausgebildet sind, so dass eine Rotation während der Beschichtung ermöglicht wird. Method according to one of claims 1-5, characterized in that the anode (7) and / or the continuous casting mold (2) are designed to be rotatable about their longitudinal axis, so that rotation during the coating is made possible.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Stranggiesskokille (2) vor der Beschichtung durch einen Spülpro- zess, insbesondere eine Kaskadenspülung, gereinigt wird.7. The method according to any one of claims 1 to 6, characterized in that the continuous casting mold (2) is cleaned by a rinsing process, in particular a cascade rinsing, before coating.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Stranggiesskokille (2) für die Beschichtung und vorzugsweise für die Spülung in einem geschlossenen System eingebunden ist.8. The method according to any one of claims 1 to 7, characterized in that the continuous casting mold (2) for the coating and preferably for the rinsing is integrated in a closed system.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Stranggiesskokille (2) aus einem metallischen Werkstoff oder Werkstoffverbund, wie Kupfer, Aluminium, Nickel, aus einem Kunststoff oder Verbundkunststoff oder aus einem Keramikwerkstoff oder anderen Werkstoffen besteht.9. The method according to any one of claims 1 to 8, characterized in that the continuous casting mold (2) consists of a metallic material or composite material such as copper, aluminum, nickel, a plastic or composite plastic or a ceramic material or other materials.
10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass eine Gleichrichtereinrichtung vorgesehen ist, mittels der die Stromrichtung zwecks Erzielung eines gleichmässigen Schichtauftrages periodisch umkehrbar ist.10. The method according to any one of claims 1 to 9, characterized in that a rectifier device is provided, by means of which the current direction can be periodically reversed in order to achieve a uniform layer order.
11. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass bei der Anwendung von Kupfer vorgängig ein käufliches Kupferoxyd verwendet wird, bei welchem der zu grosse Chlorgehalt mittels eines Wasch-/Löseprozesses reduziert wird.11. The method according to claim 1, characterized in that when copper is used, a commercially available copper oxide is used beforehand, in which the excessively high chlorine content is reduced by means of a washing / dissolving process.
12. Verfahren nach einem der Ansprüche 1 bis 11 , dadurch gekennzeichnet, dass die Stranggiesskokille (2) nur oder verstärkt in bestimmten Bereichen beschichtet wird, bei denen ein höherer Verschleiss im Betrieb auftritt.12. The method according to any one of claims 1 to 11, characterized in that the continuous casting mold (2) is coated only or reinforced in certain areas in which a higher wear occurs during operation.
13. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Beschichtungsmatenal, wie zum Beispiel Kupfer, Nickel oder Chrom als Anode eingesetzt wird. 13. The method according to claim 1, characterized in that the coating material, such as copper, nickel or chromium is used as the anode.
4. Verfahren nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass während des Beschichtungsvorganges die Partikel des Beschichtungsmaterials durch elektromagnetische Felder derart geleitet werden, dass sich in bestimmten Bereichen, insbesondere in den Kantenbereichen der Stranggiesskokille, eine gleich dicke Schicht wie in den übrigen Bereichen abscheidet. 4. The method according to any one of claims 1 to 13, characterized in that during the coating process, the particles of the coating material are passed through electromagnetic fields such that in certain areas, in particular in the edge areas of the continuous casting mold, a layer of the same thickness as in the rest Separates areas.
EP03735416.4A 2002-05-27 2003-05-19 Method for the galvanic coating of a continuous casting mould Expired - Lifetime EP1507612B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH8762002 2002-05-27
CH8762002 2002-05-27
PCT/EP2003/005238 WO2003099490A1 (en) 2002-05-27 2003-05-19 Method for the galvanic coating of a continuous casting mould

Publications (2)

Publication Number Publication Date
EP1507612A1 true EP1507612A1 (en) 2005-02-23
EP1507612B1 EP1507612B1 (en) 2013-12-11

Family

ID=29555531

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03735416.4A Expired - Lifetime EP1507612B1 (en) 2002-05-27 2003-05-19 Method for the galvanic coating of a continuous casting mould

Country Status (13)

Country Link
EP (1) EP1507612B1 (en)
JP (1) JP5008111B2 (en)
KR (1) KR101082896B1 (en)
CN (1) CN100335200C (en)
AU (1) AU2003236679B2 (en)
BR (1) BR0311374B1 (en)
CA (1) CA2504369C (en)
ES (1) ES2452727T3 (en)
MX (1) MXPA04011734A (en)
PL (1) PL206254B1 (en)
RU (1) RU2318631C2 (en)
WO (1) WO2003099490A1 (en)
ZA (1) ZA200408991B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7674103B2 (en) * 2005-01-21 2010-03-09 Microcontinuum, Inc. Replication tools and related fabrication methods and apparatus
US9307648B2 (en) 2004-01-21 2016-04-05 Microcontinuum, Inc. Roll-to-roll patterning of transparent and metallic layers
US7329334B2 (en) * 2004-09-16 2008-02-12 Herdman Roderick D Controlling the hardness of electrodeposited copper coatings by variation of current profile
EA008676B1 (en) * 2005-08-22 2007-06-29 Республиканское Унитарное Предприятие "Белорусский Металлургический Завод" Method for applying two-layer galvanic coating on copper sleeve and crystallizer plate
WO2007100849A2 (en) 2006-02-27 2007-09-07 Microcontinuum, Inc. Formation of pattern replicating tools
DE102006037728A1 (en) * 2006-08-11 2008-02-14 Sms Demag Ag Mold for the continuous casting of liquid metal, in particular of steel materials
DE202009013126U1 (en) 2009-09-29 2009-12-10 Egon Evertz Kg (Gmbh & Co.) Mold for continuous casting
US9589797B2 (en) 2013-05-17 2017-03-07 Microcontinuum, Inc. Tools and methods for producing nanoantenna electronic devices
CN107034497A (en) * 2017-04-28 2017-08-11 长安大学 A kind of electroplanting device for oil well pipe box cupling inner surface

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51116123A (en) * 1975-04-04 1976-10-13 Pioneer Electronic Corp Electrocasting mold drawing method
DE2936177A1 (en) * 1979-09-07 1981-05-21 Evertz, Egon, 5650 Solingen Chill mould wall plating system - using currentless plating soln. for cooling grooves and electroplating inside wall
JPS5647592A (en) * 1979-09-25 1981-04-30 Satoosen:Kk Plating method of inner surface of casting mold for continuous casting
JPS5937704B2 (en) * 1980-06-02 1984-09-11 川崎製鉄株式会社 Manufacturing method for continuous casting molds
JPS60145247A (en) * 1983-12-29 1985-07-31 Kawasaki Steel Corp Mold for continuous casting and its production
JPS63104752A (en) * 1986-10-22 1988-05-10 Sumitomo Metal Ind Ltd Surface treating method for mold for continuous casting
JPH0222495A (en) * 1988-07-11 1990-01-25 Mitsubishi Heavy Ind Ltd Method for plating mold for continuous casting
JPH02149696A (en) * 1988-11-30 1990-06-08 Kawasaki Steel Corp Method for controlling plating amount at plate edge in electroplating
JPH071086A (en) * 1993-06-15 1995-01-06 Daido Steel Co Ltd Method for repairing copper-made casting mold
JPH07118889A (en) * 1993-09-02 1995-05-09 Yamaha Motor Co Ltd Plating solution, plating method and interior plated engine cylinder
US5516415A (en) * 1993-11-16 1996-05-14 Ontario Hydro Process and apparatus for in situ electroforming a structural layer of metal bonded to an internal wall of a metal tube
JP3333025B2 (en) * 1993-12-08 2002-10-07 日本パーカライジング株式会社 Electro-composite plating method and apparatus for metal material
JPH07169714A (en) * 1993-12-15 1995-07-04 Casio Comput Co Ltd Method and device for plating
TW318320B (en) * 1995-08-07 1997-10-21 Eltech Systems Corp
FR2750438B1 (en) * 1996-06-27 1998-08-07 Usinor Sacilor METHOD AND INSTALLATION FOR ELECTROLYTIC COATING WITH A METAL LAYER OF THE SURFACE OF A CYLINDER FOR CONTINUOUS CASTING OF THIN METAL STRIPS
US6071398A (en) * 1997-10-06 2000-06-06 Learonal, Inc. Programmed pulse electroplating process
JP3375549B2 (en) * 1998-09-29 2003-02-10 本田技研工業株式会社 Composite plating method for cylindrical members
FR2806098B1 (en) * 2000-03-09 2002-08-16 Usinor DEVICE FOR ELECTRODEPOSITION OF AN ANNULAR METAL PART OF COMPLEX FORM

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03099490A1 *

Also Published As

Publication number Publication date
JP5008111B2 (en) 2012-08-22
CN1655893A (en) 2005-08-17
RU2004138096A (en) 2005-06-10
PL371684A1 (en) 2005-06-27
ES2452727T3 (en) 2014-04-02
JP2005527705A (en) 2005-09-15
WO2003099490A1 (en) 2003-12-04
EP1507612B1 (en) 2013-12-11
PL206254B1 (en) 2010-07-30
KR20050004877A (en) 2005-01-12
CA2504369C (en) 2008-11-18
CA2504369A1 (en) 2003-12-04
BR0311374A (en) 2005-03-15
AU2003236679A1 (en) 2003-12-12
RU2318631C2 (en) 2008-03-10
AU2003236679B2 (en) 2008-08-28
BR0311374B1 (en) 2011-08-23
ZA200408991B (en) 2007-08-29
KR101082896B1 (en) 2011-11-11
CN100335200C (en) 2007-09-05
MXPA04011734A (en) 2005-11-04

Similar Documents

Publication Publication Date Title
DE3531410C2 (en)
EP1507612B1 (en) Method for the galvanic coating of a continuous casting mould
DE2422918A1 (en) ELECTRO-PLATED OR GALVANIZED, ANODISED ALUMINUM OBJECTS AND METHODS AND DEVICE FOR THEIR PRODUCTION
DE2834946A1 (en) ELECTROCHEMICAL TREATMENT PROCEDURE
CH688282A5 (en) Galvanic plating apparatus.
CH658206A5 (en) MOLD FOR STEEL CASTING.
DE69923956T2 (en) Anode structure for the production of metal foils
WO2005108648A2 (en) Production of a structured hard chromium layer and production of a coating
DE3312905C2 (en) Device for galvanic internal coating of hollow parts
WO2009152915A2 (en) Copper electroplating method and device for carrying out a method of this type
EP0909839B1 (en) Galvanic hard chromium layer
DE2048562A1 (en) Apparatus and method for electroplating
DE2729423A1 (en) WEAR RESISTANT ZINC OBJECTS AND PROCESS FOR THEIR PRODUCTION
EP0699781A1 (en) Electrolytic process for treating, particularly continuously plating a substrate
DE3624695A1 (en) ARRANGEMENT FOR ELECTROLYTIC TREATMENT OF PROFILED WORKPIECES
EP3517655A1 (en) Method for black chromium plating
DE3131367C2 (en) Process and electrode for the electroforming production of form-forming metal tools
DE102018110905A1 (en) Electrode for an anodizing process
DE2055772A1 (en) Method for treating the inside of molds to prevent sticking and the device applying the method
EP3064615B1 (en) Method for electrolytical coating of complex components
EP1249518B1 (en) Use of substantially oxygen-free, dendritic and uncoated copper for galvanic plating of printing cylinders
DE10359389B4 (en) Method for producing shaving parts
DE1217171B (en) Method and device for the dimensionally accurate processing of the outer and / or inner surface of tubular bodies
DE2328048C3 (en) Wear-resistant workpiece and process for its manufacture
DE3219300A1 (en) Cathode for the electrodeposition of metals, in particular for extracting high-purity zinc

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20041110

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20080130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 50314957

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B22D0011059000

Ipc: C25D0005000000

RIC1 Information provided on ipc code assigned before grant

Ipc: C25D 7/04 20060101ALI20130603BHEP

Ipc: B22D 11/059 20060101ALI20130603BHEP

Ipc: C25D 5/18 20060101ALI20130603BHEP

Ipc: C25D 5/00 20060101AFI20130603BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130719

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 644664

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 50314957

Country of ref document: DE

Effective date: 20140130

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: LUCHS AND PARTNER AG PATENTANWAELTE, CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20131211

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2452727

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20140402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140411

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50314957

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

26N No opposition filed

Effective date: 20140912

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50314957

Country of ref document: DE

Effective date: 20140912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140519

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140602

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140519

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20150521

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140531

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20030519

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20160527

Year of fee payment: 14

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 644664

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160519

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20170426

Year of fee payment: 15

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20180625

Year of fee payment: 16

Ref country code: DE

Payment date: 20180522

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20180528

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50314957

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191203

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190519

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20200928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180519