EP1496932A2 - Composition anti-vih, procede de fabrication et medicament. - Google Patents

Composition anti-vih, procede de fabrication et medicament.

Info

Publication number
EP1496932A2
EP1496932A2 EP03746844A EP03746844A EP1496932A2 EP 1496932 A2 EP1496932 A2 EP 1496932A2 EP 03746844 A EP03746844 A EP 03746844A EP 03746844 A EP03746844 A EP 03746844A EP 1496932 A2 EP1496932 A2 EP 1496932A2
Authority
EP
European Patent Office
Prior art keywords
polyanion
heparin
gpl20
viral protein
inducing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP03746844A
Other languages
German (de)
English (en)
Inventor
Romain Vives
Claudio Vita
Hugues Lortat-Jacob
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Centre National de la Recherche Scientifique CNRS
Commissariat a lEnergie Atomique CEA
SATTENTAU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Commissariat a lEnergie Atomique CEA, SATTENTAU filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP1496932A2 publication Critical patent/EP1496932A2/fr
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/08Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses
    • C07K16/10Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses from RNA viruses
    • C07K16/1036Retroviridae, e.g. leukemia viruses
    • C07K16/1045Lentiviridae, e.g. HIV, FIV, SIV
    • C07K16/1063Lentiviridae, e.g. HIV, FIV, SIV env, e.g. gp41, gp110/120, gp160, V3, PND, CD4 binding site
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • A61K31/726Glycosaminoglycans, i.e. mucopolysaccharides
    • A61K31/727Heparin; Heparan
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/177Receptors; Cell surface antigens; Cell surface determinants
    • A61K38/1774Immunoglobulin superfamily (e.g. CD2, CD4, CD8, ICAM molecules, B7 molecules, Fc-receptors, MHC-molecules)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/40Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum bacterial
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/32Immunoglobulins specific features characterized by aspects of specificity or valency specific for a neo-epitope on a complex, e.g. antibody-antigen or ligand-receptor
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding

Definitions

  • the present invention relates to an anti-HIV composition and to its method of manufacture. It also relates to the use of said composition for the manufacture of an anti-HIV drug.
  • the entry of the human immunodeficiency virus (HIV) into the cell is an essential step in the viral infectious cycle. This process is divided into two phases corresponding to the interaction of the virus on the cell surface at the level of specific receptors of the host, and the penetration of the genetic material of the virus into the target cell.
  • CD4i constitutes a fixing site for certain members of the family of chemokine receptors (mainly CXCR4 and CCR5), which will play a role of co-receptor of gpl20 on the cell surface.
  • This second interaction gpl20 / CCR5 or gpl20 / CXCR4 then causes a reorganization of the protein complex gpl20 / gp41.
  • This reorganization exposes gp41 which then allows the initiation of fusion of cell and viral membranes, and the entry of viral genetic material into the cell.
  • This work makes it possible to define two new therapeutic targets: the inhibition of the interaction of gpl20 with CD4 and CCR5 or CXCR4, and the inhibition of fusion [3].
  • HIV human immunodeficiency
  • the co-receptors are also sites of attachment of the virus to cells.
  • the natural ligands of these co-receptors are chemokines, in particular RANTES and MIP for CCR5, and SDF for CXCR4.
  • these chemokines inhibit the interaction of the virus with cells [7, 8], but also induce a certain number of cellular responses making them difficult to use from a therapeutic point of view.
  • a number of compounds such as 1 ⁇ MD301 or peptides binding to co-receptors also have anti- viral [9,10].
  • these different molecules also block the intrinsic functions of the cell linked to the use of. these co-receptors.
  • HIV is able to bind to other molecules present on the cells it infects, such as DC-SIGN, sphyngolipids or even heparan sulfates [11].
  • heparan sulfates are complex polysaccharides belonging to the family of glycosaminoglycans (GAGs). They are present in abundance on the cell surface and in interstitial matrices, where they are found anchored on the extracellular domain of particular glycoproteins, heparan sulfates proteoglycans
  • HSPG heparin preparations
  • HS are distinguished from any other macromolecule ⁇ " biologic " by " diversity " of their structure and the functions they exercise. They are able in particular to fix the gpl20 of HIV, and the virus uses this property to adsorb on the surface of target cells.
  • the interaction site of heparan sulfates on gpl20 is located on a variable structure, called the V3 loop [12].
  • V3 loop the exact role of these polysaccharides during HIV infection remains unclear.
  • the present invention specifically aims to overcome the aforementioned drawbacks by providing a new composition which can be used as an anti-HIV agent.
  • This composition is capable of blocking the entry of the AIDS virus into its host cells. As such, it can be used for the preparation of a medicament, in particular a medicament intended for the treatment of AIDS.
  • composition of the present invention is characterized in that it comprises a polyanion and a molecule capable of inducing the exposure of the CD4i epitope of the viral protein gpl20.
  • a polyanion for example of the heparin or heparan sulfate type
  • a molecule capable of inducing the exposure of the CD4i epitope of the viral protein gpl20 for example of a soluble CD4 peptide.
  • this composition makes it possible to unexpectedly inhibit both the virus-heparan sulphate interaction of cell membranes, by blocking the V3 loop, and the virus-co-receptor interaction, by blocking the CD4i site.
  • the inventors have in fact shown that there are in fact two domains or sites of interaction of polyanones of the heparin or heparan sulfate type on gpl20. The first is the V3 loop, the second is the CD4i domain. They have shown (see examples below) that heparin, or fragments of heparin of sufficient size, in the presence -d - '.
  • a -peptide - ⁇ .CD4, - interacts with -the "-domain CD4i of the viral protein gpl20 and that this combination strongly inhibits the interaction gpl20 / antibody 48d or 17b, 48d or 17b are used as mime receptors.
  • composition of the present invention relates to a new therapeutic target by means of heparin or other polyanones in the presence of the CD4 peptide, namely blocking the interaction of HIV with its co-receptors.
  • This solution is very advantageous from the therapeutic point of view for inhibiting the attachment of the virus to the cells since it targets the virus itself and not the cells.
  • the polyanion can be advantageously chosen from the group consisting of heparin, heparan sulfate, and a polyanion equivalent to heparin or heparan sulfate.
  • heparin for example Dextran sulfate (trademark, Ueno fine-chem), Curdlan.-S -lfa-e (trademark, Ajinomoto), Naphthalene-2 ' sulfonate polymer (trademark, Procept ), Pentosan polysulfate (trademark, Baker norton pharm; Hoechst), or Resobene (trademark).
  • the polyanion is not too long, since it would have an anticoagulant activity, not desired in the present invention, and would form aspecific bonds with various proteins, in particular thrombin or antithrombin III. Its length will preferably be similar to a heparin chain having a degree of polymerization as defined below.
  • the polyanion preferably has at least two anionic groups per disaccharide. According to the present invention, when the polyanion is heparin or heparan sulfate, it will preferably have a degree of polymerization dp from 10 to 24, advantageously from 12 to 24, preferably from 16 to 22. According to the invention, heparin, heparan sulphate or the polyanion equivalent to heparin or heparan sulphate can have a degree of polymerization dp from 12 to 20, for example from 15 to 17.
  • the polyanion can be prepared by partial depolymerization of heparin or heparan sulfate by an enzymatic method, for example by means of heparinase, or chemical, for example by means of nitrous acid.
  • heparans can be defined by the presence of N-sulfated or N-acetylated or unsubstituted glucosamine in position N, linked to a uronic acid (glucuronic acid or iduronic acid) with a variable proportion of sulfate group.
  • Structural mimics of these oligosaccharides can be obtained by chemical synthesis.
  • the molecule capable of inducing the exposure of the CD4i epitope of the viral protein gpl20 can be chosen from a CD4 peptide or a derivative of this peptide, or alternatively a monoclonal antibody which binds to the viral protein gpl20 and capable of activating said gpl20 protein in an equivalent manner to the CD4 peptide.
  • CD4 peptide In the case of a CD4 peptide, it is preferably soluble for evident reasons of facilitating its interaction with the viral protein gpl20 in liquid medium, and to facilitate its • access to its target.
  • the CD4 peptide has the following sequence (! _):
  • TPA represents thiopropionic acid
  • Xaa J represents ⁇ -napthylalanine, phenylalanine or bi-phenylalanine
  • Xaa k represents Gly, Val or place
  • P 1 represents 3 to 6 amino acids
  • P 2 represents 2 to 4 acids amino acids
  • P 3 represents 6 to 10 amino acids
  • the amino acids in P 1 , P 2 and P 3 being natural or unnatural, identical or different and P 1 , P 2 and P 3 having or not a sequence common
  • said peptide having a ⁇ hairpin conformation whose ⁇ elbow is formed by the amino acid residues Ala or Gin - Gly or DAsp or Ser-Ser or His or Asn-Xaa 3 of its sequence (A.).
  • these peptides show a very great affinity for the viral protein gpl20.
  • Examples of such peptides which can be used in accordance with the present invention are the peptides of sequences ID No. 1 to ID No. 18 from the annexed sequence list or equivalent peptides.
  • peptides can be prepared by conventional techniques of solid phase chemical synthesis or genetic recombination.
  • the molecule capable of inducing the exposure of the CD4i epitope of the viral protein gpl20 is an antibody, it can be chosen, for example, from those described in the document Sullivan N, Sun Y, Binley J, Lee J, Barbas CF - " 3- d , " Parreri PW, -Burtlo ⁇ ' DR, Sodroski J, Determinants "of ⁇ humah • immunodeficiency virus type 1 envelope glycoprotein activation by soluble CD4 and monoclonal antibodies. J " Vîrol 1998; 72 (8): pp. 6332-6338.
  • the polyanion and the molecule capable of inducing the exposure of the CD4i epitope of the viral protein gpl20 are mixed in said composition.
  • This composition in accordance with the present invention makes it possible to expose the site of interaction with the co-receptors (CD4i site) and, concomitantly, to block this site by the oligosaccharide part constituted by the polyanion.
  • the polyanion and the molecule capable of inducing the exposure of the CD4i epitope of the viral protein gpl20 are advantageously mixed in said composition in proportions of 1 to 10 mole (s) of polyanion for 0 , 5 to 1.5 mole of molecule capable of inducing the exposure of the CD4i epitope of the viral protein gpl20.
  • the present invention also relates to a process for manufacturing the composition according to this first embodiment of the invention, comprising the following steps: - preparation of the polyanion, preparation of the molecule capable of inducing exposure of the epitope CD4i of the viral protein gpl20, mixture of the polyanion and of the - molecule capable of inducing the exposure of the CD4i epitope of the viral protein gpl20 prepared so as to obtain said composition.
  • the mixture will preferably be produced in a biological buffer so that it can be used to make a drug that can be administered.
  • the pH is preferably around 7, and the solution contains, for example, 15 g / l of NaCl.
  • the polyanion and the molecule capable of inducing the exposure of the CD4i epitope of the viral protein gpl20 are linked together in said composition. They form a polyanion / molecule hybrid capable of inducing exposure of the CD4i epitope of the viral protein gpl20.
  • the polyanion and the molecule capable of inducing the exposure of the CD4i epitope of the viral protein gpl20 are linked together at one of the ends of the polyanion.
  • the polyanion used is short, for example with a degree of polymerization dp from 10 to 12, it may be necessary to link the polyanion and the molecule capable of inducing the exposure of the CD4i epitope of the viral protein gpl20 by means of a spacer arm, this in order to allow the hybrid formed to bind to all of its targets on the viral protein gpl20. This may also be the case, when the molecule capable of inducing the exposure of the CD4i epitope of the viral protein gpl20 is too short.
  • the spacer arm May be any polymer, preferably 'soluble in_ aqueous buffers, .. of appropriate length. Mention may be made, for example, of polysaccharides or polyglycols.
  • the present invention also relates to a process for manufacturing the composition according to the second embodiment of the invention, comprising the following steps: preparation of the polyanion, preparation of the molecule capable of inducing the exposure of the CD4i epitope of the viral protein gpl20, binding of the polyanion and of the molecule capable of inducing the exposure of the CD4i epitope of the viral protein gpl20, prepared in such a way obtain said composition.
  • the binding of the polyanion with the molecule capable of inducing the exposure of the CD4i epitope can be formed by any technique known to a person skilled in the art, for example for binding a polyanion and a peptide.
  • any technique known to a person skilled in the art for example for binding a polyanion and a peptide.
  • the various methods described in documents [15], [16] and [17] for coupling an oligosaccharide to a polypeptide can be used in the present invention.
  • the hybrid molecule of the present invention has a triple advantage: it binds to the viral protein gpl20 at the CD4 interaction site, on the V3 loop, when these gpl20 are derived from viruses using CXCR4 as co-receptor, and on the domain of interaction with the co-receptors (CD4i domain), as shown diagrammatically in FIG. 7 appended. She permits thus simultaneously block all domains gpl20 uses to interact 'with its receptors and co-cellular receptors.
  • sequences ID No. 1 to ID No. 18 of the annexed sequence list are non-limiting examples of molecules capable of inducing the exposure of the CD4i epitope of the viral protein gpl20 within the meaning of the present invention.
  • These molecules are peptides from human CD4 (SeqIDn ° 1), or artificial peptides from or derived from scorpion venom peptides (SeqIDn ° 2 to 18).
  • FIG. 1 is a graph representing the amount of gpl20 / CD4, in resonance units (RU), fixed on heparin as a function of time t (in seconds) for different concentrations of CD4 (in nM): bottom curves top: 0; 50; 100; 250; 500
  • FIG. 2 is a graph showing the amount of gpl20 / CD4, in resonance units (RU), fixed on heparin as a function of the concentration of CD4 (in nM).
  • Figure 3 is a graph showing the evolution of viral protein interaction gpl20 / 48d antibody (RU response) as a function of time
  • FIG. 4 is a graph representing the inhibition of the interaction of the gpl20 / CD4 complex with the antibody 48d (RU response) as a function of time
  • FIG. 5 is a graph representing the inhibition the amount of gpl20 / CD4 complexes fixed on 48d as a function of the size of the heparin fragment in degree of polymerization, from dp 0 to dp 18 (curves from top to bottom: dp 0; dp 2; dp 4; dp 6; dp 8; dp 10; dp 12; dp 14; dp 16; dp 18).
  • FIG. 6 is a graph representing the quantity of "gp120 / CD4 complexes fixed on 48d as a function of " the size of the heparin fragment " from the data represented in FIG. 5.
  • Figure 7 is a drawing schematically showing the viral protein gpl20, and the interaction of a composition according to the second embodiment of the present invention with the viral protein gpl20.
  • sCD4bs CD4 binding site
  • V3 V3 loop
  • CD4ni non-induced co-receptor binding site (“ni” ) (not accessible)
  • CD4i site of binding to the co-receptor induced by the binding of CD4 to gpl20 (“i” for armature)
  • CD4 / H hybrid molecule CD4 / heparin or heparan sulfate peptide according to the second mode of embodiment of the present invention
  • H heparin or heparan sulfate.
  • FIGS 8 a) to h) are graphical representations of the interaction of viral protein complexes gpl20 and gpl20 / CD4 on a detection biochip activated with heparin, at different concentrations of viral protein gpl20: 0 nM ( at) ; 0.62 nM (b); 1.25 nM (c); 2.5 nM (d); 5 nM (e); 10 nM (f), 20 nM (g) and 40 nM (h), with preincubation (solid lines) or without preincubation (broken lines) with 80 nM of soluble CD4.
  • FIG. 9 is a graphical representation of the inhibition of the gpl20 / CD4 interaction by heparin and heparin oligosaccharides (H) on a detection biochip activated by mAbl7b.
  • the viral protein gpl20 (5 nM) was . preincubated successively with a CD4 peptide (10 nM) and with heparin ([H]) • concentrations at -O- 1M - (curve a); ? ⁇ 2.1 nM (b); 4.2 nM (c); 8, -3._nM- (d); .. and .. 16.7.nM (e), before being injected onto the surface mAbl7b.
  • FIG. 10 is a graphical representation of the inhibition of the gpl20 / CD4 interaction with heparin and heparin oligosaccharides (H) on a detection biochip activated by mAbl7b.
  • the viral protein gpl20 (5 nM) was successively preincubated with a CD4 peptide (10 nM) and with a heparin concentration of 40 nM, with different degrees of polymerization: dp 0 (curve 1); dp 2 (curve 2); dp 4 (curve 3); dp 6 (curve 4); dp 8 (curve 5); dp 10 (curve 6); dp 12 (curve 7); dp 14 (curve 8); dp 16 (curve 9); dp 18 (curve 10), before being injected onto the mAbl7b surface.
  • FIG. 11 represents the absorbance at 230 n of different fractions (F) of 15 ml obtained during an enzymatic synthesis of heparin at degrees of polymerization dp ranging from 2 to 10 (the dp corresponds to the figures indicated on the curve).
  • FIG. 12 is a graph produced from the experimental results of Example 10. This graph shows the percentages of gp120 / CXCR4 interaction in the presence or not of heparin.
  • the gpl20-heparin interaction analyzes were carried out by surface plasmon resonance (BIAcore system (trademark)).
  • This technique which makes it possible to carry out interaction measurements in real time, also has the advantage of proposing a model close to - physiological reality, where heparin immobilized on a detection biochip ("sensorchi-p" ) constitutes a two-dimensional interface like the cell surface.
  • EXAMPLE 1 SYNTHESIS OF A CD4 PEPTIDE THAT CAN BE USED TO MANUFACTURE THE COMPOSITION OF THE PRESENT INVENTION
  • a peptide from the annexed sequence list is synthesized by solid-phase chemical synthesis with an automatic peptide synthesizer Applied Biosystems, mod. 433A, and in chemistry Fmoc, which uses the group Fluorenylmethyloxycarbonyl (Fmoc) for the temporary protection of the ⁇ -amino function of amino acids.
  • Protective groups used to prevent side chain reactions lateral amino acids were tertiary butyl ether (tBu) for the residues Ser, Thr and Tyr; tert-butyl ester (OtBu) for Asp, Glu; trityl - (Trt) for Gin, Asn, Cys, His; tert-butyloxycarbonyl (Boc) for Lys and 2, 2, 5, 7, 8-pentametylchromane-6-sulfonyl (Pmc) for Arg.
  • tBu tertiary butyl ether
  • OtBu tert-butyl ester
  • Trt trityl -
  • Pmc tert-butyloxycarbonyl
  • the coupling reaction takes place with an excess of 10 equivalents of amino acids (1 mmol) relative to the resin (0.1 mmol).
  • the protected amino acid is dissolved in 1 ml of N-methylpyrollidone (NMP) and 1 ml of a 1M solution of 1N-hydroxy-7-azabenzotriazole (HOAt) in the NMP solvent.
  • 1 ml of a 1M solution of N, N '-dicyclohexylcarbodiimide (DCC) is then added.
  • the active ester formed is transferred to the reactor which contains the resin.
  • the -resin is -protected . e of its Fmoc grouping by. -a • - solution of .20 .-.% .- of - piperidine ' - ' in the NMP.
  • the excess piperidine is removed by washing with NMP after about 5 to 10 minutes.
  • the peptide-resin is treated 5 times with a solution of 2% hydrazine in DMF.
  • the coupling of a link arm is carried out for one hour at room temperature in DMF with 10 equivalents of Fmoc-8-amino-3, 6-dioxaoctanoic acid using the reagent HBTU in the presence of diisopropylethylamine.
  • the Fmoc group is then deprotected with 20% piperidine in DMF.
  • the peptide-resin is therefore treated with 10 equivalents of Traut's reagent (2- hydrochloride iminothiolane (Sigma) in the presence of DIEA.
  • the peptide is finally released and deprotected as described below.
  • the cleavage of the resin and of the protective groups present on the side chains were carried out simultaneously by treatment of the peptide linked to the resin with trifluoroacetic acid (TFA).
  • TFA trifluoroacetic acid
  • the resin was washed several times with dichloromethane (DCM) and finally dried.
  • the reagent used during the cleavage is an acid mixture containing 81.5% of TFA and the trappers phenol (5%), thioanisole (5%), water (5%), ethanedithiol (2.5%) and tri-isopropylsilane ( 1%).
  • the resin was treated with this mixture for three hours with stirring and at room temperature, at the rate of 100 ml of solution per gram of resin.
  • the free peptide in solution was recovered by filtration.
  • the peptide was then precipitated and washed cold in diisopropyl ether and then -dissolved in 20% acetic acid and lyophilized.
  • the -peptide recovered after -lyophilization, the crude synthesis is in reduced form, that is to say that the intrachain disulfide bridges are not formed.
  • the formation of these covalent bonds was carried out using the redox cystamine / cysteamine pair.
  • the crude synthesis was taken up in water added with 0.1% TFA (v / v) and guanidinium chloride 6M to facilitate its dissolution, at a rate of 2.0 g.ml "1.
  • This solution then was added dropwise, diluted to 0.2 mg / ml -1 , to the reduction buffer, composed of 100 mM Tris / HCl, pH 7.8, and 5 mM cysteamine.
  • the cystamine (oxidant) o 5 mM in the end, was added after 45 minutes of reaction to ambient temperature.
  • the medium is brought to pH 3.0 after 30 minutes.
  • Cysteamine makes it possible to reduce the thiol groups present on the peptide. Outdoors, . . . it oxidizes and allows the oxidation of cysteines and therefore the folding of the peptide by formation of intrachain disulfide bridges. The cystamine added at the end of handling makes it possible to perfect the folding. The good progress of the oxidation is verified by analytical chromatography by comparing the retention times of the crude and oxidized products, which are more important for the former.
  • the peptides were purified by high performance liquid chromatography in reverse phase on a Vydac C18 preparative column (1.0 x 25.0 cm). A linear gradient 0-60 was used . % acetonitrile in an aqueous solution of 0.1% trifluoroacetic acid for 90 minutes. The major peak fractions were analyzed by .HPL.C. • . -Analysis; the fractions .-- having only one peak - were combined - and lyophilized.
  • a heparin or heparan sulfate molecule having a defined degree of polymerization dp is synthesized.
  • heparin 6 g are dissolved in a buffer containing 5 mM of tris, 2 mM of CaCl 2 , 50 mM of NaCl and 0.1 mg / ml of albumin. The pH is adjusted to 7.5 with acetic acid. This solution is incubated at 25 ° C with heparinase I (8 mU / ml) for approximately 50 h (the enzymatic reaction is followed by the increase in optical density, measured at 232 nm).
  • the mixture is then purified by gel filtration chromatography.
  • the solid phase is Biogel -PO, contained, in.-A .column - . 1.50 m and 4.4 cm._ in diameter, - eluted. at .-- 1 • -ml / min. with some. - NaCl 0.25 M. ...
  • FIG. 11 represents the absorbance at 230 nm of the various 15 ml fractions obtained for degrees of polymerization dp ranging from 2 to 10.
  • the different oligosaccharides (dp2, dp4, ..., etc.) are dialyzed against water and then lyophilized.
  • the procedure is as follows: 1 g of heparin is dissolved in 20 ml of sodium nitrite (NaN0 2 ) at
  • the procedure is as follows: 8 g of heparan sulfate are dissolved in 40 ml containing 5 mM tris, 2 mM CaCl 2 , 50 mM NaCl and 0.1 mg / ml of albumin. The pH is adjusted to 7.5 with acetic acid. This solution is incubated at 30 ° C, with heparinase III (25 mU / ml) for approximately 72 hours. Heparinase III is added again, for a period of 48 hours, then the products are purified as described above in paragraph A).
  • a CD4 peptide from Example 1 is mixed with a prepared heparan sulfate prepared. in- example • 2. These two molecules are dissolved at a concentration twice higher than the desired final concentration. These solutions are carried out in a physiological buffer.
  • a physiological buffer For example PBS, TBS (Tris 50mM, 0.15M NaCl, pH 7.5), or HBS (Hepes 20mM, 0.15M NaCl, pH 7.5).
  • the heparan sulfate is incubated with a molar excess of hydrazine or carbodihydrazide.
  • the purpose of this step is to place a hydrazine group on the reducing end of the oligosaccharide, when the latter is prepared by enzymatic depolymerization, or on the aldehyde of the oligosaccharide, when the latter is prepared by chemical depolymerization with nitrous acid.
  • the carbohydrates of the soluble CD4 peptide are oxidized by treatment with sodium periodate, the aldehyde function thus created is used for the coupling of the hydrazine oligosaccharide.
  • the oligosaccharide ,. - generally in solution at "l.mM-in a PBS buffer.- (saline sodium phosphate) - is co-incubated with a molar excess (for example up to ⁇ at ⁇
  • reaction mixture is incubated at room temperature, then purified by desalting or dialysis against distilled water, and finally dried by evaporation under vacuum or lyophilized.
  • reaction mixture (produced in mammalian or insect cells) is taken up in 20 mM phosphate buffer, pH 6.2 and then treated with sodium periodate (10 mM) for 20 minutes, at 4 ° C. and at darkness. To remove sodium periodate, the reaction mixture is desalted by gel filtration or by dialysis against the phosphate buffer.
  • the sCD4 whose glycans are thus oxidized, is co-incubated with a molar excess of hydrazine oligosaccharide at 4 ° C., to form the complex between the two molecules.
  • EXAMPLE 5 EVIDENCE OF THE INCREASE IN THE AFFINITY OF gp1-20- FOR HEPARIN-.PAR CD4- -
  • the analyzes of gpl20-heparin interaction by surface plasmon resonance were performed as a function of time.
  • FIG. 1 corresponds to the injection of gpl20 at 50 nM and CD4 respectively at 0, 50, 100, 250 or 500 nM (respectively for the curves from bottom to top in this figure).
  • Figure 2 shows the amount of gpl20 / CD4 fixed on heparin as a function of the concentration of CD4.
  • CD4: gpl20 molar ratio of approximately 5: 1 produces the maximum response.
  • the viral protein gpl20 (hxbc2) at 50 nM is incubated for 1 h 20 with increasing concentrations of soluble CD4 at 0, 50, 100, 250 or 500 nM; then injected onto the surface 48d at 10 ⁇ l / min.
  • the gpl20 protein is co-incubated for 40 minutes with CD4. The mixture is then divided into 5 aliquots in which heparin (15 kDa) is added at different concentrations.
  • the final concentrations in the aliquots are: gpl20: 50 nM; CD4: 250 nM and heparin: 0, 3,
  • Example 8 INHIBITION OF THE gp! 20-48d INTERACTION WITH OLIGOSACCHARIDE FRAGMENTS OF DEFINED SIZES
  • the oligosaccharide fragments of defined sizes are obtained by enzymatic depolymerization.
  • the viral protein gpl20 is co-incubated for 60 minutes with CD4 so as to expose the CD4i domain.
  • the mixture is divided into 8 aliquots and fragments of heparin of increasing size, comprising from 1 to 8 disaccharide units .. basic, or one degree, of polymerization - (dp). from 2- to -16 are added to give final concentrations of 50 nM for gp120, 250-nM for CD4 and 125 nM for the heparin fragments (the molecular mass of a disaccharide is approximately 600 Da .
  • the mixtures are then injected onto the surface 48d (FIG. 5).
  • the data obtained make it possible to represent the quantity of gpl20 / CD4 complexes fixed on 48d as a function of the size of the heparin fragment (FIG. 6).
  • heparin a molecule with a structure very similar to heparan sulfates, also interacts with a second binding site on gpl20.
  • This site named CD4i is an epitope only exposed when gpl20 " interacts " with
  • CD4i site of gpl20 is made up of basic amino acids. These basic residues are aligned on the surface of the protein, and effectively constitute a site of interaction with heparin, or oligosaccharides of heparin derivative 1 or heparan sulfate.
  • the inventors therefore hereby propose a therapeutic use of polyanionic compounds targeting this new interaction site.
  • the approach consists of the combined use of polyanones and molecules capable of exposing the CD4i epitope, in co-administration or in the form of a hybrid molecule. This type of molecule simultaneously blocks all of the domains of interaction of gpl20 with host cells.
  • the protocol is based on the reaction of an aldehyde group (on the oligosaccharide) with an amino or hydrazide group .. on the. protein..
  • the aldehyde function is created at the cleavage site, and the oligosaccharide is ready for coupling.
  • the oligosaccharides are incubated in a saturated solution of ammonium bicarbonate, for 96 hours.
  • the reaction mixture is then purified on a filtration gel column, equilibrated with 10 M ammonium bicarbonate, then the sample is freeze-dried several times to remove residual ammonium bicarbonate.
  • the purpose of this step is to create a glycosylamine at the reducing end of the oligosaccharide.
  • the oligosaccharide (10 mM) can also be incubated with 0.25 M of dihydrazide adipate, in the presence of sodium cyanoborohydrate (NaBH 3 CN, 1 M) at pH 5, for 96 hours.
  • reaction mixture is then purified on a filtration gel column, equilibrated in distilled water, then dried by lyophilization.
  • the purpose of this step is to introduce a hydrazide function at the reducing end of the oligosaccharide.
  • the oligosaccharides prepared according to the two above methods, are then incubated with 0.5 M of diglutaraldehyde, at pH 5 for 4 hours, then " with 0.1 M of NaBH 3 CN for 30 minutes.
  • the reaction mixture is then followed. -purified on a column of gel filtration, balanced .in., distilled water, then dried by lyophilization This step is for the purpose of placing an aldehyde function at the reducing end of the oligosaccharides.
  • Example 10 Demonstration of the inhibitory activity of oligosaccharides on the interaction of gp! 20 with the co-receptor (CXCR4) of the virus
  • CHO cells (mutant 2241, deficient in the expression of glycosaminoglycans, it does not make heparan sulfate) transfected with the CXCR4 gene are pre-incubated with: gpl20 (20 ⁇ g / ml), with or without heparin, or gpl20 / CD4 complexes
  • the gpl20 fixed to the cell surface is detected using an anti-gpl20 antibody coupled to a secondary antibody labeled with FITC, then analyzed in FACS.
  • results represented in the appended FIG. 12 show the percentages of gpl20 / CXCR4 interaction.
  • the negative control (0%) corresponds to the non-specific binding of gpl20 to the cells

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Immunology (AREA)
  • Virology (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Oncology (AREA)
  • AIDS & HIV (AREA)
  • Hematology (AREA)
  • Dermatology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Communicable Diseases (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)
  • Medicinal Preparation (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

La présente invention se rapporte à une composition anti-VIH et à son procédé de fabrication. La composition de la présente invention comprend un polyanion et une molécule capable d'induire l'exposition de l'épitope CD4i de la protéine virale gp120. Le polyanion peut être choisi par exemple dans le groupe constitué de l'héparine, de l'héparane sulfate, et d'un polyanion équivalent à l'héparine ou à l'héparane sulfate. La molécule capable d'induire l'exposition de l'épitope CD4i de la protéine virale gp120 est un peptide CD4 ou un dérivé de celui-ci. La présente invention se rapporte également à l'utilisation de ladite composition pour la fabrication d'un médicament, notamment d'un médicament destiné au traitement du sida.

Description

COMPOSITION ANTI-VIH, PROCEDE DE FABRICATION ET
MEDICAMENT
DESCRIPTION
Domaine technique
La présente invention se rapporte à une composition anti-VIH et à son procédé de fabrication. Elle se rapporte également à l'utilisation de ladite composition pour la fabrication d'un médicament anti- VIH.
L'entrée du virus de l' immunodéficience humaine (VIH) dans la cellule est une étape essentielle du cycle infectieux viral. Ce processus se divise en deux phases correspondant à l'interaction du virus à la surface cellulaire au niveau de récepteurs spécifiques de l'hôte, et à la pénétration du matériel génétique du virus dans la cellule cible.
Au cours des dix dernières années, les mécanismes d'adhésion du VIH à la surface cellulaire se sont considérablement clarifiés. Les partenaires moléculaires impliqués sont maintenant bien définis tel qu'exposé dans les documents [1, 2] de la liste de référence annexée . Du côté du virus, les glycoprotéines d'enveloppe gpl20 et gp41 constituent la "clef de voûte" du complexe d'interaction virus/cellules. Dans un premier temps, gpl20 s'associe avec une protéine transmembranaire de la cellule hôte, CD4. Cette interaction provoque un changement conformationnel de gpl20 qui va exposer un epitope particulier, dit "CD4 induit" (CD4i) . CD4i constitue un site de fixation pour certains membres de la famille des récepteurs des chimiokines (principalement CXCR4 et CCR5) , qui vont jouer un rôle de co-récepteur de gpl20 à la surface cellulaire. Cette deuxième interaction gpl20/CCR5 ou gpl20/CXCR4 provoque alors une réorganisation du complexe protéique gpl20/gp41. Cette réorganisation expose gp41 ce qui permet alors l'initiation de la fusion des membranes cellulaires et virales, et l'entrée du matériel génétique viral dans la cellule. Ces travaux permettent de définir deux nouvelles cibles thérapeutiques : 1 ' inhibition de 1 ' interaction de la gpl20 avec CD4 et CCR5 ou CXCR4 , et l'inhibition de la fusion [3] .
Art antérieur
Les références entre crochets [] renvoient .à la liste de références annexée.
Dans le domaine -de l'infection par le virus de
1' immunodéficience humaine (VIH) les trithérapies associant inhibiteurs nucléosidiques, non nucléosidiques et/ou antiprotéases ("HAART" pour
"Highly Active Antiretroviral Treatment") ciblent la rëplication et la maturation du virus.
Ces traitements permettent une réduction importante de la charge virale, mais ils ne permettent pas une éradication totale du virus dans l'organisme.
En effet, l'arrêt de la prise de médicaments, même après plusieurs années de traitement, se traduit invariablement par une remontée rapide de la virêmie plasmatique. Outre cet inconvénient, ces traitements présentent une toxicité importante et de nombreux effets secondaires. Dans le cadre de la recherche de nouveaux traitements contre le SIDA, les processus d'adsorption du virus sur la cellule hôte constituent une cible thérapeutique particulièrement attractive, du fait notamment que cette étape se déroule à 1 ' extérieur de la cellule.
Des peptides se liant à gp41 et inhibant son activité de fusion ont été développés [4, 5] . Les études cliniques en cours donnent des résultats positifs, indiquant que l'inhibition de la fusion, et donc de l'entrée du virus correspond effectivement à une cible thérapeutique intéressante.
Concernant l'attachement du virus, différentes études ont exploré l'utilisation de CD4 soluble pour inhiber 1 ' interaction du virus avec le CD4 exprimé à la surface des cellules cibles du VIH. Cette solution s'est révélée inefficace, parce qu'en se fixant aux virus,- -le CD4 soluble - expose l'épitope CD4i, et favorise en fait l'interaction: du virus au co-récepteur CCR5 ou CXCR4, ce qui dans certains cas augmente l'infection [6].
En plus de CD4 , les co-récepteurs sont aussi des sites d'attachement du virus sur les cellules. Les ligands naturels de ces co-récepteurs sont des chimiokines, notamment RANTES et MIP pour CCR5, et SDF pour CXCR4. In vitro ou sur des cellules en culture, ces chimiokines inhibent l'interaction du virus avec les cellules [7, 8] , mais induisent aussi un certain nombre de réponses cellulaires les rendant difficile- à utiliser d'un point de vue thérapeutique. Un certain nombre de composés tels que 1ΑMD301 ou des peptides se liant aux co-récepteurs ont aussi des effets anti- viraux [9,10]. Cependant, en ciblant les co-récepteurs du VIH, ces différentes molécules bloquent également les fonctions intrinsèques de la cellule liée à l'utilisation de. ces co-récepteurs. Outre ces récepteurs cellulaires, le VIH est capable de se fixer à d'autres molécules présentes sur les cellules qu'il infecte, telles que DC-SIGN, les sphyngolipides ou encore les héparanes sulfates [11] .
Les héparanes sulfates sont des polysaccharides complexes appartenant à la famille des glycosaminoglycanes (GAGs) . Ils sont présents en abondance à la surface cellulaire et dans les matrices interstitielles, où ils sont trouvés ancrés sur le domaine extracellulaire de glycoprotéines particulières, les héparanes sulfates protéoglycanes
(HSPG) . Découverts il y a un demi-siècle à partir des préparations d'héparine (un autre type de GAG possédant des- propriétés très vois-ines) -, les HS se distinguent de toute autre macromolécule~"bιologique. par "la""diversité de leur structure et des fonctions qu'ils exercent. Ils sont capables notamment de fixer la gpl20 du VIH, et le virus utilise cette propriété pour s'adsorber à la surface des cellules cibles. Le site d'interaction des héparanes sulfates sur la gpl20 est localisé sur une structure variable, appelée boucle V3 [12] . Néanmoins, le rôle exact de ces polysaccharides au cours de l'infection par le VIH reste peu clair. Des études ont montré que l'élimination des héparanes sulfates exprimés à la surface des cellules contribuait à rendre celles-ci moins permissives à l'infection par le virus [11] démontrant l'importance de cette molécule pour 1 ' attachement et 1 ' entrée du virus . Sur la base de ces observations, différentes molécules polyanioniques de type héparine ont été développées pour inhiber 1 ' interaction du virus avec les cellules. Cependant, les premiers essais cliniques n'ont montré que peu ou pas d'activité de ces molécules, et des effets toxiques ont pu être observés dans certains cas [13, 14] .
Il apparaît donc nécessaire de mettre au point de nouveaux traitements contre le SIDA, moins contraignants, entraînant moins d'effets secondaires et permettant d'éviter les échappements, c'est à dire l'apparition de virus résistants, ne répondant plus aux traitements. Il est en outre nécessaire de trouver d'autres thérapies contre le VIH dirigées sur de nouvelles cibles .
C'est dans ce contexte que les inventeurs ont réalisé la présente- invention.
Expose de l'invention
La présente invention a précisément pour but de pallier les inconvénients précités en fournissant une nouvelle composition utilisable en tant qu'agent anti- VIH. Cette composition est capable de bloquer l'entrée du virus du SIDA dans ses cellules hôtes. A ce titre, elle est .utilisable pour la préparation d'un médicament, en particulier d'un médicament destiné au traitement du sida.
La composition de la présente invention est caractérisée en ce qu'elle comprend un polyanion et une molécule capable d'induire l'exposition de l'épitope CD4i de la protéine virale gpl20. Ainsi, conformément à la présente invention, les inventeurs ont réunis au sein d'une seule composition d'une part un polyanion, par exemple de type héparine ou hêparane sulfate, et d'autre part une molécule capable d'induire l'exposition de l'épitope CD4i de la protéine virale gpl20, par exemple d'un peptide CD4 soluble. Ils ont montré que cette composition permet d'inhiber, de manière inattendue, à la fois l'interaction virus-héparanes sulfates de membranes cellulaires, en bloquant la boucle V3 , et l'interaction virus-co-récepteurs, en bloquant le site CD4i. Les inventeurs ont en effet montré qu'il existe en fait deux domaines ou sites d'interaction des polyaniôns de type héparine ou hêparane sulfate sur la gpl20. Le premier est la boucle V3 , le second est le domaine CD4i. Ils ont montré (voir exemples ci-dessous) que l'héparine, ou des fragments d'héparine de taille suffi-sante, en présence -d-'.un -peptide -~.CD4, - interagit avec -le"-domaine CD4i de la protéine virale gpl20 et que cette combinaison inhibe fortement l'interaction gpl20/anticorps 48d ou 17b. 48d ou 17b sont utilisés comme mîmes des corécepteurs .
Ce blocage du VIH avec la composition de la présente invention est d'autant plus inattendu que l'homme du métier sait que la molécule CD4 utilisée seule, peut avoir l'effet inverse de celui recherché car elle expose les domaines d'interaction avec les co- récepteurs, et peut donc augmenter 1 ' infectivité par le virus . La composition de la présente invention vise donc une nouvelle cible thérapeutique au moyen d'héparine ou autres polyaniôns en présence du peptide CD4, à savoir le blocage de 1 ' interaction du VIH avec ses co- récepteurs. Cette solution est très intéressante du point de vue thérapeutique pour inhiber l'attachement du virus sur les cellules car elle cible le virus lui- même et non les cellules. Elle est donc au premier abord dépourvue des effets cellulaires qui sont observés avec les produits de l'art antérieur lorsque ce sont les co-récepteurs qui sont ciblés. En outre la toxicité de la composition de la présente invention pour un organisme est inférieure à la plupart des composés chimiques de l'art antérieur du fait de la nature de ses constituants.
Selon l'invention, le polyanion peut être choisi avantageusement dans le groupe constitué de l'héparine, de l'héparane sulfate, et d'un polyanion équivalent à l'héparine ou à l'héparane sulfate. Il s'agit par exemple du Dextran sulfate (marque de commerce, Ueno fine- chem) , du Curdlan .-s -lfa-e (marque de commerce, Ajinomoto), du Naphtalene-2' sulfonate polymer (marque de commerce, Procept) , du Pentosan polysulfate (marque de commerce, Baker norton pharm ; Hoechst) , ou du Resobene (marque de commerce) .
La structure du disaccharide constitutif (élément de base) de l'héparine et de l'héparane sulfate selon la présente invention est de formule (I) suivante :
Il est préférable que le polyanion ne soit pas trop long, car il aurait une activité anticoagulante, non souhaitée dans la présente invention, et formerait des liaisons aspécifiques avec différentes protéines, notamment la thrombine ou l' antithrombine III. Sa longueur sera de préférence similaire à une chaîne d'héparine ayant un degré de polymérisation tel que défini ci-dessous. Le polyanion présente de préférence au moins deux groupes anioniques par disaccharide. Selon la présente invention, lorsque le polyanion est de l'héparine ou de l'héparane sulfate, il aura de préférence un degré de polymérisation dp de 10 à 24, avantageusement de 12 à 24, de préférence de 16 à 22. Selon l'invention, l'héparine, l'héparane sulfate ou le polyanion équivalent à l'héparine ou l'héparane sulfate peut avoir un degré de polymérisation dp de 12 à 20, par exemple de 15 à 17.
Selon l'invention, le polyanion peut être préparé par dépolymérisation partielle d'héparine ou d'hêparane sulfate par une méthode enzymatique, par exemple au moyen d'heparinase, ou chimique, par exemple au moyen d'acide nitreux. Lorsqu'ils sont obtenus chimiquement, les héparanes peuvent être définis par la présence de glucosamine N-sulfatée ou N-acétylée, ou non substituée en position N, liée à un acide uronique (acide glucuronique ou acide iduronique) avec une proportion variable de groupe sulfate. Des mîmes structuraux de ces oligosaccharides peuvent être obtenus par synthèse chimique .
Selon l'invention, la molécule capable d'induire l'exposition de l'épitope CD4i de la protéine virale gpl20 peut être choisie parmi un peptide CD4 ou un dérivé de ce peptide, ou encore un anticorps monoclonal se fixant sur la protéine virale gpl20 et capable d'activer ladite protéine gpl20 de façon équivalente au peptide CD4.
Lorsqu'il s'agit d'un peptide CD4, il est de préférence soluble pour les raisons évidentes de faciliter son interaction avec la protéine virale gpl20 en milieu liquide, et de faciliter son accès à sa cible.
.-Selon--1' invention,, avantageusement, le- peptide CD4 est- de- séquence .(!_) suivante :
Cys ou TPA - P - Cys - P - Cys - PJ - Cys - Ala ou Gin - Gly ou (D)Asp ou Ser - Ser ou His ou Asn - XaaJ - Cys - Thr ou Ala - Cys- Xaa - NH2
dans laquelle TPA représente l'acide thiopropionique, XaaJ représente la β-napthylalanine, la phénylalanine ou la bi-phénylalanine, Xaak représente Gly, Val ou lieu, P1 représente 3 à 6 acides aminés, P2 représente 2 à 4 acides aminés et P3 représente 6 à 10 acides aminés, les acides aminés dans P1, P2 et P3 étant naturels ou non naturels, identiques ou différents et P1, P2 et P3 ayant ou non une séquence commune, ledit peptide présentant une conformation en épingle à cheveux β dont le coude β est formé par les résidus acides aminés Ala ou Gin - Gly ou DAsp ou Ser-Ser ou His ou Asn- Xaa3 de sa séquence (A.) . En' effet, ces peptides montrent une très grande affinité pour la protéine virale gpl20.
Des exemples de tels peptides utilisables conformément à la présente invention sont les peptides de séquences IDn°l à IDn°18 de la liste de séquences annexée ou des peptides équivalents.
Ces peptides peuvent être préparés par les techniques classiques de synthèse chimique en phase solide ou de recombinaison génétique.
Lorsque la molécule capable d' induire l'exposition de l'épitope CD4i de la protéine virale gpl20 est un anticorps, il peut être choisi par exemple parmi ceux décrits dans le document Sullivan N, Sun Y, Binley J, Lee J, Barbas CF -"3-d, "Parreri PW, -Burtloή 'DR, Sodroski J, Déterminants" of ~ humah immunodefîciency virus type 1 envelope glycoprotein activâtion by soluble CD4 and monoclonal antibodies. J" Vîrol 1998 ; 72(8) : pp.6332-6338.
Selon un premier mode de réalisation de la présente invention, le polyanion et la molécule capable d'induire l'exposition de l'épitope CD4i de la protéine virale gpl20 sont mélangés dans ladite composition. Cette composition conforme à la présente invention permet d'exposer le site d'interaction avec les co- récepteurs (site CD4i) et, de façon concomitante, de bloquer ce site par la partie oligosaccharidique constituée par le polyanion. Suivant ce premier mode de réalisation, le polyanion et la molécule capable d'induire l'exposition de l'épitope CD4i de la protéine virale gpl20 sont avantageusement mélangés dans ladite composition en des proportions de 1 à 10 mole (s) de polyanion pour 0,5 à 1,5 mole de molécule capable d'induire l'exposition de l'épitope CD4i de la protéine virale gpl20. De préférence de 5 moles de polyanion pour 1 mole de molécule capable d'induire l'exposition de l'épitope CD4i de la protéine virale gpl20.
La présente invention se rapporte également à un procédé de fabrication de la composition suivant ce premier mode de réalisation de l'invention, comprenant les étapes suivantes : - préparation du polyanion, préparation de la molécule capable d'induire l'exposition de l'épitope CD4i de la protéine virale gpl20, mélange du polyanion et de la - molécule capable d'induire l'exposition de l'épitope CD4i de la protéine virale gpl20 préparés de manière à obtenir ladite composition.
Le mélange sera de préférence réalisé dans un tampon biologique pour pouvoir être utilisé pour fabriquer un médicament administrable. Le pH est de préférence d'environ 7, et la solution contient par exemple 15g/l de NaCl .
Selon un deuxième mode de réalisation de la présente invention, le polyanion et la molécule capable d'induire l'exposition de l'épitope CD4i de la protéine virale gpl20 sont liés entre eux dans ladite composition. Ils forment un hybride polyanion/molécule capable d'induire l'exposition de l'épitope CD4i de la protéine virale gpl20.
Par exemple, selon- l'invention, le polyanion et la molécule capable d'induire l'exposition de l'épitope CD4i de la protéine virale gpl20 sont liés entre eux au niveau d'une des extrémités du polyanion.
Lorsque le polyanion utilisé est de courte taille, par exemple avec un degré de polymérisation dp de 10 à 12, il peut être nécessaire de lier le polyanion et la molécule capable d'induire l'exposition de l'épitope CD4i de la protéine virale gpl20 au moyen d'un bras espaceur, ceci afin de permettre à l'hybride formé de se fixer sur l'ensemble de ses cibles sur la protéine virale gpl20. Ce peut être le cas aussi, lorsque la molécule capable d'induire l'exposition de l'épitope CD4i de la protéine virale gpl20 est trop courte.- Le -bras espaceur.. peut- être tout polymère, de préférence' -soluble dans_ les tampons aqueux, .. de longueur appropriée. On peut citer par exemple les polyosides ou polyglycols. Il peut s'agir par exemple du polyéthylèneglycol : (CH2CH20)n. Des préparations de bras espaceurs de ce type utilisables dans la présente invention ont été décrites largement dans l'art antérieur, par exemple dans les documents [18] et [19] (voir liste de références annexée) .
La présente invention se rapporte également à un procédé de fabrication de la composition selon le deuxième mode de réalisation de l'invention, comprenant les étapes suivantes : préparation du polyanion, préparation de la molécule capable d' induire l'exposition de l'épitope CD4i de la protéine virale gpl20, liaison du polyanion et de la molécule capable d'induire l'exposition de l'épitope CD4i de la protéine virale gpl20 préparés de manière à obtenir ladite composition.
La liaison du polyanion avec la molécule capable d'induire l'exposition de l'épitope CD4i peut être formée par toutes les techniques connues de l'homme du métier, par exemple pour lier un polyanion et un peptide. Par exemple, les différentes méthodes décrites dans les documents [15] , [16] et [17] (voir liste de références annexée) pour coupler un oligosaccharides à un polypeptide sont utilisables dans la présente invention.
Selon la présente invention, pour les raisons évoquées ci-dessus7- . -i-1 --est aussi., possible d'utiliser tout type d' agent -pon ant-, .-ou bras, espaceur,. se fixant d'une part sur une extrémité de 1 'oligosaccharide et d'autre part sur une partie de CD4 non essentielle à sa fonction. Le bras espaceur peut être un de ceux précités. Sa préparation peut être réalisée de la manière décrite dans les documents [18] et [19] .
La molécule hybride de la présente invention a un triple intérêt : elle se fixe à la protéine virale gpl20 sur le site d'interaction de CD4, sur la boucle V3, lorsque ces gpl20 sont issues de virus utilisant CXCR4 comme co-récepteur, et sur le domaine d'interaction avec les co-récepteurs (domaine CD4i) , comme schématisé sur la figure 7 annexée. Elle permet donc de bloquer simultanément tous les domaines que la gpl20 utilise pour interagir' avec ses récepteurs et co- récepteurs cellulaires.
D.' autres caractéristiques et avantages apparaîtront à l'homme du métier à la lumière des exemples ci-dessous, donnés à titre illustratif et non limitatif, en références aux figures et séquences annexées .
Brève description de la liste de séquences
Les séquences IDn°l à IDn°18 de la liste de séquences annexée sont des exemples non limitatifs de molécules capables d'induire l'exposition de l'épitope CD4i de la protéine virale gpl20 au sens de la présente invention. Ces molécules sont des peptides issus du CD4 humain (SeqIDn°l) , ou des peptides artificiels issus ou dérivés de peptides de venin de scorpion (SeqIDn°2 à 18) .
Brève description des figures
- La figure 1 est un graphique représentant la quantité de gpl20/CD4, en unités de résonance (RU), fixée sur l'héparine en fonction du temps t (en secondes) pour différentes concentrations de CD4 (en nM) : courbes de bas en haut : 0 ; 50 ; 100 ; 250 ; 500
- La figure 2 est un graphique représentant la quantité de gpl20/CD4, en unités de résonance (RU), fixée sur l'héparine en fonction de la concentration de CD4 (en nM) .
La figure 3 est un graphique représentant l'évolution de l'interaction protéine virale gpl20/anticorps 48d (réponse RU) en fonction du temps
(en secondes) pour différentes concentrations en peptide CD4 (en nM) : courbes de bas en haut : 0 ;
50 ; 100 ; 250- ; 500 nM. - - La figure 4 est un graphique représentant l'inhibition de l'interaction du complexe gpl20/CD4 avec l'anticorps 48d (réponse RU) en fonction du temps
(en secondes) par différentes concentrations d'héparine
H (en nM) : courbes de haut en bas : 0 ; 3 ; 6 ; 12 ; 30 μg/ml.
La figure 5 est un graphique représentant l'inhibition la quantité de complexes de gpl20/CD4 fixés sur 48d en fonction de la taille du fragment d'héparine en degré de polymérisation, de dp 0 à dp 18 (courbes du haut en bas : dp 0; dp 2; dp 4; dp 6; dp 8 ; dp 10; dp 12; dp 14; dp 16; dp 18).
- La figure 6 est un graphique représentant la quantité 'de " complexes de gpl20/CD4 fixés sur 48d en fonction "de la taille du fragment d'héparine" à partir des données représentées sur la figure 5.
La figure 7 est un dessin montrant schêmatiquement la protéine virale gpl20, et l'interaction d'une composition conforme au deuxième mode de réalisation de la présente invention avec la protéine virale gpl20. Sur cette figure, sCD4bs (« s » pour soluble, et « bs » pour « binding site ») = site de liaison à CD4, V3 = boucle V3 , CD4ni = site de liaison au co-récepteur non-induit (« ni ») (non accessible) , CD4i = site de liaison au co-récepteur induit par la liaison de CD4 à gpl20 (« i » pour induit) , CD4/H = molécule hybride peptide CD4/hêparine ou hêparane sulfate selon le deuxième mode de réalisation de la présente invention, et H = héparine ou hêparane sulfate.
- Les figures 8 a) à h) sont des représentations graphiques de l'interaction de complexes de protéine virale gpl20 et gpl20/CD4 sur une biopuce de détection activée avec de l'héparine, à différentes concentrations de protéine virale gpl20 : 0 nM (a) ; 0,62 nM (b) ; 1,25 nM (c) ; 2 , 5 nM (d) ; 5 nM (e) ; 10 nM (f) , 20 nM (g) et 40 nM (h) , avec une préincubation (lignes continues) ou sans préincubation (lignes discontinues) avec 80 nM de CD4 soluble.
- La figure 9 est une représentation graphique de l'inhibition de l'interaction gpl20/CD4 par de l'héparine et des oligosaccharides d'héparine (H) sur une biopuce de détection activée par mAbl7b. La protéine virale gpl20 (5 nM) a été . préincubée successivement avec un peptide CD4 (10 nM) et avec des concentrations d'héparine ( [H] ) • à -O- 1M - (courbe a) ;?.~2,1 nM (b) ; 4,2 nM (c) ; 8,-3._nM- (d) ;.. et.. 16,7.nM (e) , avant d'être injectée sur la- surface mAbl7b.
- La figure 10 est une représentation graphique de l'inhibition de l'interaction gpl20/CD4 par de l'héparine et des oligosaccharides d'héparine (H) sur une biopuce de détection activée par mAbl7b. La protéine virale gpl20 (5 nM) a été préincubée successivement avec un peptide CD4 (10 nM) et avec une concentration d'héparine de 40 nM, avec différents degrés de polymérisation : dp 0 (courbe 1) ; dp 2 (courbe 2) ; dp 4 (courbe 3) ; dp 6 (courbe 4) ; dp 8 (courbe 5) ; dp 10 (courbe 6) ; dp 12 (courbe 7) ; dp 14 (courbe 8) ; dp 16 (courbe 9) ; dp 18 (courbe 10) , avant d'être injectée sur la surface mAbl7b. La figure 11 représente l'absorbance à 230 n de différentes fractions (F) de 15 ml obtenues lors d'une synthèse enzymatique d'héparine à des degrés de polymérisation dp allant de 2 à 10 (le dp correspond au- chiffres indiqués sur la courbe) .
La figure 12 est un graphique réalisé à partir des résultats expérimentaux de l'exemple 10. Ce graphique montre les pourcentages d' interaction gpl20/CXCR4 en présence ou non d'héparine.
EXEMPLES
Dans les exemples suivants, les analyses d'interaction gpl20-héparine ont été effectuées par résonance plasmonique de surface (système BIAcore (marque de commerce) ) . Cette technique qui permet d'effectuer des mesures d'interaction en temps réel, présente également l'avantage de proposer un modèle proche de .--la réalité physiologique, où l'héparine immobilisée sur une biopuce de détection ( "sensorchi-p" ) constitue une interface bidimensionnelle à l'image de la surface cellulaire.
Exemple 1 : SYNTHESE D'UN PEPTIDE CD4 UTILISABLE POUR FABRIQUER LA COMPOSITION DE LA PRESENTE INVENTION Un peptide de la liste de séquences annexée est synthétisé par synthèse chimique en phase solide avec un synthétiseur automatique de peptides Applied Biosystems, mod. 433A, et en chimie Fmoc, qui utilise le groupement Fluorenylmêthyloxycarbonyle (Fmoc) pour la protection temporaire de la fonction α-aminique des acides aminés. Les groupements protecteurs utilisés pour prévenir les réactions secondaires des chaînes latérales des acides aminés, dans cette stratégie Fmoc, ont été le tertio-butyle éther (tBu) pour les résidus Ser, Thr et Tyr ; tertio-butyle ester (OtBu) pour Asp, Glu ; trityle - (Trt) pour Gin, Asn, Cys, His ; tertio-butyloxycarbonyle (Boc) pour Lys et 2, 2, 5, 7, 8-pentametylchromane-6-sulfonyle (Pmc) pour Arg.
La réaction de • couplage se déroule avec un excès de 10 équivalents d'acides aminés (1 mmol) par rapport à la résine (0,lmmol). L'acide aminé protégé est dissous dans 1 ml de N-methylpyrollidone (NMP) et 1 ml d'une solution de l-N-hydroxy-7-azabenzotriazole (HOAt) 1M dans lé solvant NMP. 1 ml d'une solution de N,N' -dicyclohexylcarbodiimide (DCC) 1M est alors ajouté. Après 40 à 50 minutes d' activation, l'ester actif formé est transféré dans le réacteur qui contient la résine. Avant cette étape de transfert puis de couplage, -la-rrésine est -déprotégé.e de- son groupement Fmoc par. -une •- solution de .20.-.%.-de - pipëridine'- 'dans le NMP. L'excès de pipéridine est enlevé par lavage à "la NMP après 5 à 10 minutes environ.
Après synthèse du peptide, le peptide-résine est traité à 5 reprises avec une solution de 2% d'hydrazine dans la DMF. Le couplage d'un bras de liaison est réalisé pendant une heure à température ambiante dans la DMF avec 10 équivalents d'acide Fmoc-8-amino-3 , 6- dioxaoctanoïque utilisant le réactif HBTU en présence de diisopropylêthylamine. Le groupement Fmoc est ensuite déprotëgé avec 20% de pipëridine dans la DMF. Le peptide-résine est dès lors traité avec 10 équivalents de réactif de Traut (hydrochlorure de 2- iminothiolane (Sigma) en présence de DIEA. Le peptide est enfin libéré et déprotégé comme décrit ci-dessous.
Le clivage de la résine et des groupements protecteurs présents sur les chaînes latérales ont été réalisées simultanément par traitement du peptide lié à la résine par de l'acide trifluoroacétique (TFA) . Avant d'effectuer le clivage, la résine a été lavée plusieurs fois au dichlorométhane (DCM) et enfin sêchëe. Le réactif utilisé lors du clivage est un mélange acide contenant 81,5 % de TFA et les piégeurs phénol (5 %) , thioanisole (5 %) , eau (5 %) , êthanedithiol (2,5 %) et tri-isopropylsilane (1 %) . La résine a été traitée avec ce mélange pendant trois heures sous agitation et à température ambiante, à raison de 100 ml de solution par gramme de résine. Le peptide libre en solution a été récupéré par filtration. Le peptide a été ensuite précipité et lavé à froid dans l'êther de diisopropyle puis -dissous dans de l 'acide.-- -acétique à 20 % -et lyophilisée. Le -peptide récupéré après -lyophilisation, le brut de synthèse, se trouve sous forme réduite, c'est-à-dire que les ponts disulfure intrachaînes ne sont pas formés . La formation de ces liaisons covalentes a été réalisée en utilisant le couple redox cystamine/cystéamine. Le brut de synthèse a été repris dans l'eau ajoutée de TFA 0,1 % (v/v) et de chlorure de guanidinium 6M pour faciliter sa dissolution, à raison de 2,0 g.ml"1. Cette solution a ensuite été ajoutée au goutte-à-goutte, diluée à 0,2 mg/ml"1, au tampon de réduction, composé de Tris/HCl lOOmM, pH 7,8, et de cystêamine 5 mM. La cystamine (oxydant) o,5 mM en final, a été ajoutée après 45 minutes de réaction à température ambiante. Le milieu est amené à pH 3,0 après 30 minutes.
La cystêamine permet de réduire les groupements thiols présents sur le peptide. A l'air libre, ... elle s'oxyde et permet l'oxydation de cystêines et donc le repliement du peptide par formation de ponts disulfure intrachaînes . La cystamine ajoutée en fin de manipulation permet de parfaire le repliement. Le bon déroulement de 1 ' oxydation est vérifié par chromatographie analytique en comparant les temps de rétention des produits brut et oxydé, plus importants pour le premier.
Les peptides ont été purifiés par chromatographie liquide haute performance en phase inverse sur une colonne préparative Vydac C18 (1,0 x 25,0 cm). On a utilisé un gradient linéaire 0-60. % d' acétonitrile dans une solution aqueuse d'acide trifluoroacétique à 0,1 % pendant 90 minutes. Les fractions du pic majeur ont - té- analysées par .HPL.C. .-analy que; les fractions .--ne présentant qu'un seul pic- ont- été rassemblées -et lyophilisées .
Les produits ainsi obtenus ont été analysés par spectrométrie de masse. Il s'agit des peptides de la liste de séquence annexée.
EXEMPLE 2 : SYNTHESE D'UN POLYANION DE TYPE HEPARINE OU HEPARANE SULFATE UTILISABLE POUR LA COMPOSITION DE LA PRESENTE INVENTION
A) Synthèse enzymatique
Une molécule d'héparine ou d' hêparane sulfate ayant un degré de polymérisation dp défini est synthétisée.
6 g d'héparine sont solubilisées dans un tampon contenant 5 mM de tris, 2 mM de CaCl2, 50 mM de NaCl et 0,1 mg/ml d'albumine. Le pH est ajusté à 7,5 avec de l'acide acétique. Cette solution est incubée à 25°C, avec de l'hêparinase I (8 mU/ml) pendant environ 50 h (la réaction enzymatique est suivi par l'augmentation de la densité optique, mesurée à 232 nm) .
Le mélange est ensuite purifié par chromatographie de filtration sur gel. La phase solide est du Biogel -P O, contenue, dans .-une .colonne -. de 1,50 m et 4,4 cm._ de- diamètre,- -ëluée . à.-- 1-ml/min. avec /..du. -NaCl 0,25 M. .. .
La figure 11 représente l'absorbance à 230 nm des différentes fractions de 15 ml obtenues pour des degrés de polymérisation dp allant de 2 à 10.
Les différents oligosaccharides (dp2, dp4, ..., etc.) sont dialyses contre de l'eau puis lyophilisés.
B) Synthèse par dépolymérisation chimique à partir de produit naturel
Lorsque le matériel de départ est de l'héparine, on procède de la façon suivante : 1 g d'héparine est solubilisé dans 20 ml de sodium nitrite (NaN02) à
2,1 mg/ml. La solution est ajustée à pH 1,5 avec de l'acide sulfurique, puis incubée à 4°C pendant 3h. La réaction est arrêtée, et les oligosaccharides sont purifiés comme ci-dessus dans le paragraphe A) .
Lorsque le matériel de départ est de l'héparane sulfate, on procède de la façon suivante : 8 g d'hêparane sulfate sont solubilisés dans 40 ml contenant 5 mM de tris, 2 mM de CaCl2, 50 mM de NaCl et 0,1 mg/ml d'albumine. Le pH est ajusté à 7,5 avec de l'acide acétique. Cette solution est incubée à 30°C, avec de l'héparinase III (25 mU/ml) pendant environ 72h. De hëparinase III est ajoutée à nouveau, pour une période de 48h, puis les produits sont purifiés comme décrit ci-dessus dans le paragraphe A) .
EXEMPLE 3 : SYNTHESE D'UNE COMPOSITION DE LA PRESENTE INVENTION : MELANGE D'UN PEPTIDE CD4 AVEC UN POLYANION
Dans cet exemple, un peptide CD4 de l'exemple 1 est mélangé avec un hêparane - sulfate préparé . dans- l'exemple 2. Ces deux molécules sont mises en solution à une concentration deux fois supérieure à la concentration finale désirée. Ces mises en solutions sont effectuées dans un tampon physiologique. Par exemple PBS, TBS (Tris 50mM, NaCl 0,15M, pH 7,5), ou HBS (Hepes 20mM, NaCl 0,15M, pH 7,5) .
Les deux préparations sont ensuite mélangées volume à volume (l/l) . EXEMPLE 4 : SYNTHESE D'UNE COMPOSITION DE LA PRESENTE INVENTION : COUPLAGE D'UN PEPTIDE CD4 AVEC UN POLYANION Dans cet exemple, un peptide CD4 de l'exemple 1 est couplé avec l'héparane sulfate préparé dans l'exemple 2.
L'héparane sulfate est incubé avec un excès molaire d'hydrazine ou de carbodihydrazide. Cette étape a pour fonction de placer un groupe hydrazine sur l'extrémité réductrice de 1 ' oligosaccharide, lorsque celui-ci est préparé par dépolymérisation enzymatique, ou sur l'aldéhyde de 1 Oligosaccharide, lorsque celui- ci est préparé par dêpolymérisation chimique à l'acide nitreux.
Les carbohydrates du peptide CD4 soluble sont oxydés par traitement au périodate de sodium, la fonction aldéhyde ainsi créée est utilisée pour le couplage de 1 Oligosaccharide hydrazine.
L 'oligosaccharide,. -généralement en solution à" l.mM-dans un tampon PBS.- (phosphate de sodium salin) --est co-incubé avec un excès molaire (par exemple jusqu'~à~
100 fois) d'hydrazine ou de carbodihydrazide également en solution dans PBS. Le mélange rëactionnel est incubé à température ambiante, puis purifié par dessalage ou dialyse contre de l'eau distillée, et finalement séché par évaporation sous vide ou lyophilisé.
La molécule de CD4 soluble (sCD4) glycosilée
(produite dans des cellules de mammifères ou des cellules d'insectes) est reprise dans un tampon phosphate 20 mM, pH 6,2 puis traitée par du périodate de sodium (10 mM) pendant 20 minutes, à 4°C et à l'obscurité. Pour éliminer le périodate de sodium, le mélange réactionnel est dessalé par gel filtration ou par dialyse contre le tampon phosphate .
Le sCD4 , dont les glycanes sont ainsi oxydés, est co-incubé avec un excès molaire d' oligosaccharide hydrazine à 4°C, pour former le complexe entre les deux molécules .
Lorsque le CD4 n'est pas glycosilé, on procède de la manière décrite par Najjam et al. dans le document
[17] . II est aussi possible d'utiliser tout type d'agent pontant se fixant d'une part sur une extrémité de 1 Oligosaccharide et d'autre part sur une partie du peptide CD4 non essentielle à sa fonction. L'homme du métier n'aura pas de difficultés à mettre en œuvre ce procédé ou un procédé équivalent.
EXEMPLE 5 : MISE EN EVIDENCE DE L'AUGMENTATION DE L'AFFINITE DE gp1-20- POUR L 'HEPARINE-.PAR CD4- -
30 unités "dé résonance..(RU). .&' héparine, bibtinylëe sont immobilisées à la surf-ace d'une biopuce - ("sensorchip" Bl fabriquée par la société Biacore) . gpl20 (hxbc2) à 50 nM est incubée pendant 1 heure 30 min avec des concentrations croissantes de CD4 soluble à 0, 50, 100, 250 ou 500 nM ; puis injectée sur la surface d'héparine à 10 μl/min.
Les analyses d'interaction gpl20-héparine par résonance plasmonique de surface ont été effectuées en fonction du temps.
Les courbes de la figure 1 correspondent à l'injection de gpl20 à 50 nM et de CD4 respectivement à 0, 50, 100, 250 ou 500 nM (respectivement pour les courbes de bas en haut sur cette figure) . La figure 2 montre la quantité de gpl20/CD4 fixée sur l'héparine en fonction de la concentration de CD4.
Il apparaît qu'un rapport molaire de CD4 : gpl20 d'environ 5:1 produit la réponse maximum. 5 Ces résultats montrent que l'exposition du domaine CD4i de la gpl20 augmente fortement l'interaction de gpl20 avec l'héparine. CD4i représente donc un nouveau site d'interaction avec l'héparine.
0 EXEMPLE 6 : INTERACTION gp!20/48D DEPENDENTE DE CD4
1250 RU d'anticorps 48d spécifique de l'épitope CD4i sont immobilisées à la surface d'une biopuce ("sensorchip" Bl) comme dans l'exemple 1 ci-dessus.
La protéine virale gpl20 (hxbc2) à 50 nM est 5 incubée pendant lh.20 avec des concentrations croissantes de CD4 soluble à 0, 50, 100, 250 ou 500 nM ; puis injectée sur la surface 48d à 10 μl/min.
Les analyses . d' interaction—.:gp-120-héparine par r sonance- plasmonique de surface- ont~"étë:_ef"fectuées ."en-" -0- fonction du- temps.
Les courbes de la figure 3 correspondent à l'injection de gpl20 à 50 nM et de CD4 respectivement à 0, 50, 100, 250 ou 500 nM (respectivement pour les courbes de bas en haut sur cette igure) . 5 Cet exemple montre que l'interaction gpl20/48d dépend de CD , et que 48d interagit avec CD4i, le domaine de reconnaissance des co-récepteurs. Cet anticorps peut donc être utilisé comme modèle de l'interaction de gpl20 avec un co-récepteur. 0 EXEMPLE 7 : INHIBITION DE L'INTERACTION PROTEINE gp!20 - 48d PAR L'HEPARINE
La protéine gpl20 est co-incubée pendant 40 minutes avec CD4. Le mélange est ensuite divisé en 5 aliquots dans lesquels est ajoutée l'héparine (15 kDa) à différentes concentrations.
Les concentrations finales dans les aliquotes sont : gpl20 : 50 nM ; CD4 : 250 nM et héparine : 0, 3,
6, 12 ou 30 μg/ml respectivement du haut en bas sur la figure 4. Sur la courbe du haut, pas d'héparine, on visualise l'interaction gpl20/CD4, toutes les autres courbes sont en présence d'héparine (de 3 à 30μg/ml respectivement du haut en bas, figure 4) .
Après 40 minutes d'incubation, les différents mélanges sont injectés sur la surface 48d.
Les analyses d'interaction gpl20-héparine par résonance plasmonique de surface ont été effectuées en fonction du temps . - . - .- .--- - - --- Les résultats -obtenus ' sont" représentés sur' -lεf figure 4. Ils" montrent que l'héparine inhibe" l'adsorption du complexe gpl20/CD4 sur la- surface d'anticorps 48d. L'héparine s'avère d'ailleurs être un inhibiteur efficace puisque l'inhibition est pratiquement complète dès la plus faible des concentrations testées (3 μg/ml) .
Ceci montre que l'héparine entre en compétition avec 48d et se fixe donc sur CD4i.
Cet exemple indique que l'activité inhibitrice des oligosaccharides (héparine) , tels que définis ci- dessus, est obtenue en présence de CD4.
Ce résultat permet de proposer l'utilisation d'une molécule hybride composée de CD4 et d' oligosaccharides de type héparine, liés de façon covalente, ou d'un mélange de ces deux molécules.
L'interaction directe du domaine CD4i avec un polyanion n'a jamais été décrite dans l'art antérieur, de même que l'inhibition de l'interaction gpl20- anticorps 48d par un polyanion. Il n'existait pas de travaux montrant l'inhibition possible de gpl20 avec les co-récepteurs par une molécule de type héparine.
Exemple 8 : INHIBITION DE L'INTERACTION gp!20-48d PAR DES FRAGMENTS OLIGOSACCHARIDES DE TAILLES DEFINIES
Les fragments oligosaccharides de tailles définies sont obtenus par dépolymérisation enzymatique. La protéine virale gpl20 est co-incubée pendant 60 minutes avec CD4 de façon à exposer le domaine CD4i. Le mélange est réparti en 8 aliquots et des fragments d'héparine de taille croissante, comprenant de 1 à 8 motifs disaccharides.. de base,, soit un degré, de polymérisation -(dp) . de 2- à -16, sont -ajoutés, pour donner des concentrations finales de 50 nM pour gpl20, 250- nM pour CD4 et 125 nM pour les fragments d'héparine (la masse moléculaire d'un disaccharide est d'environ 600 Da.
Les mélanges sont ensuite injectés sur la surface 48d (figure 5) . Les données obtenues permettent de représenter la quantité de complexes de gpl20/CD4 fixés sur 48d en fonction de la taille du fragment d'héparine (figure 6) .
Ces résultats montrent que des oligosaccharides de taille égale ou inférieure à dp6 (3 disaccharides) n'ont pas la capacité de bloquer l'interaction du complexe gpl20/CD4 avec 48d. En revanche, l'interaction est complètement inhibée par les fragments dont la taille est supérieure à dp 10 et mieux encore à dpl2, à la concentration testée. Ces résultats révèlent par exemple qu'une concentration de 125 nM d'héparine ayant un degré de polymérisation égal à 16 (dpl6) , soit 0,6μg/ml, en présence de CD4 à 250 nM, inhibe 90 à 100% de l'interaction de l'anticorps 48d à la gpl20 (50 nM) , ce qui confirme l'existence d'une interaction directe. De même, des oligosaccharides d'héparine de type dpl4 à dplδ à 40 nM, inhibent l'interaction du complexe gpl20 (5 nM) /CD4 (10 nM) avec l'anticorps 17b.
Ces résultats montrent que l'héparine, une molécule de structure très voisine des héparanes sulfates, interagit également avec un deuxième site de fixation sur la gpl20. Ce site nommé CD4i, est un epitope uniquement exposé lorsque gpl20 "interagit "avec
-CD4 - -qui : constitue le site de "'fixation' des -:eo- récepteurs du VIH. Ces résultats "montrent que la présence de CD4 qui a pour effet d'exposer le site CD4i augmente de façon très considérable l'interaction gpl20-héparine ou gpl20-hêparane sulfate : ceci n'a jamais été décrit par ailleurs et constitue la première preuve d'une interaction possible entre gpl20 et héparine ou hêparane sulfate par 1 ' intermédiaire du site CD4i.
Une étude en modélisation moléculaire a montré que le site CD4i de la gpl20 est constitué d'acides aminés basiques. Ces résidus basiques sont alignés sur la surface de la protéine, et constituent effectivement un site d'interaction avec l'héparine, ou des oligosaccharides dérivés d'héparine ou d1hêparane sulfate.
Les inventeurs proposent donc par la présente une utilisation thérapeutique des composés poly-anioniques ciblant ce nouveau site d'interaction. L'approche consiste en l'utilisation conjuguée de polyaniôns et de molécules capables d'exposer l'épitope CD4i, en co- administration ou sous la forme d'une molécule hybride. Ce type de molécule bloque simultanément tous les domaines d'interaction de la gpl20 avec les cellules hôtes .
Exemple 9 : Protocole pour l' activation d' oligosaccharides en vue de leur couplage avec une protéine
Le protocole repose sur la réaction d'un groupe aldéhyde (sur l' oligosaccharide) avec un groupe aminé ou hydrazide ..sur la. protéine..
Lorsque ..les- -oligosaccharides sont obtenus par depolymerisation- chimique de l'-héparine (par l'acide nitreux) , la fonction aldéhyde est créée au site de coupure, et l' oligosaccharide est prêt pour le couplage .
Lorsque les oligosaccharides sont obtenus par dépolymérisation enzymatique, on peut procéder de la façon suivante :
Les oligosaccharides, à une concentration d'environ 10 mM sont incubés dans une solution saturante de bicarbonate d'ammonium, pendant 96 heures. Le mélange rêactionnel est ensuite purifié sur une colonne de gel filtration, équilibrée avec du bicarbonate d'ammonium à 10 M, puis l'échantillon est lyophilisé à plusieurs reprises afin d'éliminer le bicarbonate d'ammonium résiduel. Cette étape a pour but de créer une glycosylamine à l'extrémité réductrice de 1Oligosaccharide . De façon alternative, on peut aussi incuber l' oligosaccharide (10 mM) avec 0,25 M d'adipate dihydrazide, en présence de cyanoborohydrate de sodium (NaBH3CN, 1 M) à pH 5, pendant 96 heures. Le mélange rêactionnel est ensuite purifié sur une colonne de gel filtration, équilibrée dans l'eau distillée, puis séché par lyophilisation. Cette étape a pour but d'introduire une fonction hydrazide à l'extrémité réductrice de 1' oligosaccharide.
Les oligosaccharides, préparés selon les deux méthodes ci-dessus sont ensuite incubés avec 0,5 M de diglutaraldéhyde, à pH 5 pendant 4 heures, puis" avec 0,1 M de NaBH3CN pendant 30 minutes. Le mélange rêactionnel est .ensuite -purifié sur une. colonne de gel filtration, équilibrée .dans., l'eau distillée, puis séché par lyophilisation. Cette étape a pour -but de placer une fonction aldéhyde à l'extrémité réductrice des oligosaccharides .
Exemple 10 : Démonstration de l'activité inhibitrice des oligosaccharides sur l'interaction de la gp!20 avec le co-récepteur (CXCR4) du virus
Des cellules CHO (mutant 2241, déficient dans l'expression des glycosaminoglycanes, il ne fabrique pas d'hêparane sulfate) transfectees avec le gène de CXCR4 sont pré-incubées avec : de la gpl20 (20μg/ml) , avec ou sans héparine, ou des complexes gpl20/CD4
(20μg/ml pour chacune des protéines) , ou des complexes gpl20/CD4 préalablement incubées avec de l'héparine de 6 kDa (lOμg/ml) ou un dodêcasaccharide d'héparine (lOμg/ml) .
La gpl20 fixée à la surface des cellules est détectée en utilisant un anticorps anti-gpl20 couplé à un anticorps secondaire marqué au FITC, puis analysée en FACS.
Les résultats représentés sur la figure 12 annexée montrent les pourcentages d' interaction gpl20/CXCR4. Le contrôle négatif (0%) correspond à la fixation non spécifique de gpl20 sur les cellules
(gpl20 seule ou en présence d'héparine (1) . Le contrôle positif (100%) est observé pour les complexes gpl20/CD4 (2) , et correspond à la liaison de gpl20 au corécepteur CXCR , induit par CD4. L'héparine (3) et le dodêcasaccharide (4) réduisent tous deux l' interaction de manière importante (8,5 et 4,1%, respectivement, soit 91,5 et 95,9 % d'inhibition).
L'héparine utilisée inhibe bien - 1 '--interact on .de. - gpl20 avec le-corécepteur.
Références bibliographiques
[1] Chan D.C., Kim P. S. (1998) HIV entry and its inhibition. Cell 93 : 681-684.
[2] Claphan P.R. 1997 HIV and chemokines : ligands cell surface receptors. Trends in cell biol . 7 : 264- 268.
[3] Michael N.L., Moore J.P. (1999), HIV entry inhibitors : evading the tissue, Nat Med 5 : 740-2.
[4] Chan D.C. Chutkowski C.T. Kim PS. (1998), Evidence that a prominent cavity in the coil of HIV type 1 gp41 is an attractive drug target, Proc NatI Acad Sci USA 95 : 15613-7.
[-5] Doms R. ., Moore J.P. (2000), HIV-1 membrane fusion.-.: targets ;of oportunity. J. Cell Biol 151 : - F9-14.
[6] Schenten D. Marcon L, Karlsson GB, Parolin C, Kodama T, G rard Ν, Sodroski J. (1999) , Effect of soluble CD4 on simian immunodeficiency virus infection of Cd4-positive and CD -négative cells, J" Virol . 73 : 5373-80.
[7] Chen J.D., Bai X., Yang A.G. Cong Y., Chen S.Y. (1997) , Inactivation of HIV-1 chemokine co-receptor CXCR-4 by a novel intrakine strategy. Nat Med 3 : 1110- 6. [8] Oberlin E., Amara A. Bachelerie F. Bessia C, Virelizier JL, Arenza-Seisdedos F., Sch artz O., Heard J.M. , Clark-Lewis I., Legler D.F., Loetscher M. Baggiolini M., Moser B.. , (1996), The CXC chemokine SDF- 1 is the ligand for LESTR/fusion and prevent infection by T-cell-line-adapted HIV-1. Nature 382 : 833-5.
[9] Proudfoot A.E., Wells T.N., Clapham P.R., (1999) Chemokine receptors-future therapeutic targets for HIV ? Biochem Pharmacol . 57:451-63.
[10] Muramaki T., Nakaj ima T., Koyanagi Y., Tachibana K. , Fujii N., Tamamura H., Yoshida N. , Waki M., Matsumoto A., Yoshie 0., Kishimoto T., Yamamoto N. , Nagasawa T., (1997), A small molécule CXCR4 inhibitor that blocks T cell line-tropic HIV-1 infection. J Exp Med 186:1389-93.
[11] Mondor I . ' Ugolïni S., Sattentau Q.J., (1998) : "Human Immunodeficiency Virus Type 1 Attachment to HeLa CD4 Cells Is Independent and gpl20 Dépendent and "Requires Cell Surface Heparans", J. Virol . 72 : 3623- 34.
[12] Roderiquez G., Oravecz T., Yanagishita M., Bou- Habib D.C., Mosto ski H., Norcross M.A. , (1995) : "Médiation of human immunodeficiency virus type 1 binding by interactions of cell surface heparan sulfate proteoglycans with the V3 région of envelope gpl20-gp41", J. Virol . 69 : 2233-9. [13] Abrams D.I., Kuno S., Wong R. , Jeffords K. , Nash M., Molaghan J.B., Gorter R. , Uenor R. , (1989) : "Oral dextran sulfate (UA001) in the treatment of the acquired immunodeficiency syndrome (AIDS)- and AIDS- related complex" , Ann. Intern . Med. 110 : 183-8.
[14] Flexner C. , Barditch-Crovo P.A., Kornhauser D.M., Farzadegan H., Nerhood L.J., Chaisson R.E., Bell K.M. , Lorentsen K. J. , Hendrix C.W., Petty B.G., Lietman P. S., (1991) : Pharmacokinetics, toxicity, and activity of intravenous dextran sulfate in human immunodeficiency virus infection", An imicroJb. Agents Chemother. 335 : 2544-50.
[15] Chernyak A, Karavanov A, Oga a Y, Kovac P, Conjugating oligosaccharides to proteins by squaric acid diester chemistry : rapid monitoring of the progress of conjugation, and recovery of the unused ligand, Carbohydr. Res . 2001 , 330 (4) -479-486.
[16] Ruberan B, Gunay NS, Dordick JS, Linhardt RJ, Préparation and isolation of neoglycoconjugates using biotin-streptavidin complexes, Glycoconj . J" 1999, 16(6) .271-281.
[17] Najjam S, Gibbs RV, Gordon MY, Rider CC, Characterization of human recombinant interleukin 2 binding to heparin and heparan sulfate using an ELISA approach, Cytokine 1997, 9 (12) : 1013-1022) . [18] Dreef-Tromp CM, Basten JE, Broekhoven MA, Van
Dinther TG, Petitou M, Van Boeckel CA, Biological properties of synthetic glycoconjugate imics of heparin comprising différent molecular spacers, Bioorg. Med . Chem . Lett . 1998, 8-16 : 2081-2086.
[19] Grootenhuis PD, Westerduin P, Meuleman D, Petitou M, Van Boeckel CA, Rational design of synthetic heparin analogues with tailor-made coagulation factor inhibitor activity, Nat . Struct . Biol . 1995, 2(9) : 736-739.

Claims

REVENDICATIONS
1. Composition caractérisée en ce qu'elle comprend un polyanion et une molécule capable d'induire l'exposition de l'épitope CD4i de la protéine virale gpl20 choisie parmi un peptide CD4 ou un dérivé de ce peptide, ou encore un anticorps monoclonal se fixant sur la protéine virale gpl20 et capable d'activer ladite protéine gpl20 de façon équivalente au peptide CD4.
2. Composition selon la revendication 1, dans laquelle le polyanion est choisi dans le groupe constitué de l'héparine, de l'héparane sulfate, et d'un polyanion équivalent à l'héparine ou à l'héparane sulfate .
3. Composition selon la revendication 2, dans laquelle l'héparine, l'héparane sulfate ou le polyanion équivalent à l'héparine ou à l'héparane sulfate a un degré de polymérisation dp de 10 à 24.
4. Composition selon la revendication 2, dans laquelle l'héparine, l'héparane sulfate ou le polyanion équivalent à l'héparine ou à l'héparane sulfate a un degré de polymérisation dp de 12 à 20.
5. Composition selon la revendication 2, dans laquelle l'héparine, l'héparane sulfate ou le polyanion équivalent à l'héparine ou à l'héparane sulfate a un degré de polymérisation dp de 15 à 17.
6. Composition selon la revendication 1, dans laquelle le peptide CD4 est de séquence (I) suivante :
Cys ou TPA - P1- Cys - P2 - Cys - P3 - Cys - Ala ou Gin - Gly ou (D)Asp ou Ser - Ser ou His ou Asn - XaaJ - Cys - Thr ou Ala - Cys- Xaak - NH2
dans laquelle TPA représente 1 ' acide thiopropionique, XaaJ représente la β-napthylalanine, la phénylalanine ou la bi-phénylalanine, Xaak représente Gly, Val ou lieu, P1 représente 3 à 6 acides aminés, P2 représente 2 à 4 acides aminés et P3 représente 6 à 10 acides aminés, les acides aminés dans P1, P2 et P3 étant naturels ou non naturels, identiques ou différents et P1, P2 et P3 ayant ou non une séquence commune, ledit peptide présentant une conformation en épingle à cheveux β dont le coude β est formé par les résidus acides aminés Ala ou Gin - Gly "bû DAsp ou Ser-Ser ou" His ou Asn- XaaD de sa séquence" (A) .
7. Composition selon la revendication 1, dans laquelle le peptide CD4 est choisi parmi les séquences IDn°l à IDn°18 de la liste de séquences annexée.
8. Composition selon l'une quelconque des revendications 1 à 7, dans laquelle le polyanion et la molécule capable d'induire l'exposition de l'épitope CD4i de la protéine virale gpl20 sont mélangés dans ladite composition.
9. Composition selon la revendication 8, dans laquelle le polyanion et la molécule capable d' induire l'exposition de l'épitope CD4i de la protéine virale gpl20 sont mélangés dans ladite composition en. des proportions de 1 à 10 mole (s) de polyanion pour 0,5 à 1,5 mole de molécule capable d'induire l'exposition de l'épitope CD4i de la protéine virale gpl20.
10. Composition selon la revendication 7, dans laquelle le polyanion et la molécule capable d'induire l'exposition de l'épitope CD4i de la protéine virale gpl20 sont mélangés dans ladite composition en des proportions de 5 moles de polyanion pour 1 mole de molécule capable d'induire l'exposition de l'épitope CD4i de la protéine virale gpl20.
11. Composition selon l'une quelconque des revendications 1 à.7,..- dans -laquelle le polyanion et la molécule capable, d'induire l'exposition de l'épitope CD4i de la protéine virale- gpl20 sont liés entre eux dans ladite composition.
12. Composition selon la revendication 11, dans laquelle le polyanion et la molécule capable d' induire l'exposition de l'épitope CD4i de la protéine virale gpl20 sont liés entre eux au niveau d'une des extrémités du polyanion.
13. Composition selon la revendication 11, dans laquelle le polyanion et la molécule capable d'induire l'exposition de l'épitope CD4i de la protéine virale gpl20 sont liés entre eux au moyen d'un bras espaceur de type polyéthylène glycol .
14. Procédé de fabrication d'une composition selon la revendication 8, comprenant les étapes suivantes : préparation du polyanion, préparation de la molécule capable d'induire l'exposition de l'épitope CD4i de la protéine virale gpl20, mélange du polyanion et de la molécule capable d'induire l'exposition de l'épitope CD4i de la protéine virale gpl20 préparés de manière à obtenir ladite composition.
15. Procédé de fabrication d'une composition selon la revendication 11, comprenant les étapes suivantes : - --- » -_ =---•. - - -. - ----- • préparation, du. polyanion, - • . •. - préparation " de la molécule- capable d'induire l'exposition de l'épitope CD4i de la protéine virale gpl20, liaison du polyanion et de la molécule capable d'induire l'exposition de l'épitope CD4i de la protéine virale gpl20 préparés de manière à obtenir ladite composition.
16. Procédé de fabrication selon la revendication 14 ou 15 , dans lequel le polyanion est préparé par dépolymérisation partielle d'héparine ou d'hêparane sulfate par une méthode enzymatique ou chimique.
17. Procédé de fabrication selon la revendication 14 ou 15, dans lequel la molécule capable d'induire l'exposition de l'épitope CD4i de la protéine virale gpl20 étant un peptide, celui-ci est préparé, par synthèse chimique en phase solide ou par recombinaison génétique.
18. Utilisation d'une composition selon l'une quelconque des revendications 1 à 7 pour la préparation d'un médicament.
19. Utilisation d'une composition selon l'une quelconque des revendications 1 à 7 pour la préparation d'un médicament destiné au traitement du sida.
EP03746844A 2002-04-19 2003-04-17 Composition anti-vih, procede de fabrication et medicament. Ceased EP1496932A2 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0204926 2002-04-19
FR0204926A FR2838649B1 (fr) 2002-04-19 2002-04-19 Composition anti-vih, procede de fabrication et medicament
PCT/FR2003/001234 WO2003089000A2 (fr) 2002-04-19 2003-04-17 Composition anti-vih, comprenant un polyanion et un agent agissant sur gp120 de acon equivalent au cd4

Publications (1)

Publication Number Publication Date
EP1496932A2 true EP1496932A2 (fr) 2005-01-19

Family

ID=28686195

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03746844A Ceased EP1496932A2 (fr) 2002-04-19 2003-04-17 Composition anti-vih, procede de fabrication et medicament.

Country Status (7)

Country Link
US (1) US7494975B2 (fr)
EP (1) EP1496932A2 (fr)
JP (1) JP5004408B2 (fr)
AU (1) AU2003246840A1 (fr)
CA (1) CA2481325C (fr)
FR (1) FR2838649B1 (fr)
WO (1) WO2003089000A2 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007144685A1 (fr) * 2006-06-13 2007-12-21 Commissariat A L'energie Atomique Peptides mimétiques du cd4 et utilisations de ceux-ci
FR2904627B1 (fr) * 2006-08-04 2008-11-07 Pasteur Institut Nouveaux peptides actives, purifies et isoles, derives du recepteur cd4 (mini-cd4) et leur procece de preparation
EP2087911A1 (fr) 2008-02-06 2009-08-12 Institut Pasteur Molécules conjuguées comprenant un peptide dérivé du récepteur CD4 couplé à un polyanion pour le traitement du SIDA
CN108640977A (zh) * 2018-06-18 2018-10-12 上海大学 特异性结合HIV上包膜糖蛋白gp120的多肽及其应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987007614A1 (fr) * 1986-06-03 1987-12-17 Pert Candace B Petits peptides inhibant la liaison sur des recepteurs t-4 et agissant en tant qu'immunogenes
DE3808353A1 (de) * 1988-03-12 1989-09-21 Basf Ag Kombinationen von polysulfatierten heparinen bei der bekaempfung von retrovirusinfektionen
IE61565B1 (en) * 1988-08-24 1994-11-16 Akzo Nv Heparin fragments and fractions with anti-HIV action
GB9020872D0 (en) * 1990-09-25 1990-11-07 Ml Lab Plc Pharmaceutical compositions and use thereof
JPH0959178A (ja) * 1995-08-24 1997-03-04 Samu Kenkyusho:Kk 抗ウイルス剤及び抗ウイルス作用増強剤
JPH1029952A (ja) * 1996-07-16 1998-02-03 Takara Shuzo Co Ltd ヒト免疫不全ウイルス感染の制御用組成物および制御方法
FR2819809B1 (fr) * 2001-01-23 2003-05-16 Commissariat Energie Atomique Peptides presentant un affinite pour la proteine virale gp120, et utilisation de ces peptides

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VITA CLAUDIO ET AL: "RATIONAL ENGINEERING OF A MINIPROTEIN THAT REPRODUCES THE CORE OF THE CD4 SITE INTERACTING WITH HIV-1 ENVELOPE GLYCOPROTEIN", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, NATIONAL ACADEMY OF SCIENCE, WASHINGTON, DC; US, vol. 96, no. 23, 9 November 1999 (1999-11-09), pages 13091 - 13096, XP002181795, ISSN: 0027-8424, DOI: 10.1073/PNAS.96.23.13091 *

Also Published As

Publication number Publication date
AU2003246840A8 (en) 2003-11-03
US7494975B2 (en) 2009-02-24
WO2003089000A3 (fr) 2004-04-08
FR2838649B1 (fr) 2006-01-13
FR2838649A1 (fr) 2003-10-24
JP5004408B2 (ja) 2012-08-22
WO2003089000A2 (fr) 2003-10-30
AU2003246840A1 (en) 2003-11-03
CA2481325A1 (fr) 2003-10-30
JP2005528405A (ja) 2005-09-22
US20060084593A1 (en) 2006-04-20
CA2481325C (fr) 2011-07-26

Similar Documents

Publication Publication Date Title
BE1000811A4 (fr) Anticorps monoclonaux, peptides et compositions les contenant, destinees au diagnostic et au traitement des infections par le virus hiv.
EP1001815A1 (fr) Vecteurs derives d'anticorps pour le transfert de substances dans les cellules
FR2969926A1 (fr) Arabinogalactanes, apiogalacturonanes et heteroglycanes sulfates pour le traitement des maladies causees par les virus influenza
EP1169057B1 (fr) Vaccin anti-vih-1 comprenant tout ou partie de la proteine tat de vih-1
CA2659149C (fr) Peptides derives du recepteur cd4 et leur procede de preparation
EP1368372B1 (fr) Peptides presentant une affinite pour la proteine virale gp120, et utilisation de ces peptides
EP1496932A2 (fr) Composition anti-vih, procede de fabrication et medicament.
JPH06503833A (ja) 制御された化学のオリゴマー形態の抗原での免疫応答抑制
WO2003026700A2 (fr) Compositions pour la vectorisation d'anticorps a travers la barriere hematoencephalique et leur utilisation pour le diagnostic ou le traitement des maladies du systeme nerveux central
JPH07506572A (ja) Cd4及びh2ヒストンを含有する抗ウイルス剤
FR2532850A1 (fr) Conjugues immunogenes entre un haptene et une molecule porteuse derivee d'une toxine, les vaccins les composant et procede pour leur obtention
FR2841250A1 (fr) Composes se liant a l'interferon-gamma, leur procede de preparation, et medicaments les contenant
WO2018178594A1 (fr) Prévention d'une infection par le virus respiratoire syncytial dans les voies respiratoires supérieures
EP0149581A2 (fr) Nouvelles compositions contenant des oligo-muramylpeptides et leur application, notamment pour l'activation des macrophages
EP0966532B1 (fr) Materiel biologique pour le traitement d'un mammifere par transfert de gene d'anticorps et composition pharmaceutique le contenant
FR2899815A1 (fr) Nouveaux medicaments pour les traitements contre les retrovirus
JPH04308531A (ja) 抗エイズウイルス活性を有する硫酸化βグルカンのレトロウイルス感染症治療用薬剤
EP0375767B1 (fr) Peptides ayant des proprietes protectrices d'un virus pathogene du type hiv dans des cellules sensibles
FR2550094A1 (fr) Compositions de vaccins conditionnees pour la vaccination de sujets immunitairement non naifs contre un agent pathogene determine et contenant un haptene comportant lui-meme un site antigenique caracteristique dudit agent pathogene ou un oligomere de cet haptene
FR2646353A1 (fr) Utili sation de peptides contenant de la statine pour la preparation de medicaments utiles pour le traitement des maladies virales
EP0316212B1 (fr) Application de nitrophényles ou d'anticorps anti-nitrophényles à la modification de l'interaction entre des cellules sensibles d'un hôte et un agent pathogene
FR2651436A1 (fr) Compositions pharmaceutiques contenant un derive substitue soluble de dextrane.
EP0528716A1 (fr) Dérivés d'hémoglobine humaine, leur procédé de préparation, produits en dérivant et utilisation de ces dérivés et produits
WO1996004006A1 (fr) UTILISATION DE LA β2-GLYCOPROTEINE I SOUS AU MOINS UNE DE SES FORMES COMME AGENT ANTI-INFECTIEUX ET COMPOSITION PHARMACEUTIQUE CORRESPONDANTE
FR2734160A1 (fr) Utilisation d'un compose comportant une structure glycanique pour le blocage d'anticorps et procede d'obtention d'un tel produit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040930

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SATTENTAU

Owner name: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (CNRS

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE

17Q First examination report despatched

Effective date: 20070705

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SATTENTAU

Owner name: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (CNRS

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (CNRS

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20121205