EP1495513B1 - Elektrisches anpassungsnetzwerk mit einer transformationsleitung - Google Patents

Elektrisches anpassungsnetzwerk mit einer transformationsleitung Download PDF

Info

Publication number
EP1495513B1
EP1495513B1 EP03746217A EP03746217A EP1495513B1 EP 1495513 B1 EP1495513 B1 EP 1495513B1 EP 03746217 A EP03746217 A EP 03746217A EP 03746217 A EP03746217 A EP 03746217A EP 1495513 B1 EP1495513 B1 EP 1495513B1
Authority
EP
European Patent Office
Prior art keywords
conductor
sections
network according
line
level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03746217A
Other languages
English (en)
French (fr)
Other versions
EP1495513A1 (de
Inventor
Andreas Przadka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Electronics AG
Original Assignee
Epcos AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Epcos AG filed Critical Epcos AG
Publication of EP1495513A1 publication Critical patent/EP1495513A1/de
Application granted granted Critical
Publication of EP1495513B1 publication Critical patent/EP1495513B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/02Coupling devices of the waveguide type with invariable factor of coupling

Definitions

  • electrical components often require an electrical matching network to accommodate their circuit environment.
  • Such may include inductors, capacitors, and transformation lines, and serves essentially to match the impedance of a device to the external environment.
  • such matching networks are implemented as passively integrated networks, in which the discrete elements forming the network are integrated together in a substrate, which preferably forms the carrier substrate for the component. It is even possible to form a ceramic component in a ceramic, in whose ceramic body or on its ceramic body, the matching elements are applied and integrated with the component.
  • Transformation lines as components of matching networks are often realized in a multi-layer ceramic substrate in which, as stated, further elements can be integrated. Transformation lines are used, for example, in front-end modules for mobile communication terminals, where they can be used as part of pin diode switches and, for example, must achieve a phase shift of about 90 °. Furthermore, such a transformation line should have the best possible matching among the given source and load impedances. Another exemplary use cited may find a transformation line in a duplexer which, also used in a mobile communication terminal, connects the antenna to both the transmission and reception paths of the terminal.
  • transformation lines are one possible small area and space requirements.
  • the outer dimensions are substantially less than the fraction of the wavelength in the ceramic substrate about which the phase shift is to occur. Since the phase shift can only take place with a conductor which has a certain geometric length, transformation lines used today are unfolded and are in some cases multi-layered. Both convolution and multilayer design, resulting in overlaps of conductor sections, result in capacitive and inductive coupling between different sections of the line. This results in a change in the fit and an additional phase shift over an ideal line of the same geometric length, which is single-layered and unfolded.
  • the available area and the position of the connection points at which the transformation line is connected to the component or the further matching network can not be arbitrarily selected, since they depend on the other components of the circuit parts to be integrated.
  • a transmission line is known, which is folded meandering. Individual sections of the meandering transmission line have a different width.
  • a meandering delay line is known, which is arranged within a multi-layer structure in two different conductor planes, which are separated by a shielding Metallmaschinesebene from each other.
  • a meandering delay line is known, whose mutually angled portions have different width and in two different levels of conductors within a multilayer substrate are arranged, which are separated by a Metallmaschinesebene from each other.
  • An exemplary embodiment of a transformation line is a so-called tri-plate line, in which an example folded conductor between two shielding ground layers, ie between two metallized levels is performed and separated by a respective ceramic layer.
  • the distance to the upper and lower shielding ground plane influences the characteristic impedance and is therefore chosen accordingly. Due to the technology and the need for integration with other elements in the common substrate, however, the thicknesses of the ceramic layers can not be chosen arbitrarily, but must be selected from a limited number of available and suitable layer thicknesses, so that an optimal adaptation is not possible.
  • the conductor is meandered, for example, and executed in two layers.
  • the coupling between the individual sections of the conductor is thereby minimized in that parallel sections of the conductor have a sufficient distance from one another, which is generally greater than the width of the conductor.
  • the coupling between conductor sections in different conductor levels is reduced by either superimposed sections are arranged in two layers at right angles to each other or by conductor sections of a conductor plane between the projection of the conductor sections of the other level are placed.
  • the geometric length of the conductor can be increased. This is only possible with a limited area by the individual sections of the conductor are moved closer to each other. However, this increases the coupling of the line parts with each other, whereby the adjustment between source and load is deteriorated.
  • Object of the present invention is therefore to provide a network with a transformation line, which is also suitable for further miniaturized components and with a desired adaptation before, for example, better than 10 dB is achieved.
  • the invention specifies a network which has a transformation line of a predetermined electrical length formed in or on a substrate.
  • a transformation line of a predetermined electrical length formed in or on a substrate.
  • Surface of the ladder is folded, wherein the sections are rectilinear and are connected at right angles to each other.
  • the resulting intrinsically disadvantageous coupling of adjacent sections of the conductor is inventively taken into account that the width of the conductor is formed differently in the sections.
  • the inventors have recognized that the coupling can be influenced by targeted change in the width of individual conductor sections, so that the desired adaptation can be achieved by a suitable choice of the conductor width in individual sections.
  • the inductive coupling can be reduced by increasing the conductor width in one of the two conductor sections.
  • the conductor width in a section By increasing the conductor width in a section, moreover, the parasitic and per se interfering capacitive coupling to adjacent conductor sections can be increased.
  • the electrical adjustment of the transmission line can be improved.
  • the adaptation can be optimized and set exactly to a desired value. For example, conventional circuit environments may require matching to 50 ⁇ .
  • the invention makes it possible in a simple manner to optimize the electrical adaptation of the transformation line and thus the network for adaptation of the electrical component exactly to the desired values, without this leading to an increased area requirement of the transformation line.
  • the invention also arrangements are possible, which have led to unauthorized high couplings and thus poor matching in known transmission lines, which are now compensated according to the invention.
  • This allows a further reduction of the area requirement of the transmission line as well as alternatively or additionally one geometric shape of the transmission line, which was previously not possible without further disadvantages.
  • a surface available on the substrate can be better utilized with the invention.
  • An increased area requirement of the invention is excluded only by the fact that with the invention, the geometric and thus usually the electrical length of the conductor, which is largely responsible for the extent of the phase shift, does not change significantly.
  • section of the conductor is meant any portion of the conductor of a given length. As a rule, and for both the calculation and the construction of the transmission line, it is easier to define sections between two corner points of the folded line.
  • the transmission line according to the invention is also implemented with a conductor folded in two conductor planes.
  • the two conductor levels are separated by an insulator, preferably a ceramic layer.
  • Another insulating layer, particularly another ceramic layer separates the conductor planes from the grounded shielding plane.
  • the transmission line can also be designed as a tri-plate line, in which the conductor planes are arranged between two ground planes.
  • the insulating layer which separates the two conductor planes, thinner than in the case of known transformation lines.
  • the resulting interfering couplings can be compensated with the invention.
  • the two running in different levels of conductor parts of the conductor are connected by vias together.
  • the sections are guided so that no parallel sections in the two conductor planes come to lie one above the other.
  • Parallels parallel to each other are at least offset by a minimum length in the two planes against each other.
  • Crossings between sections in different conductor planes are preferably made away from the section ends and preferably in the middle of the conductor sections.
  • boundary conditions are advantageously maintained.
  • the widths of the conductor sections as well as the distances between mutually parallel conductor sections should have a mostly technologically-related minimum value, which is selected, for example, at 100 ⁇ m.
  • these minimum distances and minimum widths are not the subject of the invention, but are only taken into account as boundary conditions in the optimization process and are accordingly reflected in the exact configuration of the transformation line. Other boundary conditions and minimum values can also be met.
  • the geometric length of the conductor of the transformation line is chosen so that its electrical length corresponds to a ⁇ / 4 line.
  • a ⁇ / 4 line is needed in many cases where the circuit state must be changed from "SHORT” to "OPEN".
  • the transformation line of a network according to the invention can cause a phase shift which deviates from ⁇ / 4.
  • a preferred impedance match is 50 ⁇ because this value is required by many circuit environments. However, it is also possible to adapt the transformation line and thus the network to other circuit environments deviating from 50 ⁇ .
  • the impedance matching can be done in a tri-plate line by varying the distances of the shielding planes to the conductor planes. However, it is also possible, in particular if the available layer thicknesses in a given substrate are not sufficient to set a desired impedance, an additional one perform separate impedance transformation and provide a corresponding element in the network.
  • the network according to the invention is preferably integrated in a multilayer ceramic, for example an LTTC ceramic, which is optimized for example to a minimum shrink.
  • a multilayer ceramic for example an LTTC ceramic, which is optimized for example to a minimum shrink.
  • LTTC ceramic low temperature cofired ceramic
  • the substrate of the network is the carrier substrate for the component on which it is mounted and with which the component is contacted, for example in one step by means of an SMD process. If the component is a component working with acoustic waves, then, for example, a flip-chip arrangement can be selected.
  • the substrate for the network which may be an integrated network, may simultaneously be the substrate for a module in which multiple devices and the associated network are integrated.
  • the known tri-plate arrangement consists of a first and a second conductor level LE1, LE2, which are separated by a ceramic intermediate layer. Above and below the first and second conductor level, a grounded shielding plane ME1, ME2 is also arranged separately by a ceramic intermediate layer, for example a metallization plane (see FIG. 2).
  • the conductor planes and the shielding planes are preferably arranged symmetrically with respect to each other so that the distances of the shielding planes ME from the adjacent conductor plane LE are uniformly equal to dE.
  • the distance dE may differ from the distance dL of the two conductor levels LE1, LE2.
  • FIG. 1 shows the convolution of the conductor LE1 in the first conductor plane and the projection of the folded conductor LE2 in the second conductor plane shown in dashed lines.
  • the ladder consists of rectilinear sections which are joined together at right angles. The sections are arranged in the two conductor levels LE1 and LE2 to each other so that parallel rectilinear conductor sections do not come to lie one above the other. Via the through-hole DK, the two parts LE1, LE2 of the total conductor are connected to one another in the two planes. At the two connection points T1 and T2, the conductor or the transmission line with an external circuit environment, such as the network or a component connected.
  • the conductor has a uniform width d0.
  • Figure 3 shows the calculated from this known transmission line adaptation shown in the Smith chart.
  • the adaptation of the known transmission line is significantly worse than 15 dB, the impedance matching at about 35 ⁇ .
  • the width of individual conductor sections of one or both conductor planes LE1, LE2 is now varied and in particular increased.
  • the coupling of the corresponding conductor sections A1 to A6 with adjacent conductor sections of the same conductor level or the underlying conductor level LE2 not shown in FIG. 4 is reduced or changed in character.
  • the inductive coupling can be reduced, whereas the capacitive one can be increased.
  • the widths of the conductor track sections d 3 , d 4 , d 5 and d 6 are indicated for the corresponding conductor sections A3, A4, A5 and A6.
  • D 0 indicates a virtual "original" width of the conductor.
  • FIG. 5 shows the Smith diagram associated with the transmission line shown in FIG.
  • Figure 3 shows that the electrical adjustment of the transmission line according to the invention is substantially improved. It is close to 50 ⁇ and has a phase shift of, for example, exactly ⁇ / 4.
  • the extent of the phase shift can however, be varied accordingly by increasing or decreasing the geometric and thus also the electrical length of the conductor in one or both of the planes. Thus, a phase shift by ⁇ / 4 different values is possible.
  • An inventive network with the novel transformation line can be used to adapt any electrical components.
  • it is used for passive integrated networks, which is essential for further miniaturization of electrical components.
  • the passive integration to achieve the desired or already achieved Au .ab torrenten must be integrated into the device substrate or the front-end module substrate necessarily.
  • the substrate is reinforced with respect to the layer sequences shown in FIG. 2 by further layers.
  • the thickness of the substrate or the number of layers required for this purpose depends on the number of network elements and components to be integrated in the substrate.
  • the material for the corresponding ceramic layers is also selected.
  • an electrically insulating ceramic is used for the intermediate layer between the two conductor levels LE1 and LE2, whose preferably low dielectric constant co-determines the impedance of the line.
  • a lower dielectric constant of the intermediate layer also reduces the coupling between the conductor planes. With the invention, however, such couplings can be reduced or advantageously used.
  • the ceramic layers between a conductor level LE1 and a grounded shielding plane ME1 are also set electrically insulating, although here too the value of the corresponding dielectric constant must be taken into account.
  • the same ceramic is used for all ceramic layers including the intermediate layer. According to the invention, however, it is also possible to use for the intermediate layer a ceramic layer different from the other ceramic layers, in order in particular to adjust the coupling, which may again be desired according to the invention, to a desired value.
  • the available for the individual components surfaces are usually determined by vias and other existing or realized in the same plane elements. With the invention, a particularly good adaptation to an available, arbitrarily shaped surface can be realized.

Landscapes

  • Waveguides (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Structure Of Printed Boards (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

  • Elektrische Bauelemente benötigen zu ihrer Anpassung an ihre Schaltungsumgebung häufig ein elektrisches Anpassungsnetzwerk. Ein solches kann Induktivitäten, Kapazitäten und Transformationsleitungen umfassen und dient im wesentlichen dazu, die Impedanz eines Bauelements der äußeren Umgebung anzupassen. Häufig werden solche Anpassungsnetzwerke als passiv integrierte Netzwerke ausgeführt, bei dem die das Netzwerk bildenden diskreten Elemente zusammen in einem Substrat integriert sind, welches vorzugsweise das Trägersubstrat für das Bauelement bildet. Möglich ist es sogar, ein keramisches Bauelement in einer Keramik auszubilden, in deren keramischen Körper oder auf dessen keramischen Körper die Anpaßelemente aufgebracht und mit dem Bauelement integriert sind.
  • Elektrische Transformationsleitungen als Bestandteile von Anpassungsnetzwerken werden häufig in einem mehrlagigen Keramiksubstrat realisiert, in dem wie angeführt noch weitere Elemente integriert sein können. Transformationsleitungen werden beispielsweise in Front-End-Modulen für Endgeräte der mobilen Kommunikation eingesetzt, wo sie als Bestandteil von Pin-Diodenschaltern zum Einsatz kommen können und zum Beispiel eine Phasenschiebung von ca. 90° erreichen müssen. Weiterhin soll eine solche Transformationsleitung eine möglichst gute Anpassung unter den vorgegebenen Quell- und Lastimpedanzen aufweisen. Eine weitere beispielhafte angeführte Verwendung kann eine Transformationsleitung in einem Duplexer finden, welcher, ebenfalls in einem Endgerät der mobilen Kommunikation eingesetzt, die Antenne sowohl mit dem Sende- als auch dem Empfangspfad des Endgeräts verbindet.
  • Eine weitere Anforderung an Transformationsleitungen, insbesondere in Endgeräten der mobilen Kommunikation, ist ein möglichst geringer Flächen- und Raumbedarf. Bei einem Front-End-Modul sind beispielsweise die Außenabmessungen wesentlich geringer als der Bruchteil der Wellenlänge im Keramiksubstrat, um welche die Phasenschiebung erfolgen soll. Da die Phasenschiebung nur mit einem Leiter erfolgen kann, der eine gewisse geometrische Länge aufweist, sind heute verwendete Transformationsleitungen aufgefaltet und teilweise mehrlagig ausgeführt. Sowohl durch Faltung als auch durch die mehrlagige Ausführung, die zu Überlappungen von Leiterabschnitten führt, ergeben sich kapazitive und induktive Verkoppelungen zwischen verschiedenen Abschnitten der Leitung. Dies führt zu einer Änderung der Anpassung und zu einer zusätzlichen Phasenschiebung gegenüber einer idealen Leitung der gleichen geometrischen Länge, die einlagig und ungefaltet ausgeführt ist. Darüber hinaus kann die zur Verfügung stehende Fläche sowie die Position der Anschlußpunkte, an denen die Transformationsleitung mit dem Bauelement oder dem weiteren Anpassungsnetzwerk verbunden ist, nicht beliebig ausgewählt werden, da sie von den übrigen Komponenten der zu integrierenden Schaltungsteile abhängen.
  • Aus der JP-A-58 13 61 08 ist eine Transmissionsleitung bekannt, die mäanderförmig gefaltet ist. Einzelne Abschnitte der mäanderförmigen Transmissionsleitung weisen dabei eine unterschiedliche Breite auf. Aus der US-A-59 23 230 ist eine mäanderförmige Verzögerungsleitung bekannt, die innerhalb eines Mehrschichtaufbaus in zwei unterschiedlichen Leiterebenen angeordnet ist, die durch eine abschirmende Metallisierungsebene voneinander getrennt sind. Aus der JP-A-04 16 77 03 ist eine mäanderförmige Verzögerungsleitung bekannt, deren gegeneinander abgewinkelte Abschnitte unterschiedliche Breite aufweisen und die in zwei unterschiedlichen Leiterebenen innerhalb eines mehrschichtigen Substrates angeordnet sind, die durch eine Metallisierungsebene voneinander getrennt sind.
  • Eine beispielhafte Ausführung einer Transformationsleitung ist eine sogenannte Tri-Plate-Leitung, bei der ein beispielsweise gefalteter Leiter zwischen zwei abschirmenden Masselagen, also zwischen zwei metallisierten Ebenen geführt wird und von diesen durch je eine keramische Schicht getrennt ist. Der Abstand zur oberen und unteren abschirmenden Masseebene beeinflusst die charakteristische Impedanz und wird daher entsprechend gewählt. Technologiebedingt und durch die Notwendigkeit der Integration mit weiteren Elementen in dem gemeinsamen Substrat lassen sich die Dicken der Keramiklagen jedoch nicht beliebig wählen, sondern müssen aus einer begrenzten Anzahl verfügbarer und geeigneter Lagendicken ausgesucht werden, so daß so eine optimale Anpassung nicht möglich ist.
  • In einer platzsparenden bekannten Transmissionsleitung ist der Leiter beispielsweise mäandriert und zweilagig ausgeführt. Dabei wird eine symmetrische Anordnung der beiden Ebenen, in denen der Leiter verläuft, gewählt, so daß die charakteristische Impedanz der Leitung in den beiden Leiterebenen gleich ist und der Impedanz von Quelle und Last entspricht. Die Verkopplung zwischen den einzelnen Abschnitten des Leiters wird dadurch minimiert, indem parallel liegende Abschnitte des Leiters einen genügenden Abstand voneinander haben, der in der Regel größer ist als die Breite des Leiters. Die Verkopplung zwischen Leiterabschnitten in unterschiedlichen Leiterebenen wird dadurch reduziert, indem entweder übereinanderliegende Abschnitte in beiden Lagen rechtwinklig zueinander angeordnet sind oder indem Leiterabschnitte der einen Leiterebene zwischen die Projektion der Leiterabschnitte der anderen Ebene gelegt werden. Zur Erhöhung der Phasendrehung der Transmissionsleitung kann die geometrische Länge des Leiters vergrößert werden. Dies ist bei begrenzter Fläche nur möglich, indem die einzelnen Abschnitte des Leiters näher aneinandergerückt werden. Dadurch steigt jedoch die Verkopplung der Leitungsteile untereinander, wobei die Anpassung zwischen Quelle und Last verschlechtert wird.
  • Aufgabe der vorliegenden Erfindung ist es daher, ein Netzwerk mit einer Transformationsleitung anzugeben, welches auch für weiter miniaturisierte Bauelemente geeignet ist und mit der eine gewünschte Anpassung vor beispielsweise besser als 10 dB erreicht wird.
  • Diese Aufgabe wird durch ein Netzwerk mit den Merkmalen von Anspruch 1 gelöst. Vorteilhafte Ausgestaltungen der Erfindung gehen aus weiteren Ansprüchen hervor.
  • Die Erfindung gibt ein Netzwerk an, welches eine in oder auf einem Substrat ausgebildete Transformationsleitung einer vorgegebenen elektrischen Länge aufweist. Zur besseren Ausnutzung der für die Transformationsleitung zur Verfügung stehenden Fläche ist der Leiter gefaltet, wobei die Abschnitte geradlinig ausgebildet sind und rechtwinklig miteinander verbunden sind. Die sich daraus ergebende an sich nachteilige Verkopplung benachbarter Abschnitte des Leiters wird erfindungsgemäß dadurch berücksichtigt, daß die Breite des Leiters in den Abschnitten unterschiedlich ausgebildet ist. Die Erfinder haben erkannt, daß sich durch gezielte Veränderung in der Breite einzelner Leiterabschnitte die Verkopplung beeinflussen läßt, so daß durch geeignete Wahl der Leiterbreite in einzelnen Abschnitten die gewünschte Anpassung erzielt werden kann. Werden beispielsweise zwei Leiterabschnitte betrachtet, die miteinander kapazitiv und induktiv koppeln, so kann beispielsweise die induktive Verkopplung dadurch vermindert werden, indem in einem der beiden Leiterabschnitte die Leiterbreite erhöht wird. Durch Erhöhung der Leiterbreite in einem Abschnitt kann darüber hinaus die parasitäre und an sich störende kapazitive Verkopplung zu benachbarten Leiterabschnitten erhöht werden. So kann bereits durch Variation der Leiterbreite eines einzelnen Leiterabschnitts die elektrische Anpassung der Transmissionsleitung verbessert werden. Durch geeignete und voneinander unabhängige Auswahl der Breiten aller Leiterabschnitte kann die Anpassung optimiert werden und exakt auf einen gewünschten Wert eingestellt werden. Herkömmliche Schaltungsumgebungen können beispielsweise eine Anpassung an 50 Ω erfordern.
  • Die Erfindung ermöglicht es in einfacher Weise, die elektrische Anpassung der Transformationsleitung und damit insgesamt das Netzwerk zur Anpassung des elektrischen Bauelements exakt auf die gewünschten Werte zu optimieren, ohne daß dies zu einem erhöhten Flächenbedarf der Transformationsleitung führt. Im Gegenteil werden mit der Erfindung auch Anordnungen möglich, die bei bekannten Transmissionsleitungen zu unerlaubt hohen Verkopplungen und damit zu schlechter Anpassung geführt haben, die nun jedoch erfindungsgemäß ausgeglichen werden. Dies erlaubt eine weitere Reduzierung des Flächenbedarfs der Transmissionsleitung sowie alternativ oder zusätzlich eine geometrische Form der Transmissionsleitung, die bisher nicht ohne weitere Nachteile zu realisieren war. So kann eine auf dem Substrat zur Verfügung stehende Fläche mit der Erfindung besser ausgenutzt werden. Ein erhöhter Flächenbedarf der Erfindung wird allein dadurch ausgeschlossen, daß sich mit der Erfindung die geometrische und damit in der Regel auch die elektrische Länge des Leiters, die maßgeblich für das Ausmaß der Phasenschiebung verantwortlich ist, nicht wesentlich ändert.
  • Unter Abschnitt des Leiters wird ein beliebiges Teilstück des Leiters mit einer gegebenen Länge verstanden. In der Regel und sowohl für die Berechnung als auch für die Konstruktion der Transmissionsleitung einfacher ist es, Abschnitte zwischen zwei Eckpunkten der gefalteten Leitung zu definieren.
  • Wie bereits die herkömmliche Transmissionsleitung wird auch die erfindungsgemäße Transmissionsleitung mit einem in zwei Leiterebenen gefalteten Leiter ausgeführt. Die beiden Leiterebenen sind durch einen Isolator, vorzugsweise eine keramische Schicht, voneinander getrennt. Eine weitere isolierende Schicht, insbesondere eine weitere keramische Schicht, trennt die Leiterebenen von der mit Masse verbundenen abschirmenden Ebene.
  • Die Transmissionsleitung kann auch als Tri-Plate-Leitung ausgeführt sein, bei der die Leiterebenen zwischen zwei Masseebenen angeordnet sind. Mit der Erfindung ist es möglich, die Isolationsschicht, die die beiden Leiterebenen trennt, dünner auszuführen als bei bekannten Transformationsleitungen. Die sich daraus ergebenden störenden Verkopplungen können mit der Erfindung kompensiert werden. Die beiden in unterschiedlichen Leiterebenen verlaufenden Teile des Leiters werden durch Durchkontaktierungen miteinander verbunden.
  • In den beiden Leiterebenen werden die Abschnitte so geführt, daß keine parallelen Abschnitte in den beiden Leiterebenen übereinander zu liegen kommen. Zueinander parallele Abschnitte sind zumindest um eine Mindestlänge in den beiden Ebenen gegeneinander versetzt. Kreuzungen zwischen Abschnitten in unterschiedlichen Leiterebenen erfolgen vorzugsweise entfernt von den Abschnittsenden und vorzugsweise in der Mitte der Leiterabschnitte. Bei der Variation der Breite der Leiter in einzelnen Abschnitten werden vorteilhafterweise Randbedingungen eingehalten. So sollten insbesondere die Breiten der Leiterabschnitte ebenso wie die Abstände zueinander paralleler Leiterabschnitte einen meist technologisch bedingten Mindestwert aufweisen, der beispielsweise bei 100 µm gewählt wird. Diese Mindestabstände und Mindestbreiten sind jedoch nicht Gegenstand der Erfindung, sondern werden lediglich als Randbedingungen beim Optimierungsverfahren berücksichtigt und schlagen sich dementsprechend in der genauen Ausgestaltung der Transformationsleitung nieder. Es können auch andere Randbedingungen und Mindestwerte eingehalten werden.
  • Die geometrische Länge des Leiters der Transformationsleitung wird so gewählt, daß ihre elektrische Länge einer λ/4-Leitung entspricht. Eine λ/4-Leitung wird in vielen Fällen dort benötigt, wo der Schaltungszustand von "SHORT" nach "OPEN" verändert werden muß. Die Transformationsleitung eines erfindungsgemäßen Netzwerks kann jedoch eine von λ/4 abweichende Phasenschiebung bewirken.
  • Eine bevorzugte Impedanzanpassung liegt bei 50 Ω, da dieser Wert von vielen Schaltungsumgebungen gefordert ist. Möglich ist es jedoch auch, die Transformationsleitung und damit das Netzwerk an andere, von 50 Ω abweichende Schaltungsumgebungen anzupassen. Die Impedanzanpassung kann in einer Tri-Plate-Leitung durch Variation der Abstände der abschirmenden Ebenen zu den Leiterebenen erfolgen. Möglich ist es jedoch auch, insbesondere wenn die zur Verfügung stehenden Schichtdicken in einem vorgegebenen Substrat zur Einstellung einer gewünschten Impedanz nicht ausreichend sind, eine zusätzliche separate Impedanztransformation durchzuführen und ein entsprechendes Element im Netzwerk vorzusehen.
  • Das erfindungsgemäße Netzwerk ist vorzugsweise in einer mehrlagigen Keramik integriert, beispielsweise einer LTTC-Keramik, die beispielsweise auf einen minimalen Shrink optimiert ist. Eine solche Low-Shrink-Keramik in LTTC-Ausführung (= low temperature cofired ceramic) erlaubt eine hohe Integration von Netzwerkelementen und gegebenenfalls zusätzlich die Integration der eigentlichen Bauelemente in die Keramik, da mit dieser Technik eine hochwertige Keramik und verlustarme metallische Leiter bei gleichzeitig exakt reproduzierbarer Bauelementgeometrie bzw. Netzwerkgeometrie erhalten werden können. Üblicherweise ist das Substrat des Netzwerks jedoch das Trägersubstrat für das Bauelement, auf dem dieses befestigt und mit dem das Bauelement kontaktiert ist, beispielsweise in einem Schritt mittels eines SMD-Prozesses. Ist das Bauelement ein mit akustischen Wellen arbeitendes Bauelement, so kann beispielsweise eine Flip-Chip-Anordnung gewählt sein.
  • Das Substrat für das Netzwerk, welches ein integriertes Netzwerk sein kann, kann gleichzeitig das Substrat für ein Modul darstellen, in dem mehrere Bauelemente und das dazugehörige Netzwerk integriert sind.
  • Im Folgenden wird die Erfindung sowie ein Verfahren zur Optimierung eines erfindungsgemäßen Netzwerks anhand von Ausführungsbeispielen und den dazugehörigen Figuren näher erläutert.
    • Figur 1 zeigt in schematischer Draufsicht einen in zwei Ebenen gefalteten Leiter einer bekannten Transmissionsleitung,
    • Figur 2 zeigt eine als Tri-Plate-Leitung ausgebildete Transmissionsleitung im schematischen Querschnitt,
    • Figur 3 zeigt ein Smith-Diagramm einer bekannten Transmissionsleitung,
    • Figur 4 zeigt den Leiter einer erfindungsgemäßen Transmissionsleitung in schematischer Draufsicht,
    • Figur 5 zeigt das Smith-Diagramm der erfindungsgemäßen Transmissionsleitung.
  • Eine bekannte Transmissionsleitung soll anhand der Figuren 1 und 2 näher erläutert werden. Die Figuren dienen dabei nur der Erläuterung und sind nicht maßstabsgetreu. Die bekannte Tri-Plate-Anordnung besteht aus einer ersten und einer zweiten Leiterebene LE1, LE2, die durch eine keramische Zwischenlage voneinander getrennt sind. Oberhalb und unterhalb der ersten und zweiten Leiterebene ist ebenfalls durch eine keramische Zwischenlage getrennt je eine mit Masse verbundene abschirmende Ebene ME1, ME2 angeordnet, beispielsweise eine Metallisierungsebene (siehe Figur 2). Die Leiterebenen und die abschirmenden Ebenen sind vorzugsweise symmetrisch zueinander angeordnet, so daß die Abstände der abschirmenden Ebenen ME von der benachbarten Leiterebene LE einheitlich gleich dE ist. Der Abstand dE kann sich vom Abstand dL der beiden Leiterebenen LE1, LE2 unterscheiden. In einer bekannten Transmissionsleitung ist beispielsweise dE = 125 µm, während dL = 95 µm ist. Figur 1 zeigt die Faltung des Leiters LE1 in der ersten Leiterebene und gestrichelt dargestellt die Projektion des gefalteten Leiters LE2 in der zweiten Leiterebene. Der Leiter besteht aus geradlinigen Abschnitten, die rechtwinklig zusammengefügt sind. Die Abschnitte sind in den beiden Leiterebenen LE1 und LE2 so zueinander angeordnet, daß zueinander parallele geradlinige Leiterabschnitte nicht übereinander zu liegen kommen. Über die Durchkontaktierung DK sind die beiden Teile LE1, LE2 des Gesamtleiters in den beiden Ebenen miteinander verbunden. An den beiden Anschlußpunkten T1 und T2 wird der Leiter bzw. die Transmissionsleitung mit einer äußeren Schaltungsumgebung, beispielsweise dem Netzwerk oder einem Bauelement, verbunden. Der Leiter weist eine einheitliche Breite d0 auf.
  • Figur 3 zeigt die aus dieser bekannten Transmissionsleitung berechnete Anpassung dargestellt im Smith-Diagramm. Die Anpassung der bekannten Transmissionsleitung liegt deutlich schlechter als 15 dB, die Impedanzanpassung bei ca. 35 Ω.
  • Erfindungsgemäß wird nun die Breite einzelner Leiterabschnitte einer oder beider Leiterebenen LE1, LE2 variiert und insbesondere erhöht. Dadurch wird die Verkopplung der entsprechenden Leiterabschnitte A1 bis A6 mit benachbarten Leiterabschnitten derselben Leiterebene oder der darunterliegenden, in Figur 4 nicht dargestellten Leiterebene LE2 reduziert bzw. im Charakter verändert. Durch Verbreiterung eines Leiterabschnitts A kann beispielsweise die induktive Verkopplung reduziert, die kapazitive dagegen erhöht werden. Nur beispielhaft sind die Breiten der Leiterbahnenabschnitte d3, d4, d5 und d6 für die entsprechenden Leiterabschnitte A3, A4, A5 und A6 angegeben. Mit d0 ist eine virtuelle "ursprüngliche" Breite des Leiters angegeben. Eine optimale Anpassung des Leiters ergibt im Normalfall, daß die Breiten dx aller variierten Leiterabschnitte Ax voneinander unterschiedliche Werte annehmen. Möglich ist es jedoch auch, daß einzelne Leiterabschnitte gleich breit sind. Dies betrifft insbesondere die gegenüber der ursprünglichen Struktur unveränderten Leiterabschnitte. In der Figur 4 ist nur die Leiterebene LE1 dargestellt, die darunterliegende zweite Leiterebene LE2 kann und wird entsprechend verändert, so daß auch dort unterschiedlich breite Leiterabschnitte vorliegen.
  • Figur 5 zeigt das zu der in der Figur 4 dargestellten Transmissionsleitung gehörige Smith-Diagramm. Durch Vergleich mit Figur 3 zeigt sich, daß die elektrische Anpassung der erfindungsgemäßen Transmissionsleitung wesentlich verbessert ist. Sie liegt nahe bei 50 Ω und besitzt eine Phasenschiebung von beispielsweise exakt λ/4. Das Ausmaß der Phasenschiebung kann jedoch durch Erhöhung oder Erniedrigung der geometrischen und damit auch der elektrischen Länge des Leiters in einer oder beiden der Ebenen entsprechend variiert werden. So ist auch eine Phasenschiebung um von λ/4 abweichende Werte möglich.
  • Beim Optimierungsverfahren zur Anpassung der erfindungsgemäßen Transmissionsleitung kann wie folgt vorgegangen werden. Es wird von einem Leiter mit Abschnitten einheitlicher Breite ausgegangen und dessen elektrische Kennwerte berechnet oder simulliert. Anschließend wird die Breite eines Abschnitts variert und die elektrischen Kennwerte erneut berechnet. Den damit erzielten Effekt (= Verschiebung der Anpassung im Smithdiagramm als Vektor) wird als Anpassungsmaßnahme für den variierten Abschnitt abgespeichert. Anschließend wird ausgehend von der Startstruktur ein weiterer Abschnitt in der Breite variert und die elektrischen Kennwerte erneut berechnet. So erhält man eine weitere Anpassungsmaßnahme. Je nach vorliegendem Problem und der mit den einzelnen Anpassungsmaßnahmen erzielten Wirkungen kann gegebenenfalls bereits mit zwei Anpassungsmaßnahmen, die durch Interpolation der Wirkung und dementsprechend veränderte Breite des jeweiligen Abschnitt in ihrer Effektivität noch variiert werden können, eine gewünschte oder geforderte Anpassung erreicht werden. Für anspruchsvolle Anpassungen kann es erforderlich sein, weitere Anpassungsmaßnahme für andere Abschnitte oder für alle Abschnitte zu berechnen und die gewünschte Anpassung additiv aus den einzelnen Anpassungsmaßnahmen zusammenzusetzen. Für die so erhaltene Struktur können schließlich weitere Anpassungen erforderlich sein, da sich die einzeln berechneten Anpassungsmaßnahmen gegenseitig beeinflussen können.
  • Ein erfindungsgemäßes Netzwerk mit der neuartigen Transformationsleitung kann zur Anpassung beliebiger,elektrischer Bauelemente verwendet werden. Vorteilhaft wird es für passiv integrierte Netzwerke eingesetzt, die zur weiteren Miniaturisierung elektrischer Bauelemente unbedingt erforderlich ist. Eine besonders vorteilhafte Verwendung für das erfindungsgemäße Netzwerk bei der elektrischen Anpassung von Komponenten von Front-End-Modulen in Endgeräten drahtloser Kommunikation, beispielsweise in Handys. Hier muß die passive Integration zur Erreichung der angestrebten oder bereits erreichten Au-βenabmessungen unbedingt in das Bauelementsubstrat bzw. das Front-End-Modul-Substrat integriert sein.
  • Zur Aufnahme weiterer Netzwerkskomponenten und zur Erfüllung seiner Funktion als Bauelementsubstrat ist das Substrat gegenüber den in Figur 2 dargestellten Schichtfolgen um weitere Schichten verstärkt. Die Dicke des Substrats bzw. die Anzahl der dafür erforderlichen Schichten ist von der Anzahl der in dem Substrat zu integrierenden Netzwerkelemente und - komponenten abhängig. In Abhängigkeit von der in der Substratkeramik zu verwirklichenden Komponente ist auch das Material für die entsprechenden Keramiklagen ausgewählt.
  • Im vorliegenden Fall wird für die Zwischenlage zwischen den beiden Leiterebenen LE1 und LE2 eine elektrisch isolierende Keramik eingesetzt, deren vorzugsweise niedrige Dielektrizitätskonstante die Impedanz der Leitung mitbestimmt. Eine niedrigere Dielektrizitätskonstante der Zwischenlage vermindert auch die Verkopplung zwischen den Leiterebenen. Mit der Erfindung können aber solche Verkopplungen vermindert bzw. vorteilhaft genutzt werden. Auch die keramischen Schichten zwischen einer Leiterebene LE1 und einer mit Masse verbundenen abschirmenden Ebene ME1 werden elektrisch isolierend eingestellt, wobei allerdings auch hier der Wert der entsprechenden Dielektrizitätskonstanten zu beachten ist. Üblicherweise wird für alle keramischen Schichten inklusive der Zwischenlage die gleiche Keramik eingesetzt. Erfindungsgemäß ist es jedoch auch möglich, für die Zwischenlage eine von den übrigen keramischen Schichten Schichten unterschiedliche Keramik einzusetzen, um insbesondere die Verkopplung, die erfindungsgemäß wieder gewünscht sein kann, auf einen gewünschten Wert einzustellen.
  • Die für die einzelnen Komponenten zur Verfügung stehenden Flächen sind in der Regel durch Durchkontaktierungen und andere in der gleichen Ebene vorhandene bzw. realisierte Elemente bestimmt. Mit der Erfindung kann eine besonders gute Anpassung an eine zur Verfügung stehende, beliebig geformte Fläche verwirklicht werden.

Claims (13)

  1. Netzwerk zur elektrischen Anpassung eines elektrischen Bauelements,
    - mit einer in einem mehrschichtigen Substrat ausgebildeten Transformationsleitung einer vorgegebenen elektrischen Länge
    - bei der die Transformationsleitung einen gefalteten elektrischen Leiter (LE) umfaßt mit geradlinigen ersten Abschnitten (A), die rechtwinklig miteinander verbunden und in einer ersten Leiterebene angeordnet sind, mit geradlinigen zweiten Abschnitten (A), die rechtwinklig miteinander verbunden und in einer zweiten Leiterebene angeordnet sind,
    - wobei die erste und die zweite Leiterebene nur durch eine isolierende Zwischenlage voneinander getrennt sind und die ersten und zweiten Abschnitte (A) uber eine Durchkontaktierung miteinander verbunden sind,
    - wobei erste und zweite Abschnitte induktiv und kapazitiv miteinander verkoppelt sind,
    - und wobei die Kopplung durch eine unterschiedliche Breite (d) des Leiters in den Abschnitten eingestellt ist.
  2. Netzwerk nach Anspruch 1,
    bei dem die Breite (d) des Leiters (LE) in den einzelnen Abschnitten (A) so gewählt ist, daß störende Verkopplungen zwischen unterschiedlichen Abschnitten des Leiters kompensiert sind und eine Impedanzanpassung an die gegebene Umgebung von besser als 25 dB erreicht ist.
  3. Netzwerk nach Anspruch 1 oder 2,
    bei dem das mehrschichtige Substrat keramische Lagen, Leiterebenen und abschirmende Ebenen umfasst.
  4. Netzwerk nach einem der Ansprüche 1 bis 3,
    bei dem die erste Leiterebene (LE) durch zumindest eine keramische Schicht von einer zur ersten Leiterebene parallelen, mit Masse verbundenen, abschirmenden Ebene getrennt ist.
  5. Netzwerk nach einem der Ansprüche 1 bis 4,
    bei dem die Abschnitte (A) so in den beiden Ebenen geführt sind, daß zueinander parallele Abschnitte (A) nicht übereinander liegen und zumindest eine Mindestlänge gegeneinander versetzt sind.
  6. Netzwerk nach Anspruch 5,
    bei dem sowohl für die Versetzung zueinander paralleler, in unterschiedlichen Ebenen angeordneter Abschnitte (A), als auch für die Entfernung innerhalb einer Ebene angeordneter benachbarter und zueinander paralleler Abschnitte eine Mindestlänge von 100 µm eingehalten ist.
  7. Netzwerk nach einem der Ansprüche 1 bis 6,
    bei dem alle Abschnitte (A) des Leiters zumindest eine der Mindestlänge entsprechende Breite (d) aufweisen.
  8. Netzwerk nach einem der Ansprüche 3 bis 7,
    bei dem die Transformationsleitung als Triplate-Leitung mit zwei abschirmenden, mit Masse verbundenen Ebenen (ME) ausgebildet ist, bei dem die beiden keramischen Schichten, die zwischen einer Leiterebene und den abschirmenden Ebenen angeordnet sind, die gleiche Dicke (dE) aufweisen.
  9. Netzwerk nach einem der Ansprüche 1 bis 8,
    bei die Transformationsleitung als λ/4 Leitung ausgebildet ist.
  10. Netzwerk nach einem der Ansprüche 1 bis 9,
    bei dem die Transformationsleitung an 50 Ω angepaßt ist.
  11. Netzwerk nach einem der Ansprüche 1 bis 10,
    bei dem die Impedanzanpassung an die äußere Umgebung mit Hilfe eines zusätzlichen Elements zur Impedanztransformation gewährleistet ist.
  12. Netzwerk nach einem der Ansprüche 1 bis 11,
    bei dem das Substrat eine Mehrlagenkeramik ist und den Träger für ein Bauelement oder ein Modul bildet.
  13. Netzwerk nach Anspruch 12,
    bei dem das Bauelement oder das Modul zumindest ein mit akustischen Wellen arbeitendes Bauelement umfaßt.
EP03746217A 2002-04-18 2003-03-21 Elektrisches anpassungsnetzwerk mit einer transformationsleitung Expired - Lifetime EP1495513B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10217387.7A DE10217387B4 (de) 2002-04-18 2002-04-18 Elektrisches Anpassungsnetzwerk mit einer Transformationsleitung
DE10217387 2002-04-18
PCT/DE2003/000950 WO2003088410A1 (de) 2002-04-18 2003-03-21 Elektrisches anpassungsnetzwerk mit einer transformationsleitung

Publications (2)

Publication Number Publication Date
EP1495513A1 EP1495513A1 (de) 2005-01-12
EP1495513B1 true EP1495513B1 (de) 2006-05-31

Family

ID=28685184

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03746217A Expired - Lifetime EP1495513B1 (de) 2002-04-18 2003-03-21 Elektrisches anpassungsnetzwerk mit einer transformationsleitung

Country Status (5)

Country Link
EP (1) EP1495513B1 (de)
JP (1) JP4058004B2 (de)
KR (1) KR101025233B1 (de)
DE (1) DE10217387B4 (de)
WO (1) WO2003088410A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10348722B4 (de) * 2003-10-16 2013-02-07 Epcos Ag Elektrisches Anpassungsnetzwerk mit einer Transformationsleitung
DE102004021086A1 (de) * 2004-04-29 2005-11-24 Kathrein-Werke Kg Impedanzwandlervorrichtung
US7075385B2 (en) 2004-04-29 2006-07-11 Kathrein-Werke Kg Impedance converter device
JP5417622B2 (ja) * 2009-08-19 2014-02-19 独立行政法人 宇宙航空研究開発機構 アナログ・デジタル積層型可変移相器
FR2953650B1 (fr) * 2009-12-04 2012-12-14 Thales Sa Trasformateur d'impedance de puissance vhf/uhf planaire compact
DE202014002841U1 (de) * 2014-04-01 2014-06-25 Rosenberger Hochfrequenztechnik Gmbh & Co. Kg Kontaktieranordnung, insbesondere HF-Messspitze

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04167703A (ja) * 1990-10-30 1992-06-15 Murata Mfg Co Ltd ディレイライン

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3754197A (en) * 1972-05-18 1973-08-21 Sanford Research Inst Meander-line impedance transformer
US3990024A (en) * 1975-01-06 1976-11-02 Xerox Corporation Microstrip/stripline impedance transformer
JPS58136108A (ja) * 1982-02-08 1983-08-13 Nec Corp メアンダ型伝送線路
JPS6115402A (ja) * 1984-06-30 1986-01-23 Murata Mfg Co Ltd 伝送線路の短縮化構造
JPH0377360A (ja) * 1989-08-18 1991-04-02 Mitsubishi Electric Corp 半導体装置
US5661647A (en) * 1995-06-07 1997-08-26 Hughes Electronics Low temperature co-fired ceramic UHF/VHF power converters
JPH09260912A (ja) * 1996-03-26 1997-10-03 Murata Mfg Co Ltd ディレイライン
DE69736617T2 (de) * 1996-10-18 2007-01-04 Matsushita Electric Industrial Co., Ltd., Kadoma Dielektrisches laminiertes Bandsperrfilter mit elektromagnetischer Kopplung zwischen Resonatoren
US6133806A (en) * 1999-03-25 2000-10-17 Industrial Technology Research Institute Miniaturized balun transformer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04167703A (ja) * 1990-10-30 1992-06-15 Murata Mfg Co Ltd ディレイライン

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 016, no. 469 (E - 1271) 29 September 1992 (1992-09-29) *

Also Published As

Publication number Publication date
EP1495513A1 (de) 2005-01-12
JP2005523598A (ja) 2005-08-04
KR101025233B1 (ko) 2011-04-01
DE10217387A1 (de) 2003-10-30
JP4058004B2 (ja) 2008-03-05
DE10217387B4 (de) 2018-04-12
KR20040108743A (ko) 2004-12-24
WO2003088410A1 (de) 2003-10-23

Similar Documents

Publication Publication Date Title
DE10139164B4 (de) Monolithische LC-Komponenten
DE10248477B4 (de) LC-Hochpaßfilter-Schaltungsvorrichtung, laminierte LC-Hochpaßfiltervorrichtung, Multiplexer und Funkkommunikationseinrichtung
DE10234737B4 (de) Oberflächenwellenduplexer und Kommunikationsvorrichtung
DE60132401T2 (de) Tiefpassfilter
DE60131193T2 (de) Kopplungseinrichtung mit innenkondensatoren in einem mehrschichtsubstrat
DE102006047427B4 (de) Substrat mit HF-tauglicher Leitung
DE102008020597B4 (de) Schaltungsanordnung
DE69308920T2 (de) Dielektrisches Filter, das auf einem Substrat aufgebracht ist, auf dem Eingangs- und Ausgangsstreifenleitungen angeordnet sind.
DE60307733T2 (de) Nicht-abstimmbares rechteckiges dielektrisches Wellenleiterfilter
DE69123796T2 (de) Abzweigfilter
DE60305553T2 (de) Leistungsteiler/-kombinierer
DE102006008500A1 (de) Sendeschaltung, Antenneduplexer und Hochfrequenzumschalter
DE60212429T2 (de) Dielektrische antenne
DE10202699B4 (de) Nichtreziprokes Schaltungsbauelement und Kommunikationsvorrichtung, die dasselbe enthält
DE102007046351B4 (de) Hochfrequenzplatine, die einen Übertragungsmodus von Hochfrequenzsignalen wandelt
EP1495513B1 (de) Elektrisches anpassungsnetzwerk mit einer transformationsleitung
DE69022332T2 (de) Anpassungsnetzwerk für Hochfrequenz-Transistor.
DE10348722B4 (de) Elektrisches Anpassungsnetzwerk mit einer Transformationsleitung
EP1370886B1 (de) Antenne mit koplanarem speisenetzwerk zum senden und/oder empfangen von radarstrahlen
EP3236530B1 (de) Substrat-integrierter holleiter-filter
DE602004003717T2 (de) Substrat mit hoher impedanz
EP1702386A1 (de) Richtkoppler in streifenleitertechnik mit breitem koppelspalt
DE102008051531B4 (de) Elektrisches System mit einer Vorrichtung zur Unterdrückung der Ausbreitung einer elektromagnetischen Störung
DE102009049609B4 (de) Streifenleiter-Balun
DE10350033A1 (de) Bauelement mit Koplanarleitung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040713

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20050316

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: ELECTRIC MATCHING NETWORK WITH A TRANSFORMATION LINE

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060814

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070301

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20170629 AND 20170705

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: SNAPTRACK, INC., US

Effective date: 20180202

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200228

Year of fee payment: 18

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210321

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20220218

Year of fee payment: 20