EP1495513B1 - Reseau d'adaptation electrique pourvu d'une ligne de transformation - Google Patents

Reseau d'adaptation electrique pourvu d'une ligne de transformation Download PDF

Info

Publication number
EP1495513B1
EP1495513B1 EP03746217A EP03746217A EP1495513B1 EP 1495513 B1 EP1495513 B1 EP 1495513B1 EP 03746217 A EP03746217 A EP 03746217A EP 03746217 A EP03746217 A EP 03746217A EP 1495513 B1 EP1495513 B1 EP 1495513B1
Authority
EP
European Patent Office
Prior art keywords
conductor
sections
network according
line
level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03746217A
Other languages
German (de)
English (en)
Other versions
EP1495513A1 (fr
Inventor
Andreas Przadka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Electronics AG
Original Assignee
Epcos AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Epcos AG filed Critical Epcos AG
Publication of EP1495513A1 publication Critical patent/EP1495513A1/fr
Application granted granted Critical
Publication of EP1495513B1 publication Critical patent/EP1495513B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/02Coupling devices of the waveguide type with invariable factor of coupling

Definitions

  • electrical components often require an electrical matching network to accommodate their circuit environment.
  • Such may include inductors, capacitors, and transformation lines, and serves essentially to match the impedance of a device to the external environment.
  • such matching networks are implemented as passively integrated networks, in which the discrete elements forming the network are integrated together in a substrate, which preferably forms the carrier substrate for the component. It is even possible to form a ceramic component in a ceramic, in whose ceramic body or on its ceramic body, the matching elements are applied and integrated with the component.
  • Transformation lines as components of matching networks are often realized in a multi-layer ceramic substrate in which, as stated, further elements can be integrated. Transformation lines are used, for example, in front-end modules for mobile communication terminals, where they can be used as part of pin diode switches and, for example, must achieve a phase shift of about 90 °. Furthermore, such a transformation line should have the best possible matching among the given source and load impedances. Another exemplary use cited may find a transformation line in a duplexer which, also used in a mobile communication terminal, connects the antenna to both the transmission and reception paths of the terminal.
  • transformation lines are one possible small area and space requirements.
  • the outer dimensions are substantially less than the fraction of the wavelength in the ceramic substrate about which the phase shift is to occur. Since the phase shift can only take place with a conductor which has a certain geometric length, transformation lines used today are unfolded and are in some cases multi-layered. Both convolution and multilayer design, resulting in overlaps of conductor sections, result in capacitive and inductive coupling between different sections of the line. This results in a change in the fit and an additional phase shift over an ideal line of the same geometric length, which is single-layered and unfolded.
  • the available area and the position of the connection points at which the transformation line is connected to the component or the further matching network can not be arbitrarily selected, since they depend on the other components of the circuit parts to be integrated.
  • a transmission line is known, which is folded meandering. Individual sections of the meandering transmission line have a different width.
  • a meandering delay line is known, which is arranged within a multi-layer structure in two different conductor planes, which are separated by a shielding Metallmaschinesebene from each other.
  • a meandering delay line is known, whose mutually angled portions have different width and in two different levels of conductors within a multilayer substrate are arranged, which are separated by a Metallmaschinesebene from each other.
  • An exemplary embodiment of a transformation line is a so-called tri-plate line, in which an example folded conductor between two shielding ground layers, ie between two metallized levels is performed and separated by a respective ceramic layer.
  • the distance to the upper and lower shielding ground plane influences the characteristic impedance and is therefore chosen accordingly. Due to the technology and the need for integration with other elements in the common substrate, however, the thicknesses of the ceramic layers can not be chosen arbitrarily, but must be selected from a limited number of available and suitable layer thicknesses, so that an optimal adaptation is not possible.
  • the conductor is meandered, for example, and executed in two layers.
  • the coupling between the individual sections of the conductor is thereby minimized in that parallel sections of the conductor have a sufficient distance from one another, which is generally greater than the width of the conductor.
  • the coupling between conductor sections in different conductor levels is reduced by either superimposed sections are arranged in two layers at right angles to each other or by conductor sections of a conductor plane between the projection of the conductor sections of the other level are placed.
  • the geometric length of the conductor can be increased. This is only possible with a limited area by the individual sections of the conductor are moved closer to each other. However, this increases the coupling of the line parts with each other, whereby the adjustment between source and load is deteriorated.
  • Object of the present invention is therefore to provide a network with a transformation line, which is also suitable for further miniaturized components and with a desired adaptation before, for example, better than 10 dB is achieved.
  • the invention specifies a network which has a transformation line of a predetermined electrical length formed in or on a substrate.
  • a transformation line of a predetermined electrical length formed in or on a substrate.
  • Surface of the ladder is folded, wherein the sections are rectilinear and are connected at right angles to each other.
  • the resulting intrinsically disadvantageous coupling of adjacent sections of the conductor is inventively taken into account that the width of the conductor is formed differently in the sections.
  • the inventors have recognized that the coupling can be influenced by targeted change in the width of individual conductor sections, so that the desired adaptation can be achieved by a suitable choice of the conductor width in individual sections.
  • the inductive coupling can be reduced by increasing the conductor width in one of the two conductor sections.
  • the conductor width in a section By increasing the conductor width in a section, moreover, the parasitic and per se interfering capacitive coupling to adjacent conductor sections can be increased.
  • the electrical adjustment of the transmission line can be improved.
  • the adaptation can be optimized and set exactly to a desired value. For example, conventional circuit environments may require matching to 50 ⁇ .
  • the invention makes it possible in a simple manner to optimize the electrical adaptation of the transformation line and thus the network for adaptation of the electrical component exactly to the desired values, without this leading to an increased area requirement of the transformation line.
  • the invention also arrangements are possible, which have led to unauthorized high couplings and thus poor matching in known transmission lines, which are now compensated according to the invention.
  • This allows a further reduction of the area requirement of the transmission line as well as alternatively or additionally one geometric shape of the transmission line, which was previously not possible without further disadvantages.
  • a surface available on the substrate can be better utilized with the invention.
  • An increased area requirement of the invention is excluded only by the fact that with the invention, the geometric and thus usually the electrical length of the conductor, which is largely responsible for the extent of the phase shift, does not change significantly.
  • section of the conductor is meant any portion of the conductor of a given length. As a rule, and for both the calculation and the construction of the transmission line, it is easier to define sections between two corner points of the folded line.
  • the transmission line according to the invention is also implemented with a conductor folded in two conductor planes.
  • the two conductor levels are separated by an insulator, preferably a ceramic layer.
  • Another insulating layer, particularly another ceramic layer separates the conductor planes from the grounded shielding plane.
  • the transmission line can also be designed as a tri-plate line, in which the conductor planes are arranged between two ground planes.
  • the insulating layer which separates the two conductor planes, thinner than in the case of known transformation lines.
  • the resulting interfering couplings can be compensated with the invention.
  • the two running in different levels of conductor parts of the conductor are connected by vias together.
  • the sections are guided so that no parallel sections in the two conductor planes come to lie one above the other.
  • Parallels parallel to each other are at least offset by a minimum length in the two planes against each other.
  • Crossings between sections in different conductor planes are preferably made away from the section ends and preferably in the middle of the conductor sections.
  • boundary conditions are advantageously maintained.
  • the widths of the conductor sections as well as the distances between mutually parallel conductor sections should have a mostly technologically-related minimum value, which is selected, for example, at 100 ⁇ m.
  • these minimum distances and minimum widths are not the subject of the invention, but are only taken into account as boundary conditions in the optimization process and are accordingly reflected in the exact configuration of the transformation line. Other boundary conditions and minimum values can also be met.
  • the geometric length of the conductor of the transformation line is chosen so that its electrical length corresponds to a ⁇ / 4 line.
  • a ⁇ / 4 line is needed in many cases where the circuit state must be changed from "SHORT” to "OPEN".
  • the transformation line of a network according to the invention can cause a phase shift which deviates from ⁇ / 4.
  • a preferred impedance match is 50 ⁇ because this value is required by many circuit environments. However, it is also possible to adapt the transformation line and thus the network to other circuit environments deviating from 50 ⁇ .
  • the impedance matching can be done in a tri-plate line by varying the distances of the shielding planes to the conductor planes. However, it is also possible, in particular if the available layer thicknesses in a given substrate are not sufficient to set a desired impedance, an additional one perform separate impedance transformation and provide a corresponding element in the network.
  • the network according to the invention is preferably integrated in a multilayer ceramic, for example an LTTC ceramic, which is optimized for example to a minimum shrink.
  • a multilayer ceramic for example an LTTC ceramic, which is optimized for example to a minimum shrink.
  • LTTC ceramic low temperature cofired ceramic
  • the substrate of the network is the carrier substrate for the component on which it is mounted and with which the component is contacted, for example in one step by means of an SMD process. If the component is a component working with acoustic waves, then, for example, a flip-chip arrangement can be selected.
  • the substrate for the network which may be an integrated network, may simultaneously be the substrate for a module in which multiple devices and the associated network are integrated.
  • the known tri-plate arrangement consists of a first and a second conductor level LE1, LE2, which are separated by a ceramic intermediate layer. Above and below the first and second conductor level, a grounded shielding plane ME1, ME2 is also arranged separately by a ceramic intermediate layer, for example a metallization plane (see FIG. 2).
  • the conductor planes and the shielding planes are preferably arranged symmetrically with respect to each other so that the distances of the shielding planes ME from the adjacent conductor plane LE are uniformly equal to dE.
  • the distance dE may differ from the distance dL of the two conductor levels LE1, LE2.
  • FIG. 1 shows the convolution of the conductor LE1 in the first conductor plane and the projection of the folded conductor LE2 in the second conductor plane shown in dashed lines.
  • the ladder consists of rectilinear sections which are joined together at right angles. The sections are arranged in the two conductor levels LE1 and LE2 to each other so that parallel rectilinear conductor sections do not come to lie one above the other. Via the through-hole DK, the two parts LE1, LE2 of the total conductor are connected to one another in the two planes. At the two connection points T1 and T2, the conductor or the transmission line with an external circuit environment, such as the network or a component connected.
  • the conductor has a uniform width d0.
  • Figure 3 shows the calculated from this known transmission line adaptation shown in the Smith chart.
  • the adaptation of the known transmission line is significantly worse than 15 dB, the impedance matching at about 35 ⁇ .
  • the width of individual conductor sections of one or both conductor planes LE1, LE2 is now varied and in particular increased.
  • the coupling of the corresponding conductor sections A1 to A6 with adjacent conductor sections of the same conductor level or the underlying conductor level LE2 not shown in FIG. 4 is reduced or changed in character.
  • the inductive coupling can be reduced, whereas the capacitive one can be increased.
  • the widths of the conductor track sections d 3 , d 4 , d 5 and d 6 are indicated for the corresponding conductor sections A3, A4, A5 and A6.
  • D 0 indicates a virtual "original" width of the conductor.
  • FIG. 5 shows the Smith diagram associated with the transmission line shown in FIG.
  • Figure 3 shows that the electrical adjustment of the transmission line according to the invention is substantially improved. It is close to 50 ⁇ and has a phase shift of, for example, exactly ⁇ / 4.
  • the extent of the phase shift can however, be varied accordingly by increasing or decreasing the geometric and thus also the electrical length of the conductor in one or both of the planes. Thus, a phase shift by ⁇ / 4 different values is possible.
  • An inventive network with the novel transformation line can be used to adapt any electrical components.
  • it is used for passive integrated networks, which is essential for further miniaturization of electrical components.
  • the passive integration to achieve the desired or already achieved Au .ab torrenten must be integrated into the device substrate or the front-end module substrate necessarily.
  • the substrate is reinforced with respect to the layer sequences shown in FIG. 2 by further layers.
  • the thickness of the substrate or the number of layers required for this purpose depends on the number of network elements and components to be integrated in the substrate.
  • the material for the corresponding ceramic layers is also selected.
  • an electrically insulating ceramic is used for the intermediate layer between the two conductor levels LE1 and LE2, whose preferably low dielectric constant co-determines the impedance of the line.
  • a lower dielectric constant of the intermediate layer also reduces the coupling between the conductor planes. With the invention, however, such couplings can be reduced or advantageously used.
  • the ceramic layers between a conductor level LE1 and a grounded shielding plane ME1 are also set electrically insulating, although here too the value of the corresponding dielectric constant must be taken into account.
  • the same ceramic is used for all ceramic layers including the intermediate layer. According to the invention, however, it is also possible to use for the intermediate layer a ceramic layer different from the other ceramic layers, in order in particular to adjust the coupling, which may again be desired according to the invention, to a desired value.
  • the available for the individual components surfaces are usually determined by vias and other existing or realized in the same plane elements. With the invention, a particularly good adaptation to an available, arbitrarily shaped surface can be realized.

Landscapes

  • Waveguides (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Structure Of Printed Boards (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Claims (13)

  1. Réseau pour l'adaptation électrique d'un composant électrique,
    - avec une ligne de transformation d'une longueur électrique prédéterminée formée dans un substrat à plusieurs couches
    - dans lequel la ligne de transformation comprend un conducteur électrique (LE) plié avec des premières sections (A) rectilignes qui sont reliées entre elles de façon rectangulaire et sont disposées dans un premier plan conducteur, avec des deuxièmes section (A) rectilignes qui sont reliées entre elles de façon rectangulaire et disposées dans un deuxième plan conducteur,
    le premier et le deuxième plan conducteur n'étant séparés l'un de l'autre que par une couche intermédiaire isolante et les premières et les deuxièmes sections (A) étant reliées entre elles par une mise en communication traversante,
    - où les premières et deuxièmes sections sont couplées entre elles de façon inductive et capacitive,
    - et où le couplage est réglé par une largeur (d) du conducteur différente dans les sections.
  2. Réseau selon la revendication 1,
    dans lequel la largeur (d) du conducteur (LE) est choisie dans les différentes sections (A) de manière à compenser les couplages perturbateurs entre les différentes sections du conducteur et afin d'obtenir une adaptation d'impédance à l'environnement donné amélioré de 25 dB
  3. Réseau selon la revendication 1 ou 2,
    dans lequel le substrat à plusieurs couches comprend des couches en céramique, des plans des conducteurs et des plans de blindage.
  4. Réseau selon une des revendications 1 à 3,
    dans lequel le premier plan de conducteur (LE) est séparé par au moins une couche de céramique d'un plan de protection connecté à la masse et parallèle au premier plan du conducteur.
  5. Réseau selon une des revendications 1 à 4,
    dans lequel les sections (A) sont conduites dans les deux plans pour que des sections (A) parallèles les unes par rapport aux autres ne se trouvent pas superposées et se trouvent décalées au moins d'une longueur minimale l'une par rapport à l'autre.
  6. Réseau selon la revendication 5,
    dans lequel on a gardé une longueur minimale de 100 µm pour le décalage de sections (A) disposées de façon parallèles les unes par rapport aux autres, et dans des plans différents, ainsi que pour l'éloignement de sections parallèles l'une par rapport à l'autre, disposées l'une près de l'autre dans un plan.
  7. Réseau selon une des revendications 1 à 6,
    dans lequel toutes les sections (A) du conducteur présentent au moins une largeur (d) correspondant à la longueur moyenne.
  8. Réseau selon une des revendications 3 à 7,
    dans lequel la ligne de transformation est formée en tant que ligne « Tri - Plate » avec deux plans (ME) reliés à la masse de blindage,
    dans lequel les deux couches de céramique disposées entre un plan de conducteur et les plans de blindage présentent la même épaisseur (dE).
  9. Réseau selon une des revendications 1 à 8,
    dans lequel la ligne de transformation est formée en tant que ligne λ/4.
  10. Réseau selon une des revendications 1 à 9,
    dans lequel la ligne de transformation est adaptée à 50 Ω.
  11. Réseau selon une des revendications 1 à 10,
    dans lequel l'adaptation d'impédance à l'environnement extérieur est garantit à l'aide d'un élément supplémentaire pour transformer l'impédance.
  12. Réseau selon une des revendications 1 à 11,
    dans lequel le substrat est une céramique à plusieurs couches et forme le support pour un composant ou un module.
  13. Réseau selon la revendication 12,
    dans lequel le composant ou le module comprend au moins un composant travaillant avec des ondes acoustiques.
EP03746217A 2002-04-18 2003-03-21 Reseau d'adaptation electrique pourvu d'une ligne de transformation Expired - Lifetime EP1495513B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10217387 2002-04-18
DE10217387.7A DE10217387B4 (de) 2002-04-18 2002-04-18 Elektrisches Anpassungsnetzwerk mit einer Transformationsleitung
PCT/DE2003/000950 WO2003088410A1 (fr) 2002-04-18 2003-03-21 Reseau d'adaptation electrique pourvu d'une ligne de transformation

Publications (2)

Publication Number Publication Date
EP1495513A1 EP1495513A1 (fr) 2005-01-12
EP1495513B1 true EP1495513B1 (fr) 2006-05-31

Family

ID=28685184

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03746217A Expired - Lifetime EP1495513B1 (fr) 2002-04-18 2003-03-21 Reseau d'adaptation electrique pourvu d'une ligne de transformation

Country Status (5)

Country Link
EP (1) EP1495513B1 (fr)
JP (1) JP4058004B2 (fr)
KR (1) KR101025233B1 (fr)
DE (1) DE10217387B4 (fr)
WO (1) WO2003088410A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10348722B4 (de) 2003-10-16 2013-02-07 Epcos Ag Elektrisches Anpassungsnetzwerk mit einer Transformationsleitung
US7075385B2 (en) 2004-04-29 2006-07-11 Kathrein-Werke Kg Impedance converter device
DE102004021086A1 (de) * 2004-04-29 2005-11-24 Kathrein-Werke Kg Impedanzwandlervorrichtung
JP5417622B2 (ja) * 2009-08-19 2014-02-19 独立行政法人 宇宙航空研究開発機構 アナログ・デジタル積層型可変移相器
FR2953650B1 (fr) * 2009-12-04 2012-12-14 Thales Sa Trasformateur d'impedance de puissance vhf/uhf planaire compact
DE202014002841U1 (de) * 2014-04-01 2014-06-25 Rosenberger Hochfrequenztechnik Gmbh & Co. Kg Kontaktieranordnung, insbesondere HF-Messspitze

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04167703A (ja) * 1990-10-30 1992-06-15 Murata Mfg Co Ltd ディレイライン

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3754197A (en) * 1972-05-18 1973-08-21 Sanford Research Inst Meander-line impedance transformer
US3990024A (en) * 1975-01-06 1976-11-02 Xerox Corporation Microstrip/stripline impedance transformer
JPS58136108A (ja) * 1982-02-08 1983-08-13 Nec Corp メアンダ型伝送線路
JPS6115402A (ja) * 1984-06-30 1986-01-23 Murata Mfg Co Ltd 伝送線路の短縮化構造
JPH0377360A (ja) * 1989-08-18 1991-04-02 Mitsubishi Electric Corp 半導体装置
US5661647A (en) * 1995-06-07 1997-08-26 Hughes Electronics Low temperature co-fired ceramic UHF/VHF power converters
JPH09260912A (ja) * 1996-03-26 1997-10-03 Murata Mfg Co Ltd ディレイライン
EP0837517B1 (fr) * 1996-10-18 2004-01-28 Matsushita Electric Industrial Co., Ltd. Filtre diélectrique statifié et dispositif de communication
US6133806A (en) * 1999-03-25 2000-10-17 Industrial Technology Research Institute Miniaturized balun transformer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04167703A (ja) * 1990-10-30 1992-06-15 Murata Mfg Co Ltd ディレイライン

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 016, no. 469 (E - 1271) 29 September 1992 (1992-09-29) *

Also Published As

Publication number Publication date
KR20040108743A (ko) 2004-12-24
WO2003088410A1 (fr) 2003-10-23
DE10217387A1 (de) 2003-10-30
KR101025233B1 (ko) 2011-04-01
JP2005523598A (ja) 2005-08-04
JP4058004B2 (ja) 2008-03-05
EP1495513A1 (fr) 2005-01-12
DE10217387B4 (de) 2018-04-12

Similar Documents

Publication Publication Date Title
DE10139164B4 (de) Monolithische LC-Komponenten
DE10248477B4 (de) LC-Hochpaßfilter-Schaltungsvorrichtung, laminierte LC-Hochpaßfiltervorrichtung, Multiplexer und Funkkommunikationseinrichtung
DE10234737B4 (de) Oberflächenwellenduplexer und Kommunikationsvorrichtung
DE60132401T2 (de) Tiefpassfilter
DE60131193T2 (de) Kopplungseinrichtung mit innenkondensatoren in einem mehrschichtsubstrat
DE102006047427B4 (de) Substrat mit HF-tauglicher Leitung
DE102008020597B4 (de) Schaltungsanordnung
DE69308920T2 (de) Dielektrisches Filter, das auf einem Substrat aufgebracht ist, auf dem Eingangs- und Ausgangsstreifenleitungen angeordnet sind.
DE60307733T2 (de) Nicht-abstimmbares rechteckiges dielektrisches Wellenleiterfilter
DE69123796T2 (de) Abzweigfilter
DE60305553T2 (de) Leistungsteiler/-kombinierer
DE102006008500A1 (de) Sendeschaltung, Antenneduplexer und Hochfrequenzumschalter
DE60212429T2 (de) Dielektrische antenne
DE10202699B4 (de) Nichtreziprokes Schaltungsbauelement und Kommunikationsvorrichtung, die dasselbe enthält
DE102007046351B4 (de) Hochfrequenzplatine, die einen Übertragungsmodus von Hochfrequenzsignalen wandelt
EP1495513B1 (fr) Reseau d'adaptation electrique pourvu d'une ligne de transformation
DE69022332T2 (de) Anpassungsnetzwerk für Hochfrequenz-Transistor.
DE10348722B4 (de) Elektrisches Anpassungsnetzwerk mit einer Transformationsleitung
EP1370886B1 (fr) Antenne avec de reseau d'alimentation du type coplanaire pour recevoir et/ou emettre des faisceaux radar
EP3236530B1 (fr) Filtre de guide d'ondes intégré à un substrat
DE602004003717T2 (de) Substrat mit hoher impedanz
EP1702386A1 (fr) Coupleur directionnel a espace de couplage important
DE102008051531B4 (de) Elektrisches System mit einer Vorrichtung zur Unterdrückung der Ausbreitung einer elektromagnetischen Störung
DE102009049609B4 (de) Streifenleiter-Balun
DE10350033A1 (de) Bauelement mit Koplanarleitung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040713

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20050316

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: ELECTRIC MATCHING NETWORK WITH A TRANSFORMATION LINE

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060814

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070301

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20170629 AND 20170705

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: SNAPTRACK, INC., US

Effective date: 20180202

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200228

Year of fee payment: 18

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210321

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20220218

Year of fee payment: 20