EP1490632B1 - Verfahren und vorrichtung zur regelung der primär- und sekundärlufteinspritzung einer müllverbrennungsanlage - Google Patents

Verfahren und vorrichtung zur regelung der primär- und sekundärlufteinspritzung einer müllverbrennungsanlage Download PDF

Info

Publication number
EP1490632B1
EP1490632B1 EP03717267A EP03717267A EP1490632B1 EP 1490632 B1 EP1490632 B1 EP 1490632B1 EP 03717267 A EP03717267 A EP 03717267A EP 03717267 A EP03717267 A EP 03717267A EP 1490632 B1 EP1490632 B1 EP 1490632B1
Authority
EP
European Patent Office
Prior art keywords
secondary air
flow
combustion chamber
temperature
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03717267A
Other languages
English (en)
French (fr)
Other versions
EP1490632A1 (de
Inventor
Bart Adams
Renaat De Proft
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keppel Seghers Holdings Pte Ltd
Original Assignee
Keppel Seghers Holdings Pte Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keppel Seghers Holdings Pte Ltd filed Critical Keppel Seghers Holdings Pte Ltd
Priority to EP03717267A priority Critical patent/EP1490632B1/de
Priority to EP06018526A priority patent/EP1726877B1/de
Publication of EP1490632A1 publication Critical patent/EP1490632A1/de
Application granted granted Critical
Publication of EP1490632B1 publication Critical patent/EP1490632B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/08Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating
    • F23G5/14Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating including secondary combustion
    • F23G5/16Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating including secondary combustion in a separate combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/50Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L13/00Construction of valves or dampers for controlling air supply or draught
    • F23L13/02Construction of valves or dampers for controlling air supply or draught pivoted about a single axis but having not other movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L9/00Passages or apertures for delivering secondary air for completing combustion of fuel 
    • F23L9/02Passages or apertures for delivering secondary air for completing combustion of fuel  by discharging the air above the fire
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M9/00Baffles or deflectors for air or combustion products; Flame shields
    • F23M9/04Baffles or deflectors for air or combustion products; Flame shields with air supply passages in the baffle or shield
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2900/00Special features of, or arrangements for incinerators
    • F23G2900/55Controlling; Monitoring or measuring
    • F23G2900/55003Sensing for exhaust gas properties, e.g. O2 content
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/02Air or combustion gas valves or dampers
    • F23N2235/06Air or combustion gas valves or dampers at the air intake
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N3/00Regulating air supply or draught
    • F23N3/04Regulating air supply or draught by operation of single valves or dampers by temperature sensitive elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium

Definitions

  • the invention relates to a device for incinerating waste comprising rows of secondary air nozzles divided into segments.
  • the invention relates to a method for controlling several parameters of secondary air injection including at least one of the parameters: flow, speed, turbulence, volume, composition and temperature, for optimizing the incinerating process in an incineration system.
  • the invention relates to a method for controlling primary air injection.
  • the invention also relates to an incineration equipment, functioning in accordance with said methods enabling the control of primary and secondary air injection.
  • the combustion process of waste is a rather complex one because homogeneous and heterogeneous reactions take place, not only on the incineration grate, but also above the grate.
  • the furnace-boiler part comprising a combustion chamber and a post-combustion chamber is a critical part of an incineration installation and needs to be designed with great care.
  • the most important properties for this type of furnace-boiler are good performance, high flexibility, good availability and reliability with an acceptable lifetime of the different pressure parts. Flexibility is of utmost importance, due to the variability of the waste characterized by e.g. its composition and calorific value.
  • the furnace-boiler must be able to perform under these permanent changing conditions and produce steam or heat, in an as stable as possible way.
  • the terms displacement body, bluff body and prism body are used interchangeably.
  • one of the main problems of obtaining an efficient combustion is the good mixing of the secondary air.
  • the introduction of secondary air is difficult to fine-tune.
  • adequate mixing of the secondary air with the combustible waste gases is not achieved, resulting in an incomplete combustion.
  • the introduced secondary air is often not properly conditioned to take immediately part in the post-combustion process when injected-in the furnace-boiler. Consequently, it will take a longer time for the post-combustion process to reach a complete burnout of the flue gases, and injection of non-conditioned secondary air in the furnace-boiler may even slow down the post-combustion process.
  • Another problem is that the temperature throughout a cross-section of the post-combustion chamber is not constant; pockets of flue gases are sometimes hotter or cooler than the optimum temperature causing undesirable side effects such as corrosion, slagging and fouling.
  • the present invention provides a new device comprising an improvement on the primary air and secondary air injection systems, a method for controlling several parameters of the secondary air, including flow, speed, turbulence, volume, composition and temperature, and a method for controlling primary air injection.
  • a new device comprising an improvement on the primary air and secondary air injection systems, a method for controlling several parameters of the secondary air, including flow, speed, turbulence, volume, composition and temperature, and a method for controlling primary air injection.
  • One embodiment of the present invention is a method for incinerating solid materials in a device, which device comprises:
  • the device described above may control the air flow to each segment by one or more valves and/or by modulating one or more air fans and/or according to the selected diameters of the secondary air injection nozzles within said segment.
  • the device as described above may provide
  • the device as described above may comprise an array of four or more temperature sensors, each sensor located above the area defined by a pair of segments.
  • the device as described above may provide secondary air via secondary air supply ducts ending in injection nozzles, passing through the front- and rear- wall of said device as well as through the membrane-wall of the displacement body.
  • the device as described above may incorporate secondary air supply duct consisting of two or more concentric ducts, inside of the displacement body or along the exterior of the furnace-boiler walls.
  • the device as described above may incorporate inner front and rear walls bent in such shape that, together with the outline of the displacement body, two venturi-shaped flue gas passages with an opening angle ( ⁇ / ⁇ ) between 20° and 40° are created in order to increase the flue gas turbulence in the venturi-shaped mixing zone.
  • the device as described above may incorporate the displacement body in the shape of a distorted rhomboidal prism.
  • a method for incinerating solid materials may comprise the use of a device as described above.
  • Present invention provides a method for controlling several parameters of the primary air and secondary air injection and a device able to perform said method, which will greatly improve the efficiency of the combustion process, which will reduce emissions and will comply with the more severe combustion requirements.
  • a combustion device and method may use a specific secondary air injection system in the center of the combustion zone, immediately at the combustion chamber exit and before entering the post-combustion chamber, and controlled by at least one of the following parameters: flow, turbulence, volume, composition, speed, or temperature.
  • the secondary air is supplied into the divided flue gas streams "A" and "B” (see Figure 1), via a secondary air supply duct [12], [13], [14] to several nozzle inlets [30] and [31] in the furnace-boiler front [6] and rear [7] wall and on both sides of the displacement body [5].
  • the objective of the present invention is to optimize the combustion process in an incineration system and to assure a complete combustion of the flue gases, in order to fulfill the requirements of the EU-directive (2000/076) and increase performance and lifetime of pressure part components of the incineration device.
  • the use of this new, controlled secondary air injection system leads to more effective mixing between the oxygen supplied by the secondary air and the flue gases and will increase combustion performance. Consequently, said device and method results in a much shorter and clearly defined burn-out-zone of the flue gases in the post-combustion chamber of the furnace-boiler, a few meters above the displacement body.
  • the listed parameters can be adjusted according to the requirements of the incinerating process.
  • a suitable furnace-boiler geometry can contribute to a more uniform velocity and gas flow distribution and avoid flue gas recirculation or dead zones throughout the different sections of the furnace-boiler. Therefore, the furnace-boiler has a double venturi-like transition section between combustion and post-combustion chamber, which also promotes the mixing of the partial flue gas flows "A" and "B" with the injected secondary air. Improved mixing of the secondary air and the flue gases increases the efficiency of the combustion process.
  • a device for waste incineration may supply secondary air via a secondary air duct [12], [13], [14] ending in several nozzles [30], [31] located immediately at the combustion chamber exit [3] and before entering into the post-combustion chamber [4], with control of the secondary air by at least one of the following parameters: flow, turbulence, volume, composition, speed, or temperature.
  • Such device may provide secondary air via secondary air ducting [12], [13], [14] to nozzles [30], [31], passing through the front [6] and rear [7] wall of the furnace-boiler and through the front and rear wall of the displacement body ( Figure 1a).
  • An important advantage of this design of secondary air injection is the improvement of the flue gas mixing, thanks to the reduction of the necessary penetration depth of the secondary air jet to nearly 1 ⁇ 4 of the original furnace-boiler depth. Secondary air injection via a large number of smaller nozzles with lower individual airflow allows a much quicker heating of the secondary air to the required reaction temperature for CO-oxidation (ca. 600°C).
  • Said device may use secondary air supply ducting composed of at least two or more concentrical circular ducts. This allows supply of different flows of secondary air via only one single supply ducting. Two or more concentric ducts allow for independently controlled flows of secondary air to individual zones over the width of the post-combustion chamber, e.g. corresponding to the different grate lanes ( Figure 4).
  • FIG. 1 An example of a device and method of how several parameters for secondary air injection are controlled according to the invention is illustrated in Figure 1.
  • the secondary air is optimally injected directly into the flow of waste gases, at the combustion chamber exit and at the entrance of the post-combustion chamber.
  • the secondary air is injected into the divided flue gas streams "A" and "B", via a secondary air supply duct [12], [13], [14] leading to several nozzles [30], [31] located in the furnace-boiler front and rear wall and on both sides of the displacement body [5].
  • furnace-boiler front [6] and rear [7] membrane wall and the membrane wall [19] of the displacement body [5] are provided with refractory materials through which a series of nozzles [30], [31] pass.
  • the total oxygen introduced into furnace-boiler as disclosed herein as primary and secondary air may be determined by the oxygen content of the flue gases.
  • the oxygen so introduced is distributed between the primary and secondary inlet systems according to methods of the art.
  • the distribution primary and secondary air may be attenuated by monitoring the temperatures in gas flow sections A and B as described below.
  • a flue gas temperature measurement may be installed into a furnace-boiler as described herein, a few meters above the outlet of the two flue gas streams "A" and “B,” to measure the actual temperature for each flow section.
  • the purpose of this temperature measurement is to maintain, during the combustion process, nearly the same flue gas temperature (ca. 1.000°C) in front section "A” as in the rear section "B", by means of a variable secondary air flow. Consequently, when a flue gas temperature increase is observed in section "A", the secondary airflow for section “A” is increased until the equal temperature profile is automatically re-established. At the same time, secondary airflow for section “B” is reduced in order to keep the total secondary airflow constant, unless a general temperature increase is noticed in both sections whereby the total secondary airflow is increased.
  • the temperature measurement may be linked to the capability of the secondary air injection system to respond to modified furnace conditions such as a shift in the heat-release profile on the grate. For instance, when high calorific waste suddenly enters the furnace, combustion of the waste will start on the first element of the grate and the flue gas temperature in section A will rise above the temperature setpoint, so shifting the heat release profile towards the feeding hopper.
  • the setpoint may be any temperature defined by the user.
  • the set point temperature may be a value in the range of 900 to 1100 °C, 950 to 1050 °C, 920 to 1020 °C, 970 to 1070 °C, 980 to 1080 °C, 970 to 1030 °C, 980 to 1020 °C or 990 to 1010 °C,
  • the system recognizes the over-temperature and the temperature imbalance and reacts accordingly as described above. A similar process, but in the opposite direction will occur when low calorific waste is introduced and combustion on the grate is delayed. This is exemplified in Figure 7a, wherein a temperature sensor [91], [92] is placed in each of the flue gas streams above the displacement body [5].
  • the detection of the temperature in the gas flow sections A and B may be used as a pre-indication of the type of waste entering the furnace, and may be connected to the process control of the grate speed and primary air distribution along the different grate elements. For instance, as in Figure 7a, when high calorific waste [93] enters a furnace as disclosed herein, combustion of the waste will start on the first element of the grate and the heat release profile of the grate will be shifted towards the waste input (hopper) end [99] of the grate. The consequence is that waste will be incinerated towards the waste input end of the grate [99]. According to the invention, the shift of heat release profile is detected by the flue gas temperature sensor in section A [91], which would rise above the temperature setpoint.
  • the setpoint may be any temperature defined as described above.
  • the system detects the over-temperature and recognizes the temperature imbalance between section A and section B, and reacts by decreasing the supply of primary air beneath or proximal to the high calorific waste [R1 to R2] so as to shift the heat-release profile back towards to the region of the post-combustion chamber.
  • the primary airflow in the remaining positions of the grate [R3 to R5] is increased in order to keep the total primary airflow constant.
  • a similar process, but in the opposite direction will occur when low calorific waste is introduced, and combustion on the grate is delayed, so shifting the heat release profile in the direction of the waste output [901] ( Figure 7b).
  • each row of secondary air nozzles is divided into two or more segments, each segment comprising two or more nozzles, such that the flow of air through any one segment can be the same or different from that of directly adjacent segments.
  • An air flow in one segment may be controlled by one or more valves, by modulating one or more air fans, by controlling the nozzle diameters within a certain range, or a combination of these.
  • the diameters of the nozzles belonging to a segment are the same or are alternately of different sizes such as that shown in Figure 3. It is within the scope of the invention that the diameters of the nozzles belonging to a segment are placed opposite to nozzles of the same diameter on the corresponding opposing wall. It is further within the scope of the invention that the diameters of the nozzles belonging to a segment are placed opposite to nozzles of a different diameter on the corresponding opposing wall. When placed opposite nozzles of a different diameter, it is within the scope of the invention that the nozzles of small diameter nozzles are placed opposite to nozzles having a larger diameters.
  • Figure 5 shows one pair of rows of secondary nozzles [71], [72] divided into three separate segments [73], [74], [75] Control of secondary air thereto is achieved by means of a valve [77] controlling the air flow to each segment, and a valve [78] controlling the air flow to each row of nozzles.
  • an array of temperature sensors is installed a few meters above the outlet of the two gas flow sections "A" and “B” to measure the actual temperature for each flow section.
  • the number of temperature sensors installed is equal to the number of segments that each pair of rows of nozzles is divided into.
  • FIG. 6 shows an example of a furnace-boiler according to the present invention having an array of temperature sensors [81] placed above the displacement body [5].
  • the segment injection areas as described above are labeled [A1], [A2] and [A3], defined by the nozzle segments [73], [74], [75].
  • Temperature sensors [SA1], [SA2] and [SA3] are placed above and in the vicinity of the respective segment injection areas [A1], [A2] and [A3].
  • a similar arrangement of temperature sensors [SB1], [SB2] and [SB3] is placed above and in the vicinity of the segment injection areas of the other passage ("B"), said segment injection areas labeled by [B1], [B2] and [B3].
  • the "vicinity" of the segment injection areas may be determined by extrapolating the positions and sizes of the segment injection areas at the narrowed entrance of the post-combustion chamber to the cross-section of the post-combustion chamber. This extrapolation is performed using methods of the art.
  • a precise control of the temperature of the air in the post-combustion chamber is important for minimizing the effects of corrosion, slagging and fouling.
  • the inventors have found that differences in temperature exists within each section of the post-combustion chamber, e.g. the temperature across section A might be found to be hotter in the middle compared with the edges.
  • the inventors have found that the differences can be partially or completely modulated by changing the rate of injection (flow) of secondary air in the region below the local temperature difference, so leading to a reduction in corrosion, slagging and fouling in the post-combustion chamber and in the boiler.
  • each pair of rows of nozzles is divided into one or more segments as described above, and each temperature sensor of the array is placed above and in the vicinity of each segment injection area; in this arrangement, the temperature detected by each sensor determines the rate at which air is injected by the corresponding segments of nozzles.
  • the air flow from nozzles [74] in an indicated segment injection area [A2] is determined by the reading of sensor [SA2]; the air flow from nozzles [73] in an indicated segment injection area [A1] is determined by the reading of sensor [SA1]; the air flow from nozzles [75] in an indicated segment injection area [A3] is determined by the reading of sensor [SA3].
  • the furnace comprises a two dimensional matrix of primary air input zones, along the grate and across the width of the grate.
  • the temperature change detected by the array of temperature sensors in the post-combustion chamber influences the primary air flow across the width of the grate.
  • a temperature sensor that indicates an increase in temperature causes a reduction in flow in one or more the primary air input zones located below the position of said sensor. For example, should sensor [SA1] detect an increase in temperature, the corresponding primary air entrance zone located below [SA1] would respond by reducing the flow of air [R1L] and/or [R2L] and/or [R3L]. The air flow in the remaining primary air entrance zones is increased so as to maintain the correct total air supply.
  • the device and method as disclosed herein also reduces the corrosion potential, by minimizing the CO-concentration (reducing atmosphere) in the flue gas flow in presence of HCl, Cl and Cl-combination.
  • the refractory lining extent in the first pass can be reduced to the strict minimum, just enough to comply with the two seconds/850°C rule. Furthermore, as the burnout is fully completed a few meters above the displacement body, there is no further need to protect the membrane walls of the post-combustion chamber and first pass above this level.
  • Figure 1 shows the cross section of the furnace-boiler, combustion and post-combustion chamber of a typical incinerator arrangement, particularly designed for incineration of solid waste or biomass, consisting of a furnace [2] with an incineration grate [25], receiving the solid materials through a feeding hopper with pusher [1].
  • the produced flue gases are conducted in a combustion chamber [3] and a post-combustion chamber [4].
  • Hoppers [22] underneath the grate [25] are placed for collection of the siftings of the grate and serving at the same time as primary air supply channels.
  • the primary air is supplied via several air ducts [23].
  • the ashes fall via a shaft [21] into an ash extractor (not shown).
  • the produced flue gases, not yet completely burned out, are divided in two streams by a displacement body [5], installed at the entrance of the post-combustion chamber [4].
  • the displacement body [5] By placing the displacement body [5] at the combustion chamber exit [3] and the entrance into the post-combustion chamber [4], the flue gases passage is divided in two flow channels "A" and "B". Secondary air is injected through four rows of nozzles located at the entrance of the post-combustion chamber [4] where the displacement body [5] is located.
  • the secondary air is conducted via nozzles [30] in the front [6] and rear wall [7] of the furnace-boiler as well as via nozzles [31] of the displacement body [5].
  • the flue gases are mixed with secondary air, resulting in an almost complete burnout of the flue gases a few meters above the displacement body [5] and also resulting in shorter flames and more uniform oxygen concentrations.
  • the secondary air is supplied by a secondary air fan [9] via secondary air ducts [11], provided with secondary air regulating valves [15], to the secondary air supply ducts [12], [13], [14] into the injection nozzles [30], [31].
  • Figures 3, 4, 5, 6 and 9 disclose two secondary air supply ducts, aligned in parallel, and nozzles [42], [43] with alternate different diameter. Two opposite nozzles have respectively a large [43] and a small diameter [42] in order to improve the mixing of the injected secondary air with the flue gases.
  • Figure 4 illustrates the use of different concentric ducts [47], [48], [49], to supply secondary air to duct [14]. Due to the fact that three concentric tubes [47], [48], [49] are provided, three different flows of secondary air can be independently controlled and injected over the total width of the furnace-boiler.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Incineration Of Waste (AREA)
  • Exhaust Gas After Treatment (AREA)

Claims (2)

  1. Verfahren zum Verfeuern von Feststoffen in einer Vorrichtung, welche Vorrichtung umfasst:
    - einen Einfüllschacht mit einem Schieber (1), der die Feststoffe in einen Ofen einbringen kann,
    - einen Verbrennungsofen-Gitterrost (25), der mehrere Gitterrostelemente umfasst,
    - einen Ofen (2), in dem die Feststoffe verfeuert werden können,
    - eine Nachverbrennungskammer (4), in der die erzeugten Abzugsgase verbrannt werden können, die sich aus der Verfeuerung ergeben,
    - ein primäres Luftzufuhrsystem (23), das dazu in der Lage ist, Luft in unterschiedlicher Art und Weise über verschiedene Gitterrostelemente und die Breite des Gitterrosts zu verteilen,
    - einen Verdrängungskörper (5), der am Ausgang der Verbrennungskammer und am Eingang der Nachverbrennungskammer (4) sitzt und dazu in der Lage ist, den erzeugten Abzugsgasstrom auf zwei separate Abzugsgasströme (A, B - Fig. 1, 4a, 4b) aufzuteilen,
    - eine Krümmung der vorderen und hinteren Innenwand der Vorrichtung, die so gestaltet ist, dass sie zusammen mit dem Umfang des Verdrängungskörpers den Einlass der Nachverbrennungskammer erzeugt,
    - zwei Reihenpaare von Sekundärlufteinblasdüsen (30, 31), die unmittelbar am Ausgang der Verbrennungskammer und am Eingang der Nachverbrennungskammer angeordnet sind, wobei zwei Düsen eines Paars an einer vorderen Membranwand des Ofens bzw. der gegenüberliegenden Wand des Verdrängungskörpers angeordnet sind; und zwei Düsen eines anderen Paars an einer hinteren Membranwand des Ofens bzw. der gegenüberliegenden Wand des Verdrängungskörpers angeordnet sind, wobei jede Reihe der Sekundärlufteinblasdüsen in zwei oder mehr Segmente (73, 74, 75) unterteilt ist und jedes Segment zwei oder mehr Düsen (71, 72) umfasst, so dass der Luftstrom durch ein beliebiges Segment von demjenigen direkt angrenzender Segmente verschieden sein kann, und wobei jedes Segment (73, 74, 75) und das diesem gegenüberliegende Segment ein Segmentpaar an gegenüberliegenden Reihenpaaren der Sekundärluftdüsen bilden, und eine Anordnung von Temperatursensoren (SA1, SA2, SA3, SB1, SB2, SB3 - Fig. 8, 11) die Temperatur in einem Strömungsabschnitt misst, der einem Segmentpaar entspricht,
    wobei das Verfahren folgende Schritte umfasst:
    k) Vergleichen der Temperatur jedes Strömungsabschnitts mit der mittleren Temperatur jedes Abzugsgasstroms (A, B - Fig. 1, 4a, 4b),
    l) Erhöhen des Zustroms von Sekundärluft in einen Strömungsabschnitt, der unterhalb des Sensors angeordnet ist, der eine Temperatur erfasst, die über der in Schritt k) bestimmten, mittleren Temperatur liegt, und Verringern des Zustroms von Sekundärluft in die anderen Segmente, damit der Gesamtzustrom an Luft in das Sekundärluftsystem gleich bleibt, m) Verringern des Zustroms von Sekundärluft in einen Strömungsabschnitt, der unterhalb des Sensors angeordnet ist, der eine Temperatur erfasst, die unter der in Schritt k) bestimmten, mittleren Temperatur liegt, und Erhöhen des Zustroms von Sekundärluft in die anderen Segmente, damit der Gesamtzustrom an Luft in das Sekundärluftsystem gleich bleibt,
    n) den Zustrom an Sekundärluft nicht zu verändern, wenn die von den Sensoren erfassten Temperaturen dieselben sind wie die in Schritt k) bestimmten, mittleren Temperaturen, damit der Gesamtzustrom an Luft in das Sekundärluftsystem gleich bleibt.
  2. Vorrichtung zum Verfeuern von Feststoffen, die Folgendes umfasst:
    - einen Einfüllschacht mit einem Schieber (1), der die Feststoffe in einen Ofen einbringen kann,
    - einen Verbrennungsofen-Gitterrost (25), der mehrere Gitterrostelemente umfasst,
    - einen Ofen (2), in dem die Feststoffe verfeuert werden können,
    - eine Nachverbrennungskammer (4), in der die erzeugten Abzugsgase verbrannt werden können, die sich aus der Verfeuerung ergeben,
    - ein primäres Luftzufuhrsystem (23), das dazu in der Lage ist, Luft in unterschiedlicher Art und Weise über verschiedene Gitterrostelemente und die Breite des Gitterrosts zu verteilen,
    - einen Verdrängungskörper (5), der am Ausgang der Verbrennungskammer und am Eingang der Nachverbrennungskammer (4) sitzt und dazu in der Lage ist, den erzeugten Abzugsgasstrom auf zwei separate Abzugsgasströme (A, B - Fig. 1, 4a, 4b) aufzuteilen,
    - eine Krümmung der vorderen und hinteren Innenwand der Vorrichtung, die so gestaltet ist, dass sie zusammen mit dem Umfang des Verdrängungskörpers den Einlass der Nachverbrennungskammer erzeugt,
    - zwei Reihenpaare von Sekundärlufteinblasdüsen (30, 31), die unmittelbar am Ausgang der Verbrennungskammer und am Eingang der Nachverbrennungskammer angeordnet sind, wobei zwei Düsen eines Paars an einer vorderen Innenwand des Ofens bzw. der gegenüberliegenden Wand des Verdrängungskörpers angeordnet sind; und zwei Düsen eines anderen Paars an einer hinteren Innenwand des Ofens bzw. der gegenüberliegenden Wand des Verdrängungskörpers angeordnet sind, wobei jede Reihe der Sekundärlufteinblasdüsen in zwei oder mehr Segmente (73, 74, 75) unterteilt ist und jedes Segment zwei oder mehr Düsen (71, 72) umfasst, so dass der Luftstrom durch ein beliebiges Segment von demjenigen direkt angrenzender Segmente verschieden sein kann, und wobei jedes Segment (73, 74, 75) und das diesem gegenüberliegende Segment ein Segmentpaar an gegenüberliegenden Reihenpaaren der Sekundärluftdüsen bilden, und eine Anordnung von Temperatursensoren (SA1, SA2, SA3, SB1, SB2, SB3 - Fig. 8, 11) vorhanden ist, um die Temperatur in einem Strömungsabschnitt zu messen, der einem Segmentpaar entspricht,
    wobei die Vorrichtung dazu konfiguriert ist,
    k) die Temperatur in jedem Strömungsabschnitt mit der mittleren Temperatur jedes Abzugsgasstroms (A, B - Fig. 1, 4a, 4b) zu vergleichen,
    l) den Zustrom von Sekundärluft in einen Strömungsabschnitt zu erhöhen, der unterhalb des Sensors angeordnet ist, der eine Temperatur erfasst, die über der in Schritt k) bestimmten, mittleren Temperatur liegt, und den Zustrom von Sekundärluft in die anderen Segmente zu verringern, damit der Gesamtzustrom an Luft in das Sekundärluftsystem gleich bleibt,
    m) den Zustrom von Sekundärluft in einen Strömungsabschnitt zu verringern, der unterhalb des Sensors angeordnet ist, der eine Temperatur erfasst, die unter der in Schritt k) bestimmten, mittleren Temperatur liegt, und den Zustrom von Sekundärluft in die anderen Segmente zu erhöhen, damit der Gesamtzustrom an Luft in das Sekundärluftsystem gleich bleibt,
    n) den Zustrom an Sekundärluft nicht zu verändern, wenn die von den Sensoren erfassten Temperaturen dieselben sind wie die in Schritt k) bestimmten, mittleren Temperaturen, damit der Gesamtzustrom an Luft in das Sekundärluftsystem gleich bleibt.
EP03717267A 2002-04-03 2003-04-03 Verfahren und vorrichtung zur regelung der primär- und sekundärlufteinspritzung einer müllverbrennungsanlage Expired - Lifetime EP1490632B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP03717267A EP1490632B1 (de) 2002-04-03 2003-04-03 Verfahren und vorrichtung zur regelung der primär- und sekundärlufteinspritzung einer müllverbrennungsanlage
EP06018526A EP1726877B1 (de) 2002-04-03 2003-04-03 Verfahren und vorrichtung zur regelung der primär- und sekundärlufteinspritzung einer müllverbrennungsanlage

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
EP02447055 2002-04-03
EP02447055 2002-04-03
US37199202P 2002-04-11 2002-04-11
US371992P 2002-04-11
EP03717267A EP1490632B1 (de) 2002-04-03 2003-04-03 Verfahren und vorrichtung zur regelung der primär- und sekundärlufteinspritzung einer müllverbrennungsanlage
PCT/EP2003/003495 WO2003083370A1 (en) 2002-04-03 2003-04-03 Method and device for controlling injection of primary and secondary air in an incineration system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP06018526A Division EP1726877B1 (de) 2002-04-03 2003-04-03 Verfahren und vorrichtung zur regelung der primär- und sekundärlufteinspritzung einer müllverbrennungsanlage

Publications (2)

Publication Number Publication Date
EP1490632A1 EP1490632A1 (de) 2004-12-29
EP1490632B1 true EP1490632B1 (de) 2006-10-25

Family

ID=28676409

Family Applications (2)

Application Number Title Priority Date Filing Date
EP03717267A Expired - Lifetime EP1490632B1 (de) 2002-04-03 2003-04-03 Verfahren und vorrichtung zur regelung der primär- und sekundärlufteinspritzung einer müllverbrennungsanlage
EP06018526A Expired - Lifetime EP1726877B1 (de) 2002-04-03 2003-04-03 Verfahren und vorrichtung zur regelung der primär- und sekundärlufteinspritzung einer müllverbrennungsanlage

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP06018526A Expired - Lifetime EP1726877B1 (de) 2002-04-03 2003-04-03 Verfahren und vorrichtung zur regelung der primär- und sekundärlufteinspritzung einer müllverbrennungsanlage

Country Status (7)

Country Link
EP (2) EP1490632B1 (de)
CN (1) CN100402925C (de)
AT (2) ATE404820T1 (de)
AU (1) AU2003221547A1 (de)
DE (2) DE60322986D1 (de)
ES (1) ES2275086T3 (de)
WO (1) WO2003083370A1 (de)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005009957B4 (de) * 2005-03-04 2007-02-01 Martin GmbH für Umwelt- und Energietechnik Verfahren zum Verbrennen von Brennstoffen, insbesondere Abfall
DE102006031900A1 (de) * 2006-07-07 2008-01-10 Rwe Power Ag Verfahren zur Regelung der Verbrennungsluftzufuhr an einem mit fossilen Brennstoffen befeuerten Dampferzeuger
DE102011002205A1 (de) * 2011-04-20 2012-10-25 Alstom Technology Ltd. Abhitze-Dampferzeuger sowie ein Verfahren zum Betreiben eines Abhitze-Dampferzeugers
CN103032885B (zh) * 2012-12-20 2016-08-03 北京中煤神州节能环保技术开发有限公司 波形分离旋转飞灰燃烬装置
FI126836B (fi) * 2013-09-18 2017-06-15 Outotec Finland Oy Menetelmä ja järjestely pyrometallurgisesta uunista jätelämpökattilaan virtaavan prosessikaasun käsittelemiseksi
CN204153784U (zh) * 2014-04-03 2015-02-11 山东威澳环保科技有限公司 一种炉内强化燃烧装置
DE102015117718A1 (de) * 2015-10-19 2017-04-20 Karlsruher Institut für Technologie Feuerungssystem und Verfahren zu dessen Betrieb
CN105536372B (zh) * 2016-01-08 2017-07-11 江苏新中环保股份有限公司 烟气自动均衡分配装置
DE102017008123A1 (de) * 2017-08-30 2019-02-28 Martin GmbH für Umwelt- und Energietechnik Feuerungsanlage und Verfahren zum Betreiben einer Feuerungsanlage
JP7131900B2 (ja) * 2017-11-14 2022-09-06 クボタ環境エンジニアリング株式会社 焼却炉及び焼却炉の排ガス処理方法
FR3104683B1 (fr) * 2019-12-13 2022-07-29 Cnim Groupe Procédé de régulation d’une installation de combustion, ainsi qu’installation de combustion correspondante
EP3896337A1 (de) * 2020-04-16 2021-10-20 General Electric Company Verbrennungssystem für einen kessel mit brennstoffstromverteilungsmitteln in einem brenner und verfahren zur verbrennung

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3038875C2 (de) * 1980-10-15 1990-05-31 Vereinigte Kesselwerke AG, 4000 Düsseldorf Müllverbrennungsanlage
CH673149A5 (de) * 1987-10-23 1990-02-15 Kuepat Ag
CA1308964C (en) * 1988-04-15 1992-10-20 Brian Robin Blackwell Method and apparatus for improving fluid flow and gas mixing in boilers
SE9102546L (sv) * 1991-09-05 1992-09-07 Goetaverken Energy Ab Foerbraenning av avfallsvaetskor
DE4220149C2 (de) * 1992-06-19 2002-06-13 Steinmueller Gmbh L & C Verfahren zum Regelung der Verbrennung von Müll auf einem Rost einer Feuerungsanlage und Vorrichtung zur Durchführung des Verfahrens
SG47890A1 (en) * 1993-04-20 1998-04-17 Martin Umwelt & Energietech Method for burning fuels particularly for incinerating garbage
DE4401821C2 (de) * 1994-01-22 1998-01-15 Joachim Dipl Ing Kuemmel Verfahren zum Verbrennen von Stoffen, insbesondere von Müll und Biomassen, und Vorrichtung zur Durchführung des Verfahrens
DE19705938A1 (de) * 1997-02-17 1998-08-20 Abb Research Ltd Verfahren zum Eindüsen von Sekundärluft und/oder Tertiärluft sowie von rezirkulierenden Rauchgasen in einem Kessel sowie Vorrichtung zur Durchführung des Verfahrens
CH694305A5 (de) * 1999-08-30 2004-11-15 Von Roll Umwelttechnik Ag Vorrichtung zur Erzeugung einer rotierenden Stroemung.
US6279495B1 (en) * 1999-10-22 2001-08-28 Pulp And Paper Research Institute Of Canada Method and apparatus for optimizing the combustion air system in a recovery boiler
DE10012895A1 (de) * 2000-03-16 2001-09-20 Krc Umwelttechnik Gmbh Verbrennungsverfahren für Brennstoffe beliebiger Art mittels einer Rostfeuerung

Also Published As

Publication number Publication date
EP1726877A1 (de) 2006-11-29
DE60309301T2 (de) 2007-06-06
ES2275086T3 (es) 2007-06-01
ATE404820T1 (de) 2008-08-15
CN1646859A (zh) 2005-07-27
CN100402925C (zh) 2008-07-16
WO2003083370A1 (en) 2003-10-09
EP1726877B1 (de) 2008-08-13
ATE343766T1 (de) 2006-11-15
DE60322986D1 (de) 2008-09-25
DE60309301D1 (de) 2006-12-07
EP1490632A1 (de) 2004-12-29
AU2003221547A1 (en) 2003-10-13

Similar Documents

Publication Publication Date Title
CA3081520C (en) Methods and systems for minimizing nox and co emissions in natural draft heaters
US4485746A (en) Energy recovery system for an incinerator
EP1490632B1 (de) Verfahren und vorrichtung zur regelung der primär- und sekundärlufteinspritzung einer müllverbrennungsanlage
JP2004205161A (ja) 固体燃料ボイラ及びボイラ燃焼方法
CA3152397C (en) Method for commissioning a biomass heating system
JPS5837415A (ja) 低NOx用ごみ焼却炉
US20090183660A1 (en) Method for controlling the combustion air supply in a steam generator that is fueled with fossil fuels
CN105783025A (zh) 一种监测低NOx切向燃煤锅炉炉内风粉分布的方法
TW201827754A (zh) 用於燃燒系統控制之系統及方法
US20160238241A1 (en) Lean gas burner
CN105276574A (zh) 带有内部烟道气再循环的炉系统
JPS6323442B2 (de)
US5724897A (en) Split flame burner for reducing NOx formation
EP2588809B1 (de) Verfahren und vorrichtung zur emissionsarmen verbrennung von abgas mit niedrigem heizwert
JP4448799B2 (ja) ストーカ式ごみ焼却炉における火格子温度を用いたごみ燃焼状態検出方法と、これを用いたごみ焼却制御方法及び火格子温度制御方法。
KR20030019364A (ko) 폐기물 소각로 및 그 조업방법
JP5013808B2 (ja) ストーカ式焼却炉の燃焼制御装置
JP5271660B2 (ja) 旋回燃焼ボイラ
JP3223994B2 (ja) 焼却炉およびその火炎制御方法
GB1585410A (en) Burner
JP2005308272A (ja) 火格子式廃棄物焼却炉
JPH1061929A (ja) 燃焼装置に於ける二次燃焼用空気の供給制御方法
FI100355B (fi) Menetelmä ja laitteisto kaasun polttamiseksi tulipesässä
Folsom et al. The Development of a Low NOX Distributed Mixing Burner for Pulverized Coal Boilers
EP4162204A1 (de) Anlage zum verbrennen von abfall

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20041021

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17Q First examination report despatched

Effective date: 20050405

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1076857

Country of ref document: HK

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KEPPEL SEGHERS HOLDINGS PTE LTD

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F23L 9/04 20060101ALI20060523BHEP

Ipc: F23G 5/16 20060101ALI20060523BHEP

Ipc: F23L 13/02 20060101ALI20060523BHEP

Ipc: F23M 9/04 20060101ALI20060523BHEP

Ipc: F23G 5/50 20060101AFI20060523BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061025

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061025

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061025

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061025

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061025

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061025

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061025

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061025

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60309301

Country of ref document: DE

Date of ref document: 20061207

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070125

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070125

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070326

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2275086

Country of ref document: ES

Kind code of ref document: T3

EN Fr: translation not filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070608

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070403

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070426

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1076857

Country of ref document: HK

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20140428

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20140411

Year of fee payment: 12

Ref country code: NL

Payment date: 20140418

Year of fee payment: 12

Ref country code: DE

Payment date: 20140418

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60309301

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20150501

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150403

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150403

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20220331

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20220420

Year of fee payment: 20

Ref country code: GB

Payment date: 20220420

Year of fee payment: 20

Ref country code: ES

Payment date: 20220629

Year of fee payment: 20

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20230402

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20230504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20230402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20230404