EP1486627B1 - Grossformatige OSB-Platte mit verbesserten Eigenschaften, insbesondere für den Baubereich - Google Patents

Grossformatige OSB-Platte mit verbesserten Eigenschaften, insbesondere für den Baubereich Download PDF

Info

Publication number
EP1486627B1
EP1486627B1 EP04022049.3A EP04022049A EP1486627B1 EP 1486627 B1 EP1486627 B1 EP 1486627B1 EP 04022049 A EP04022049 A EP 04022049A EP 1486627 B1 EP1486627 B1 EP 1486627B1
Authority
EP
European Patent Office
Prior art keywords
osb
panel
panel according
osb panel
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP04022049.3A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP1486627A1 (de
Inventor
Michael Egger
Walter Schiegl
Gerhard Schickhofer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fritz Egger GmbH and Co OG
Original Assignee
Fritz Egger GmbH and Co OG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7957954&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1486627(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Fritz Egger GmbH and Co OG filed Critical Fritz Egger GmbH and Co OG
Priority to EP09172833.7A priority Critical patent/EP2148020B1/de
Publication of EP1486627A1 publication Critical patent/EP1486627A1/de
Application granted granted Critical
Publication of EP1486627B1 publication Critical patent/EP1486627B1/de
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/10Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of wood, fibres, chips, vegetable stems, or the like; of plastics; of foamed products
    • E04C2/16Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of wood, fibres, chips, vegetable stems, or the like; of plastics; of foamed products of fibres, chips, vegetable stems, or the like
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24058Structurally defined web or sheet [e.g., overall dimension, etc.] including grain, strips, or filamentary elements in respective layers or components in angular relation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24058Structurally defined web or sheet [e.g., overall dimension, etc.] including grain, strips, or filamentary elements in respective layers or components in angular relation
    • Y10T428/24066Wood grain
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24058Structurally defined web or sheet [e.g., overall dimension, etc.] including grain, strips, or filamentary elements in respective layers or components in angular relation
    • Y10T428/24074Strand or strand-portions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24058Structurally defined web or sheet [e.g., overall dimension, etc.] including grain, strips, or filamentary elements in respective layers or components in angular relation
    • Y10T428/24074Strand or strand-portions
    • Y10T428/24083Nonlinear strands or strand-portions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24058Structurally defined web or sheet [e.g., overall dimension, etc.] including grain, strips, or filamentary elements in respective layers or components in angular relation
    • Y10T428/24074Strand or strand-portions
    • Y10T428/24091Strand or strand-portions with additional layer[s]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24058Structurally defined web or sheet [e.g., overall dimension, etc.] including grain, strips, or filamentary elements in respective layers or components in angular relation
    • Y10T428/24074Strand or strand-portions
    • Y10T428/24091Strand or strand-portions with additional layer[s]
    • Y10T428/24099On each side of strands or strand-portions
    • Y10T428/24107On each side of strands or strand-portions including mechanically interengaged strands, strand-portions or strand-like strips
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24132Structurally defined web or sheet [e.g., overall dimension, etc.] including grain, strips, or filamentary elements in different layers or components parallel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/24992Density or compression of components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249924Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
    • Y10T428/249925Fiber-containing wood product [e.g., hardboard, lumber, or wood board, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31971Of carbohydrate
    • Y10T428/31989Of wood

Definitions

  • An OSB board in the sense of this invention consists of at least one layer which is constructed with flat wood chips, so-called strands.
  • the above-described layer forms the lower and upper cover layer and between them is the middle layer (in a 3-layer design), which has no preferred orientation of the stands. This distribution is also called "random" in technical language.
  • the middle layer is the innermost layer of the plate.
  • a 3-layered plate thus consists of an upper and a lower cover layer and a middle layer, a 5 or more layered plate of an upper and lower cover layer, a central layer and layers between the upper and lower cover layer and the middle layer.
  • a preferred embodiment of the invention is a 3-layered plate, 5-layer or multi-layered plates, wherein there is always an odd number of layers.
  • the invention is based on the technical problem of providing an OSB board suitable for use over a large area geeignt is and can also be used for example for the construction of buildings.
  • the present invention describes a large-sized wood-based panel, a component produced therefrom and a method for producing a large-sized plate with high mechanical properties such as the characteristics of bending, tension and pressure, without raising the specific gravity of the plate over the usual level. Furthermore, technological features of an OSB board are described, from which one can derive these increased mechanical properties and possible uses of this OSB board.
  • Influence parameters for the preferred embodiments of the present invention are the beach geometry (length, width, thickness), the orientation of the beach layers to each other, the orientation of the strands within a layer in a desired direction, the proportion and type of binder or mixture of several Binders, the proportion of additives such.
  • the ratio between the thickness between the outermost layer and the middle layers or the middle layer, the density profile, which is influenced by the targeted control of process parameters and ultimately the total thickness of the plate and the plate format, which on the intended use are coordinated.
  • the properties of the wood-based panels according to the invention are influenced by the beach geometry and the most uniform design of the strands of the cover layer, the ratio of thickness of the cover layers to the total thickness or the basis weight of the cover layer to the total basis weight of the plate and the average specific gravity of the plate (density).
  • the two outer layers should consist in the finished product of at least 30 percent by weight of the total scattered chip quantity, which in sum of upper and lower cover layer corresponds to a proportion of at least 60%.
  • the remaining 40% account for the middle layer in a 3-layer plate.
  • the specific weight of the plate should not exceed 700 kg / m 3 , a value equal to or less than 650 kg / m 3 is desirable. This information refers to dry plates.
  • the production of the strands is usually made of round wood, which is preferably present in debarked condition.
  • the log logs are fed to a flaker, which produces strands of the desired dimension in a single operation by means of rotating tools.
  • a multi-stage production of the beaches is just as conceivable as z. B. from a rotary veneer, which is crushed into strands in a further step.
  • Fines are strands that are significantly different from the dimensions of the strands described above. Primarily during the production of fines should be avoided such as. B. by a gentle debarking and by regular sharpening of the cutting tools of the flaker. After Strandher ein a separation of the fine material from the beach but also conceivable.
  • the proportion of fines can only be reduced to a still tolerable minimum proportion, but can not be prevented.
  • the proportion of fines can be quite 10 to 15 weight percent based on the weight of the finished plate.
  • the wood of the beach is not relevant. In principle, all types of wood such. As poplar, birch, beech, oak, spruce, pine and the like possible.
  • the pine has proven to be particularly suitable due to its good machining properties and due to its relatively high resin content.
  • paraffins or waxes are added.
  • the application can take place in the form of a melt at the required elevated temperature (liquid wax application) or for emulsions at about room temperature.
  • urea-formaldehyde glues UF
  • melamine-formaldehyde glues MF
  • phenol-formaldehyde glues PF
  • binders based on isocyanate eg PMDI
  • binders based on acrylates have proven successful.
  • a mixture of at least two of these types of binder is used, but also mixtures of several types of glue is conceivable.
  • the term "mixture” is understood to mean not only a mixture of different types of ready-to-use binders, but also a mixture of various of the cited types, which already results in the course of production as a mixture. So z.
  • melamine-urea-formaldehyde glues (MUF) or melamine-urea-phenol-formaldehyde glues (MUPF) by co-cooking in the same reaction vessel (reactor) are produced.
  • the individual layers of the plate may also contain different types of binders and mixtures thereof, wherein it is advantageous for multi-layer plates for stability reasons, those layers, which are each arranged - in relation to the plate surfaces - in the same position, with the same binder type or to provide the same mixture. It has thus been found that the requirements of the invention can be achieved very well in the case of a 3-layer board when the top and bottom cover layers are provided with a MUPF binder and the middle layer with an isocyanate-based binder (PMDI).
  • PMDI isocyanate-based binder
  • binder and the binder type are decisive for the desired mechanical and technological properties.
  • the content of binder depends on the type of binder. Binder contents for UF, MF, PF and their mixtures are in the range between 10 and 15% by weight (in the case of mixtures as the sum of used components) calculated as solid resin based on the dry matter wood strands. When using isocyanates, the binder content can be reduced to 6 to 10 wt.%.
  • the gluing of the beaches takes place before the beach mat is formed.
  • Beleimtrommeln are provided for this, which allow a continuous gluing in the run.
  • the drums rotate around their own longitudinal axis and thus keep the introduced beach material constantly in motion.
  • a fine glue mist is created by means of nozzles, which is reflected evenly on the beach.
  • the drums have built-in components, in order to be able to constantly pick up the beach material and to transport the beach material from the inlet into the drum to the outlet.
  • An oblique inclination of the drum in the longitudinal direction can assist the forward movement of the strands.
  • the achievement of the desired mechanical and technological properties is influenced by the targeted orientation of the strands.
  • The% set of chips, which may deviate more than +/- 15 ° from the selected direction of orientation is small. Nevertheless, in the "transverse" direction of the plate, there are still sufficient strengths and stiffnesses is always given by the scattering process, a deviation from the target orientation.
  • the target orientation of the strands will depend on the position of the beach ply within the board.
  • the two outermost layers, the cover layers, should be aligned parallel to the plate length as previously described for a single-layer plate.
  • the strands of the single center layer are oriented without a preferred direction (random).
  • a plate structure of more than 3 layers is also conceivable.
  • the number of layers is always odd, the beach orientation of the cover layers and the middle layer as described above and the orientation of the other layers may be arbitrary.
  • the preferred beach orientation of these other layers is crosswise to the beach orientation of each outer adjacent location.
  • a random orientation of individual layers is also possible.
  • the shaping of the beach mat from the various superimposed layers is accomplished by a spreader. For each layer is usually a scattering head available. Its task is to orient the glued strands in the desired direction or randomly arrange them. After spreading the mat, the pressing takes place to a stable plate-shaped product under the action of pressure and temperature. This can be done either in cycle presses (single or multi-day presses) or in continuous presses. The latter enable the production of an endless Plate tape, which can be separated into the desired formats.
  • the plates can be ground after production. This achieves a homogeneous plate thickness with small thickness tolerances and improved conditions for gluing two or more plates to components as described below. However, with sufficient board surface quality and sufficient thickness tolerance of the boards, gluing without prior sanding is also possible.
  • FIG. 1 shows a wooden material plate 1 as described above, which is composed of three beach layers.
  • the upper strand layer 2 shows a preferred orientation of the strands 5 in the longitudinal direction of the plate. It can be seen that the strands 5 of the topsheet 2 are not strictly parallel to the panel length are aligned, but still given a high degree of orientation.
  • the middle layer 3 consists of strands 6, which are somewhat smaller in their dimensions than the strands of the cover layers 2 and 4. The orientation of the strands 6 of the middle layer 3 is randomly oriented.
  • the lower cover layer 4 is constructed in mirror image to the upper cover layer 2.
  • FIG. 1 shown plate 1 are selected as reference only as an example of a section of a large-sized plate and do not match the real dimensions plate length and plate width.
  • FIG. 1 also shows that the thickness s1 of the two cover layers (both the lower cover layer 4 and the upper cover layer 2 constructed in mirror image) is each about 30% of the total thickness s of the plate and the thickness s2 of the middle layer 3 is about 40%.
  • the individual plates 1 produced by the method described above can have a thickness s up to about 50 mm and formats of 2.8 x 15 m and can be used in a variety of applications in the construction sector.
  • the plate length of 15 m should not be understood as an upper limit. However, it has been shown that both for the production and subsequent plate manipulation in the course of further processing here is a reasonable order of magnitude at 10 to 15 m.
  • FIG. 2 schematically shows such a component 10 which is made of 3 individual plates 1.
  • the individual plates 1 with an adhesive such. B. isocyanate at least partially over a large area bonded.
  • This component can, for. B. used in house construction for exterior and interior walls, with the advantages that elements corresponding to the wall length without joints over a full storey height (up to 2.8 m) can be produced.
  • the common house-building practice eg single-family house, multi-family house shows that wall elements with a length between 10 and 15 m are quite sufficient to be able to produce entire wall, ceiling and roof elements.
  • FIG. 3 shows 2 different embodiments.
  • the ceiling, wall or roof member 20 consists of a carrier 22, an upper plate 21 and a lower plate 23.
  • the plate 21 is in itself again consists of 2 single plates 1
  • the carrier 22 consists in itself again of 3 individual plates 1.
  • the plates 21 and 22 are connected to the carrier 22 frictionally or positively. If the component 21 is a ceiling element, then the plate 21 assumes the function of the floor of the upper floor and the plate 23 the function of the ceiling of the lower floor.
  • the component 20 consists of an upper plate 31, which is constructed only of a single plate 1, further from the carrier 32 and from the lower plate 33.
  • the carrier 32 is arranged in contrast to the carrier 22 lying.
  • the FIG. 4 shows the structure of a large-area component 20 which is composed of a plurality of individual plates 1.
  • the length L can be up to 15 m and the width B up to 2.8 m.
  • the carriers 23, 33 are firmly connected to the plates 21, 31 and 22, 32. As a result, the component in combination with the high mechanical and technological properties of the individual plates 1 itself has a high degree of wearability.
  • the 3-layer OSB board of the following example was manufactured on an industrial plant.
  • Stranded logs are made from decorticated pine logs with a length of approx. 150 mm, a width of between 10 and 25 mm and a thickness of between 0.5 and 0.8 mm. Fines are, as far as possible, already separated. The subsequent drying is reduced the moisture content of the strands of both layers to a value between 3 to 5%. Before gluing, the proportion of fines is minimized by means of screening devices.
  • the gluing is carried out in Beleimtrommeln, wherein the top layer with about 13 wt.% Melamine-urea-phenol-formaldehyde glue (solid resin based on dry wood mass) and the middle layer with 8 wt.% Of a PMDI binder were mixed.
  • the 3-layer OSB board of the following example was manufactured on an industrial plant.
  • the production of the strands for the middle and top layer takes place until the mat formation on separate processing lines.
  • Strands are made with a length of about 140 mm, a width between 10 and 30 mm and a thickness of about 0.6 mm. Fines are, as far as possible, already separated. Subsequent drying reduces the moisture content of the strands of both layers to between 3 and 5%. Before gluing, the proportion of fines is minimized by means of screening devices. The gluing is done in Beleimtrommeln, wherein the top layer with about 7.0 wt.% PMDI (solid resin based on wood dry matter) and the middle layer with 5.5 wt.% Of a PMDI binder were mixed.
  • PMDI solid resin based on wood dry matter
  • Strands with a length of approx. 140 mm, a width of between 10 and 30 mm and a thickness between 0.5 and 0.6 mm are produced from debarked pine trunks. Fines are, as far as possible, already separated. Subsequent drying reduces the moisture content of the strands to between 3 and 5%. Before gluing, the proportion of fines is minimized by means of screening devices. The gluing is done in Beleimtrommeln, with about 7,0Gew. % PMDI (solid resin based on wood dry matter) were mixed. (Vote with Wismar)

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Dry Formation Of Fiberboard And The Like (AREA)
  • Panels For Use In Building Construction (AREA)
  • Laminated Bodies (AREA)
  • Joining Of Building Structures In Genera (AREA)
  • Paper (AREA)
  • Slot Machines And Peripheral Devices (AREA)
EP04022049.3A 2001-06-12 2002-06-01 Grossformatige OSB-Platte mit verbesserten Eigenschaften, insbesondere für den Baubereich Revoked EP1486627B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP09172833.7A EP2148020B1 (de) 2001-06-12 2002-06-01 Grossformatige osb-platte mit verbesserten eigenschaften, insbesondere für den baubereich

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE20109675U 2001-06-12
DE20109675U DE20109675U1 (de) 2001-06-12 2001-06-12 Grossformatige OSB-Platte mit verbesserten Eigenschaften, insbesondere für den Baubereich
EP02012159A EP1267010B2 (de) 2001-06-12 2002-06-01 Grossformatige OSB-Platte mit verbesserten Eigenschaften, insbesondere für den Baubereich

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
EP02012159A Division EP1267010B2 (de) 2001-06-12 2002-06-01 Grossformatige OSB-Platte mit verbesserten Eigenschaften, insbesondere für den Baubereich

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP09172833.7A Division EP2148020B1 (de) 2001-06-12 2002-06-01 Grossformatige osb-platte mit verbesserten eigenschaften, insbesondere für den baubereich
EP09172833.7A Division-Into EP2148020B1 (de) 2001-06-12 2002-06-01 Grossformatige osb-platte mit verbesserten eigenschaften, insbesondere für den baubereich

Publications (2)

Publication Number Publication Date
EP1486627A1 EP1486627A1 (de) 2004-12-15
EP1486627B1 true EP1486627B1 (de) 2014-08-20

Family

ID=7957954

Family Applications (3)

Application Number Title Priority Date Filing Date
EP02012159A Expired - Lifetime EP1267010B2 (de) 2001-06-12 2002-06-01 Grossformatige OSB-Platte mit verbesserten Eigenschaften, insbesondere für den Baubereich
EP04022049.3A Revoked EP1486627B1 (de) 2001-06-12 2002-06-01 Grossformatige OSB-Platte mit verbesserten Eigenschaften, insbesondere für den Baubereich
EP09172833.7A Expired - Lifetime EP2148020B1 (de) 2001-06-12 2002-06-01 Grossformatige osb-platte mit verbesserten eigenschaften, insbesondere für den baubereich

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP02012159A Expired - Lifetime EP1267010B2 (de) 2001-06-12 2002-06-01 Grossformatige OSB-Platte mit verbesserten Eigenschaften, insbesondere für den Baubereich

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP09172833.7A Expired - Lifetime EP2148020B1 (de) 2001-06-12 2002-06-01 Grossformatige osb-platte mit verbesserten eigenschaften, insbesondere für den baubereich

Country Status (12)

Country Link
US (1) US7226652B2 (enExample)
EP (3) EP1267010B2 (enExample)
JP (1) JP4307992B2 (enExample)
AT (1) ATE278079T1 (enExample)
CA (1) CA2450741C (enExample)
DE (2) DE20109675U1 (enExample)
DK (1) DK1267010T4 (enExample)
ES (1) ES2229012T5 (enExample)
PL (1) PL213694B1 (enExample)
PT (1) PT1267010E (enExample)
RU (1) RU2268968C2 (enExample)
WO (1) WO2002101170A1 (enExample)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10306118A1 (de) * 2003-02-14 2004-09-09 Kronotec Ag Bauplatte
CA2530615A1 (en) * 2003-06-30 2005-01-06 Dsm Ip Assests B.V. Oriented strand boards
DE10344598B3 (de) * 2003-09-25 2005-03-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Nachformbare Holzwerkstoffplatte und Verfahren zu deren Herstellung
DE20316621U1 (de) * 2003-10-28 2004-02-12 Fritz Egger Gmbh & Co Emissionsarme OSB-Platte
DE102005038734A1 (de) 2005-08-16 2007-02-22 Michanickl, Andreas, Prof.Dr. Leichte Mehrschicht-Holzwerkstoffplatte
US20110000167A1 (en) * 2009-07-06 2011-01-06 Dimke Robert G Wood door core including osb layers and method
HRP20151044T1 (hr) * 2011-04-20 2016-01-01 John Griem Postupak proizvodnje vatrootpornih ploäśa od drvenih vlakana
RU2515839C2 (ru) * 2012-03-16 2014-05-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Братский государственный университет" Композиция для производства древесностружечных плит
US20150050443A1 (en) * 2013-08-14 2015-02-19 Boa-Franc Composite engineered floor board having an oriented strand board (osb) stabilizing base
DE102014220459A1 (de) * 2014-10-09 2016-04-14 Mayfair Vermögensverwaltungs Se Platte, Brett oder Paneel
US20170151758A1 (en) * 2015-12-01 2017-06-01 Norbord Inc. Oriented Strand Board
WO2018061923A1 (ja) 2016-09-30 2018-04-05 大建工業株式会社 木質積層材及びその製造方法
PT3620282T (pt) * 2017-04-25 2022-01-13 SWISS KRONO Tec AG Painel à base de madeira osb
JP6448738B1 (ja) 2017-09-29 2019-01-09 大建工業株式会社 高密度木質積層材の製造方法
JP7064552B1 (ja) 2020-10-30 2022-05-10 大建工業株式会社 木質ボード
JP2022118558A (ja) * 2021-02-02 2022-08-15 大建工業株式会社 木質ボード用の木質小薄片及びその製造方法
JP2022118559A (ja) * 2021-02-02 2022-08-15 大建工業株式会社 木質ボードの製造方法
JP7064630B1 (ja) 2021-02-19 2022-05-10 大建工業株式会社 木質積層ボード
JP7064638B1 (ja) 2021-05-28 2022-05-10 大建工業株式会社 木質複合材、内装材、床材及び防音床材
JP7072781B1 (ja) 2021-09-09 2022-05-23 大建工業株式会社 木質複合材及び床材
JP7536976B1 (ja) 2023-09-12 2024-08-20 大建工業株式会社 パーティクルボード及びパーティクルボードの製造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4751131A (en) * 1986-02-14 1988-06-14 Macmillan Bloedel Limited Waferboard lumber
US5470631A (en) * 1990-04-03 1995-11-28 Masonite Corporation Flat oriented strand board-fiberboard composite structure and method of making the same
NZ260980A (en) * 1993-07-14 1996-08-27 Yamaha Corp Wood board; core layer of wooden strips & foaming binder and surface layer of oriented strand board with wooden strips & binder
DE19503343A1 (de) * 1994-12-17 1996-06-20 Thomas Kuennemeyer Wagenkastenaufbau, insbes. für ein Lastkraftfahrzeug oder für einen Lastkraftfahrzeuganhänger
US6053052A (en) * 1995-11-16 2000-04-25 Timberco, Inc. Panel performance test system
DE19544866A1 (de) * 1995-12-01 1997-06-05 Siempelkamp Gmbh & Co Vorrichtung zum Streuen von Spänen, insbesondere von Langspänen, im Zuge der Herstellung von spanorientierten Spanplatten
DE19700138A1 (de) * 1997-01-03 1998-07-09 Hofa Homann Gmbh & Co Kg Schalungsplatte, insbesondere Großflächen-Schalungsplatte
US5951795A (en) * 1997-06-19 1999-09-14 Forintek Canada Corp. Method of making a smooth surfaced mat of bonded wood fines used in panel manufacture
DE19746383A1 (de) 1997-10-21 1999-04-22 Hofa Homann Gmbh & Co Kg Verfahren und Vorrichtung zur Herstellung von Faserplatten sowie nach dem Verfahren hergestellte Faserplatten
US6197414B1 (en) * 1997-12-25 2001-03-06 Matsushita Electric Works, Ltd. Fiberboard and manufacturing method thereof
US6098679A (en) * 1998-03-17 2000-08-08 Noranda Forest Inc. Dimensionally stable oriented strand board (OSB) and method for making the same
DE19843493B4 (de) * 1998-09-22 2005-04-28 Ihd Inst Fuer Holztechnologie Plattenförmiger Werkstoff aus Holzspänen und Bindemitteln für einen Einsatz im Bauwesen und Möbelbau sowie Verfahren zu seiner Herstellung
DE19902673A1 (de) * 1999-01-23 2000-07-27 Thermopal Dekorplatten Gmbh & Verfahren zur Herstellung einer auf Holzwerkstoff basierenden Schichtplatte sowie Schichtplatte und Holzwerkstoffplatte
DE29904919U1 (de) * 1999-01-23 1999-09-09 Thermopal-Dekorplatten GmbH & Co KG, 88299 Leutkirch Schichtplatte und Holzwerkstoffplatte
DE19913589A1 (de) * 1999-03-25 2000-09-28 Siempelkamp Gmbh & Co Holzwerkstoffplatte, insbesondere OSB-Platte
DE19919821A1 (de) * 1999-05-01 2000-11-02 Dieffenbacher Gmbh Maschf Anlage zur Herstellung von Holzwerkstoffplatten
DE20015725U1 (de) * 2000-03-24 2001-08-09 Kronotec Ag, Luzern Holzpartikelplatte, insbesondere Schalungsplatte

Also Published As

Publication number Publication date
EP2148020A2 (de) 2010-01-27
EP2148020B1 (de) 2019-05-15
PL364372A1 (en) 2004-12-13
PL213694B1 (pl) 2013-04-30
EP1267010B1 (de) 2004-09-29
JP4307992B2 (ja) 2009-08-05
US7226652B2 (en) 2007-06-05
RU2004100301A (ru) 2005-06-10
JP2004529012A (ja) 2004-09-24
DE50201140D1 (de) 2004-11-04
WO2002101170A1 (de) 2002-12-19
RU2268968C2 (ru) 2006-01-27
DE20109675U1 (de) 2002-10-24
ATE278079T1 (de) 2004-10-15
ES2229012T3 (es) 2005-04-16
PT1267010E (pt) 2005-02-28
US20040241414A1 (en) 2004-12-02
EP2148020A3 (de) 2011-12-28
DK1267010T3 (da) 2005-02-07
EP1486627A1 (de) 2004-12-15
CA2450741A1 (en) 2002-12-19
EP1267010A1 (de) 2002-12-18
EP1267010B2 (de) 2010-12-01
CA2450741C (en) 2007-04-17
ES2229012T5 (es) 2011-04-13
DK1267010T4 (da) 2011-02-28

Similar Documents

Publication Publication Date Title
EP1486627B1 (de) Grossformatige OSB-Platte mit verbesserten Eigenschaften, insbesondere für den Baubereich
DE60032125T2 (de) Verbundbauelemente und herstellungsverfahren
WO2011141171A1 (de) Mehrschichtiger furnierholz-formkörper
WO2010097209A1 (de) Holzwerkstoffplatte sowie ein verfahren zum herstellen einer holzwerkstoffplatte
EP2688722B1 (de) Verfahren zum bekanten von holzwerkstoffplatten
EP2351635B1 (de) Hirnholzkörper mit Balsahölzern und Verfahren zu deren Herstellung
EP4010158B1 (de) Werkstoffplatte und verfahren zur herstellung einer werkstoffplatte
EP3216574A1 (de) Verfahren zum herstellen einer osb
EP3725481A1 (de) Plattenförmiger werkstoff und verfahren zu dessen herstellung
DE10024543A1 (de) Verfahren und Anlage zur kontinuierlichen Herstellung einer Mehrschichtplatte
WO2004092511A1 (de) Fussbodenpaneel aus zwei verschiedenen holz-werkstoffen und verfahren zu dessen herstellung
DE202018101347U1 (de) Brettsperrholzelement
EP1892088A2 (de) Verfahren und Vorrichtung zur Herstellung einer Leichtbauplatte und Leichtbauplatte
DE10036034A1 (de) Drei-oder mehrlagige Verbundplatte
AT526148B1 (de) Holzverbundelement und Verfahren zu dessen Herstellung
DE10049050A1 (de) Verfahren zur Herstellung einer Mehrschichtplatte und eine nach diesem Verfahren hergestellte Mehrschichtplatte
EP0018355B1 (de) Holzspanplatte und Verfahren zu deren Herstellung
EP1792699B1 (de) Verfahren zur Herstellung einer Balsaholzspanplatte
EP2078599B1 (de) Spanplatte
WO2021023784A1 (de) Verfahren zum herstellen einer werkstoffplatte
WO2000029180A1 (de) Holzbauelement
WO2005018890A1 (de) Verfahren zur herstellung einer mehrschichtigen holzfaserplatte
WO2005039845A1 (de) Nachformbare holzwerkstoffplatte und verfahren zu deren herstellung
EP2842707B1 (de) Verfahren zur Herstellung eines aus mehreren Schnitthölzern bestehenden Konstruktionsschichtholzes
WO2024230945A2 (de) Verfahren und vorrichtung (anlage) zur herstellung einer werkstoffplatte, werkstoffplatte, sowie verwendung einer werkstoffplatte

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 1267010

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17P Request for examination filed

Effective date: 20050525

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AXX Extension fees paid

Extension state: RO

Payment date: 20050525

17Q First examination report despatched

Effective date: 20070219

R17C First examination report despatched (corrected)

Effective date: 20070219

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FRITZ EGGER GMBH & CO. OG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140428

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 1267010

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: RO

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 683564

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 50215969

Country of ref document: DE

Effective date: 20141002

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141222

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140820

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140820

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140820

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140820

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140820

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 50215969

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

26 Opposition filed

Opponent name: FLOORING TECHNOLOGIES LTD.

Effective date: 20150520

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140820

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150630

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: FLOORING TECHNOLOGIES LTD.

Effective date: 20150520

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140820

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140820

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20200619

Year of fee payment: 19

Ref country code: DE

Payment date: 20200618

Year of fee payment: 19

Ref country code: IE

Payment date: 20200618

Year of fee payment: 19

Ref country code: FR

Payment date: 20200618

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200618

Year of fee payment: 19

Ref country code: BE

Payment date: 20200622

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20200619

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R064

Ref document number: 50215969

Country of ref document: DE

Ref country code: DE

Ref legal event code: R103

Ref document number: 50215969

Country of ref document: DE

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

REG Reference to a national code

Ref country code: FI

Ref legal event code: MGE

27W Patent revoked

Effective date: 20210505

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Effective date: 20210505

REG Reference to a national code

Ref country code: AT

Ref legal event code: MA03

Ref document number: 683564

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210505