EP1440051A1 - Verfahren zur herstellung von 6-methylheptan-2-on und dessen verwendung - Google Patents
Verfahren zur herstellung von 6-methylheptan-2-on und dessen verwendungInfo
- Publication number
- EP1440051A1 EP1440051A1 EP02777243A EP02777243A EP1440051A1 EP 1440051 A1 EP1440051 A1 EP 1440051A1 EP 02777243 A EP02777243 A EP 02777243A EP 02777243 A EP02777243 A EP 02777243A EP 1440051 A1 EP1440051 A1 EP 1440051A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- carried out
- catalyst
- hydrogenation
- methylbutanal
- methyl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- DPLGXGDPPMLJHN-UHFFFAOYSA-N 6-Methylheptan-2-one Chemical compound CC(C)CCCC(C)=O DPLGXGDPPMLJHN-UHFFFAOYSA-N 0.000 title claims abstract description 27
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 10
- YGHRJJRRZDOVPD-UHFFFAOYSA-N 3-methylbutanal Chemical compound CC(C)CC=O YGHRJJRRZDOVPD-UHFFFAOYSA-N 0.000 claims abstract description 58
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical compound CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 claims abstract description 55
- 238000000034 method Methods 0.000 claims abstract description 44
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims abstract description 40
- 238000005984 hydrogenation reaction Methods 0.000 claims abstract description 26
- 238000005882 aldol condensation reaction Methods 0.000 claims abstract description 19
- 238000007037 hydroformylation reaction Methods 0.000 claims abstract description 15
- DLHQZZUEERVIGQ-UHFFFAOYSA-N 3,7-dimethyl-3-octanol Chemical compound CCC(C)(O)CCCC(C)C DLHQZZUEERVIGQ-UHFFFAOYSA-N 0.000 claims abstract description 5
- KEVYVLWNCKMXJX-ZCNNSNEGSA-N Isophytol Natural products CC(C)CCC[C@H](C)CCC[C@@H](C)CCC[C@@](C)(O)C=C KEVYVLWNCKMXJX-ZCNNSNEGSA-N 0.000 claims abstract description 5
- QMVPMAAFGQKVCJ-UHFFFAOYSA-N citronellol Chemical compound OCCC(C)CCC=C(C)C QMVPMAAFGQKVCJ-UHFFFAOYSA-N 0.000 claims abstract description 5
- 239000003054 catalyst Substances 0.000 claims description 47
- 239000012071 phase Substances 0.000 claims description 21
- 239000002904 solvent Substances 0.000 claims description 18
- RSNMTAYSENLHOW-GQCTYLIASA-N 6-Methyl-3-hepten-2-one, trans- Chemical compound CC(C)C\C=C\C(C)=O RSNMTAYSENLHOW-GQCTYLIASA-N 0.000 claims description 17
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 15
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 14
- 239000010948 rhodium Substances 0.000 claims description 14
- 229910052703 rhodium Inorganic materials 0.000 claims description 13
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 claims description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 13
- 229910052763 palladium Inorganic materials 0.000 claims description 8
- 239000012074 organic phase Substances 0.000 claims description 7
- 238000002360 preparation method Methods 0.000 claims description 7
- OJMIONKXNSYLSR-UHFFFAOYSA-N phosphorous acid Chemical compound OP(O)O OJMIONKXNSYLSR-UHFFFAOYSA-N 0.000 claims description 6
- 230000002378 acidificating effect Effects 0.000 claims description 4
- 238000006555 catalytic reaction Methods 0.000 claims description 3
- 229910017052 cobalt Inorganic materials 0.000 claims description 3
- 239000010941 cobalt Substances 0.000 claims description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 3
- 239000003446 ligand Substances 0.000 claims description 3
- 238000011068 loading method Methods 0.000 claims description 3
- 150000007529 inorganic bases Chemical class 0.000 claims 1
- RSNMTAYSENLHOW-UHFFFAOYSA-N 6-methylhept-3-en-2-one Chemical compound CC(C)CC=CC(C)=O RSNMTAYSENLHOW-UHFFFAOYSA-N 0.000 abstract description 8
- 238000006243 chemical reaction Methods 0.000 description 26
- 239000000047 product Substances 0.000 description 24
- 239000000203 mixture Substances 0.000 description 17
- 239000002585 base Substances 0.000 description 11
- 239000007789 gas Substances 0.000 description 11
- 239000007858 starting material Substances 0.000 description 11
- -1 3-methylbutyl halides Chemical class 0.000 description 10
- 238000004821 distillation Methods 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 9
- SHOJXDKTYKFBRD-UHFFFAOYSA-N 4-Methyl-3-penten-2-one, 9CI Chemical compound CC(C)=CC(C)=O SHOJXDKTYKFBRD-UHFFFAOYSA-N 0.000 description 8
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 8
- 150000001299 aldehydes Chemical class 0.000 description 8
- 229930195733 hydrocarbon Natural products 0.000 description 8
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 8
- 238000003786 synthesis reaction Methods 0.000 description 8
- 239000007788 liquid Substances 0.000 description 7
- HSJKGGMUJITCBW-UHFFFAOYSA-N 3-hydroxybutanal Chemical compound CC(O)CC=O HSJKGGMUJITCBW-UHFFFAOYSA-N 0.000 description 6
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- 239000004215 Carbon black (E152) Substances 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 150000002430 hydrocarbons Chemical class 0.000 description 6
- 239000007791 liquid phase Substances 0.000 description 6
- ZVJYRWZHXCWWPC-UHFFFAOYSA-N 4-hydroxy-6-methylheptan-2-one Chemical compound CC(C)CC(O)CC(C)=O ZVJYRWZHXCWWPC-UHFFFAOYSA-N 0.000 description 5
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 5
- 239000006227 byproduct Substances 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- GVJHHUAWPYXKBD-UHFFFAOYSA-N (±)-α-Tocopherol Chemical compound OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 4
- IOLQAHFPDADCHJ-UHFFFAOYSA-N 5-methyl-2-propan-2-ylhex-2-enal Chemical compound CC(C)CC=C(C=O)C(C)C IOLQAHFPDADCHJ-UHFFFAOYSA-N 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 150000001336 alkenes Chemical class 0.000 description 4
- 238000009835 boiling Methods 0.000 description 4
- 239000000543 intermediate Substances 0.000 description 4
- 239000001282 iso-butane Substances 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 239000003513 alkali Substances 0.000 description 3
- 239000012876 carrier material Substances 0.000 description 3
- 239000007795 chemical reaction product Substances 0.000 description 3
- 238000009833 condensation Methods 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 150000002576 ketones Chemical class 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- UHEPJGULSIKKTP-UHFFFAOYSA-N sulcatone Chemical compound CC(C)=CCCC(C)=O UHEPJGULSIKKTP-UHFFFAOYSA-N 0.000 description 3
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 3
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 2
- FJJYHTVHBVXEEQ-UHFFFAOYSA-N 2,2-dimethylpropanal Chemical compound CC(C)(C)C=O FJJYHTVHBVXEEQ-UHFFFAOYSA-N 0.000 description 2
- VDLYRMVNDHHOKL-UHFFFAOYSA-N 3-methyl-2-propan-2-ylbut-2-enal Chemical compound CC(C)C(C=O)=C(C)C VDLYRMVNDHHOKL-UHFFFAOYSA-N 0.000 description 2
- WDJHALXBUFZDSR-UHFFFAOYSA-N Acetoacetic acid Natural products CC(=O)CC(O)=O WDJHALXBUFZDSR-UHFFFAOYSA-N 0.000 description 2
- 102000003712 Complement factor B Human genes 0.000 description 2
- 108090000056 Complement factor B Proteins 0.000 description 2
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 229930003427 Vitamin E Natural products 0.000 description 2
- 150000001242 acetic acid derivatives Chemical class 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000008346 aqueous phase Substances 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- WIGCFUFOHFEKBI-UHFFFAOYSA-N gamma-tocopherol Natural products CC(C)CCCC(C)CCCC(C)CCCC1CCC2C(C)C(O)C(C)C(C)C2O1 WIGCFUFOHFEKBI-UHFFFAOYSA-N 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- UKVIEHSSVKSQBA-UHFFFAOYSA-N methane;palladium Chemical compound C.[Pd] UKVIEHSSVKSQBA-UHFFFAOYSA-N 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000005191 phase separation Methods 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 2
- 229940046009 vitamin E Drugs 0.000 description 2
- 235000019165 vitamin E Nutrition 0.000 description 2
- 239000011709 vitamin E Substances 0.000 description 2
- KSKXSFZGARKWOW-GQCTYLIASA-N (3e)-6-methylhepta-3,5-dien-2-one Chemical compound CC(C)=C\C=C\C(C)=O KSKXSFZGARKWOW-GQCTYLIASA-N 0.000 description 1
- JVSWJIKNEAIKJW-UHFFFAOYSA-N 2-Methylheptane Chemical compound CCCCCC(C)C JVSWJIKNEAIKJW-UHFFFAOYSA-N 0.000 description 1
- BXVSAYBZSGIURM-UHFFFAOYSA-N 2-phenoxy-4h-1,3,2$l^{5}-benzodioxaphosphinine 2-oxide Chemical compound O1CC2=CC=CC=C2OP1(=O)OC1=CC=CC=C1 BXVSAYBZSGIURM-UHFFFAOYSA-N 0.000 description 1
- SEWIYDKGNVLHPH-UHFFFAOYSA-N 3,6-dimethylhept-3-en-2-one Chemical compound CC(C)CC=C(C)C(C)=O SEWIYDKGNVLHPH-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- JGLMVXWAHNTPRF-CMDGGOBGSA-N CCN1N=C(C)C=C1C(=O)NC1=NC2=CC(=CC(OC)=C2N1C\C=C\CN1C(NC(=O)C2=CC(C)=NN2CC)=NC2=CC(=CC(OCCCN3CCOCC3)=C12)C(N)=O)C(N)=O Chemical compound CCN1N=C(C)C=C1C(=O)NC1=NC2=CC(=CC(OC)=C2N1C\C=C\CN1C(NC(=O)C2=CC(C)=NN2CC)=NC2=CC(=CC(OCCCN3CCOCC3)=C12)C(N)=O)C(N)=O JGLMVXWAHNTPRF-CMDGGOBGSA-N 0.000 description 1
- WSNMPAVSZJSIMT-UHFFFAOYSA-N COc1c(C)c2COC(=O)c2c(O)c1CC(O)C1(C)CCC(=O)O1 Chemical compound COc1c(C)c2COC(=O)c2c(O)c1CC(O)C1(C)CCC(=O)O1 WSNMPAVSZJSIMT-UHFFFAOYSA-N 0.000 description 1
- 238000005705 Cannizzaro reaction Methods 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- MQIUGAXCHLFZKX-UHFFFAOYSA-N Di-n-octyl phthalate Natural products CCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCC MQIUGAXCHLFZKX-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- POKBBTHLULVRMF-UHFFFAOYSA-N OP(O)O.OP(O)O.O.O.O Chemical compound OP(O)O.OP(O)O.O.O.O POKBBTHLULVRMF-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003377 acid catalyst Substances 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 150000005840 aryl radicals Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 1
- IAQRGUVFOMOMEM-UHFFFAOYSA-N but-2-ene Chemical class CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical class OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 150000001728 carbonyl compounds Chemical class 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000007859 condensation product Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000012043 crude product Substances 0.000 description 1
- 238000006114 decarboxylation reaction Methods 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 150000002085 enols Chemical class 0.000 description 1
- 125000001033 ether group Chemical group 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000000895 extractive distillation Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 150000004675 formic acid derivatives Chemical class 0.000 description 1
- 150000004820 halides Chemical group 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 238000006317 isomerization reaction Methods 0.000 description 1
- QWTDNUCVQCZILF-UHFFFAOYSA-N isopentane Chemical compound CCC(C)C QWTDNUCVQCZILF-UHFFFAOYSA-N 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- KSKXSFZGARKWOW-UHFFFAOYSA-N methylheptadienone Natural products CC(C)=CC=CC(C)=O KSKXSFZGARKWOW-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- NMRPBPVERJPACX-UHFFFAOYSA-N octan-3-ol Chemical compound CCCCCC(O)CC NMRPBPVERJPACX-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- HGBOYTHUEUWSSQ-UHFFFAOYSA-N pentanal Chemical compound CCCCC=O HGBOYTHUEUWSSQ-UHFFFAOYSA-N 0.000 description 1
- 125000005561 phenanthryl group Chemical group 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000012958 reprocessing Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- OHEFFKYYKJVVOX-UHFFFAOYSA-N sulcatol Natural products CC(O)CCC=C(C)C OHEFFKYYKJVVOX-UHFFFAOYSA-N 0.000 description 1
- 238000003419 tautomerization reaction Methods 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/61—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
- C07C45/62—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by hydrogenation of carbon-to-carbon double or triple bonds
Definitions
- the present invention relates to a three-stage process for the preparation of 6-methylheptan-2-one from isobutene and the use of the product thus produced.
- 6-methylheptanone is an intermediate for the production of isophytol, a building block for the synthesis of vitamin E. It is also the starting material for the synthesis of tetrahydrolinalool, dihydrogeraniol and other flavorings.
- the title compound can also be obtained by hydrogenating 6-methyl-5-hepten-2-one or 6-methyl-3,5-heptadien-2-one over nickel or other catalysts (Izv. Akad. Nauk SSSR, Ser. Khim (5) (1972) 1052). Since the two starting materials are expensive, the target product cannot be produced economically in this way.
- EP 0 816 321 A discloses a two-stage process for the preparation of 6-methylhepten-2-one.
- 3-methylbutanal is aldol condensed with acetone.
- the raw product is hydrogenated to the target product.
- the aldol condensation is carried out batchwise in an autoclave at a pressure of 1.9 bar and a temperature of 72 ° C.
- Acetone is introduced and 3-methylbutanal and 2% sodium hydroxide solution are added dropwise over 175 minutes.
- the organic phase is separated off. This is hydrogenated for 7 hours at 120 ° C. and a pressure of 5 to 9 bar on 5% Pd / activated carbon.
- the hydrogenation discharge is after filtering off the catalyst worked up by distillation.
- the yield of the target product over both stages is 62% based on 3-methylbutanal.
- This method has the disadvantages that both stages are carried out discontinuously, with a relatively long cycle time, which in turn results in low space-time yields.
- EP 0 765 853 describes a further two-stage process for the preparation of 2-methylheptan- 2-one.
- 3-methylbutanal is reacted with acetone to 4-hydroxy-6-methylheptan-2-one and in a lower yield to 6-methyl-3-hepten-2-one. This is done to increase the selectivity by reacting the aldehyde with acetone in a molar ratio of 1: 3 to 1:10 with a base in a molar ratio to the to aldehyde of 0.1 to 20%.
- the low base addition is said to increase the selectivity, i. H. avoid the self-condensation of the aldehyde or acetone.
- the disadvantage of this reaction procedure is that the space-time yield is too low for an industrial process.
- this mixture is hydrogenated with simultaneous elimination of water.
- aqueous alkali or alkaline earth lyes are used as catalysts.
- precipitated acetate is filtered off and the two intermediates are obtained by distillation.
- the distillate is hydrogenated in the presence of an acid (p-toluenesulfonic acid) at 100 ° C. and a pressure of 8 bar on a contact made of 5% Pd / activated carbon.
- the catalyst is filtered off from the hydrogenation discharge, the organic phase is separated off and the target product is separated off therefrom by distillation.
- the yield of 6-methylheptan-2-one is 65% over both stages, based on 3-methylbutanal.
- This process has several disadvantages: the base used in the first stage is neutralized with acetic acid. As a result, the process is burdened by additional material costs. The resulting acetates have to be disposed of, which entails additional costs.
- the present invention therefore relates to a process for the preparation of 6-methyl-heptan-2-one characterized by a) hydroformylation of isobutene to 3-methylbutanal b) base-catalyzed aldol condensation of 3-methylbutane with acetone to 6-methylhept-3- en-2-one, the molar ratio of 3-methylbutanal to the base used being more than 1: 0.3 and c) hydrogenation of 6-methylhept-3-en-2-one to 6-methyl-heptan-2-one ,
- the 6-methyl-heptan-2-one produced according to the invention can be used to prepare isophytol, tetrahydrolinalool or dihydrogeraniol.
- the isobutene used as the starting material for the production of 6-methylheptan-2-one by the process according to the invention can come from many sources.
- Isobutene can be used as a pure substance or as an isobutene-containing mixture of substances, e.g. B. with other C 4 hydrocarbons.
- Technical mixtures containing isobutene are the C section of an FCC, the C 4 section of a steam cracker, raffinate I, obtained from the C section of a steam cracker by butadiene extraction, or a hydrogenated C 4 section of a steam cracker, where most of the butadiene has been selectively hydrogenated to linear butenes.
- Other isobutene-containing streams are mixtures which have been obtained by dehydrogenating hydrocarbon streams containing isobutane.
- isobutene-rich streams are generated by the isomerization of C 4 streams with linear butenes.
- isobutene is obtained from a C 4 cut after two reprocessing processes.
- the first step that the two processing variants have in common is the removal of most of the butadiene. If butadiene can be marketed well or if it is self-consumed, it is separated by extraction or extractive distillation. In other cases, it is selectively hydrogenated to linear butenes up to a residual concentration of approximately 2000 ppm. What remains in both cases is a hydrocarbon mixture (raffinate I or hydrogenated crack C 4 ) which, in addition to the saturated hydrocarbons, contains n-butane and isobutane, the olefins, isobutene, 1-butene and 2-butenes.
- Isobutene is separated from this hydrocarbon mixture by reaction with methanol to give Memyl-tert.-butyleth.er (MTBE).
- MTBE Memyl-tert.-butyleth.er
- the cleavage of MTBE provides a mixture of methanol and isobutene, which can be easily separated into the two components.
- isobutene can be obtained after reaction with water via the intermediate tert-butanol and its cleavage.
- an almost butadiene-free C 4 cut (C 4 stream from FCC, raffinate I or hydrogenated crack C) can be hydroisomerized in a reactive column.
- a top product can be obtained which consists of isobutane and isobutene.
- the hydroformylation of isobutene with synthesis gas to 3-methylbutanal is known.
- Cobalt or rhodium catalysts can be used. In cobalt catalysis (DE 39 02 892 AI) the yield is up to 74%.
- 2,2-dimethylpropanal and isobutane are formed.
- Favorable yields are achieved in the hydroformylation with rhodium catalysts in the presence of organic phosphite ligands.
- the hydroformylation of isobutene to 3-methylbutanal using a catalyst system consisting of rhodium and a bisphosphite is e.g. For example, in US 4,668,651, US 4,769,498 and WO 85-03702. No.
- 4,467,116 describes, inter alia, the terminal hydroformylation of ⁇ -olefins dialkylated in the 2-position.
- Catalyst systems consist of Rhodium and a triarylphosphine exist, at least one aryl radical in the ortho position carrying a bulky substituent.
- a catalyst system which consists of rhodium and a phosphite of the general structure I.
- Ar 15 Ar 2 and Ar 3 are aromatic radicals which can be substituted or unsubstituted, in each case the same or different.
- Suitable aromatic radicals are, for example, the phenyl, the naphthyl, phenanthryl or the anthracyl radical. At least one of the aromatic radicals bears a group R i in the ortho position to the phosphite oxygen and a further substituent X i in the m or p position.
- Ri can in turn be aliphatic, cycloaliphatic, aromatic or heterocyclic. Purely aliphatic residues have the general structure II.
- Ra, Rb and Rc can be the same or different and denote hydrocarbon radicals with 1 to 6 carbon atoms.
- Ri is preferably a phenyl or tert-butyl group.
- Xi is a hydrocarbon or ether residue with 1 to 6 carbon atoms each.
- the hydroformylation of isobutene or a hydrocarbon mixture which contains isobutene as the only unsaturated compound, according to step a), is preferably carried out using the catalyst system described above, consisting of rhodium and a triaryl phosphite, carried out in a homogeneous reaction (a liquid phase).
- the reaction here takes place in a temperature range from 60 ° C. to 180 ° C., preferably in the range from 90 ° C. to 150 ° C.
- the reaction pressure is between 10 bar and 200 bar, preferably between 20 bar and 100 bar.
- a mixture of carbon monoxide and hydrogen in a molar ratio of 1/10 to 10/1 is used as the hydroformylation agent.
- the rhodium concentration is 5 to 500 ppm by weight, preferably 10 to 200 ppm by weight. 1 to 50 moles of triaryl phosphite, preferably 5 to 30 moles, are used per mole of rhodium.
- the reaction can be carried out batchwise, but a continuous procedure is advantageous.
- the reaction product is expediently separated by distillation into unreacted isobutene, 3-methylbutanal, high boilers which contain the catalyst, and by-products. Unreacted isobutene and the catalyst are returned to the hydroformylation reactor.
- step b Aldol condensation
- the aldol condensation of 3-methylbutanal with acetone to 6-methylhept-3-en-2-one is preferably carried out as a two-phase reaction.
- the reaction in step b) can be carried out continuously or batchwise, in a tubular reactor, flow tube or in a stirred tank.
- the aldol condensation is base-catalyzed, preferred bases are inorganic, aqueous systems with a base concentration of 0.1 to 15% by weight. Common bases are alkali solutions such as NaOH, KOH, K 2 O, Na 2 O or NaHCO 3 , Na 2 CO 3 , K 2 CO 3 , acetates, formates or triethylamine.
- Aldol condensation not only produces the desired product 6-methylhept-3-en-2-one, but also the by-products 4-methyl-3-penten-2-one (4-MP), 3-methyl-2-isopropyl- 2-butenal (3-MiPB), 5-methyl-2-isopropyl-2-hexenal (5-MiPH), 4-hydroxy-6-methylheptan-2-one (6-HMH).
- the connections are subject to e.g. B. also an enol tautomerism, where all tautomeric forms of 6-methylhept-3-en-2-one are to be understood as a product of value.
- step b) is carried out by dispersing an organic phase containing methyl butanal in a continuous phase containing the catalyst.
- the reaction can be carried out in a tubular reactor, the catalyst in the continuous phase and the starting material in an organic, disperse phase is included and the loading factor B of the reactor is equal to or greater than 0.8 and the mass ratio between the continuous and disperse phase is greater than 2.
- aqueous solutions of hydroxides are preferred as catalyst phases
- Hydrogen carbonates, carbonates or carboxylates are used in the form of their alkali or alkaline earth compounds, in particular sodium and potassium hydroxide solutions.
- the concentration of the catalyst in the catalyst solution is between 0.1 and 15% by mass, in particular between 0.1 and 5% by mass.
- 3-methylbutanal, acetone and optionally a solvent are expediently fed into the catalyst phase in front of the respective reactor.
- the molar ratio between 3-methylbutanal and acetone is 5/1 to 1/10, preferably 1/1 to 1/5.
- the reaction takes place in a temperature range from 40 ° C. to 150 ° C., preferably in the range from 50 ° C. to 120 ° C.
- the reaction time is between 0.1 and 20 minutes, preferably between 0.2 and 5 minutes.
- the catalyst phase is separated from the reaction discharge and returned to the reactor. Unreacted feedstocks, some product, water and optionally solvent are preferably distilled off before the phase separation.
- the distillate separates Condensation in an aqueous and organic phase, which can be returned to the reactor. After separation of the educts, in particular acetone, by distillation, the aqueous phase is preferably discarded in part to remove the water of reaction and partly returned to the process after optional use as washing liquid.
- the product phase separated from the catalyst can optionally be worked up by distillation to pure 2-methylhept-3-en-2-one after a water wash. Another possibility is to use the crude product separated from the catalyst in the next stage. This procedure makes it possible to produce the desired ⁇ , ⁇ -unsaturated ketone in a selectivity of 95% based on 3-methylbutanal.
- step b) it is possible to use a solvent.
- the use of a solvent often results in an increase in the selectivity of the aldol condensation, control of the water discharge from the catalyst solution and simplification of the water separation from the aldol condensate.
- a solvent is preferably used in which 3-methylbutanal, acetone and 6-methylhept-3-enone are soluble, the base or the continuous phase being insoluble in the solvent.
- Such a solvent should have the following properties: It dissolves products and starting materials and is hardly soluble even in the catalyst phase. It is inert in the aldol condensation and optionally in the hydrogenation. It can be separated from the target products 6-methylhept-3-en-2-one and / or 6-methylheptan-2-one by distillation.
- Suitable solvents are, for example, ethers or hydrocarbons such as toluene or cyclohexane.
- solvents are preferred which form a minimum heterotrope with water, so that the separation of the water from the aldol condensate is particularly simple. Therefore, cyclohexane or toluene are preferred solvents.
- step c The 6-methylhept-3-en-2-one obtained by crossed aldol condensation is selectively converted into 6-methylheptane in pure form or as a mixture which can contain acetone, 3-methylbutanal, water, solvents and high boilers. 2-one hydrogenated. This is preferably done on fixed bed Catalysts and / or acidic catalysts. Acid catalysts often contain acidic carrier material or carrier material soaked in acidic substances.
- catalysts which can contain palladium, platinum, rhodium and / or nickel as the hydrogenation-active component.
- the metals can be used in pure form, as compounds with oxygen or as alloys.
- Preferred catalysts are those in which the hydrogenation-active metal is applied to a support.
- Suitable carrier materials are aluminum oxide, magnesium oxide, silicon oxide, titanium dioxide and their mixed oxides and activated carbon. Of these catalysts, particularly preferred catalysts are palladium on activated carbon and palladium on aluminum oxide.
- the palladium content is 0.1 to 5% by mass, preferably 0.2 to 1% by mass.
- the hydrogenation can be carried out continuously or batchwise and both in the gas phase and in the liquid phase. Hydrogenation in the liquid phase is preferred because the gas phase process requires a greater amount of energy because of the necessary cycle control of large gas volumes.
- Different process variants can be selected for continuous liquid phase hydrogenation. It can be carried out adiabatically or practically isothermally, ie with a temperature rise of less than 10 ° C, in one or more stages. In the latter case, the reactors can be operated adiabatically or practically isothermally or one can be operated adiabatically and the others practically isothermally.
- the hydrogenation is carried out in the liquid / gas mixed phase or in the liquid phase in three-phase reactors in cocurrent, the hydrogen being finely distributed in the liquid to be hydrogenated in a manner known per se.
- the reactors are preferably operated with high liquid loads of 15 to 300, in particular 25 to 150 m 3 per m 2 cross section of the empty reactor and hour.
- a hydrogenation process for the production of 6-methylheptan-2-one is, for example, the liquid phase hydrogenation in two or more reactors, all of which are operated with product recycling, as described in US Pat. No. 5,831,135.
- the selective hydrogenation in the process according to the invention from 6-methylhept-3-en-2-one to 6-methylheptan-2-one takes place in the temperature range 0 to 200 ° C., in particular 40 to 150 ° C.
- the reaction pressure is between 1 and 200 bar, preferably 1 to 30 bar, in particular 1 to 15 bar.
- the selective hydrogenation has the advantage that with practically 100% conversion, the target product is obtained in a yield of over 99%. Any saturated carbonyl compounds present in the starting material, such as 3-methylbutanal or acetone, are almost not hydrogenated.
- the 6-methylheptan-2-one produced by the process according to the invention is an intermediate for the production of isophytol, a building block for the synthesis of vitamin E. Furthermore, this compound is used for the production of tetrahydrolinalool, dihydrogeraniol and other flavorings.
- the test was carried out in a test facility consisting of a bubble column reactor, a thin-film evaporator and a distillation device.
- the isobutene was introduced below, together with an excess of synthesis gas and a high-boiling solvent containing the catalyst, into the bubble column. Unreacted synthesis gas was removed at the top of the reactor.
- the liquid fractions residual olefin, aldehydes, by-products, high-boiling solvent, catalyst
- the high-boiling solvent used was dioctyl phthalate, which was present in the reactor at 20% by weight, because when the test was started there were no high boilers from the process and little would form during the test period.
- the rhodium concentration in the reactor was 30 ppm rhodium, tris (2.4-ditert.-butylphenyl) phosphite was added as the ligand, the P / Rh ratio was 20/1.
- the bubble column was heated from the outside to a constant 115 ° C via a double jacket, the operating pressure was 50 bar synthesis gas.
- the aldolization was carried out in a test apparatus which is shown schematically in FIG. 1.
- a pump 1 is used to pump the continuous catalyst phase 2 into the circuit.
- aldehyde and ketone are mixed together through line 3 or separately through lines 3 and 4.
- the starting materials were mixed in exclusively via line 3.
- the multiphase mixture is 5 pumped through the tube reactor 6 with a length of 3 m and a diameter of 17.3 mm, which was provided with static mixing elements with a hydraulic diameter of 2 mm.
- the resulting mixture 7, consisting of the reaction product, unreacted starting material and the catalyst, can be freed of volatile constituents in the gas separator 8 by discharge in line 9.
- this line was closed.
- the liquid stream 10 occurring after the degassing 8 is passed into a phase separation container 11.
- the aqueous catalyst phase 2 is separated off and returned to the circuit.
- the organic phase which has passed over a weir and which contains the reaction product is removed from line 12.
- the heat of reaction can be removed via heat exchangers 13, 14 and 15 located outside the reactor.
- the first table attached to the example first describes the catalyst composition in mass percentages, then the amount of the starting material and its composition in mass percentages of the gas chromatographic analysis.
- the product composition is also listed in mass percentages of the gas chromatographic analysis.
- the space-time yield (RZA), the conversion (U) of the aldehydes, the selectivity (S) for the desired aldol condensation products and the loading factor (B) are given.
- RZA space-time yield
- U conversion of the aldehydes
- S selectivity for the desired aldol condensation products
- B loading factor
- This example describes the process according to the invention for the aldol condensation of acetone (Ac) and 3-methylbutanal (3-MBA) in cyclohexane (CH) to 6-methyl-3-he ⁇ ten-2-one (6-MH).
- the formation of the by-products 4-methyl-3-penten-2-one (4-MP), 3-methyl-2-isopropyl-2-butenal (3-MiPB), 5-methyl-2-isopropyl-2-hexenal ( 5-MiPH), 4-hydroxy-6-methylheptan-2-one (6-HMH) and the other high boilers (HS) are given in the table below in% by weight.
- the reactor was flowed through with a catalyst load of 400 kg / h at a temperature of 80 ° C. at the autogenous pressure of the reactants.
- 6-methyl-3-methylhepten-2-one can be prepared with high selectivity with high space-time yields using the process according to the invention.
- the example hydrogenation of 6-methyl-3-hepten-2-one (6-MH) to 6-methylheptan-2-one (6-MHa) was carried out in a differential cycle reactor under isothermal and isobaric conditions.
- 70 g of a Pd / Al 2 O 3 contact were used as catalyst.
- the fixed bed had a diameter of 4 mm.
- the catalyst used was previously reduced at 80 ° C and a hydrogen pressure of 15 bar over a period of 18 h.
- the circulation volume flow of the reaction mixture was 45 l / h. This corresponds to a cross-sectional load of 35 m 3 / m / h.
- Methylheptan-2-ol (6-MHO) and high boilers (HS) analyzed.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10149349 | 2001-10-06 | ||
DE10149349A DE10149349A1 (de) | 2001-10-06 | 2001-10-06 | Verfahren zur Herstellung von 6-Methylheptan-2-on und dessen Verwendung |
PCT/EP2002/010873 WO2003031383A1 (de) | 2001-10-06 | 2002-09-27 | Verfahren zur herstellung von 6-methylheptan-2-on und dessen verwendung |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1440051A1 true EP1440051A1 (de) | 2004-07-28 |
Family
ID=7701638
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP02777243A Withdrawn EP1440051A1 (de) | 2001-10-06 | 2002-09-27 | Verfahren zur herstellung von 6-methylheptan-2-on und dessen verwendung |
Country Status (7)
Country | Link |
---|---|
US (1) | US20040249218A1 (en22) |
EP (1) | EP1440051A1 (en22) |
JP (1) | JP2005504839A (en22) |
CN (1) | CN1564797A (en22) |
AR (1) | AR036733A1 (en22) |
DE (1) | DE10149349A1 (en22) |
WO (1) | WO2003031383A1 (en22) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0322247D0 (en) * | 2003-09-23 | 2003-10-22 | Exxonmobil Chem Patents Inc | Improvement in or relating to an isobutylene containing stream |
CN101018755B (zh) * | 2004-09-14 | 2010-07-28 | 帝斯曼知识产权资产管理有限公司 | 饱和脂族酮的制备方法 |
CN104478683B (zh) * | 2014-09-24 | 2016-03-09 | 浙江新化化工股份有限公司 | 一种2-庚酮的合成方法 |
CN105037120B (zh) * | 2015-05-25 | 2016-09-21 | 吉林北沙制药有限公司 | 一种甲基庚酮的新型合成方法 |
CN104926631A (zh) * | 2015-05-30 | 2015-09-23 | 吉林众鑫化工集团有限公司 | 一种以3-甲基-3-丁烯基-1醇制备异戊醛的方法 |
CN116041158B (zh) * | 2021-10-28 | 2024-08-09 | 中国石油化工股份有限公司 | 4-甲基-3-戊烯-2-酮液相加氢制备甲基异丁酮的方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4599206A (en) * | 1984-02-17 | 1986-07-08 | Union Carbide Corporation | Transition metal complex catalyzed reactions |
JPH0660113B2 (ja) * | 1986-07-31 | 1994-08-10 | 住友化学工業株式会社 | イソバレルアルデヒドおよび/またはイソアミルアルコ−ルの製造方法 |
US5840992A (en) * | 1995-04-04 | 1998-11-24 | Kuraray Co., Ltd. | Process for producing 6-methylheptan-2-one |
US5955636A (en) * | 1996-07-05 | 1999-09-21 | Kuraray Co., Ltd. | Process for producing 6-methyl-3-hepten-2-one and 6-methyl-2-heptanone analogues, and process for producing phyton or isophytol |
-
2001
- 2001-10-06 DE DE10149349A patent/DE10149349A1/de not_active Withdrawn
-
2002
- 2002-09-27 US US10/490,451 patent/US20040249218A1/en not_active Abandoned
- 2002-09-27 CN CN02819785.2A patent/CN1564797A/zh active Pending
- 2002-09-27 WO PCT/EP2002/010873 patent/WO2003031383A1/de not_active Application Discontinuation
- 2002-09-27 EP EP02777243A patent/EP1440051A1/de not_active Withdrawn
- 2002-09-27 JP JP2003534371A patent/JP2005504839A/ja active Pending
- 2002-10-04 AR ARP020103746A patent/AR036733A1/es not_active Application Discontinuation
Non-Patent Citations (1)
Title |
---|
See references of WO03031383A1 * |
Also Published As
Publication number | Publication date |
---|---|
CN1564797A (zh) | 2005-01-12 |
US20040249218A1 (en) | 2004-12-09 |
AR036733A1 (es) | 2004-09-29 |
DE10149349A1 (de) | 2003-04-17 |
JP2005504839A (ja) | 2005-02-17 |
WO2003031383A1 (de) | 2003-04-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0987240B1 (de) | Verfahren zur Hydrierung von Hydroformylierungsgemischen | |
EP1674441B1 (de) | Verfahren zur Hydroformylierung von Olefinen | |
EP0216151B1 (de) | Verfahren zur Herstellung von 2-Ethylhexanol | |
EP1219584B1 (de) | Verfahren zur Hydrierung von Hydroformylierungsgemischen | |
EP1231194B1 (de) | Herstellung von 1-Olefinen | |
EP1485341A2 (de) | Verfahren zur hydroformylierung von olefinen | |
WO2010000382A2 (de) | Verfahren zur herstellung von neopentylglykol | |
EP2456745A2 (de) | Verfahren zur herstellung von decancarbonsäuren | |
WO2014008974A1 (de) | Verfahren zur herstellung von isononansäureestern, ausgehend von 2-ethylhexanol | |
DE102008007080A1 (de) | Verfahren zur Herstellung von C9-Alkohol aus C8-Olefinen | |
WO2003031383A1 (de) | Verfahren zur herstellung von 6-methylheptan-2-on und dessen verwendung | |
DE2933919C2 (de) | Verfahren zur Herstellung von 2-Methyl-2-sek.-butyl-1,3-propandiol | |
DE3534317A1 (de) | Verfahren zur herstellung von nonadecandiolen | |
DE1170920B (de) | Verfahren zur Synthese von Alkoholen nach dem Oxoverfahren | |
EP1090899B1 (de) | Verfahren zur Herstellung von 1,3-Diolen | |
EP3077358B1 (de) | Verfahren zur herstellung von 2-methylbutanal aus den bei der herstellung von gemischen isomerer a, -ungesättigter decenale anfallenden nebenströmen | |
EP0436860A1 (de) | Verfahren zur Herstellung von 2-(4-Chlorphenyl)-3-methyl-buttersäure | |
DE2106243C2 (de) | Verfahren zur Herstellung von Aldehyden | |
EP3077356B1 (de) | Verfahren zur herstellung von isomeren hexansäuren aus den bei der herstellung von pentanalen anfallenden nebenströmen | |
WO2004022515A1 (de) | Kontinuierliches verfahren zur herstellung von carbonylverbindungen | |
DE10236918A1 (de) | Verfahren zur Herstellung von Alkylphenylcarbinolen | |
DE10261712A1 (de) | Verfahren zur Addition von Formaldehyd an Olefine | |
DE10326237A1 (de) | Verfahren zur Gewinnung von Alkoholen | |
DE10147775A1 (de) | Herstellung von 1-Olefinen | |
DE1011864B (de) | Verfahren zur Herstellung von Alkoholen durch Oxosynthese |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20040219 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
18W | Application withdrawn |
Effective date: 20041227 |