WO2003031383A1 - Verfahren zur herstellung von 6-methylheptan-2-on und dessen verwendung - Google Patents

Verfahren zur herstellung von 6-methylheptan-2-on und dessen verwendung Download PDF

Info

Publication number
WO2003031383A1
WO2003031383A1 PCT/EP2002/010873 EP0210873W WO03031383A1 WO 2003031383 A1 WO2003031383 A1 WO 2003031383A1 EP 0210873 W EP0210873 W EP 0210873W WO 03031383 A1 WO03031383 A1 WO 03031383A1
Authority
WO
WIPO (PCT)
Prior art keywords
carried out
catalyst
hydrogenation
methylbutanal
methyl
Prior art date
Application number
PCT/EP2002/010873
Other languages
English (en)
French (fr)
Inventor
Klaus-Diether Wiese
Guido Protzmann
Original Assignee
Oxeno Olefinchemie Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oxeno Olefinchemie Gmbh filed Critical Oxeno Olefinchemie Gmbh
Priority to EP02777243A priority Critical patent/EP1440051A1/de
Priority to US10/490,451 priority patent/US20040249218A1/en
Priority to JP2003534371A priority patent/JP2005504839A/ja
Publication of WO2003031383A1 publication Critical patent/WO2003031383A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/61Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
    • C07C45/62Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by hydrogenation of carbon-to-carbon double or triple bonds

Definitions

  • the present invention relates to a three-stage process for the preparation of 6-methylheptan-2-one from isobutene and the use of the product thus produced.
  • 6-methylheptanone is an intermediate for the production of isophytol, a building block for the synthesis of vitamin E. It is also the starting material for the synthesis of tetrahydrolinalool, dihydrogeraniol and other flavorings.
  • the title compound can also be obtained by hydrogenating 6-methyl-5-hepten-2-one or 6-methyl-3,5-heptadien-2-one over nickel or other catalysts (Izv. Akad. Nauk SSSR, Ser. Khim (5) (1972) 1052). Since the two starting materials are expensive, the target product cannot be produced economically in this way.
  • EP 0 816 321 A discloses a two-stage process for the preparation of 6-methylhepten-2-one.
  • 3-methylbutanal is aldol condensed with acetone.
  • the raw product is hydrogenated to the target product.
  • the aldol condensation is carried out batchwise in an autoclave at a pressure of 1.9 bar and a temperature of 72 ° C.
  • Acetone is introduced and 3-methylbutanal and 2% sodium hydroxide solution are added dropwise over 175 minutes.
  • the organic phase is separated off. This is hydrogenated for 7 hours at 120 ° C. and a pressure of 5 to 9 bar on 5% Pd / activated carbon.
  • the hydrogenation discharge is after filtering off the catalyst worked up by distillation.
  • the yield of the target product over both stages is 62% based on 3-methylbutanal.
  • This method has the disadvantages that both stages are carried out discontinuously, with a relatively long cycle time, which in turn results in low space-time yields.
  • EP 0 765 853 describes a further two-stage process for the preparation of 2-methylheptan- 2-one.
  • 3-methylbutanal is reacted with acetone to 4-hydroxy-6-methylheptan-2-one and in a lower yield to 6-methyl-3-hepten-2-one. This is done to increase the selectivity by reacting the aldehyde with acetone in a molar ratio of 1: 3 to 1:10 with a base in a molar ratio to the to aldehyde of 0.1 to 20%.
  • the low base addition is said to increase the selectivity, i. H. avoid the self-condensation of the aldehyde or acetone.
  • the disadvantage of this reaction procedure is that the space-time yield is too low for an industrial process.
  • this mixture is hydrogenated with simultaneous elimination of water.
  • aqueous alkali or alkaline earth lyes are used as catalysts.
  • precipitated acetate is filtered off and the two intermediates are obtained by distillation.
  • the distillate is hydrogenated in the presence of an acid (p-toluenesulfonic acid) at 100 ° C. and a pressure of 8 bar on a contact made of 5% Pd / activated carbon.
  • the catalyst is filtered off from the hydrogenation discharge, the organic phase is separated off and the target product is separated off therefrom by distillation.
  • the yield of 6-methylheptan-2-one is 65% over both stages, based on 3-methylbutanal.
  • This process has several disadvantages: the base used in the first stage is neutralized with acetic acid. As a result, the process is burdened by additional material costs. The resulting acetates have to be disposed of, which entails additional costs.
  • the present invention therefore relates to a process for the preparation of 6-methyl-heptan-2-one characterized by a) hydroformylation of isobutene to 3-methylbutanal b) base-catalyzed aldol condensation of 3-methylbutane with acetone to 6-methylhept-3- en-2-one, the molar ratio of 3-methylbutanal to the base used being more than 1: 0.3 and c) hydrogenation of 6-methylhept-3-en-2-one to 6-methyl-heptan-2-one ,
  • the 6-methyl-heptan-2-one produced according to the invention can be used to prepare isophytol, tetrahydrolinalool or dihydrogeraniol.
  • the isobutene used as the starting material for the production of 6-methylheptan-2-one by the process according to the invention can come from many sources.
  • Isobutene can be used as a pure substance or as an isobutene-containing mixture of substances, e.g. B. with other C 4 hydrocarbons.
  • Technical mixtures containing isobutene are the C section of an FCC, the C 4 section of a steam cracker, raffinate I, obtained from the C section of a steam cracker by butadiene extraction, or a hydrogenated C 4 section of a steam cracker, where most of the butadiene has been selectively hydrogenated to linear butenes.
  • Other isobutene-containing streams are mixtures which have been obtained by dehydrogenating hydrocarbon streams containing isobutane.
  • isobutene-rich streams are generated by the isomerization of C 4 streams with linear butenes.
  • isobutene is obtained from a C 4 cut after two reprocessing processes.
  • the first step that the two processing variants have in common is the removal of most of the butadiene. If butadiene can be marketed well or if it is self-consumed, it is separated by extraction or extractive distillation. In other cases, it is selectively hydrogenated to linear butenes up to a residual concentration of approximately 2000 ppm. What remains in both cases is a hydrocarbon mixture (raffinate I or hydrogenated crack C 4 ) which, in addition to the saturated hydrocarbons, contains n-butane and isobutane, the olefins, isobutene, 1-butene and 2-butenes.
  • Isobutene is separated from this hydrocarbon mixture by reaction with methanol to give Memyl-tert.-butyleth.er (MTBE).
  • MTBE Memyl-tert.-butyleth.er
  • the cleavage of MTBE provides a mixture of methanol and isobutene, which can be easily separated into the two components.
  • isobutene can be obtained after reaction with water via the intermediate tert-butanol and its cleavage.
  • an almost butadiene-free C 4 cut (C 4 stream from FCC, raffinate I or hydrogenated crack C) can be hydroisomerized in a reactive column.
  • a top product can be obtained which consists of isobutane and isobutene.
  • the hydroformylation of isobutene with synthesis gas to 3-methylbutanal is known.
  • Cobalt or rhodium catalysts can be used. In cobalt catalysis (DE 39 02 892 AI) the yield is up to 74%.
  • 2,2-dimethylpropanal and isobutane are formed.
  • Favorable yields are achieved in the hydroformylation with rhodium catalysts in the presence of organic phosphite ligands.
  • the hydroformylation of isobutene to 3-methylbutanal using a catalyst system consisting of rhodium and a bisphosphite is e.g. For example, in US 4,668,651, US 4,769,498 and WO 85-03702. No.
  • 4,467,116 describes, inter alia, the terminal hydroformylation of ⁇ -olefins dialkylated in the 2-position.
  • Catalyst systems consist of Rhodium and a triarylphosphine exist, at least one aryl radical in the ortho position carrying a bulky substituent.
  • a catalyst system which consists of rhodium and a phosphite of the general structure I.
  • Ar 15 Ar 2 and Ar 3 are aromatic radicals which can be substituted or unsubstituted, in each case the same or different.
  • Suitable aromatic radicals are, for example, the phenyl, the naphthyl, phenanthryl or the anthracyl radical. At least one of the aromatic radicals bears a group R i in the ortho position to the phosphite oxygen and a further substituent X i in the m or p position.
  • Ri can in turn be aliphatic, cycloaliphatic, aromatic or heterocyclic. Purely aliphatic residues have the general structure II.
  • Ra, Rb and Rc can be the same or different and denote hydrocarbon radicals with 1 to 6 carbon atoms.
  • Ri is preferably a phenyl or tert-butyl group.
  • Xi is a hydrocarbon or ether residue with 1 to 6 carbon atoms each.
  • the hydroformylation of isobutene or a hydrocarbon mixture which contains isobutene as the only unsaturated compound, according to step a), is preferably carried out using the catalyst system described above, consisting of rhodium and a triaryl phosphite, carried out in a homogeneous reaction (a liquid phase).
  • the reaction here takes place in a temperature range from 60 ° C. to 180 ° C., preferably in the range from 90 ° C. to 150 ° C.
  • the reaction pressure is between 10 bar and 200 bar, preferably between 20 bar and 100 bar.
  • a mixture of carbon monoxide and hydrogen in a molar ratio of 1/10 to 10/1 is used as the hydroformylation agent.
  • the rhodium concentration is 5 to 500 ppm by weight, preferably 10 to 200 ppm by weight. 1 to 50 moles of triaryl phosphite, preferably 5 to 30 moles, are used per mole of rhodium.
  • the reaction can be carried out batchwise, but a continuous procedure is advantageous.
  • the reaction product is expediently separated by distillation into unreacted isobutene, 3-methylbutanal, high boilers which contain the catalyst, and by-products. Unreacted isobutene and the catalyst are returned to the hydroformylation reactor.
  • step b Aldol condensation
  • the aldol condensation of 3-methylbutanal with acetone to 6-methylhept-3-en-2-one is preferably carried out as a two-phase reaction.
  • the reaction in step b) can be carried out continuously or batchwise, in a tubular reactor, flow tube or in a stirred tank.
  • the aldol condensation is base-catalyzed, preferred bases are inorganic, aqueous systems with a base concentration of 0.1 to 15% by weight. Common bases are alkali solutions such as NaOH, KOH, K 2 O, Na 2 O or NaHCO 3 , Na 2 CO 3 , K 2 CO 3 , acetates, formates or triethylamine.
  • Aldol condensation not only produces the desired product 6-methylhept-3-en-2-one, but also the by-products 4-methyl-3-penten-2-one (4-MP), 3-methyl-2-isopropyl- 2-butenal (3-MiPB), 5-methyl-2-isopropyl-2-hexenal (5-MiPH), 4-hydroxy-6-methylheptan-2-one (6-HMH).
  • the connections are subject to e.g. B. also an enol tautomerism, where all tautomeric forms of 6-methylhept-3-en-2-one are to be understood as a product of value.
  • step b) is carried out by dispersing an organic phase containing methyl butanal in a continuous phase containing the catalyst.
  • the reaction can be carried out in a tubular reactor, the catalyst in the continuous phase and the starting material in an organic, disperse phase is included and the loading factor B of the reactor is equal to or greater than 0.8 and the mass ratio between the continuous and disperse phase is greater than 2.
  • aqueous solutions of hydroxides are preferred as catalyst phases
  • Hydrogen carbonates, carbonates or carboxylates are used in the form of their alkali or alkaline earth compounds, in particular sodium and potassium hydroxide solutions.
  • the concentration of the catalyst in the catalyst solution is between 0.1 and 15% by mass, in particular between 0.1 and 5% by mass.
  • 3-methylbutanal, acetone and optionally a solvent are expediently fed into the catalyst phase in front of the respective reactor.
  • the molar ratio between 3-methylbutanal and acetone is 5/1 to 1/10, preferably 1/1 to 1/5.
  • the reaction takes place in a temperature range from 40 ° C. to 150 ° C., preferably in the range from 50 ° C. to 120 ° C.
  • the reaction time is between 0.1 and 20 minutes, preferably between 0.2 and 5 minutes.
  • the catalyst phase is separated from the reaction discharge and returned to the reactor. Unreacted feedstocks, some product, water and optionally solvent are preferably distilled off before the phase separation.
  • the distillate separates Condensation in an aqueous and organic phase, which can be returned to the reactor. After separation of the educts, in particular acetone, by distillation, the aqueous phase is preferably discarded in part to remove the water of reaction and partly returned to the process after optional use as washing liquid.
  • the product phase separated from the catalyst can optionally be worked up by distillation to pure 2-methylhept-3-en-2-one after a water wash. Another possibility is to use the crude product separated from the catalyst in the next stage. This procedure makes it possible to produce the desired ⁇ , ⁇ -unsaturated ketone in a selectivity of 95% based on 3-methylbutanal.
  • step b) it is possible to use a solvent.
  • the use of a solvent often results in an increase in the selectivity of the aldol condensation, control of the water discharge from the catalyst solution and simplification of the water separation from the aldol condensate.
  • a solvent is preferably used in which 3-methylbutanal, acetone and 6-methylhept-3-enone are soluble, the base or the continuous phase being insoluble in the solvent.
  • Such a solvent should have the following properties: It dissolves products and starting materials and is hardly soluble even in the catalyst phase. It is inert in the aldol condensation and optionally in the hydrogenation. It can be separated from the target products 6-methylhept-3-en-2-one and / or 6-methylheptan-2-one by distillation.
  • Suitable solvents are, for example, ethers or hydrocarbons such as toluene or cyclohexane.
  • solvents are preferred which form a minimum heterotrope with water, so that the separation of the water from the aldol condensate is particularly simple. Therefore, cyclohexane or toluene are preferred solvents.
  • step c The 6-methylhept-3-en-2-one obtained by crossed aldol condensation is selectively converted into 6-methylheptane in pure form or as a mixture which can contain acetone, 3-methylbutanal, water, solvents and high boilers. 2-one hydrogenated. This is preferably done on fixed bed Catalysts and / or acidic catalysts. Acid catalysts often contain acidic carrier material or carrier material soaked in acidic substances.
  • catalysts which can contain palladium, platinum, rhodium and / or nickel as the hydrogenation-active component.
  • the metals can be used in pure form, as compounds with oxygen or as alloys.
  • Preferred catalysts are those in which the hydrogenation-active metal is applied to a support.
  • Suitable carrier materials are aluminum oxide, magnesium oxide, silicon oxide, titanium dioxide and their mixed oxides and activated carbon. Of these catalysts, particularly preferred catalysts are palladium on activated carbon and palladium on aluminum oxide.
  • the palladium content is 0.1 to 5% by mass, preferably 0.2 to 1% by mass.
  • the hydrogenation can be carried out continuously or batchwise and both in the gas phase and in the liquid phase. Hydrogenation in the liquid phase is preferred because the gas phase process requires a greater amount of energy because of the necessary cycle control of large gas volumes.
  • Different process variants can be selected for continuous liquid phase hydrogenation. It can be carried out adiabatically or practically isothermally, ie with a temperature rise of less than 10 ° C, in one or more stages. In the latter case, the reactors can be operated adiabatically or practically isothermally or one can be operated adiabatically and the others practically isothermally.
  • the hydrogenation is carried out in the liquid / gas mixed phase or in the liquid phase in three-phase reactors in cocurrent, the hydrogen being finely distributed in the liquid to be hydrogenated in a manner known per se.
  • the reactors are preferably operated with high liquid loads of 15 to 300, in particular 25 to 150 m 3 per m 2 cross section of the empty reactor and hour.
  • a hydrogenation process for the production of 6-methylheptan-2-one is, for example, the liquid phase hydrogenation in two or more reactors, all of which are operated with product recycling, as described in US Pat. No. 5,831,135.
  • the selective hydrogenation in the process according to the invention from 6-methylhept-3-en-2-one to 6-methylheptan-2-one takes place in the temperature range 0 to 200 ° C., in particular 40 to 150 ° C.
  • the reaction pressure is between 1 and 200 bar, preferably 1 to 30 bar, in particular 1 to 15 bar.
  • the selective hydrogenation has the advantage that with practically 100% conversion, the target product is obtained in a yield of over 99%. Any saturated carbonyl compounds present in the starting material, such as 3-methylbutanal or acetone, are almost not hydrogenated.
  • the 6-methylheptan-2-one produced by the process according to the invention is an intermediate for the production of isophytol, a building block for the synthesis of vitamin E. Furthermore, this compound is used for the production of tetrahydrolinalool, dihydrogeraniol and other flavorings.
  • the test was carried out in a test facility consisting of a bubble column reactor, a thin-film evaporator and a distillation device.
  • the isobutene was introduced below, together with an excess of synthesis gas and a high-boiling solvent containing the catalyst, into the bubble column. Unreacted synthesis gas was removed at the top of the reactor.
  • the liquid fractions residual olefin, aldehydes, by-products, high-boiling solvent, catalyst
  • the high-boiling solvent used was dioctyl phthalate, which was present in the reactor at 20% by weight, because when the test was started there were no high boilers from the process and little would form during the test period.
  • the rhodium concentration in the reactor was 30 ppm rhodium, tris (2.4-ditert.-butylphenyl) phosphite was added as the ligand, the P / Rh ratio was 20/1.
  • the bubble column was heated from the outside to a constant 115 ° C via a double jacket, the operating pressure was 50 bar synthesis gas.
  • the aldolization was carried out in a test apparatus which is shown schematically in FIG. 1.
  • a pump 1 is used to pump the continuous catalyst phase 2 into the circuit.
  • aldehyde and ketone are mixed together through line 3 or separately through lines 3 and 4.
  • the starting materials were mixed in exclusively via line 3.
  • the multiphase mixture is 5 pumped through the tube reactor 6 with a length of 3 m and a diameter of 17.3 mm, which was provided with static mixing elements with a hydraulic diameter of 2 mm.
  • the resulting mixture 7, consisting of the reaction product, unreacted starting material and the catalyst, can be freed of volatile constituents in the gas separator 8 by discharge in line 9.
  • this line was closed.
  • the liquid stream 10 occurring after the degassing 8 is passed into a phase separation container 11.
  • the aqueous catalyst phase 2 is separated off and returned to the circuit.
  • the organic phase which has passed over a weir and which contains the reaction product is removed from line 12.
  • the heat of reaction can be removed via heat exchangers 13, 14 and 15 located outside the reactor.
  • the first table attached to the example first describes the catalyst composition in mass percentages, then the amount of the starting material and its composition in mass percentages of the gas chromatographic analysis.
  • the product composition is also listed in mass percentages of the gas chromatographic analysis.
  • the space-time yield (RZA), the conversion (U) of the aldehydes, the selectivity (S) for the desired aldol condensation products and the loading factor (B) are given.
  • RZA space-time yield
  • U conversion of the aldehydes
  • S selectivity for the desired aldol condensation products
  • B loading factor
  • This example describes the process according to the invention for the aldol condensation of acetone (Ac) and 3-methylbutanal (3-MBA) in cyclohexane (CH) to 6-methyl-3-he ⁇ ten-2-one (6-MH).
  • the formation of the by-products 4-methyl-3-penten-2-one (4-MP), 3-methyl-2-isopropyl-2-butenal (3-MiPB), 5-methyl-2-isopropyl-2-hexenal ( 5-MiPH), 4-hydroxy-6-methylheptan-2-one (6-HMH) and the other high boilers (HS) are given in the table below in% by weight.
  • the reactor was flowed through with a catalyst load of 400 kg / h at a temperature of 80 ° C. at the autogenous pressure of the reactants.
  • 6-methyl-3-methylhepten-2-one can be prepared with high selectivity with high space-time yields using the process according to the invention.
  • the example hydrogenation of 6-methyl-3-hepten-2-one (6-MH) to 6-methylheptan-2-one (6-MHa) was carried out in a differential cycle reactor under isothermal and isobaric conditions.
  • 70 g of a Pd / Al 2 O 3 contact were used as catalyst.
  • the fixed bed had a diameter of 4 mm.
  • the catalyst used was previously reduced at 80 ° C and a hydrogen pressure of 15 bar over a period of 18 h.
  • the circulation volume flow of the reaction mixture was 45 l / h. This corresponds to a cross-sectional load of 35 m 3 / m / h.
  • Methylheptan-2-ol (6-MHO) and high boilers (HS) analyzed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Verfahren zur Herstellung von 6-Methyl-heptan-2-on gekennzeichnet durch a) Hydroformylierung von Isobuten zu 3-Methylbutanal b) basisch katalysierte Aldolkondensation des 3-Methylbutanals mit Aceton zu 6-Methylhept-3-en-2-on, wobei das Molverhältnis von 3-Methylbutanal zur eingesetzten Base mehr als 1 : 0,3 beträgt und c) Hydrierung des 6-Methylhept-3-en-2-on zum 6-Methyl-heptan-2-on. Verwendung des so hergestellten 6-Methylheptan-2-on zur Darstellung von Isophytol, Tetrahydrolinalool oder Dihydrogeraniol.

Description

Verfahren zur Herstellung von 6-Methylheptan-2-on und dessen Verwendung
Die vorliegende Erfindung betrifft ein dreistufiges Verfahren zur Herstellung von 6- Methylheptan-2-on aus Isobuten und die Verwendung des so hergestellten Produkts.
6-Methylheptanon ist ein Zwischenprodukt für die Herstellung von Isophytol, einen Baustein für die Synthese von Vitamin E. Weiterhin ist es Ausgangsstoff für die Synthese von Tetrahydrolinalool, Dihydrogeraniol und weiteren Aromastoffen.
Für die Herstellung von 6-Methylheptan-2-on sind aus der Literatur verschiedene Synthesewege bekannt.
Durch Umsetzung von 3-Methylbutylhalogeniden mit Acetessigsäureester in Gegenwart von Basen entsteht ein Zwischenprodukt, dessen Hydrolyse und Decarboxilierung 6-Methylheptan- 2-on ergibt. (Wagner et al in Synthetic Organic Chemistry, S. 327, John Wiley & Sons, Inc.). Diese Synthese weist mehrere Nachteile auf: Die Stoffkosten sind insbesondere wegen des Preises von Acetessigsäureester hoch. Es müssen mindestens äquimolare Mengen an Base eingesetzt werden. Als Nebenprodukt fällt ein Halogenid an, das entsorgt werden uss.
Durch Hydrierung von 6-Methyl-5-hepten-2-on oder 6-Methyl-3,5-heptadien-2-on an Nickel oder anderen Katalysatoren kann die Titelverbindung auch erhalten werden(Izv. Akad. Nauk SSSR, Ser. Khim (5) (1972) 1052). Da die beiden Ausgangsstoffe teuer sind, kann auf diesem Weg das Zielprodukt nicht wirtschaftlich hergestellt werden.
In EP 0 816 321 A wird ein zweistufiges Verfahren zur Herstellung von 6-Methylhepten-2-on offengelegt. In der ersten Stufe wird 3-Methylbutanal mit Aceton aldolkondensiert. In der zweiten Stufe wird das Rohprodukt zum Zielprodukt hydriert. Die Aldolkondensation wird diskontinuierlich in einem Autoklaven bei einem Druck von 1,9 bar und einer Temperatur von 72 °C durchgeführt. Aceton wird vorgelegt und 3-Methylbutanal und 2 %ige Natronlauge während 175 Minuten zugetropft. Nach dem Abkühlen auf Raumtemperatur wird die organische Phase abgetrennt. Diese wird 7 h bei 120 °C und einem Druck von 5 bis 9 bar an 5 % Pd/Aktiv-Kohle hydriert. Der Hydrierungsaustrag wird nach Abfiltration des Katalysators destillativ aufgearbeitet. Die Ausbeute an Zielprodukt über beide Stufen beträgt bezogen auf 3- Methylbutanal 62 %. Dieses Verfahren hat die Nachteile, dass beide Stufen diskontinuierlich durchgeführt werden, mit einer relativ langen Taktzeit, was wiederum geringe Raum-Zeit- Ausbeuten zur Folge hat.
In EP 0 765 853 wird ein weiteres zweistufiges Verfahren zur Herstellung von 2-Methylheptan- 2-on beschrieben. In der ersten Stufe wird 3-Methylbutanal mit Aceton zu 4-Hydroxy-6- methylheptan-2-on und in geringerer Ausbeute zu 6-Methyl-3-hepten-2-on umgesetzt. Dies erfolgt zur Selektivitätserhöhung durch Umsetzen des Aldehyds mit Aceton im Molverhältnis 1 : 3 bis 1 : 10 mit einer Base im Molverhältnis zum zu Aldehyd von 0,1 bis 20 %.
Die geringe Basenzugabe soll eine Erhöhung der Selektivität, d. h. die Vermeidung der Selbstkondensation des Aldehyds bzw. des Acetons bewirken. Nachteilig bei dieser Reaktionsführung ist jedoch die für einen industriellen Prozess zu niedrige Raum-Zeit- Ausbeute.
In der zweiten Stufe wird dieses Gemisch unter gleichzeitiger Wasserabspaltung hydriert. In der ersten Stufe werden wässerige Alkali- oder Erdalkalilaugen als Katalysator eingesetzt. Nach erfolgter Reaktion wird mit Essigsäure neutralisiert, ausgefallendes Acetat abfiltriert und die beiden Zwischenprodukte durch Destillation gewonnen. Das Destillat wird in Gegenwart einer Säure (p-Toluolsulfonsäure) bei 100°C und einem Druck von 8 bar an einem Kontakt aus 5 % Pd/Aktiv-Kohle hydriert. Vom Hydrieraustrag wird der Katalysator abfiltriert, die organische Phase abgetrennt und hieraus durch Destillation das Zielprodukt abgetrennt. Die Ausbeute an 6-Methylheptan-2-on beträgt über beide Stufen, bezogen auf 3-Methylbutanal, 65 %. Dieses Verfahren weist einige Nachteile auf: Die in der ersten Stufe eingesetzte Base wird mit Essigsäure neutralisiert. Dadurch wird das Verfahren durch zusätzliche Stoffkosten belastet. Die dabei entstehenden Acetate müssen entsorgt werden, was weitere Kosten bedingt.
Die bekannten Verfahren erfüllen in wirtschaftlicher Hinsicht noch nicht alle Anforderungen, die an einen in technischen Maßstab ausgeübten Prozess gestellt werden, sei es, dass die
Ausgangsstoffe nicht in ausreichender Menge und/oder nicht kostengünstig zur Verfügung stehen, oder dass die Umwandlung der Ausgangsstoffe zu 6-Methylheptan-2-on an zu aufwendige Prozesse gebunden ist.
Es bestand daher die Aufgabe, ein wirtschaftlicheres Verfahren für die technische Herstellung von 6-Methylheptan-2-on auf der Basis preiswerter und leicht verfügbarer Stoffe zu entwickeln.
Es wurde gefunden, dass 6-Methylheptan-2-on ausgehend von Isobuten durch Hydroformylierung zum Valeraldehyd, dessen Aldolkondensation mit Aceton und abschließende Hydrierung des Aldolisierungsprodukt in großen Mengen zugänglich gemacht werden kann.
Gegenstand der vorliegenden Erfindung ist daher ein Verfahren zur Herstellung von von 6- Methyl-heptan-2-on gekennzeichnet durch a) Hydroformylierung von Isobuten zu 3-Methylbutanal b) basisch katalysierte Aldolkondensation des 3 -Methylbutanais mit Aceton zu 6-Methylhept- 3-en-2-on, wobei das Molverhältnis von 3-Methylbutanal zur eingesetzten Base mehr als 1 : 0,3 beträgt und c) Hydrierung des 6-Methylhept-3-en-2-on zum 6-Methyl-heptan-2-on.
Das erfindungsgemäß hergestellte 6-Methyl-heptan-2-on kann zur Darstellung von Isophytol, Tetrahydrolinalool oder Dihydrogeraniol verwendet werden.
Das als Ausgangsstoff für die Herstellung von 6-Methylheptan-2-on nach dem erfindungsge- mäßen Verfahren eingesetzte Isobuten kann aus vielen Quellen stammen. Isobuten kann als Reinstoff oder als Isobuten-haltiges Stoffgemisch, z. B. mit weiteren C4-Kohlenwasserstoffen eingesetzt werden. Technische Gemische, die Isobuten enthalten, sind der C -Schnitt eines FCC, der C4-Schnitt eines Steamcrackers, Raffinat I, gewonnen aus dem C -Schnitt eines Steamcrackers durch Butadien-Extraktion, oder ein hydrierter C4-Schnitt eines Steamcrackers, wobei der größte Teil des Butadiens selektiv zu linearen Butenen hydriert worden ist. Weitere Isobuten-haltige Ströme sind Gemische, die durch Dehydrierung von Isobutan-haltigen Kohlenwasserstoffströmen erhalten worden sind. Weiterhin werden Isobuten-reiche Ströme durch Gerüstisomerisierung von C4-Strömen mit linearen Butenen erzeugt.
Die Gewinnung von Isobuten aus einem C4-Schnitt erfolgt im Prinzip nach zwei Aufarbei- tungsprozessen. Der erste Schritt den beide Aufarbeitungsvarianten gemeinsam haben, ist die Entfernung des größten Teils des Butadiens. Kann Butadien gut vermarktet werden oder besteht ein Eigenverbrauch, wird es durch Extraktion oder Extraktivdestillation abgetrennt. In anderem Falle wird es bis zu einer Restkonzentration von ca. 2000 ppm selektiv zu linearen Butenen hydriert. Zurück bleibt in beiden Fällen ein Kohlenwasserstoffgemisch (Raffinat I oder hydriertes Crack-C4), das neben den gesättigten Kohlenwasserstoffen, n-Butan und Isobutan, die Olefine, Isobuten, 1 -Buten und 2-Butene, enthält.
Aus diesem Kohlenwasserstoffgemisch wird Isobuten durch Umsetzung mit Methanol zu Memyl-tert.-butyleth.er (MTBE) abgetrennt. Die Rückspaltung von MTBE liefert ein Gemisch aus Methanol und Isobuten, das leicht in die beiden Komponenten getrennt werden kann. Analog kann Isobuten nach Umsetzung mit Wasser über die Zwischenstufe tert.-Butanol und dessen Rückspaltung gewonnen werden.
Alternativ dazu kann ein nahezu Butadien-freier C4-Schnitt (C4-Strom aus FCC, Raffinat I oder hydriertes Crack-C ) in einer Reaktivkolonne hydroisomerisiert werden. Dabei kann ein Kopfprodukt erhalten werden, das aus Isobutan und Isobuten besteht.
Hvdroformyrierung (Schritt a
Die Hydroformylierung von Isobuten mit Synthesegas zu 3-Methylbutanal ist bekannt. Dabei können Kobalt oder Rhodiumkatalysatoren eingesetzt werden. Bei der Kobaltkatalyse (DE 39 02 892 AI) beträgt die Ausbeute bis zu 74 %. Daneben entsteht 2.2-Dimethylpropanal und Isobutan. Günstigere Ausbeuten werden bei der Hydroformylierung mit Rhodiumkatalysatoren in Anwesenheit von organischen Phosphitliganden erreicht. Die Hydroformylierung von Isobuten zu 3-Methylbutanal unter Verwendung eines Katalysatorsystems, das aus Rhodium und einem Bisphosphit besteht, ist z. B. in US 4 668 651, US 4 769 498 und WO 85-03702 offenbart. In US 4 467 116 wird u.a. die endständige Hydroformylierung von in 2-Stellung dialkylierten α-Olefinen beschrieben. Dabei werden Katalysatorsysteme eingesetzt, die aus Rhodium und einem Triarylphosphin bestehen, wobei mindestens ein Arylrest in ortho-Stellung einen sperrigen Substituenten trägt.
In Schritt a) (Hydroformylierung) des erfindungsgemäßen Verfahrens kann ein Katalysatorsystem eingesetzt werden, das aus Rhodium und einem Phosphit der allgemeinen Struktur I besteht.
^O — Ar,
P-0-Ar9
\ 2
O— Ar,
Dabei sind Arl5 Ar2 und Ar3 aromatische Reste, die substitutiert oder unsubstituiert, jeweils gleich oder verschieden sein können. Geeignete aromatische Reste sind beispielsweise der Phenyl-, der Naphthyl-, Phenanthryl- oder der Anthracylrest. Mindestens einer der aromatischen Reste trägt in ortho-Stellung zum Phosphit-Sauerstoff eine Gruppe Ri und in m- oder p-Stellung einen weiteren Substituenten Xi. Ri kann wiederum aliphatisch, cycloaliphatisch, aromatisch oder heterocyclisch sein. Rein aliphatische Reste haben die allgemeine Struktur II.
Figure imgf000006_0001
II
Ra, Rb und Rc können gleich oder verschieden sein und bezeichnen Kohlenwasserstoffreste mit 1 bis 6 Kohlenstoffatomen. Ri ist bevorzugt eine Phenyl- oder tert.-Butylgruppe. Xi ist ein Kohlenwasserstoff- oder Etherrest mit je 1 bis 6 Kohlenstoffatomen.
Die Hydroformylierung von Isobuten oder einem Kohlenwasserstoffgemisch, das als einzige ungesättigte Verbindung Isobuten enthält, gemäß Schritt a), wird bevorzugt unter Verwendung des oben beschriebenen Katalysatorsystems, bestehend aus Rhodium und einem Triarylphospit, in homogener Reaktion (eine flüssige Phase) dvirchgeführt. Die Umsetzung erfolgt hier in einem Temperaturbereich von 60 °C bis 180 °C, vorzugsweise im Bereich von 90 °C bis 150 °C. Der Reaktionsdruck liegt zwischen 10 bar und 200 bar, vorzugsweise zwischen 20 bar und 100 bar. Als Hydroformylierungsagens wird ein Gemisch aus Kohlenmonoxid und Wasserstoff im molaren Verhältnis von 1/10 bis 10/1 eingesetzt. Die Rhodiumkonzentration beträgt 5 bis 500 Gew.-ppm, vorzugsweise 10 bis 200 Gew.-ppm. Je Mol Rhodium werden 1 bis 50 Mol Triarylphosphit, vorzugsweise 5 bis 30 Mol eingesetzt. Die Umsetzung kann diskontinuierlich durchgeführt werden, vorteilhaft ist jedoch eine kontinuierliche Arbeitsweise.
Der Reaktionsaustrag wird zweckmäßig destillatv in nicht umgesetztes Isobuten, 3-Methylbuta- nal, Hochsieder, der den Katalysator enthält, und Nebenprodukte aufgetrennt. Nicht umgesetztes Isobuten und der Katalysator werden in den Hydroformylierungsreaktor zurückgeführt.
Aldolkondensation (Schritt b)
Die Aldolkondensation von 3-Methylbutanal mit Aceton zu 6-Methylhept-3-en-2-on wird bevorzugt als Zweiphasenreaktion durchgeführt. Die Umsetzung in Schritt b) kann kontinuierlich oder diskontinuierlich, im Rohrreaktor, Strömungsrohr oder in einem Rührkessel durchgeführt werden. Die Aldolkondensation ist basenkatalysiert, bevorzugte Basen sind anorganische, wässrige Systeme mit einer Basenkonzentration von 0,1 bis 15 Gew.-%. Gängige Basen sind Alkalilaugen wie NaOH, KOH, K2O, Na2O oder NaHCO3, Na2CO3, K2CO3, Acetate, Formiate oder auch Triethylamin.
In der Aldolkondensation entsteht nicht nur das gewünschte Produkt 6-Methylhept-3-en-2-on, sondern auch die Nebenprodukte 4-Methyl-3-penten-2-on (4-MP), 3-Methyl-2-isopropyl-2- butenal (3-MiPB), 5-Methyl-2-isopropyl-2-hexenal (5-MiPH), 4-Hydroxy-6-Methylheptan-2- on (6-HMH). Die Verbindungen unterliegen z. B. auch einer Enol-Tautomerie, wobei als Wertprodukt alle tautomeren Formen von 6-Methylhept-3-en-2-on zu verstehen sind.
Das Massen- Verhältnis zwischen 3-Methylbutanal und der eingesetzten Base liegt über 0,3, bevorzugt zwischen 1 : 1 und 1 : 2, ganz besonders bevorzugt zwischen 1 : 1 und 1 : 5. In einer besonderen Verfahrensvariante wird in Schritt b) durch Dispergierung einer organischen Phase, enthaltend Methylbutanal in einer kontinuierlichen Phase, enthaltend den Katalysator, durchgeführt.
Die Umsetzung kann, wie in der Patentanmeldung DE 101 06 186.2 (Verfahren zur Durchführung von Mehrphasenreaktionen, insbesondere die Kondensation von Aldehyden mit Ketonen) beschrieben, in einem Rohrreaktor erfolgen, wobei der Katalysator in der kontinuierlichen Phase und das Edukt in einer organischen, dispersen Phase enthalten ist und der Belastungsfaktor B des Reaktors gleich oder größer 0,8 und das Massenverhältnis zwischen kontinuierlicher und disperser Phase größer 2 ist. (Der Belastungsfaktor B ist wie folgt definiert: B = PD/PS. PD [Pa/m] ist ein längenbezogener Druckverlust über den Reaktor unter Betriebsbedingungen und PS [Pam] eine Rechengröße mit der Dimension eines längenbezogenen Druckes, definiert als Verhältnis von Massenstrom M [kg/s] aller Komponenten unter Betriebsbedingungen, multipliziert mit g =9,81 [m/s2], d. h. PS =(M/V)*g.) Als Katalysatorphasen werden in allen Varianten des Verfahrens bevorzugt wässrige Lösungen von Hydroxiden, Hydrogencarbonaten, Carbonaten oder Carboxylaten in Form ihrer Alkali- oder Erdalkaliverbindungen verwendet, insbesondere Natron- und Kalilauge. Die Konzentration des Katalysators in der Katalysatorlösung liegt zwischen 0,1 und 15 Massen-% , insbesondere zwischen 0,1 und 5 Massen-%. Für die weiteren Details des Reaktors und dessen Fahrweise wird auf die Offenbarung der DE 101 06 186 verwiesen.
Zweckmäßig werden 3 -Methylbutanal, Aceton und optional ein Lösungsmittel vor dem jeweiligen Reaktor in die Katalysatorphase eingespeist.
Das molare Verhältnis zwischen 3 -Methylbutanal und Aceton beträgt 5/1 bis 1/10, vorzugsweise 1/1 bis 1/5. Die Umsetzung erfolgt in einem Temperaturbereich 40 °C bis 150 °C, vorzugsweise im Bereich 50 °C bis 120 °C. Die Reaktionszeit liegt zwischen 0,1 und 20 Minuten, vorzugsweise zwischen 0,2 und 5 Minuten.
Optional wird vom Reaktionsaustrag die Katalysatorphase abgetrennt und in den Reaktor zurückgeführt. Vorzugsweise werden vor der Phasentrennung nicht umgesetzte Einsatzstoffe, etwas Produkt, Wasser und optional Lösungsmittel abdestilliert. Das Destillat trennt sich nach Kondensation in eine wässrige und organische Phase, die in den Reaktor zurückgeführt werden kann. Die wässrige Phase wird bevorzugt nach destillativer Abtrennung von Edukten, insbesondere Aceton, zum Teil zur Ausschleusung des Reaktionswassers verworfen und zum Teil nach optionaler Verwendung als Waschflüssigkeit in den Prozess zurückgeführt.
Die vom Katalysator abgetrennte Produktphase kann gegebenenfalls nach einer Wasserwäsche destillativ auf reines 2-Methylhept-3-en-2-on aufgearbeitet werden. Eine andere Möglichkeit besteht darin, das vom Katalysator abgetrennte Rohprodukt in die nächste Stufe einzusetzen. Durch diese Verfahrensweise gelingt es, das gewünschte α,ß -ungesättigte Keton in einer Selektivität von 95 % bezogen auf 3 -Methylbutanal herzustellen.
Es ist in allen Varianten von Schritt b) möglich, ein Lösungsmittel einzusetzen. Der Einsatz eines Lösungsmittel resultiert häufig in einer Erhöhung der Selektivität der Aldolkondensation, Steuerung des Wasseraustrags aus der Katalysatorlösung und Vereinfachung der Wasserabtrennung vom Aldolkondensat.
Bevorzugt wird ein Lösungsmittel eingesetzt, in dem 3 -Methylbutanal, Aceton und 6- Methylhept-3-enon löslich sind, wobei die Base bzw. die kontinuierliche Phase in dem Lösungsmittel nicht löslich ist.
Ein solches Lösungsmittel sollte folgende Eigenschaften besitzen: Es löst Produkte und Edukte und ist selbst in der Katalysatorphase kaum löslich. Es verhält sich in der Aldolkondensation und optional in der Hydrierung inert. Es kann von den Zielprodukten 6-Methylhept-3-en-2-on und/oder 6-Methylheptan-2-on destillativ abgetrennt werden. Geeignete Lösungsmittel sind beispielsweise Ether oder Kohlenwasserstoffe wie Toluol oder Cyclohexan. Insbesonders werden Lösemittel bevorzugt, die mit Wasser ein Minimum-Heterotrop bilden, sodass die Abtrennung des Wassers vom Aldolkondensat besonders einfach ist. Daher sind Cyclohexan oder Toluol bevorzugte Lösungsmittel.
Hydrierung (Schritt c) Das durch gekreuzte Aldolkondensation gewonnene 6-Methylhept-3-en-2-on wird in reiner Form oder als Gemisch, das Aceton, 3 -Methylbutanal, Wasser, Lösungsmittel und Hochsieder enthalten kann, selektiv zu 6-Methylheρtan-2-on hydriert. Bevorzugt erfolgt dies an Festbett- Katalysatoren und /oder aciden Katalysatoren. Acide Katalystoren enthalten häufig acides Trägermaterial oder mit sauerwirkenden Stoffen getränktes Trägermaterial.
Zur Hydrierung werden Katalysatoren eingesetzt, die als hydrieraktive Komponente Palladium, Platin, Rhodium und/oder Nickel enthalten können. Die Metalle können in reiner Form, als Verbindungen mit Sauerstoff oder als Legierungen verwendet werden. Bevorzugte Katalysatoren sind jene, bei denen das hydrieraktive Metall auf einen Träger aufgebracht ist. Geeignete Trägermaterialien sind Aluminiumoxid, Magnesiumoxid, Siliciumoxid, Titandioxid und ihre Mischoxide sowie Aktiv-Kohle. Von diesen Katalysatoren sind besonders bevorzugte Katalysatoren Palladium auf Aktiv-Kohle und Palladium auf Aluminiumoxid.
Bei Kontakten, die aus Palladium und einem Träger bestehen, beträgt der Palladiumgehalt 0,1 bis 5 Massen-%, bevorzugt 0,2 bis 1 Massen-%. Die Hydrierung kann kontinuierlich oder diskontinuierlich und sowohl in der Gasphase als auch in der flüssigen Phase durchgeführt werden. Die Hydrierung in flüssiger Phase wird bevorzugt, weil das Gasphasenverfahren wegen der notwendigen Kjreisführung großer Gasvolumina einen höheren Energieaufwand erfordert. Für die kontinuierliche Flüssigphasenhydrierung können unterschiedliche Verfahrensvarianten gewählt werden. Sie kann adiabatisch oder praktisch isotherm, d. h., mit einem Temperaturanstieg kleiner als 10 °C, ein- oder mehrstufig durchgeführt werden. Im letzteren Fall kann man die Reaktoren adiabatisch oder praktisch isotherm oder die einen adiabatisch und die anderen praktisch isotherm betreiben. Weiterhin ist es möglich, die Selektivhydrierung im geraden Durchgang oder mit Produktrückführung durchzuführen. Die Hydrierung wird in der Flüssig/Gas-Mischphase oder in der Flüssigphase in Dreiphasenreaktoren im Gleichstrom durchgeführt, wobei der Wasserstoff in an sich bekannter Weise in der zu hydrierende Flüssigkeit fein verteilt wird. Im Interesse einer gleichmäßigen Flüssigkeitsverteilung, einer verbesserten Reaktionswärmeabfuhr und einer hohen Raum-Zeit- Ausbeute bei hoher Selektivität werden die Reaktoren vorzugsweise mit hohen Flüssigkeitsbelastungen von 15 bis 300, insbesondere von 25 bis 150 m3 pro m2 Querschnitt des leeren Reaktors und Stunde betrieben. Ein Hydrierverfahren zur Herstellung von 6- Methylheptan-2-on ist beispielsweise die Flüssigphasenhydrierung in zwei oder mehreren Reaktoren, die alle mit Produktrückführung betrieben werden, wie in US 5 831 135 beschrieben. Die Selektivhydrierung im erfindungsgemäßen Verfahren von 6-Methylhept-3-en-2-on zu 6- Methylheptan-2-on erfolgt im Temperaturbereich 0 bis 200°C, insbesondere 40 bis 150°C. Der Reaktionsdruck liegt dabei zwischen 1 und 200 bar, bevorzugt bei 1 bis 30 bar, insbesondere bei 1 bis 15 bar.
Die Selektivhydrierung bietet den Vorteil, dass bei praktisch 100 %-igen Umsatz das Zielprodukt in einer Ausbeute von über 99 % erhalten wird. Gegebenenfalls im Edukt vorhandene gesättigte Carbonylverbindungen, wie 3 -Methylbutanal oder Aceton, werden nahezu nicht hydriert.
Wird reines 6-Methylhept-3-en-2-on hydriert, d. h. wird vor der Hydrierung eine entsprechende Reinigungsstufe (z. B. Destillation) durchlaufen, wird das Zielprodukt in solch guter Qualität erhalten, dass sich eine weitere Reinigung erübrigt.
Wird dagegen ein rohes Aldolkondensationsgemisch in die Hydrierstufe geführt, muss der Hy- drieraustrag destillativ aufgearbeitet werden. Neben dem Zielprodukt wird noch Aceton und 3- Methylbutanal abgetrennt. Die beiden zuletzt genannten Stoffe werden in die Aldolkon- densationsstufe zurückgeführt.
Das nach dem erfindungsgemäßen Verfahren hergestellte 6-Methylheptan-2-on ist ein Zwischenprodukt für die Herstellung von Isophytol, einem Baustein für die Synthese von Vitamin E. Weiterhin wird diese Verbindung zur Herstellung von Tetrahydrolinalool, Dihydrogeraniol und weiteren Aromastoffen eingesetzt.
Die folgenden Beispiele sollen die Erfindung erläutern, nicht aber ihren Anwendungsbereich beschränken, der sich aus den Patentansprüchen ergibt.
Beispiel 1 (Hydroformylierung)
Der Versuch wurde in einer Versuchsanlage, bestehend aus Blasensäulenreaktor, einem Dünnschichtverdampfer und einer Destillationseinrichtung durchgeführt. Das Isobuten wurde unten, zusammen mit einem Überschuß an Synthesegas und einem, den Katalysator enthaltenden hochsiedenden Lösungsmittel, in die Blasensäule eingebracht. Am Kopf des Reaktors wurde nicht umgesetztes Synthesegas abgetrennt. Die flüssigen Anteile (Restolefin, Aldehyde, Nebenprodukte, hochsiedendes Lösungsmittel, Katalysator) wurden dem Dünnschichtverdampfer zugeleitet, der unter vermindertem Druck betrieben wurde, sodass hier der gebildete Aldehyd zusammen mit den nicht umgesetzten Olefinen von den höhersiedenden Komponenten, in denen der Katalysator gelöst war, getrennt wurde. Als hochsiedendes Lösungsmittel wurde Dioctylphthalat eingesetzt, das mit 20 % Gewichtsanteil im Reaktor vorlag, weil beim Anfahren des Versuches kein Hochsieder aus dem Prozess vorlag und sich während der Versuchsdauer auch nur wenig bilden würde. Die Rhodiumkonzentratiom im Reaktor betrug 30 ppm Rhodium, als Ligand wurde Tris(2.4-ditert.-butylphenyl)phosphit zugesetzt, das P/Rh- Verhältnis betrug 20/1. Die Blasensäule wurde von außen über einen Doppelmantel auf konstant 115 °C temperiert, der Betriebsdruck lag bei 50 bar Synthesegas.
Bei den oben angegebenen Reaktionsbedingungen wurde ein Olefinzulauf von 2 kg/h Isobuten eingestellt, die Blasensäule hatte ein Volumen von 2,1 Litern.
Die Bilanzierung der Stoffströme ergab für Isobuten und Folgeprodukte folgende Produktverteilung:
Figure imgf000012_0001
Der Umsatz von Isobuten beträgt 92 % bei einer Selektivität zu 3 -Methylbutanal bezogen auf Isobuten von 99 %.
Beispiel 2 ( Aldolkondensation)
Die Aldolisierung erfolgte in einer Versuchsapparatur, die schematisch in Fig. 1 dargestellt ist. Hierin wird mit einer Pumpe 1 die kontinuierliche Katalysatorphase 2 im Kreislauf gepumpt. Zum Katalysator werden Aldehyd und Keton zusammen durch Leitung 3 oder getrennt durch die Leitungen 3 und 4 zugemischt. In diesem Beispiel wurden die Edukte ausschliesslich über Leitung 3 zugemischt. Die Mehrphasenmischung wird 5 durch den Rohrreaktor 6 mit einer Länge von 3 m und einem Durchmesser von 17,3 mm gepumpt, der mit statischen Mischelementen mit einem hydraulischen Durchmesser von 2 mm versehen war. Die resultierende Mischung 7, bestehend aus dem Reaktionsprodukt, nicht umgesetztem Edukt und dem Katalysator können im Gasabscheider 8 von leicht flüchtigen Bestandteilen durch Ausschleusung in Leitung 9 befreit werden. Für dieses Beispiel war diese Leitung geschlossen. Der nach der Entgasung 8 anfallende Flüssigkeitsstrom 10 wird in einen Phasentrennbehälter 11 geleitet. Hier wird die wässrige Katalysatorphase 2 abgetrennt und erneut dem Kreislauf zugeführt. Die über ein Wehr gelaufene organische Phase, die das Reaktionsprodukt enthält, wird aus Leitung 12 entnommen.
Die Reaktionswärme kann über ausserhalb des Reaktors liegende Wärmetauscher 13, 14 und 15 abgeführt werden.
Als Lösungsmittel für den Katalysator wurde Wasser und Aceton eingesetzt. Die dem Beispiel beigefügte erste Tabelle beschreibt zunächst die Katalysatorzusammensetzung in Massenprozenten, dann die Menge des Eduktes und dessen Zusammensetzung in Massenprozenten der gaschromatographischen Analyse.
Im unteren Bereich der jeweils zweiten Tabelle ist die Produktzusarnmensetzung ebenfalls in Massenprozenten der gaschromatographischen Analyse aufgelistet.
Im oberen Bereich der zweiten Tabelle sind die Raum-Zeit-Ausbeute (RZA), der Umsatz (U) der Aldehyde, die Selektivität (S) zu den gewünschten Aldolkondensationsprodukten und der Belastungsfaktor (B) angegeben. Bei der beschriebenen Katalysatorzusammensetzung ist zu beachten, dass es sich bei den Beispielen um Startwerte handelt. Der Anteil an NaOH wurde durch das Reaktionswasser der Aldolkondensation leicht verdünnt. Darüber hinaus führt die parallel zu Aldolkondensation ablaufende Cannizzaro-Reaktion zur Neutralisation des alkalischen Katalysators. Beide Effekte sind im beobachteten Zeitraum aber so gering, dass dies für die Beschreibung der Versuche und der Versuchsergebnisse unwesentlich ist.
Dieses Beispiel beschreibt das erfindungsgemäße Verfahren für die Aldolkondensation von Aceton (Ac) und 3 -Methylbutanal (3-MBA) in Cyclohexan (CH) zu 6-Methyl-3-heρten-2-on (6-MH). Die Bildung der Nebenprodukte 4-Methyl-3-ρenten-2-on (4-MP), 3-Methyl-2- isopropyl-2-butenal (3-MiPB), 5-Methyl-2-isoproρyl-2-hexenal (5-MiPH), 4-Hydroxy-6- Mefhylheptan-2-on (6-HMH) sowie den sonstigen Hochsiedern (HS) sind in der nachfolgenden Tabelle in Gew.-% angegeben. Der Reaktor wurde mit einer Katalysatorbelastung von 400 kg/h bei einer Temperatur von 80 °C bei Eigendruck der Reaktionsteilnehmer durchströmt.
Figure imgf000014_0001
Folgendes Ergebnis wurde erzielt: (Analyse ohne Cyclohexan)
Figure imgf000014_0002
Figure imgf000015_0001
Es wird deutlich, daß mit dem erfmdungsgemäßen Verfahren 6-Methyl-3-methylhepten-2-on in hoher Selektivität mit großer Raum-Zeit-Ausbeuten hergestellt werden kann.
Beispiel 3 (Hydrierung)
Die Beispielhydrierung des 6-Methyl-3-hepten-2-on (6-MH) zum 6-Methylheptan-2-on (6- MHa) wurde in einem Differenzialkreislaufreaktor unter isothermen sowie isobaren Bedingungen durchgeführt. Als Katalysator wurden 70 g eines Pd/Al2O3-Kontaktes verwendet. Das Festbett wies einen Durchmesser von 4 mm auf . Der eingesetzte Katalysator wurde zuvor bei 80°C und einem Wasserstoffdruck von 15 bar über eine Zeitdauer von 18 h reduziert. Der Kreislaufvolumenstrom des Reaktionsgemisches betrug 45 1/h. Dies entspricht einer Querschnittsbelastung von 35 m3/m /h.
Die nachfolgende Tabelle gibt die Produktanalyse der Reaktionsmischung nach 5h Reaktionszeit in Gew.-% wieder. Neben dem Edukt und dem Produkt wurden das 6-
Methylheptan-2-ol (6-MHO) sowie Hochsieder (HS) analysiert.
Figure imgf000015_0002
Der Umsatz von 6-Methyl-3-hepten-2-on beträgt 99,5 % bei einer Selektivität zu 6- Methylheptan-2-on von 99 %.

Claims

Patentansprüche:
1. Verfahren zur Herstellung von 6-Methyl-heptan-2-on gekennzeichnet durch a) Hydroformylierung von Isobuten zu 3 -Methylbutanal b) basisch katalysierte Aldolkondensation des 3 -Methylbutanais mit Aceton zu 6- Methylhept-3-en-2-on, wobei das Molverhältnis von 3 -Methylbutanal zur eingesetzten Base mehr als 1 : 0,3 beträgt und c) Hydrierung des 6-Methylhept-3-en-2-on zum 6-Methyl-heptan-2-on.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Hydroformylierung in Schritt a) unter Kobalt- oder Rhodium-Katalyse erfolgt.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Hydroformylierung in Schritt a) unter Rhodium-Katalyse in Anwesenheit eines organischen Phosphitliganden erfolgt.
4. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, das als Base in Schritt b) eine wässrige anorganische Base in einer Konzentration von 0,1 bis 15 Gew.-% eingesetzt wird.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass als Base Natronlauge eingesetzt wird.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass Schritt b) in einem Rohrreaktor durchgeführt wird.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass der Belastungsfaktor des Rohrreaktors größer als 0,8 beträgt.
8. Verfahren nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass Schritt b) durch Dispergierung einer organischen Phase, enthaltend Methylbutanal in einer kontinuierlichen Phase, enthaltend den Katalysator, durchgeführt wird.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass das Massenverhältnis der kontinuierlichen Phase zur dispersen, organischen Phase größer 2 ist.
10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass in Schritt b) ein Lösungsmittel für 3 -Methylbutanal, Aceton und 6-Methylhept-3-en-
2-on eingesetzt wird, wobei die Base oder die kontinuierliche Phase in dem Lösungsmittel nicht löslich ist.
11. Verfahren nach Anspruch 10 dadurch gekennzeichnet, dass das Lösungsmittel mit Wasser ein Minimum- Azeotrop bildet.
12. Verfahren nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass die Hydrierung an einem im Festbett angeordneten Katalysator durchgeführt wird.
13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass die Hydrierung an einem aciden Katalysator durchgeführt wird.
14. Verfahren nach Anspruch 12 oder 13 dadurch gekennzeichnet, dass die Hydrierung an einem Palladium-Katalysator durchgeführt wird.
15. Verwendung des nach den Ansprüchen 1 bis 14 hergestellten 6-Methyl-heptan-2-on zur Herstellung von Isophytol, Tetrahydrolinalool oder Dihydrogeraniol.
PCT/EP2002/010873 2001-10-06 2002-09-27 Verfahren zur herstellung von 6-methylheptan-2-on und dessen verwendung WO2003031383A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP02777243A EP1440051A1 (de) 2001-10-06 2002-09-27 Verfahren zur herstellung von 6-methylheptan-2-on und dessen verwendung
US10/490,451 US20040249218A1 (en) 2001-10-06 2002-09-27 Method for producing 6-methylheptane-2-one and the use thereof
JP2003534371A JP2005504839A (ja) 2001-10-06 2002-09-27 6−メチルヘプタン−2−オンの製造方法及びその使用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10149349A DE10149349A1 (de) 2001-10-06 2001-10-06 Verfahren zur Herstellung von 6-Methylheptan-2-on und dessen Verwendung
DE10149349.5 2001-10-06

Publications (1)

Publication Number Publication Date
WO2003031383A1 true WO2003031383A1 (de) 2003-04-17

Family

ID=7701638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/010873 WO2003031383A1 (de) 2001-10-06 2002-09-27 Verfahren zur herstellung von 6-methylheptan-2-on und dessen verwendung

Country Status (7)

Country Link
US (1) US20040249218A1 (de)
EP (1) EP1440051A1 (de)
JP (1) JP2005504839A (de)
CN (1) CN1564797A (de)
AR (1) AR036733A1 (de)
DE (1) DE10149349A1 (de)
WO (1) WO2003031383A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006029737A1 (en) * 2004-09-14 2006-03-23 Dsm Ip Assets B.V. Process for the preparation of saturated aliphatic ketones
EP1673332B1 (de) 2003-09-23 2015-06-17 ExxonMobil Chemical Patents Inc. Hydroformulierung von isobutylen enthaltenden butenen

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104478683B (zh) * 2014-09-24 2016-03-09 浙江新化化工股份有限公司 一种2-庚酮的合成方法
CN105037120B (zh) * 2015-05-25 2016-09-21 吉林北沙制药有限公司 一种甲基庚酮的新型合成方法
CN104926631A (zh) * 2015-05-30 2015-09-23 吉林众鑫化工集团有限公司 一种以3-甲基-3-丁烯基-1醇制备异戊醛的方法
CN116041158A (zh) * 2021-10-28 2023-05-02 中国石油化工股份有限公司 4-甲基-3-戊烯-2-酮液相加氢制备甲基异丁酮的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4599206A (en) * 1984-02-17 1986-07-08 Union Carbide Corporation Transition metal complex catalyzed reactions
JPS6335532A (ja) * 1986-07-31 1988-02-16 Sumitomo Chem Co Ltd イソバレルアルデヒドおよび/またはイソアミルアルコ−ルの製造方法
EP0765853A1 (de) * 1995-04-04 1997-04-02 Kuraray Co., Ltd. Verfahren zur herstellung von 6-methylheptan-2-on
EP0816321A1 (de) * 1996-07-05 1998-01-07 Kuraray Co., Ltd. Verfahren zur Herstellung von 6-Methyl-3-Hepten-2-on und 6-Methyl-2-Heptanon Analogen, und Verfahren zur Herstellung von Phyton oder Isophytol

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4599206A (en) * 1984-02-17 1986-07-08 Union Carbide Corporation Transition metal complex catalyzed reactions
JPS6335532A (ja) * 1986-07-31 1988-02-16 Sumitomo Chem Co Ltd イソバレルアルデヒドおよび/またはイソアミルアルコ−ルの製造方法
EP0765853A1 (de) * 1995-04-04 1997-04-02 Kuraray Co., Ltd. Verfahren zur herstellung von 6-methylheptan-2-on
EP0816321A1 (de) * 1996-07-05 1998-01-07 Kuraray Co., Ltd. Verfahren zur Herstellung von 6-Methyl-3-Hepten-2-on und 6-Methyl-2-Heptanon Analogen, und Verfahren zur Herstellung von Phyton oder Isophytol

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 012, no. 248 (C - 511) 13 July 1988 (1988-07-13) *
V.I.KURVIN ET AL.: "Investigation of the kinetic relationships governing the hydroformylation of isobutene.", PETROLEUM CHEMISTRY, vol. 34, no. 5, 1994, pages 393 - 398, XP009005198 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1673332B1 (de) 2003-09-23 2015-06-17 ExxonMobil Chemical Patents Inc. Hydroformulierung von isobutylen enthaltenden butenen
WO2006029737A1 (en) * 2004-09-14 2006-03-23 Dsm Ip Assets B.V. Process for the preparation of saturated aliphatic ketones
JP2008513389A (ja) * 2004-09-14 2008-05-01 ディーエスエム アイピー アセッツ ビー.ブイ. 飽和脂肪族ケトンの製造方法
US7935849B2 (en) 2004-09-14 2011-05-03 Dsm Ip Assets B.V. Process for the preparation of saturated aliphatic ketones
JP2012153693A (ja) * 2004-09-14 2012-08-16 Dsm Ip Assets Bv 飽和脂肪族ケトンの製造方法
KR101177152B1 (ko) * 2004-09-14 2012-08-24 디에스엠 아이피 어셋츠 비.브이. 포화 지방족 케톤의 제조방법

Also Published As

Publication number Publication date
DE10149349A1 (de) 2003-04-17
US20040249218A1 (en) 2004-12-09
CN1564797A (zh) 2005-01-12
AR036733A1 (es) 2004-09-29
EP1440051A1 (de) 2004-07-28
JP2005504839A (ja) 2005-02-17

Similar Documents

Publication Publication Date Title
EP1674441B1 (de) Verfahren zur Hydroformylierung von Olefinen
EP0987240B1 (de) Verfahren zur Hydrierung von Hydroformylierungsgemischen
EP0216151B1 (de) Verfahren zur Herstellung von 2-Ethylhexanol
EP1231194B1 (de) Herstellung von 1-Olefinen
DE10062448A1 (de) Verfahren zur Hydrierung von Hydroformylierungsgemischen
EP1485341A2 (de) Verfahren zur hydroformylierung von olefinen
WO2010000382A2 (de) Verfahren zur herstellung von neopentylglykol
EP2288584A1 (de) Verfahren zur abtrennung von 1-buten aus c4-haltigen kohlenwasserstoffströmen durch hydroformylierung
EP2456745A2 (de) Verfahren zur herstellung von decancarbonsäuren
EP2872465A1 (de) Verfahren zur herstellung von isononansäureestern, ausgehend von 2-ethylhexanol
DE102008007080A1 (de) Verfahren zur Herstellung von C9-Alkohol aus C8-Olefinen
WO2003031383A1 (de) Verfahren zur herstellung von 6-methylheptan-2-on und dessen verwendung
DE2933919C2 (de) Verfahren zur Herstellung von 2-Methyl-2-sek.-butyl-1,3-propandiol
DE3534317A1 (de) Verfahren zur herstellung von nonadecandiolen
DE1170920B (de) Verfahren zur Synthese von Alkoholen nach dem Oxoverfahren
EP1090899B1 (de) Verfahren zur Herstellung von 1,3-Diolen
EP0436860A1 (de) Verfahren zur Herstellung von 2-(4-Chlorphenyl)-3-methyl-buttersäure
EP3077358B1 (de) Verfahren zur herstellung von 2-methylbutanal aus den bei der herstellung von gemischen isomerer a, -ungesättigter decenale anfallenden nebenströmen
DE2106243C2 (de) Verfahren zur Herstellung von Aldehyden
EP3077356B1 (de) Verfahren zur herstellung von isomeren hexansäuren aus den bei der herstellung von pentanalen anfallenden nebenströmen
WO2004022515A1 (de) Kontinuierliches verfahren zur herstellung von carbonylverbindungen
DE10236918A1 (de) Verfahren zur Herstellung von Alkylphenylcarbinolen
DE10261712A1 (de) Verfahren zur Addition von Formaldehyd an Olefine
DE10326237A1 (de) Verfahren zur Gewinnung von Alkoholen
DE10147775A1 (de) Herstellung von 1-Olefinen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS JP KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NO NZ OM PH PL PT RU SD SE SG SI SK SL TJ TM TN TR TZ UA UG US UZ VC VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002777243

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10490451

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20028197852

Country of ref document: CN

Ref document number: 2003534371

Country of ref document: JP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 2002777243

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2002777243

Country of ref document: EP