EP1434934B1 - Commande de moteur a combustion interne et procede pour faire fonctionner une commande de moteur a combustion interne - Google Patents

Commande de moteur a combustion interne et procede pour faire fonctionner une commande de moteur a combustion interne Download PDF

Info

Publication number
EP1434934B1
EP1434934B1 EP02754502A EP02754502A EP1434934B1 EP 1434934 B1 EP1434934 B1 EP 1434934B1 EP 02754502 A EP02754502 A EP 02754502A EP 02754502 A EP02754502 A EP 02754502A EP 1434934 B1 EP1434934 B1 EP 1434934B1
Authority
EP
European Patent Office
Prior art keywords
internal combustion
combustion engine
main processor
fuel pump
engine controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02754502A
Other languages
German (de)
English (en)
Other versions
EP1434934A1 (fr
Inventor
Guenter Rosenzopf
Helmut Denz
Karsten Kroepke
Ruediger Weiss
Oliver Heyna
Stephan Rosenberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1434934A1 publication Critical patent/EP1434934A1/fr
Application granted granted Critical
Publication of EP1434934B1 publication Critical patent/EP1434934B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • F02D41/266Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor the computer being backed-up or assisted by another circuit, e.g. analogue
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3082Control of electrical fuel pumps

Definitions

  • the invention relates to an internal combustion engine control according to the preamble of claim 1. Furthermore, the invention relates to a method for operating an internal combustion engine control.
  • An internal combustion engine control of the type mentioned is known from DE 199 61 298 A1.
  • the internal combustion engine controller described therein has a microprocessor-containing control unit.
  • the control unit monitors operating parameters of the internal combustion engine and cooperates with an electric fuel pump relay.
  • the microprocessor is in signal communication with a voltmeter which detects an operating condition of an ignition switch. After actuation of the ignition switch, a fuel pump is actuated by the control unit, so that depending on operating parameters of the internal combustion engine, a supply of an electric fuel pump is initiated or also omitted.
  • DE 197 41 296 A1 describes a drive device for an electric fuel pump of an internal combustion engine which cooperates with a vehicle switch. By actuating the vehicle switch, the fuel pump is controlled via a switching relay with a short duty cycle.
  • DE 199 39 051 A1 shows an internal combustion engine controller with a control unit which measures, inter alia, the fuel pressure of an injection unit.
  • the control unit controls an electric fuel pump and is activated via an ignition switch.
  • a mechanical fuel pump is activated via the control unit.
  • the electric pump ensures a faster fuel pressure build-up than the mechanical pump.
  • Such engine control is known from DE-OS 44 25 986.
  • the control of the electric fuel pump is dependent on the monitoring of certain operating parameters of the internal combustion engine, namely the supply voltage and the speed. This ensures that the fuel pump builds up the fuel pressure quickly after switching on the control.
  • the electric fuel pump in the engine control according to DE-OS 44 25 986 until a certain time after the construction of the supply voltage and thus with fast spin of the ignition even after the with the Start request of a user coupled activation of the starter actually driven. This leads to a delayed fuel pressure buildup of the internal combustion engine after a start request of the user with fast spin of the ignition.
  • the control of the fuel pump can be done simultaneously with the operation of the starter. Also in this case, the fuel pump can not immediately build the required fuel pressure due to the drop in the supply voltage caused by the starter operation what Disadvantages in terms of the starting behavior and the emission values of the internal combustion engine brings.
  • the fuel pump is switched on substantially without a time delay after activation of the engine control.
  • the starting of the internal combustion engine by the starter is therefore usually immediately after the start of the user, but can also be delayed in addition to the start request of the user.
  • the main processor initially independent control of the fuel pump is achieved that the initialization of the main processor does not delay the actuation of the fuel pump.
  • the fuel pump is therefore driven immediately and can quickly provide the fuel pressure required to start.
  • An internal combustion engine controller according to claim 2 has an increased reliability.
  • a switching device prevents a repeated driving of the fuel pump within a short period of time, so that irregular operating states when starting the internal combustion engine, which can be prevented, for example, by incorrect operation of the user or due to a malfunction in the control.
  • a speed sensor according to claim 4 allows easy monitoring of whether a startup has taken place.
  • a hardware logic circuit according to claim 5 has a high switching speed.
  • the logic circuit according to claim 7 allows easy monitoring of operating state changes of the drive device.
  • the control of the fuel pump via the activation input takes place here only in operating conditions that are within certain default values, so that there is an H level at the other input of the AND gate.
  • a bistable initialization toggle switch according to claim 8 or 9 here is an embodiment of the logical switching unit with precise switching behavior, wherein in addition an unwanted activation of the electric fuel pump can be prevented at a standstill of the internal combustion engine.
  • a further increase in the operational safety of the internal combustion engine control results from the use of a fault state toggle switch according to claim 11.
  • a power supply of the fault state toggle switch according to claim 12 ensures a permanent monitoring of a fault condition.
  • a low-cost RC element according to claim 13 can also be used to monitor the fault condition if lower demands are placed on the switching precision.
  • a logic circuit according to claim 14 describes a static control of the electric fuel pump in the engine control according to the invention.
  • a switching device ensures for a pulse width modulated controlled electric fuel pump, that during the independent of the main processor taking place control of the fuel pump to the respective fuel pump tuned pulse width modulated driving of this is possible.
  • a duty cycle according to claim 16 leads to the fastest possible reaching a predetermined fuel pressure.
  • a logic module according to claim 17 leads to a very flexible use of the main processor independent control of the internal combustion engine.
  • a drive processor according to claim 18 can also be used. This is possible if it has a low initialization time and small delays in the control of the fuel pump can be tolerated. In this way, the flexibility of the switching device is increased because the drive processor can perform additional functions that can not be realized with the help of a pure hardware logic circuit or only with great effort. At the same time, since the initialization of the drive processor is short compared to that of the more complex main processor, there is still a shortening of the time delay between the user's start request and the fuel pressure buildup.
  • a drive processor offers the possibility of simple storage of operating states, e.g. if it does not have any permanently supplied memory modules. Of course, such storage can also be done by appropriate permanently powered flip-flops or other electronic components.
  • a delay element according to claim 20 ensures that the fuel pump can generate a predetermined fuel pressure before the starter is activated. Since the fuel pump with the enfindungsstruen engine control can very quickly reach the predetermined fuel pressure, only a very small delay time for the control of the starter is required.
  • a delay time according to claim 21 has proven to be sufficient.
  • Another object of the invention is to provide a method for operating an internal combustion engine control of the type mentioned. This object is achieved by a method having the features specified in claim 22. The advantages of the method result from the described advantages of the engine control.
  • a total of 100 designated internal combustion engine is metered via a fuel metering 105 fuel.
  • An electric fuel pump (EKP) 110 delivers the fuel from a reservoir 115 and provides it to the fuel metering device 105.
  • the fuel meter 105 and the fuel pump 110 are driven by an engine controller 120.
  • the internal combustion engine controller 120 is acted on by a battery 130 via a switchable by an ignition switch or an activation device 205 supply voltage via an activation line 206.
  • the latter also serves as a switch-on signal for the Brennmrafmiaschinen facedung 120.
  • the battery 130 is connected by a magnetic switch 140 to the starter 141.
  • the ignition lock 205 is designed so that in a first position ("1" in Figure 1), the engine control 120 is turned on and in a second position ("2" in Fig. 1) additionally the starter 141 is actuated. Furthermore, a switch-off position ("0" in Fig. 1) of the ignition lock is provided.
  • a speed sensor wheel 145 arranged on the internal combustion engine 100 is scanned by a rotational speed sensor 150, which supplies a corresponding rotational speed signal to the engine control unit 120.
  • FIG. 2 shows further details of the internal combustion engine controller 120.
  • the electric fuel pump 110 is actuated via a fuel pump relay 155. This is done via an EKP power transistor 160.
  • the latter is part of a hardware logic circuit 165 (see Fig. 3) which belongs to an integrated circuit (IC) 170 and will be described in detail later. Further illustrated in Fig. 2 components of the IC 170 are two starter output transistors 175, 180 which control the magnet switch 140 of the starter 141 via starter relay 185, 190.
  • the IC 170 is connected to a main processor ( ⁇ C) 200 through an interface unit (SPI) 195.
  • the interface unit 195 ensures in particular for a bidirectional data exchange of operating parameter data for starting and operating the internal combustion engine 100.
  • the main processor 200 and the IC 170 are activated.
  • the main processor 200 has the following additional inputs: a starter switch input 210 in communication with the starter switch 135, a starter feedback input 215 in communication with the power side of the starter relays 185, 190, a speed input 220 via a speed signal conditioning unit 225 is in communication with the speed sensor 150.
  • the main processor 200 has a plurality of outputs connected to the IC 170: starter enable lines 235, 240 for activating the starter output transistors 175, 180 and an EKP enable line 245 for activating the EKP output stage transistor 160.
  • the main processor 200 still has a bidirectional data port 250 for communication with the interface unit 195.
  • the IC 170 has, in addition to the activation line 206, the following inputs: a starter switch input 255, which is in communication with the starter switch 135, a starter feedback input 260, which is connected to the power side of the starter relay 185, 190 and a speed input 265, the is connected to the speed sensor 150 via the speed signal conditioning unit 225.
  • the IC 170 still has a bidirectional data port 270 for communication with the interface unit 195.
  • the hardware logic circuit 165 for driving the EKP output stage transistor 160 within the IC 170 will be described below with reference to FIG.
  • the EKP output stage transistor 160 is connected to the output of a first AND gate 275.
  • the first AND gate 275 has two inputs. A first input is connected to a reset line 280, via which a reset signal from a reset logic 281 can turn off the power amp safely when the supply voltage of the IC 170 does not have the minimum required value. In normal operation of the hardware logic circuit 165, the reset line has an H level (logic 1). The second input of the AND gate 275 is connected to the output of an OR gate 285 in connection.
  • the OR gate 285 has two inputs. The first input communicates with the EKP activation line 245. The second input is connected to the output of a second logical AND gate 290, which has a total of three inputs.
  • the first input of the second AND gate 290 is connected via a Vorlaufan Kunststoffiser 295 with the activation line 206.
  • the Vorlaufan Kunststoffiser 295 provides immediately after the signal on the activation line 206 of the ignition switch 205 goes to an H level, also a static H level. The latter immediately switches on the EKP output stage transistor 160 via the second AND element 290 if the other two inputs of the second AND element 290 have an H level.
  • the second input of the second AND gate 290 is connected to the inverted output of an initialization flip-flop 300, which is designed as an RS flip-flop.
  • the Initialls mecanics flip-flop 300 is not permanently powered by the supply of the main processor 200, not shown. The switching state of the initialization flip-flop 300 thus remains during one SG-lag even after the fall of the activation signal on the activation line 206 and is deleted only at the end of SG-tracking.
  • the set input of the initialization flip-flop 300 is connected to the EKP enable line 245 of the main processor 200.
  • the reset input of the initialization flip-flop 300 is connected to a start state line 305 via the interface unit 195 to the main processor 200, via which thus a start state signal can be fed.
  • the third input of the second AND gate 290 is connected to the inverted output of a fault flip-flop 310, which is also designed as an RS flip-flop.
  • the set input and reset input of the fault flip-flop 310 are connected to a fault set line 3 15 and a fault reset line 320 through the ratchet unit 195 to the main processor 200, which thus inputs to the fault flip-flop 310 Can supply a fault state setting signal or a fault state reset signal.
  • the fault flip-flop 310 is permanently powered, and thus does not lose its state upon falling of the signal on the enable line 206 even after the caster has ended.
  • the interface unit 195 (see Fig. 2) is for transferring data stored in the engine controller 120 for system configuration and control of the IC 170.
  • these data include: a time value T p indicative of an extension of the evt is a very short signal of the starter switch 135, a time value T v , which is a delay of the signal of the starter switch 135, which are realized in a non-illustrated part of the IC starter drive, whereby the starter output transistors 175, 180 in IC 170 after an activation signal via the starter switch 135 may be extended and delayed, a speed threshold that is used to discriminate within the engine controller 120, whether or not there is a rotating motor, a time value T ekpvl of typically 300 ⁇ s, which represents a maximum lead time, within which the hardware logic circuit 165 via the Vorlaufan tenumaschine 295 independently of the main processor 200, the fuel pump 110 drives, as well as values for the frequency and for the duty cycle of a pulse width modulated signal, which provides the Vor
  • diagnostic data of the final stage transistors 160, 175, 180 are transmitted by the interface unit 195.
  • the engine controller 120 operates as follows:
  • the ignition switch 205 is first actuated.
  • the actuation signal on the activation line 206 triggers the forward control unit 295, which applies an H level to the first input of the second AND gate 290 for the time T ekpvl in the case of a static, ie non-pulsed EKP control.
  • the initialization flip-flop 300 and the fault state flip-flop 310 are not set, so that an H level is also present at their inverted outputs. This is also at the output of the second AND gate 290 in this operating state to an H level.
  • an H level is present at the output of the OR gate 285.
  • the output is also present of the first AND gate 275 to an H level and the EKP output stage transistor 160 is driven immediately after activation of the activation line 206 and thus the structure of the power supply of the IC 170, so that the fuel pump 110 runs immediately after switching on the ignition switch 205 and the Fuel pressure builds up, even if, for example, the user rotates a key used to operate the ignition switch 205 and thus actuates the starter switch 135 immediately after switching on the ignition lock 205.
  • an L level (logical 0) is present at the EKP activation line 245.
  • the latter switches the EKP activation line 245 to an H level in the case of a static, ie non-clocked, EKP control.
  • the initialization flip-flop 300 is set, so that the inverted output of the initialization flip-flop 300 drops to an L level.
  • the output of the second AND gate 290 and thus also at the first input of the OR gate 285 is thus at an L level.
  • the main processor 200 thus takes over the control of the EKP output stage transistor 160 before the expiration of the activation time T ekpvl of the feed-forward control unit 295.
  • the control of the starting process take over the IC 170 and the main processor 200 via the starter switch inputs 210, 255 and the output signal of the speed signal conditioning unit 225. Detects the Main processor 200 that a startup occurs by reaching a speed threshold or that a certain time has elapsed after activation of the activation device, an H level is applied to the start state line 305.
  • the initialization flip-flop 300 is therefore automatically reset when the signal on the EKP enable line 245 is at or returns to an L level. In this way, in the case of a renewed starting process, a direct control of the fuel pump 110 via the activation line 206 and the feed-forward drive unit 295 is possible again, as described above.
  • the reset on the start state line 305 thus takes place in such a way that no direct control of the EKP output stage transistor 160 via the activation line 206 is possible in the case of rapidly repeated activation processes on the activation line 206 without starting operation. Such a rapid repetition may otherwise, if done by the driver, result in a noise nuisance, and if caused by a loose contact e.g. after an accident (crash) with damage to the fuel circuit, lead to dangerous fuel leakage.
  • an H level is applied to the set input of the fault status flip-flop 310 via the fault condition setting line 315.
  • the inverted output of the fault flip-flop 310 thus switches to an L level, so that no control of the fuel pump 110 via the activation line 206 is more possible because at the third input and thus also at the output of the second AND gate 290 an L. Level is applied.
  • the activation of the output stage starter transistors 175, 180 with respect to the control of the EKP output stage transistor 160 can be slightly delayed, so that the fuel pump 110 unaffected by a drop in the supply voltage, which causes by the starter current with active activation of the starter 141 which can build up optimum fuel pressure for the starting process.
  • the hardware logic circuit 165 is designed to selectively drive the EKP power transistor 160 with either a continuous signal or a pulse width modulated signal.
  • pulse width modulated drive signals are used to operate electric fuel pumps, in which the desired fuel pressure can be adjusted via a speed control of the electric fuel pump.
  • electric fuel pumps are referred to as DECOS (demand-controlled fuel supply system) -EKP.
  • DECOS fuel pumps generally include monitoring logic which, with a correctly received pulse width modulated signal, controls the speed of the fuel pump in response to the pulse width duty cycle and, in the case of a static H or L input level, shuts off the DECOS EKP since there may be a short circuit.
  • the main processor 200 stores the data specific to an operating cycle of the internal combustion engine 100 via the interface unit 195 in the permanently maintained data memories of the IC 170 so that it correctly performs the aforementioned static or pulse width modulated flow control described in the following.
  • the feedforward drive unit 295 In pulse width modulated operation, the feedforward drive unit 295 generates a pulse width modulated signal depending on the frequency and duty cycle values communicated to the IC 170 after the previous start by the main processor 200.
  • the main processor 2 00 preferably transmits, as a duty ratio, a value which corresponds to a maximum speed of the DECOS-EKP.
  • the corresponding pulse-width-modulated signal is therefore at each sequence start before the readiness of the main processor 200 via the second AND gate 290, the OR gate 285 and the first AND gate 275 with the stored values of frequency and duty cycle on the EKP output stage transistor 160th transfer.
  • the main processor 200 takes over the EKP activation line 245, the pulse-width modulated control of the fuel pump 110.
  • the initialization flip-flop 300 set the initialization flip-flop 300 so that at its inverted output an L level is applied and thus the control of the EKP output stage transistor 160 is decoupled by the Vorlaufanmaschinetician 295.
  • the main processor 200 takes over the pulse width modulated control of the EKP output stage transistor 160 via the EKP activation line 245.
  • the function of the initialization flip-flop 300 and the fault state flip-flop 310 is the storage of state values that correspond to the start state or the fault state of the engine controller 120.
  • this storage can of course also be done by other components, such as RC elements, which take over the state storage by charging a capacitor, which discharges with a predetermined time constant.
  • RC elements which take over the state storage by charging a capacitor, which discharges with a predetermined time constant.
  • the time constant is chosen so that, analogous to the above-described fast successive activations on the activation line 206, the EKP output stage transistor 160 does not directly control.
  • An RC element which replaces the fault state flip-flop 310 may have a comparatively long time constant, this RC element being continuously charged during the overrun by the main processor 200 when the fault condition is active, and discharging only after the end of the overrun.
  • a control processor independent of the main processor 200 may be provided. This is simpler compared to the main processor 200 and has a very short initialization time compared to the main processor 200.
  • the drive processor takes over the control of the EKP output stage transistor 160.
  • the drive processor may also have a permanently supplied flip-flop for state storage, so that is prevented in a fault condition that the drive processor during the initialization of the main processor 200, the fuel pump 110th independently controls.
  • the use of an RC element in the described form is also possible here.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Claims (22)

  1. Commande de moteur à combustion interne comprenant :
    (a) un processeur principal (200) pour surveiller des paramètres de fonctionnement d'un moteur à combustion interne,
    (b) un dispositif électrique d'activation (205) pour le processeur principal (200),
    (c) un dispositif de commande (170) pour une pompe électrique de carburant (110) du moteur à combustion interne,
    caractérisée en ce que
    (d) le dispositif de commande (170) coopère avec le processeur principal (200),
    (e) le dispositif de commande (170) peut être activé par le dispositif d'activation (205) et il est constitué de manière que la pompe de carburant (110) est commandée après actionnement du dispositif d'activation (205), et
    (f) le dispositif de commande (170) comprend un dispositif de commutation (165) tel que pendant un processus d'initialisation du processeur principal (200), il commande la pompe de carburant (110) indépendamment du processeur principal (200) et essentiellement sans temporisation.
  2. Commande de moteur à combustion interne selon la revendication 1,
    caractérisée en ce que
    le dispositif de commutation (165) est tel que la commande de la pompe électrique de carburant (110) produite par lui indépendamment du processeur principal (200), n'a lieu que s'il n'y a aucun état perturbé.
  3. Commande de moteur à combustion interne selon la revendication 1 ou 2,
    caractérisée en ce que
    le dispositif de commutation (165) est constitué de manière que la commande de la pompe électrique de carburant (110) produite par lui indépendamment du processeur principal (200), a lieu seulement après actionnement du dispositif d'activation (205), et une nouvelle commande est autorisée seulement si une opération de démarrage est détectée ou si un actionnement du dispositif d'activation (205) du moteur à combustion interne (100) n'a pas eu lieu depuis un certain temps prédéfini.
  4. Commande de moteur à combustion interne selon une des revendications précédentes,
    caractérisée en ce que
    pour détecter si une opération de démarrage du moteur à combustion interne (100) a eu lieu, une unité de préparation (225) d'un signal de vitesse de rotation est en liaison avec un capteur de vitesse de rotation (150) et sa sortie est détectée par le processeur principal et surveillée en ce qui concerne le dépassement d'une valeur de seuil de vitesse de rotation.
  5. Commande de moteur à combustion interne selon une des revendications précédentes,
    caractérisée en ce que
    le dispositif de commutation (165) est un circuit de logique câblée (hardware) et comprend un étage final (160) pour commander la pompe électrique de carburant (110).
  6. Commande de moteur à combustion interne selon la revendication 5,
    caractérisée en ce que
    le dispositif de commutation (165) présente un organe OU (285) qui comprend : une entrée de commande de processeur principal, reliée à une conduite d'activation EKP (245) du processeur principal (200) et une entrée de commande pour la commande indépendante du processeur principal (200), de la pompe de carburant (110), cette entrée étant commandée essentiellement sans temporisation quand le dispositif d'activation (205) est actionné par l'intermédiaire d'un conducteur d'activation (206) par une unité de commande (295) afin de commander indépendamment du processeur principal (200), la pompe de carburant électrique (110).
  7. Commande de moteur à combustion interne selon la revendication 6,
    caractérisée en ce que
    le signal de l'unité de commande (295) destiné à commander la pompe électrique de carburant (110) indépendamment du processeur principal (200), est acheminé par un organe ET (290) comprenant au moins une autre entrée avec un niveau élevé, quand sont satisfaites certaines prescriptions concernant l'état de fonctionnement de la commande (120) du moteur à combustion interne.
  8. Commande de moteur à combustion interne selon la revendication 6 ou 7,
    caractérisée en ce que
    le circuit logique (165) présente en tant qu'unité logique de commutation, un commutateur basculant d'initialisation (300) bistable, dont la sortie avant actionnement du dispositif d'activation (205) présente un niveau bas et dont l'entrée d'activation est reliée à la conduite d'activation EKP (245) de manière que le commutateur basculant (300), quand la pompe électrique de carburant (110) est commandée, est actionné par le processeur principal (200), l'entrée de remise à l'état initial du commutateur basculant (300) étant commandée par l'intermédiaire d'une conduite de remise à l'état initial (305), par le processeur principal (200), de manière que le commutateur (300) est ramené à l'état initial quand une opération de démarrage est détectée ou qu'un certain temps s'est écoulé après actionnement du dispositif d'activation (200), la sortie inversée de ce commutateur (300) étant reliée à l'entrée de l'organe ET (290).
  9. Commande de moteur à combustion interne selon la revendication 8,
    caractérisée en ce que
    l'unité de commande (295) exécute la commande indépendante du processeur principal (200), de la pompe de carburant électrique (110) seulement pour un temps prédéfini qui dépasse le temps d'initialisation du processeur principal (200), de sorte que celui-ci effectue la commande de la pompe électrique de carburant (110) avant achèvement de ce temps et accouple en même temps la commande indépendante du processeur principal (200), de la pompe de carburant (110) en activant le commutateur basculant (300) par l'intermédiaire de l'organe ET (290).
  10. Commande de moteur à combustion interne selon la revendication 8,
    caractérisée en ce que
    le circuit logique (165) présente, au lieu du commutateur basculant (300), un organe RC comme mémoire d'état.
  11. Commande de moteur à combustion interne selon une des revendications 7 à 10,
    caractérisée en ce que
    le circuit logique (165) présente comme unité de commutation logique un commutateur basculant d'état perturbé (310) bistable, dont la sortie présente avant actionnement du dispositif d'activation (205) un niveau bas, l'entrée d'activation (315) et l'entrée de remise à l'état initial (320) étant reliées au processeur principal (200) de préférence par une unité d'interface (195), tandis que la sortie en présence d'un état perturbé de la commande du moteur à combustion interne (120) est actionnée par une entrée d'activation (315) et remise à l'état initial par une entrée de remise à l'état initial après achèvement de l'état perturbé, la sortie inversée étant reliée à l'entrée de l'organe ET (290).
  12. Commande de moteur à combustion interne selon la revendication 11,
    caractérisée en ce que
    le commutateur basculant d'état parasite (310) dispose d'une alimentation en courant permanente, qui est indépendante du dispositif d'activation (205).
  13. Commande de moteur à combustion interne selon la revendication 11,
    caractérisée en ce que
    le circuit logique (165) présente, au lieu d'un commutateur basculant d'état perturbé (310), un organe RC d'état perturbé avec une constante de temps prédéfinie.
  14. Commande de moteur à combustion interne selon une des revendications précédentes,
    caractérisée en ce que
    la pompe électrique de carburant (110) est commandée statiquement et l'unité de commande (295) destinée à commander indépendamment du processeur principal (200) la pompe électrique de carburant (110), délivre un signal statique jusqu'à ce qu'il soit pris en compte par le processeur principal (200).
  15. Commande de moteur à combustion interne selon une des revendications précédentes,
    caractérisée en ce que
    le dispositif de commutation (165) est tel que la pompe électrique de carburant (110) est commandée par un signal pulsé modulé en amplitude définissant la vitesse de rotation de cette pompe, et que l'unité de commande (295) destinée à commander, indépendamment du processeur principal (200), la pompe électrique de carburant (110), délivre un signal pulsé modulé en amplitude avec une fréquence et un rapport cyclique pouvant être prédéfinis.
  16. Commande de moteur à combustion interne selon la revendication 15,
    caractérisée en ce que
    l'unité de commande (295) servant à commander, indépendamment du processeur principal (200), la pompe électrique de carburant (110), est constituée pour que le rapport cyclique délivré correspond à une vitesse de rotation maximale de la pompe de carburant qui peut être commandée avec modulation d'amplitude des impulsions.
  17. Commande de moteur à combustion interne selon la revendication 15 ou 16,
    caractérisée en ce que
    l'unité de commande (295) servant à commander, indépendamment du processeur principal (200), la pompe électrique de carburant (110), présente une unité permanente de mémorisation pour la configuration d'une commande statique ou à impulsion modulée en amplitude et/ou pour une valeur correspondant au rapport cyclique et à la durée de la période, cette unité étant constituée pour recevoir une inscription, après démarrage du processeur principal (200), les valeurs mémorisées inscrites dans l'unité de mémorisation étant conçues pour une commande indépendante du processeur principal (200) de la pompe électrique de carburant (110) lors d'un démarrage asservi.
  18. Commande de moteur à combustion interne selon une des revendications précédentes,
    caractérisée en ce que
    l'unité de commutation électronique présente un processeur de commande indépendant du processeur principal (200).
  19. Commande de moteur à combustion interne selon la revendication 18,
    caractérisée en ce que
    le processeur de commande présente au moins un organe RC d'état pour la mémorisation intermédiaire d'un état de fonctionnement surveillé à l'intérieur de la commande de moteur à combustion interne (120), en particulier l'état de démarrage ou un état perturbé.
  20. Commande de moteur à combustion interne selon une des revendications précédentes,
    caractérisée en ce qu'
    elle comporte un organe de temporisation constitué de manière qu'un démarreur (141) du moteur à combustion interne (100) ne peut être commandé qu'après une temporisation prédéfinissable faisant suite à l'actionnement du dispositif d'activation (205).
  21. Commande de moteur à combustion interne selon la revendication 20,
    caractérisée en ce que
    la temporisation est de l'ordre de 300 ms.
  22. Procédé pour faire fonctionner une commande de moteur à combustion interne selon une des revendications précédentes,
    caractérisé en ce que
    le dispositif d'activation (205) active le dispositif de commande (170), et à l'aide du dispositif de commande (170) après actionnement du dispositif d'activation (205), la pompe (110) est commandée par l'intermédiaire du dispositif de commutation (165) pendant une opération d'initialisation du processeur principal (200), indépendamment de celui-ci et essentiellement sans temporisation.
EP02754502A 2001-10-02 2002-08-08 Commande de moteur a combustion interne et procede pour faire fonctionner une commande de moteur a combustion interne Expired - Lifetime EP1434934B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10148646A DE10148646A1 (de) 2001-10-02 2001-10-02 Brennkraftmaschinensteuerung sowie Verfahren zum Betrieb einer Brennkraftmaschinensteuerung
DE10148646 2001-10-02
PCT/DE2002/002921 WO2003031790A1 (fr) 2001-10-02 2002-08-08 Commande de moteur a combustion interne et procede pour faire fonctionner une commande de moteur a combustion interne

Publications (2)

Publication Number Publication Date
EP1434934A1 EP1434934A1 (fr) 2004-07-07
EP1434934B1 true EP1434934B1 (fr) 2006-12-20

Family

ID=7701155

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02754502A Expired - Lifetime EP1434934B1 (fr) 2001-10-02 2002-08-08 Commande de moteur a combustion interne et procede pour faire fonctionner une commande de moteur a combustion interne

Country Status (6)

Country Link
US (1) US6955148B2 (fr)
EP (1) EP1434934B1 (fr)
JP (1) JP4308657B2 (fr)
KR (1) KR100914080B1 (fr)
DE (2) DE10148646A1 (fr)
WO (1) WO2003031790A1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006300050A (ja) * 2005-03-23 2006-11-02 Denso Corp エンジンの燃料噴射装置
US20070017422A1 (en) * 2005-07-19 2007-01-25 Fitzpatrick Technologies, Llc Pallet with composite components
JP2007071061A (ja) * 2005-09-05 2007-03-22 Kokusan Denki Co Ltd エンジン制御装置
JP2008232099A (ja) * 2007-03-23 2008-10-02 Aisan Ind Co Ltd 流体用ポンプ制御装置
DE102007059687A1 (de) * 2007-12-12 2009-06-25 Lucas Automotive Gmbh Sicherheitskonzept für einen intelligenten Aktor
JP5105422B2 (ja) * 2008-01-18 2012-12-26 三菱重工業株式会社 蓄圧式燃料噴射装置の蓄圧室圧力制御方法および制御装置
US20090252661A1 (en) * 2008-04-07 2009-10-08 Subir Roychoudhury Fuel reformer
CN102562398B (zh) * 2011-12-21 2014-12-24 奇瑞汽车股份有限公司 一种下线预泵油设备及其控制方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4165727A (en) * 1977-08-04 1979-08-28 Brunswick Corporation Automatic fuel pump switch unit for fuel-injected internal combustion engines
JPS56146051A (en) * 1980-04-14 1981-11-13 Toyota Motor Corp Controlling device for fuel pump
GB2277818A (en) * 1993-05-08 1994-11-09 Ford Motor Co Dedicated control module for a fuel pump
DE4421512C1 (de) * 1994-06-20 1995-06-08 Volkswagen Ag Start-Stop-Automatikeinrichtung an einem Kraftfahrzeug und Verfahren zum Betreiben dieser Einrichtung
DE4425986B4 (de) * 1994-07-22 2004-04-08 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
JP3564794B2 (ja) * 1995-05-30 2004-09-15 株式会社デンソー 内燃機関用燃料供給装置
DE19644497B4 (de) * 1996-10-25 2005-09-08 Robert Bosch Gmbh Verfahren zur Steuerung einer Brennkraftmaschine mit einer Kraftstoffpumpe
DE19741296A1 (de) * 1997-09-19 1999-03-25 Pierburg Ag Verfahren zum Betreiben eines Brennstoffversorgungssystems einer Brennkraftmaschine
JPH11132124A (ja) * 1997-10-24 1999-05-18 Nippon Soken Inc 燃料噴射装置
US5927253A (en) * 1998-02-26 1999-07-27 Ford Global Technologies, Inc. Fuel system priming method
DE19939051A1 (de) * 1999-08-18 2001-02-22 Volkswagen Ag Vorrichtung und Verfahren zur Erzeugung eines Kraftstoffhochdrucks
US6314947B1 (en) * 1999-10-13 2001-11-13 Walbro Corporation Fuel delivery system
US6269801B1 (en) * 1999-10-29 2001-08-07 Ford Global Technologies, Inc. System for priming a diesel fuel system
DE19961298A1 (de) * 1999-12-18 2001-06-21 Bosch Gmbh Robert Verfahren zur Ansteuerung einer Kraftstoffpumpe
JP2001182597A (ja) * 1999-12-24 2001-07-06 Hitachi Ltd 高圧燃料ポンプ制御装置及び筒内噴射エンジン制御装置
DE10014550B4 (de) * 2000-03-23 2005-05-19 Daimlerchrysler Ag Vorrichtung zur Steuerung einer Kraftstoffpumpe
DE10017426A1 (de) * 2000-04-07 2001-10-11 Bosch Gmbh Robert Verfahren zur Ansteuerung einer Kraftstoffpumpe
US6581574B1 (en) * 2002-03-27 2003-06-24 Visteon Global Technologies, Inc. Method for controlling fuel rail pressure

Also Published As

Publication number Publication date
DE50209029D1 (de) 2007-02-01
US6955148B2 (en) 2005-10-18
KR100914080B1 (ko) 2009-08-27
US20040060546A1 (en) 2004-04-01
KR20040036872A (ko) 2004-05-03
JP4308657B2 (ja) 2009-08-05
WO2003031790A1 (fr) 2003-04-17
EP1434934A1 (fr) 2004-07-07
DE10148646A1 (de) 2003-04-10
JP2005504915A (ja) 2005-02-17

Similar Documents

Publication Publication Date Title
DE102006034837B4 (de) Maschinenanlasser und Maschinenstartverfahren
DE69314148T2 (de) Stromversorgungsverfahren und -vorrichtung für einen elektrischen Motor zum Antrieb eines Scheibenwischers eines Kraftfahrzeugs
EP1817493B1 (fr) Circuit de commande pour un ensemble circuit
DE102009048850A1 (de) Motorstartvorrichtung
DE102004054367A1 (de) Vorrichtung zur Vermeidung des Mahlens beim Anlassermotor
WO1986000155A1 (fr) Remise a l'etat initial d'un microprocesseur
DE102005051257A1 (de) Motorsteuerung
DE112015004897T5 (de) Startersystem mit steuerndem Relais-Schalter
WO2012097775A1 (fr) Système de commutation et dispositif de surveillance
WO2013124191A1 (fr) Dispositif pour stabiliser une chute de tension dans un véhicule automobile
DE10143454B4 (de) Einrichtung zur Steuerung eines Fahrzeuges
DE3322074A1 (de) Notlaufeinrichtung fuer mikrocomputergesteuerte systeme
EP0731879B1 (fr) Circuit et procede de repetition du demarrage de moteurs a combustion interne
EP1434934B1 (fr) Commande de moteur a combustion interne et procede pour faire fonctionner une commande de moteur a combustion interne
DE60024165T2 (de) Wischersteuervorrichtung
DE112018001151T5 (de) Lastansteuervorrichtung
EP0284606B2 (fr) Dispositif pour la remise a l'etat initial d'installations de calcul
DE19811176A1 (de) Anordnung und Verfahren zur Steuerung einer elektrischen Maschine
EP1825529B1 (fr) Circuit electrique pour reguler un element piezo-electrique, notamment d'un systeme d'injection de carburant d'automobile
WO2015128110A1 (fr) Procédé permettant de faire fonctionner un système de direction
EP1032950B1 (fr) Circuit de decharge pour element de reglage capacitif
WO2005093240A1 (fr) Dispositif et procede destines a reduire la contamination d'un detecteur
DE102016218161B4 (de) Elektronische steuereinheit
EP0505774A1 (fr) Dispositif de commutation de sécurité
DE102020200203B4 (de) Vorrichtung zum Betreiben eines elektronischen Systems, insbesondere eines Fahrzeugs

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040503

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17Q First examination report despatched

Effective date: 20040906

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR IT

REF Corresponds to:

Ref document number: 50209029

Country of ref document: DE

Date of ref document: 20070201

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070331

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070921

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090819

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090824

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100831

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20151022

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50209029

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170301