EP1430487B1 - Verfahren zur entsorgung eines mit mindestens einem toxikum, insbesondere radiotoxikum, kontaminierten gegenstandes aus keramik, graphit und/oder kohlestein - Google Patents

Verfahren zur entsorgung eines mit mindestens einem toxikum, insbesondere radiotoxikum, kontaminierten gegenstandes aus keramik, graphit und/oder kohlestein Download PDF

Info

Publication number
EP1430487B1
EP1430487B1 EP02758142A EP02758142A EP1430487B1 EP 1430487 B1 EP1430487 B1 EP 1430487B1 EP 02758142 A EP02758142 A EP 02758142A EP 02758142 A EP02758142 A EP 02758142A EP 1430487 B1 EP1430487 B1 EP 1430487B1
Authority
EP
European Patent Office
Prior art keywords
granulate
mass
ceramic
encasing
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP02758142A
Other languages
English (en)
French (fr)
Other versions
EP1430487A1 (de
Inventor
Heinz BRÜCHER
Gerd Haag
Werner Von Lensa
Rainer Moormann
Reinhard Odoj
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Juelich GmbH
Original Assignee
Forschungszentrum Juelich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Juelich GmbH filed Critical Forschungszentrum Juelich GmbH
Publication of EP1430487A1 publication Critical patent/EP1430487A1/de
Application granted granted Critical
Publication of EP1430487B1 publication Critical patent/EP1430487B1/de
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • G21F9/30Processing
    • G21F9/301Processing by fixation in stable solid media
    • G21F9/302Processing by fixation in stable solid media in an inorganic matrix
    • G21F9/305Glass or glass like matrix
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/008Apparatus specially adapted for mixing or disposing radioactively contamined material

Definitions

  • the invention relates to a method for disposing of a contaminated with at least one toxicant, in particular radiotoxic article of ceramic, graphite and / or coal.
  • Landfilling of low level radioactive waste in repositories or interim storage facilities is also problematic because of the high volumes and flammability of carbonaceous materials on the one hand and the limited storage capacity on the other. So can at a disused carbon moderated Reactor several 100 tons of low-level radioactive waste.
  • a method of the type mentioned is known in which the object to be disposed of is first heated to remove a portion of the toxic substances by outgassing or thermal decomposition. The removed portion of the toxicant is collected and the partially decontaminated article and the collected toxicant are then separately added to further disposal steps.
  • the high-level trapped toxics are disposed of in a manner already available for more radioactive waste, e.g. B. filters from nuclear facilities, is known. Due to the reduced concentration of radiotoxic agents, the partly decontaminated article may be handled with less stringent requirements and may be stored temporarily or temporarily. It can be treated to protect against fire and leaching the surface of the object, for. B.
  • the objects to be disposed of are from nuclear installations, these are generally massive blocks with dimensions of approximately 0.5 to 1 m in height and width and up to approximately 2 m Length containing significant amounts of different radiotoxic agents. They fall, for example, in decommissioning of graphite-moderated nuclear reactors or in normal operation of gas-cooled reactors by replacing ceramic components, eg. B. fuel element casings or in the form of moderator columns in material test reactors (MTR) or in the form of ceramic or carbonaceous adsorbent from cleaning equipment of all kinds.
  • ceramic components eg. B. fuel element casings or in the form of moderator columns in material test reactors (MTR) or in the form of ceramic or carbonaceous adsorbent from cleaning equipment of all kinds.
  • MTR material test reactors
  • reactor graphite and coal are very susceptible to chemical attack and leaching.
  • Reactor graphite is a graphite mold with extremely high porosity, especially used for nuclear installations. Charcoal is also highly porous.
  • the present invention has for its object to provide a method of the type mentioned above, with which the utilization of given storage capacities can be optimized and at the same time an efficient protection against burning and leaching is given.
  • the object is achieved in a method of the type mentioned, in which the object is comminuted into granules, the object is baked before, during and / or after crushing to reduce its contamination under inert gas atmosphere or vacuum and then the granules either with a liquefied enveloping material is poured around, or mixed with the enveloping compound in powder or granular form and then heated to liquefaction of the enveloping material, the liquefied enveloping material either solidifies itself to a ceramic or chemically reacts with the granules to a ceramic.
  • the crushing of the object allows adaptation of the material to be disposed of to predetermined shapes, eg. B. the shape of transport containers or the geometry of the deposit, and thus optimizing the use of space.
  • a comminution to granules with grain sizes of at most a few cm allows almost any shape.
  • the granules can fully react under appropriate conditions.
  • at least the larger grains of the granules will only react in the range of a surface layer of a few ⁇ m to about 1 mm thickness to form a ceramic.
  • the comminution and the coating of the granules with the enveloping mass also causes the contamination remaining after the heating to dissipate substantially in the volume of the container.
  • This is particularly advantageous for objects to be disposed of, which have a high surface contamination and no or only small volume contamination.
  • the conversion to a volume contamination can lead to much lower requirements for the handling of the container due to the then lower surface dose rate and the given self-shielding.
  • Another advantage of comminution arises when the heating takes place on the granules themselves, as due to the shorter diffusion paths, a more efficient heating can be achieved.
  • the method according to the invention should be carried out so that the comminution takes place under an inert gas atmosphere.
  • an inert gas atmosphere As a result, the risk of ignition and deflagration is reduced and avoided in the case of carbonaceous objects, the reaction with atmospheric oxygen to form CO or CO 2 , which would normally contain C 14 and therefore must not escape.
  • Suitable atmospheres are z. Nitrogen and argon.
  • the parameters to be used in the process according to the invention are each dependent on the nature of the original concentrations of the toxics and the desired properties of the container. Should a Toxikum due to the high stability of its binding to the article not or can be expelled only by uneconomically long periods of time by heating the article to the required extent, the corresponding toxicant by chemical reaction with a suitable substance, eg. As a halogen, in a thermally removable from the object chemical compound, for. As a halide transferred.
  • the heated toxics are - as already known from the prior art - separately collected and disposed of.
  • the mixture produced from the granules and the coating mass can be filled into a suitable container for producing a container which can be stored temporarily or in a repository. This can be done in the flowable or moldable state of the batch to completely fill the container with the batch.
  • a suitable container for producing a container which can be stored temporarily or in a repository. This can be done in the flowable or moldable state of the batch to completely fill the container with the batch.
  • metallic containers is known. However, these have the disadvantage that, due to oxidation of the metal in aqueous solution, hydrogen can form and collect in the repository.
  • the method according to the invention can be carried out in such a way that, after the mixture has been poured, the container is completely filled with a non-contaminated liquid filling compound which solidifies to form a ceramic. In this way the container becomes so closed. that the mixture has no contact with the environment.
  • the filling mass, the z. B. can solidify to the same ceramic, from which the container is made, thus closing the latter.
  • the method according to the invention can also be carried out in such a way that the mixture produced from the granulate and the coating mass is used in the flowable or moldable state for filling the intermediate spaces into other contaminated waste containing containers which can be stored temporarily or in a repository.
  • the method according to the invention can be carried out in such a way that, in order to produce a container which can be stored interim or repository, the mixture produced from the granulate and the coating mass in the flowable or moldable state is completely enveloped by another contaminated waste.
  • the mixture can enclose the other contaminated objects without a gap and thus form a container adapted to the content itself. If the residual contamination, in particular in the area of the surface of the batch, is sufficiently low, the container can be temporarily stored or disposed of without further encasing. For this purpose, he can use a suitable form, for. B. a cuboid or cylinder abandoned.
  • the other wastes are completely enclosed by the mixture, these may also be those which themselves are considerably more contaminated than the mixture, eg. B. high-level waste, z. B. fuel.
  • the shielding by the ceramic cladding can be completely sufficient for final disposal. Otherwise, further shielding measures according to the prior art are to be taken.
  • Both the filling of the interspaces and the wrapping of waste with the mixture can advantageously be carried out before its complete solidification. However, it is also possible to provide this in a later step after separate heating of the batch.
  • the inventive method can be carried out so that the mixture produced from the granules and the enveloping mass formed into a container, the container filled with further contaminated waste, sealed and interposed with this content or stored.
  • the mixture is thus processed into a commodity that may be suitable for wrapping even highly radioactive waste.
  • the container may, for. B. cup-shaped. Covering elements, such as covers, can also be molded.
  • a container of two or more parts may, for. By silicon deposited from the gas phase of a silicon-containing compound, or by application of silicon carbide, e.g. made from non-contaminated raw materials are closed. It is also possible to provide the container parts with a thread.
  • the process according to the invention can also be carried out in such a way that a carbide former is used as the encapsulant in carbonaceous articles.
  • liquid silicon which forms SiC with carbon is suitable.
  • the ceramic SiC forms around the grains of the granules a refractory and leaching resistant and abrasion resistant protective layer.
  • Other suitable carbide formers are z. As boron and zirconium.
  • the method according to the invention can also be designed in such a way that reinforcing ceramic fibers are added to the enveloping mass or to the mixture produced from the granulate and the enveloping mass.
  • the fibers can z. B. as wound fibers, fiber mats or pieces of fiber from a few mm to a few cm in length can be used. They increase the ductility and thus the resistance of the container against cracking and embrittlement when they are present in the container, in the ceramic envelope or in the container contents.
  • phenolic resins can also be added. When heated, they are decomposed and the resulting carbon can be mixed with the envelope, e.g. As silicon to SiC react.
  • metal structures for reinforcing the ceramic are also conceivable.
  • the process according to the invention can also be carried out in such a way that casting over with the liquefied coating mass or heating of the mixture of coating mass and granules takes place in a vacuum.
  • a vacuum can already be generated during the comminution of the article in order to reduce the risk of deflagration as well as the CO or CO 2 formation.
  • inventive method can be carried out so that the object and the resulting granules are moistened during comminution with a nonflammable liquid.
  • the inventive method can also be carried out so that the object is dipped into a non-combustible liquid for comminution.
  • Both for the moistening and the comminution in liquid water is particularly suitable. If the material of the object to be disposed of water is not wetted, this can be added to a suitable solvent.
  • the inventive method can also be carried out so that collected during comminution of the object and floating in the liquid dust is collected and encapsulated with the granules with the envelope mass.
  • the dust can be collected by filtering and / or by evaporating the liquid. The dust is thus effectively supplied for disposal.
  • the method according to the invention can be carried out in such a way that the liquid is collected and returned to the process.
  • the liquid is circulated, whereby the environment is relieved.
  • the process according to the invention can also be carried out in such a way that the surface of the mixture is oxidized.
  • the enveloping compound unless it is itself a liquefied ceramic, in the process according to the invention is not continuously a chemical compound to form a ceramic.
  • oxidizing the entire surface of the container even in the pores and cracks, it is made resistant to later attacks by fire, leaching or chemical attack.
  • silicon as the enveloping mass, a resistant surface of ceramic, abrasion-resistant SiO 2 is produced.
  • the oxidation is carried out by heating the container in an oxidizing atmosphere, for. As O 2 or air.
  • the separate heating of the container can be saved if the oxidizing atmosphere is generated as soon as possible after the encapsulation of the granules.
  • High abrasion resistance is desirable to minimize the uncontrolled loss of packaging material.
  • Mohs hardness greater than or equal to 4 would be advantageous.
  • the method according to the invention can be designed so that containers that from the granules and the enveloping mass produced blends are formed so that they can be placed together with surface contact.
  • Exemplary shapes are those of rectangular or hexagonal cross section. They allow a seamless juxtaposition and thus an optimized use of space.
  • the surface interaction also prevents that acting in the direction of the side surfaces, adjacent container against each other pressing rock pressure in repositories, not as quickly leads to cracks or Zersprödungen in the container as is the case with cylindrical containers, the side only have a linear contact with each other.
  • the method according to the invention can be carried out so that it is carried out at the place of use of the object.
  • a moderator element made of carbon is used in a nuclear power plant.
  • Such moderators have a ceramic structure composed of high-purity and porous graphite (reactor graphite) and carbonaceous material.
  • the moderator is contaminated with different toxic substances.
  • the moderator is in a high-temperature furnace heated by direct current passage. Alternatively, it can also be heated inductively or by separate heating elements. The heating is done in vacuum or under inert gas to prevent the formation of carbon monoxide and carbon dioxide when heated by reaction with atmospheric oxygen, which contain the radioactive C 14 usually present in irradiated carbon and therefore must not escape in an uncontrolled manner. This procedure is already in the DE 197 37 891 A1 described in detail.
  • the article is comminuted after baking or even before or during it. This comminution can be done either outside the reactor pressure vessel or within. In the latter case, the movement of large blocks and opening of the enclosure is avoided.
  • the shredding device would have to be introduced into the reactor vessel. With appropriate attachment to a manipulator, it is possible to disassemble the blocks in situ and crush and then remove only the cargo or granules. If the thermal treatment takes place subsequently, this can also be carried out within the reactor pressure vessel, since the required heaters can be very compact.
  • the crushing is carried out under inert gas.
  • the cargo can be moistened or completely in liquid, eg. B. in water, are immersed. A prior thermal trituration of tritium should be done so as not to displace the liquid.
  • the sludge containing the dust can be dried again fed to the disposal process and the liquid can be recycled after condensation.
  • the level of temperature depends on the type of toxic substances and the desired decontamination factors.
  • the graphite cleaning procedure known in the graphite industry can be used essentially. Highly volatile toxic substances, such. B. tritium or cesium are expelled already at relatively low temperatures. Chemical substances bound to carbon have to be removed from the ceramic structure by pyrolysis at higher temperatures. Are individual toxic substances thereby not to be removed from the moderator material, z. B. hard decomposable carbides, these can be converted by the addition and infiltration of gaseous halogen compounds in volatile halides.
  • the toxic substances removed from the moderator material are deposited on condensation plates or collected by means of traps or filters (eg for tritium), where they are then present in a considerably higher concentration than in moderator material.
  • the partly decontaminated moderator material now contains at most toxic substances that could not be removed by thermal and / or thermochemical treatment. It follows that outdiffusion or leaching of these toxic substances would not take place even over extremely long periods of time.
  • the thermally and / or chemically pretreated comminuted moderator material is interspersed with liquid silicon, wherein the surfaces of the carbonaceous granules react to SiC under a correspondingly high temperature and a container of Si and SiC can be poured off or extruded with embedded granules.
  • the shape, z. As cylinder, cuboid or flat Rectangular cylinder segments depend on the transport and storage container geometries for the best possible use of space.
  • an after-treatment is performed under an oxidizing atmosphere, with silica forming at the oxygen-accessible sites, providing additional oxidation protection that also resists long-term corrosion attacks.
  • the material can also be poured into small containers, which in turn can absorb other hazardous substances and protect against corrosion and leaching. Furthermore, the still liquid mixture can be used for pouring spaces or for wrapping whole or disassembled reactor fuel elements.
  • silicon carbide is characterized by good heat conduction.
  • a sheath made of SiC is much more resistant than metal.
  • Another disadvantage of the metal compared to the SiC is that the oxidation of metals in aqueous solution produces large amounts of hydrogen, which accumulate in the repository and can form a source of danger.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Entsorgung eines mit mindestens einem Toxikum, insbesondere Radiotoxikum kontaminierten Gegenstandes aus Keramik, Graphit und/oder Kohlestein.
  • Die Entsorgung mit Radiotoxika kontaminierter Gegenstände ist insbesondere im Zusammenhang mit dem Betrieb, der Stilllegung und der Beseitigung von kerntechnischen Anlagen ein bedeutender wirtschaftlicher Faktor. Um eine Belastung der Umwelt mit toxischen Materialien zu vermeiden bzw. möglichst gering zu halten, ist ein erheblicher technischer und damit finanzieller Aufwand notwendig. In kerntechnischen Anlagen werden Graphit, Kohlestein und solche Materialien mit keramischer Grundstruktur in vielfacher Weise verwendet, z.B. als Moderatoren oder als Struktur- und Isolationswerkstoffe. Zur radioaktiven Verunreinigung dieser Materialien kommt es durch Neutronenaktivierung vorhandener chemischer Verunreinigungen oder durch Adsorption bzw. Diffusion von Spaltprodukten. Die bekannte Entsorgung schwach radioaktiver Abfälle durch Versenken im Meer ist ökologisch bedenklich und wird seit vielen Jahren entsprechend dem diesbezüglichen Londoner Abkommen von den westlichen Ländern nicht mehr praktiziert.
  • Das Deponieren schwach radioaktiver Abfälle in Endlager oder Zwischenlager ist wegen der anfallenden hohen Mengen und der Brennbarkeit kohlenstoffhaltiger Materialien auf der einen Seite und den begrenzten Lagerkapazitäten auf der anderen Seite ebenfalls problematisch. So können bei einem stillgelegten kohlenstoffmoderierten Reaktor mehrere 100 Tonnen schwach radioaktiver Abfälle anfallen.
  • Das ebenfalls bekannte Verbrennen der schwach radioaktiven Abfälle ist insbesondere im Fall von Kohlenstoffstrukturen problematisch, da hierbei Radionuklide, wie Tritium und C14 in die Atmosphäre freigesetzt werden.
  • Aus der DE 197 37 891 A1 ist ein Verfahren der eingangs genannten Art bekannt, bei dem der zu entsorgende Gegenstand zunächst aufgeheizt wird, um ein Teil der Toxika durch Ausgasen oder thermische Zersetzung zu entfernen. Der entfernte Anteil des Toxikums wird aufgefangen und der zum Teil dekontaminierte Gegenstand und das aufgefangene Toxikum werden anschließend getrennt weiteren Entsorgungsschritten zugeführt. Die in hoher Konzentration vorliegenden aufgefangenen Toxika werden auf eine Weise entsorgt, wie sie bereits für stärker radioaktive Abfälle, z. B. Filter aus kerntechnischen Anlagen, bekannt ist. Der zum Teil dekontaminierte Gegenstand kann aufgrund der verminderten Konzentration der Radiotoxika unter geringeren Anforderungen gehandhabt sowie zwischen- oder endgelagert werden. Dabei kann zum Schutz gegen Brand und Auslaugen die Oberfläche des Gegenstandes behandelt werden, z. B. durch Reaktion mit flüssigem Silizium unter Bildung von SiC oder durch pyrolytische Abscheidung von Kohlenstoff zum verschließen der Poren. Außerdem wird auf diese Weise eventuell gespeicherte, durch strahlungsinduzierte Störung des Kristallgitters aufgebaute Energie (Wigner-Energie) und die damit verbundene Gefahr der Selbsterhitzung kontrolliert beseitigt.
  • Stammen die zu entsorgenden Gegenstände aus kerntechnischen Anlagen, handelt es sich dabei in der Regel um massive Blöcke mit Abmessungen von ca. 0,5 bis 1 m Höhe und Breite und bis ca. 2 m Länge, die erhebliche Mengen unterschiedlicher Radiotoxika enthalten. Sie fallen z.B. bei Stilllegung von graphitmoderierten Kernreaktoren oder auch bei Normalbetrieb gasgekühlter Reaktoren durch Austausch von keramischen Bauelementen, z. B. Brennelementhüllen oder in Form von Moderatorsäulen bei Materialtestreaktoren (MTR) oder in Form von keramischen oder kohlenstoffhaltigen Adsorbens aus Reinigungsanlagen aller Art an.
  • Das zu entsorgende Material ist in der Regel brennbar und stellt schon von daher für die Lagerung ein spezielles Problem dar. Zudem sind insbesondere Reaktorgraphit und Kohlestein sehr anfällig gegen chemischen Angriff und Auslaugung. Reaktorgraphit ist eine speziell für kerntechnische Anlagen verwendete Graphitform mit extrem hoher Porosität. Kohlestein ist ebenfalls hochporös.
  • Der hier betroffenen Erfindung liegt die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art zur Verfügung zu stellen, mit dem die Ausnutzung gegebener Lagerkapazitäten optimiert werden kann und gleichzeitig ein effizienter Schutz vor Verbrennen und Auslaugen gegeben ist. Die Aufgabe wird bei einem Verfahren der eingangs genannten Art gelöst, bei dem der Gegenstand zu einem Granulat zerkleinert wird, der Gegenstand vor, während und/oder nach der Zerkleinerung zur Reduktion seiner Kontamination unter Inertgasatmosphäre oder Vakuum ausgeheizt wird und das Granulat anschließend entweder mit einer verflüssigten Hüllmasse umgossen wird, oder mit der Hüllmasse in Pulver- oder Körnerform vermengt und anschließend bis zur Verflüssigung der Hüllmasse erhitzt wird, wobei die verflüssigte Hüllmasse entweder selbst zu einer Keramik erstarrt oder mit dem Granulat chemisch zu einer Keramik reagiert.
  • Die Zerkleinerung des Gegenstandes ermöglicht eine Anpassung des zu entsorgenden Materials an vorgegebene Formen, z. B. die Form von Transportbehältern oder die Geometrie der Lagerstätte, und damit eine Optimierung der Raumnutzung. Eine Zerkleinerung zum Granulat mit Korngrößen von höchstens einigen cm erlaubt eine nahezu beliebige Formgebung. Im Falle einer verflüssigten Hüllmasse, die mit dem Material des Granulats chemisch reagiert, kann das Granulat bei entsprechenden Bedingungen vollständig durchreagieren. In der Regel werden zumindest die größeren Körner des Granulats lediglich im Bereich einer Oberflächenschicht von wenigen µm bis etwa 1 mm Dicke zu einer Keramik reagieren. Im Falle der Vermengung des Granulats mit der pulvrigen oder körnigen Hüllmasse kann diesem zusätzlich auch vor, während oder nach dem Erhitzen verflüssigte Hüllmasse beigefügt werden. In jedem Fall bewirkt die Zerkleinerung und das Umhüllen des Granulats mit der Hüllmasse zudem, dass sich die nach dem Ausheizen verbliebene Kontamination im wesentlichen im Volumen des Gebindes verteilt. Dies ist insbesondere von Vorteil bei zu entsorgenden Gegenständen, die eine hohe Oberflächenkontamination und keine oder nur geringe Volumenkontaminationen aufweisen. Die Überführung in eine volumenkontamination kann zu wesentlich geringeren Anforderungen an die Handhabung der Gebinde aufgrund der dann geringeren Oberflächendosisleistung und der gegebenen Selbstabschirmung führen. Somit ist es nicht erforderlich, nahezu die gesamte Menge der Toxika durch Ausheizen zu entfernen, wodurch die Dekontamination weniger aufwendig, z. B. bei relativ niedrigen Temperaturen, durchgeführt werden könnte. Ein weiterer Vorteil der Zerkleinerung ergibt sich, wenn das Ausheizen am Granulat selbst erfolgt, da wegen der kürzeren Diffusionswege ein effizienteres Ausheizen erreicht werden kann.
  • Weiterhin soll das erfindungsgemäße Verfahren so ausgeführt werden, dass die Zerkleinerung unter einer Inertgasatmosphäre erfolgt. Hierdurch wird das Entzündungs- und Verpuffungsrisiko gemindert und im Falle kohlenstoffhaltiger Gegenstände die Reaktion mit atmosphärischem Sauerstoff unter Bildung von CO oder CO2 vermieden, welches in der Regel C14 enthalten würde und daher nicht entweichen darf. Geeignete Atmosphären sind z. B. Stickstoff und Argon.
  • Die im erfindungsgemäßen Verfahren einzusetzenden Parameter, wie z.B. Temperatur, Verweilzeiten, Druck, Verhältnis der Masse der Hüllmasse zur Masse des Gegenstands, die Korngröße, sind jeweils abhängig von der Art der ursprünglichen Konzentrationen der Toxika sowie den angestrebten Eigenschaften des Gebindes. Sollte ein Toxikum aufgrund der hohen Stabilität seiner Bindung an den Gegenstand nicht oder nur über unwirtschaftlich lange Zeiträume hinweg durch Aufheizen des Gegenstandes im erforderlichen Maße ausgetrieben werden können, kann das entsprechende Toxikum durch chemische Reaktion mit einer geeigneten Substanz, z. B. einem Halogen, in eine thermisch aus dem Gegenstand entfernbare chemische Verbindung, z. B. einem Halogenid, überführt werden.
  • Die ausgeheizten Toxika werden - wie dies aus dem Stand der Technik bereits bekannt ist - gesondert aufgefangen und entsorgt.
  • Das aus dem Granulat und der Hüllmasse erzeugte Gemenge kann zur Herstellung eines zwischen- oder endlagerfähigen Gebindes in einen geeigneten Behälter verfüllt werden. Dies kann im fließfähigen oder formbaren Zustand des Gemenges erfolgen, um den Behälter vollständig mit dem Gemenge auszufüllen. Bekannt ist die Verwendung metallischer Behälter. Diese weisen allerdings den Nachteil auf, dass sich aufgrund von Oxidation des Metalls in wässriger Lösung Wasserstoff bilden und im Endlager sammeln kann.
  • Es kann daher vorteilhaft sein, das erfindungsgemäße Verfahren so auszuführen, dass das aus dem Granulat und der Hüllmasse erzeugte Gemenge in einen Behälter aus einer nicht kontaminierten Keramik vergossen wird. Hierdurch wird die oben beschriebene Wasserstoffbildung und damit eine Explosionsgefahr im Endlager vermieden.
  • Weiterhin kann das erfindungsgemäße Verfahren so ausgeführt werden, dass nach dem Vergießen des Gemenges der Behälter mit einer nicht kontaminierten, zur Keramik erstarrenden flüssigen Auffüllmasse vollständig gefüllt wird. Auf diese Weise wird der Behälter derart verschlossen. dass das Gemenge keinen Kontakt zur Umwelt hat. Die Auffüllmasse, die z. B. zu derselben Keramik erstarren kann, aus der der Behälter besteht, verschließt also letzteren.
  • Das erfindungsgemäße Verfahren kann aber auch so ausgeführt werden, dass das aus dem Granulat und der Hüllmasse erzeugte Gemenge im fließfähigen oder formbaren Zustand zur Auffüllung der Zwischenräume in andere kontaminierte Abfälle enthaltenden, zwischen- oder endlagerfähigen Gebinden verwendet wird.
  • Auf diese Weise können die Kapazitäten der verwendeten Behälter und damit die gegebenen Lagerkapazitäten nahezu optimal genutzt werden. Die verbliebene Kontamination in den Gemengen ist so niedrig, dass durch das Verfüllen der Zwischenräume anderer endlagerfähiger Abfälle keine Grenzwerte überschritten werden können, die die Endlagerfähigkeit gefährden würden.
  • Weiterhin kann das erfindungsgemäße Verfahren so ausgeführt werden, dass zur Erzeugung eines zwischen- oder endlagerfähigen Gebindes das mit dem aus dem Granulat und der Hüllmasse erzeugten Gemenge im fließfähigen oder formbaren Zustand ein anderer kontaminierter Abfall vollständig umhüllt wird.
  • Das Gemenge kann ohne Zwischenraum die anderen kontaminierten Gegenstände umschließen und somit selbst einen optimal an den Inhalt angepassten Behälter bilden. Sollte die Restkontamination insbesondere im Bereich der Oberfläche des Gemenges hinreichend gering sein, kann das Gebinde ohne weitere Ummantelung zwischen- oder endgelagert werden. Hierzu kann ihm eine geeignete Form, z. B. eines Quaders oder Zylinders aufgegeben werden.
  • Werden die anderen Abfälle vollständig von dem Gemenge umschlossen, kann es sich dabei auch um solche handeln, die selbst erheblich stärker kontaminiert sind als das Gemenge, z. B. um hochradioaktive Abfälle, z. B. Brennelemente. Die Abschirmung durch die keramische Umhüllung kann zur Endlagerung völlig hinreichend sein. Anderenfalls sind weitere Abschirmmaßnahmen nach dem Stand der Technik zu ergreifen.
  • Sowohl das Verfüllen der Zwischenräume als auch das Umhüllen von Abfällen mit dem Gemenge kann vorteilhaft noch vor dessen vollständigem Erstarren durchgeführt werden. Es ist jedoch auch möglich, dieses in einem späteren Verfahrensschritt nach gesondertem Erhitzen des Gemenges vorzusehen.
  • Weiterhin kann das erfindungsgemäße Verfahren so ausgeführt werden, dass das aus dem Granulat und der Hüllmasse erzeugte Gemenge zu einem Behälter geformt, der Behälter mit weiterem kontaminiertem Abfall gefüllt, verschlossen und mit diesem Inhalt zwischen- oder endgelagert wird.
  • Das Gemenge wird somit zu einem Gebrauchsgegenstand verarbeitet, der zum Umhüllen selbst hochradioaktiver Abfälle geeignet sein kann. Der Behälter kann z. B. topfförmig sein. Auch Abdeckelemente, wie Deckel, können geformt werden. Ein Behälter aus zwei oder mehr Teilen kann z. B. mittels Silizium, das aus der Gasphase einer siliziumhaltigen Verbindung abgeschieden wird, oder durch Aufbringen von Siliziumcarbid, welches z.B. aus nicht kontaminierten Grundstoffen hergestellt wird, verschlossen werden. Es ist auch möglich, die Behälterteile mit einem Gewinde zu versehen.
  • Bei der Erzeugung keramischer Behälter können bei dessen Herstellung sowohl unter Verwendung des Gemenges als auch nicht kontaminierter Materialien Stoffe mit hohem spezifischen Gewicht, z. B. Barium, beigemengt werden, die die Abschirmungswirkung verbessern.
  • Das erfindungsgemäße Verfahren kann auch so ausgeführt werden, dass bei kohlestoffhaltigen Gegenständen als Hüllmasse ein Carbidbildner eingesetzt wird.
  • Hierfür eignet sich insbesondere flüssiges Silizium, das mit Kohlenstoff SiC bildet. Das keramische SiC bildet um die Körner des Granulats eine feuerfeste und auslaugbeständige sowie abriebfeste Schutzschicht. Weitere geeignete Carbidbildner sind z. B. Bor und Zirkon.
  • Das erfindungsgemäße Verfahren kann auch so ausgebildet werden, dass der Hüllmasse oder dem aus dem Granulat und der Hüllmasse erzeugten Gemenge verstärkende keramische Fasern zugefügt werden. Die Fasern können z. B. als gewickelte Fasern, Fasermatten oder Faserstücken von wenigen mm bis einigen cm Länge eingesetzt werden. Sie erhöhen die Duktilität und damit die Widerstandsfähigkeit des Gebindes gegen Rissbildung und Zersprödung, wenn sie im Behälter, in der keramischen Umhüllung oder auch im Behälterinhalt vorliegen. Zusätzlich können auch Phenolharze beigefügt werden. Bei ihrer Erhitzung werden sie zersetzt, und der entstehende Kohlenstoff kann mit dem Hüllstoff, z. B. Silizium zu SiC, reagieren. Alternativ zu keramischen Fasern sind auch Metallstrukturen zur Verstärkung der Keramik denkbar.
  • Das erfindungsgemäße Verfahren kann auch so ausgeführt werden, dass das Umgießen mit der verflüssigten Hüllmasse oder das Erhitzen des Gemenges aus Hüllmasse und Granulat in einem Vakuum erfolgt. Hierdurch kann insbesondere vermieden werden, dass Gaseinschlüsse die vollständige Benetzung der Granulatoberfläche durch die verflüssigte Hüllmasse behindern. Des Weiteren kann das Vakuum bereits während der Zerkleinerung des Gegenstandes erzeugt werden, um die Gefahr einer Verpuffung sowie die der CO- oder CO2-Bildung zu verringern.
  • Weiterhin kann das erfindungsgemäße Verfahren so ausgeführt werden, dass der Gegenstand und das entstehende Granulat während der Zerkleinerung mit einer nicht brennbaren Flüssigkeit befeuchtet werden.
  • Hierdurch ist ein weiterer Schutz gegen Brand oder Verpuffung gegeben. Zudem wird eine unerwünschte Verteilung von Stäuben vermieden.
  • Das erfindungsgemäße Verfahren kann auch so ausgeführt werden, dass der Gegenstand zur Zerkleinerung in eine nicht brennbare Flüssigkeit getaucht wird.
  • Sowohl für die Befeuchtung als auch die Zerkleinerung in Flüssigkeit ist insbesondere Wasser geeignet. Wird das Material des zu entsorgenden Gegenstandes von Wasser nicht benetzt, kann diesem ein geeignetes Lösungsmittel zugegeben werden.
  • Das erfindungsgemäße Verfahren kann auch so ausgeführt werden, dass während der Zerkleinerung des Gegenstandes entstehender und in der Flüssigkeit schwimmender Staub aufgefangen und zusammen mit dem Granulat mit der Hüllmasse umgossen wird. Der Staub kann mittels Filtern und/oder durch Verdampfen der Flüssigkeit aufgefangen werden. Der Staub wird somit wirkungsvoll der Entsorgung zugeführt.
  • Des Weiteren kann das erfindungsgemäße Verfahren so ausgeführt werden, dass die Flüssigkeit aufgefangen und dem Verfahren erneut zugeführt wird. Somit wird die Flüssigkeit im Kreislauf geführt, womit die Umwelt entlastet wird.
  • Das erfindungsgemäße Verfahren kann auch so ausgeführt werden, dass die Oberfläche des Gemenges oxidiert wird. In der Regel wird die Hüllmasse, soweit sie nicht bereits selbst eine verflüssigte Keramik ist, beim erfindungsgemäßen Verfahren nicht durchgehend eine chemische Verbindung unter Bildung einer Keramik eingehen. Durch ein Oxidieren der gesamten Oberfläche des Gebindes, auch in den Poren und Rissen, wird diese gegen spätere Angriffe durch Brand, Auslaugen oder gegen chemische Angriffe resistent gemacht. Im Falle von Silizium als Hüllmasse wird eine widerstandsfähige Oberfläche aus keramischem, abriebfesten SiO2 erzeugt. Das Oxidieren erfolgt durch Erhitzen des Gebindes in oxidierender Atmosphäre, z. B. O2 oder Luft. Das gesonderte Erhitzen des Gebindes kann eingespart werden, wenn die oxidierende Atmosphäre möglichst zeitnah nach dem Umgießen des Granulats erzeugt wird. Eine hohe Abriebfestigkeit ist wünschenswert, um den unkontrollierten Verlust an Gebindematerial möglichst gering zu halten. Mohs'sche Härten größer oder gleich 4 wären vorteilhaft.
  • Weiterhin kann das erfindungsgemäße Verfahren so ausgebildet werden, dass Gebinde, die das aus dem Granulat und der Hüllmasse erzeugte Gemenge enthalten, derart geformt werden, dass sie mit flächigem Kontakt aneinander gestellt werden können. Beispielhafte Formen sind solche mit rechteckigem oder hexagonalem Querschnitt. Sie lassen eine lückenlose Aneinanderreihung und damit eine optimierte Raumausnutzung zu. Das flächige Aufeinanderwirken verhindert zudem, dass ein in Richtung der Seitenflächen wirkender, benachbarte Gebinde gegeneinander pressender Gebirgsdruck in Endlagern, nicht so schnell zu Rissen oder Zersprödungen im Gebinde führt wie dies bei zylinderförmigen Gebinden der Fall ist, die seitlich lediglich einen linienhaften Kontakt zueinander aufweisen.
  • Schließlich kann das erfindungsgemäße Verfahren so ausgeführt werden, dass es am Einsatzort des Gegenstandes durchgeführt wird.
  • Auf diese Weise kann ein je nach Kontaminationsart mit Risiken verbundener Transport der zu entsorgenden Gegenstände vermieden werden. Es ist selbstverständlich auch möglich, nur einzelne Verfahrensschritte, z. B. allein das Zerkleinern, am Einsatzort des zu entsorgenden Gegenstandes durchzuführen.
  • Im Folgenden wird eine bevorzugte Ausführungsform des erfindungsgemäßen Verfahrens dargestellt.
  • Als Beispiel für einen zu entsorgenden Gegenstand wird von einem in einem Kernkraftwerk eingesetzten Moderatorelement aus Kohlenstoff ausgegangen. Derartige Moderatoren weisen eine sich aus hochreinem und porösem Graphit (Reaktorgraphit) und Kohlestein zusammensetzende keramische Struktur auf. Üblicherweise ist ein derartiger Moderator mit unterschiedlichen toxischen Stoffen kontaminiert. Um diese toxischen Stoffe möglichst weitgehend zu entfernen, wird das Moderatorelement in einem Hochtemperaturofen durch direkten Stromdurchgang erhitzt. Alternativ kann auch induktiv oder durch gesonderte Heizelemente geheizt werden. Das Aufheizen geschieht in Vakuum oder unter Schutzgas, um zu verhindern, dass beim Erhitzen durch Reaktion mit dem atmosphärischen Sauerstoff Kohlenmonoxid und Kohlendioxid entstehen, die das in bestrahltem Kohlenstoff in der Regel vorhandene radioaktive C14 enthalten und daher nicht unkontrolliert entweichen dürfen. Dieses Verfahren ist schon in der DE 197 37 891 A1 ausführlich beschrieben.
  • Der Gegenstand wird nach dem Ausheizen oder auch schon vorher oder währenddessen zerkleinert. Diese Zerkleinerung kann entweder außerhalb des Reaktordruckbehälters erfolgen oder innerhalb. Im letzteren Fall wird das Verbringen großer Blöcke und ein Öffnen der Umschließung vermieden. Zu diesem Zweck müsste die Zerkleinerungseinrichtung in den Reaktorbehälter eingebracht werden. Bei entsprechender Anbringung an einem Manipulatorarm ist es möglich, die Blöcke in-situ zu zerlegen und zu zerkleinern und dann nur das Stückgut oder Granulat abzuführen. Falls die thermische Behandlung erst anschließend erfolgt, kann diese ebenfalls innerhalb des Reaktordruckbehälters durchgeführt werden, da die erforderlichen Heizeinrichtungen sehr kompakt sein können.
  • Da bei der Zerkleinerung mit erheblichen Staubmengen zu rechnen ist, wird u. a. zur Vermeidung einer Verpuffung die Zerkleinerung unter Inertgas durchgeführt. Zusätzlich kann das Stückgut angefeuchtet oder komplett in Flüssigkeit, z. B. in Wasser, eingetaucht werden. Ein vorheriges thermisches Austreiben von Tritium sollte erfolgen, um die Flüssigkeit nicht damit zu versetzen. Der den Staub enthaltende Schlamm kann getrocknet dem Entsorgungsprozess wieder zugeführt und die Flüssigkeit nach Kondensation rezykliert werden.
  • Im Falle des Ausheizen des Granulats kann dieses kontinuierlich oder diskontinuierlich unter Inertgas erfolgen. Die Höhe der Temperatur richtet sich nach der Art der toxischen Stoffe und der angestrebten Dekontaminationsfaktoren. Hierbei kann im wesentlichen auf die in der Graphitindustrie bekannte Vorgehensweise zur Graphitreinigung zurückgegriffen werden. Leicht flüchtige toxische Stoffe, wie z. B. Tritium oder Cäsium werden bereits bei relativ niedrigen Temperaturen ausgetrieben. Chemisch an Kohlenstoff gebundene toxische Stoffe müssen bei höheren Temperaturen durch Pyrolyse von der keramischen Struktur abgelöst werden. Sind einzelne toxische Stoffe hierdurch nicht aus dem Moderatormaterial zu entfernen, z. B. schwer zersetzbare Carbide, können diese durch Zugabe und Infiltration gasförmiger Halogenverbindungen in flüchtige Halogenide umgewandelt werden. Die aus dem Moderatormaterial entfernten toxischen Stoffe werden an Kondensationsplatten abgeschieden oder mittels Fallen oder Filtern (z. B. für Tritium) aufgefangen, wo sie dann in einer erheblich höheren Konzentration als in Moderatormaterial vorliegen.
  • Das zum Teil dekontaminierte Moderatormaterial enthält nun allenfalls noch toxische Stoffe, die mit thermischer und/oder thermochemischer Behandlung nicht zu entfernen waren. Daraus folgt, dass ein Herausdiffundieren oder Auslaugen dieser toxischen Stoffe auch über extrem lange Zeiträume nicht stattfinden würde.
  • Das thermisch und/oder chemisch vorbehandelte zerkleinerte Moderatormaterial wird mit flüssigem Silizium durchsetzt, wobei unter entsprechend hoher Temperatur die Oberflächen des kohlenstoffhaltigen Granulats zu SiC reagieren und sich ein Gebinde aus Si und SiC mit eingelagerten Granulatstücken abgießen oder extrudieren lässt. Die Form, z. B. Zylinder, Quader oder flache aneinander reihbare Zylindersegmente richtet sich nach den Transport- und Lagerbehältergeometrien zur möglichst optimalen Raumnutzung.
  • Da ein Teil des Siliziums noch nicht mit Kohlenstoff reagiert haben kann, wird eine Nachbehandlung unter oxidierender Atmosphäre durchgeführt, wobei sich Siliziumdioxid an den für den Sauerstoff zugänglichen Stellen bildet, welches einen zusätzlichen Oxidationsschutz darstellt, der auch langfristigen Korrosionsangriffen widersteht.
  • Da aufgrund der Vorbehandlung davon ausgegangen werden kann, dass die Oberflächendosisleistung des Gebindes sehr niedrig ist und SiC auch die Herstellung komplexer Formen erlaubt, kann das Material auch zu kleinen Behältern abgegossen werden, die dann ihrerseits andere Gefahrstoffe aufnehmen können und vor Korrosion und Auslaugung schützen. Des weiteren kann das noch flüssige Gemenge zum Ausgießen von Zwischenräumen oder zum Umhüllen von ganzen oder zerlegten Reaktorbrennelementen verwendet werden. Dabei zeichnet sich Siliziumcarbid neben der vorzüglichen Korrosionsbeständigkeit auch durch gute Wärmeleitung aus.
  • Eine Umhüllung aus SiC ist wesentlich beständiger als aus Metall. Ein weiterer Nachteil des Metalls gegenüber dem SiC ist, dass bei der Oxidation von Metallen in wässriger Lösung große Mengen an Wasserstoff entstehen, die sich im Endlager anreichern und eine Gefahrenquelle bilden können.

Claims (16)

  1. Verfahren zur Entsorgung eines mit mindestens einem Toxikum, insbesondere Radiotoxikum kontaminierten Gegenstandes aus Keramik, Graphit und/oder Kohlestein, bei dem
    a) der Gegenstand unter Inertgasatmosphäre zu einem Granulat zerkleinert wird,
    b) der Gegenstand vor, während und/oder nach der Zerkleinerung zur Reduktion seiner Kontamination unter Inertgasatmosphäre oder Vakuum ausgeheizt wird und
    c) das Granulat anschließend entweder
    aa) mit einer verflüssigten Hüllmasse umgossen wird, oder
    bb) mit der Hüllmasse in Pulver- oder Körnerform vermengt und anschließend bis zur Verflüssigung der Hüllmasse erhitzt wird,
    wobei die verflüssigte Hüllmasse entweder selbst zu einer Keramik erstarrt oder mit dem Granulat chemisch zu einer Keramik reagiert.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das aus dem Granulat und der Füllmasse erzeugte Gemenge im fließfähigen oder formbaren Zustand in einen Behälter aus einer nicht kontaminierten Keramik vergossen wird.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass nach dem Vergießen des Gemenges der Behälter mit einer nicht kontaminierten Keramik vollständig gefüllt wird.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das aus dem Granulat und der Hüllmasse erzeugte Gemenge im fließfähigen oder formbaren Zustand zur Auffüllung der Zwischenräume in andere kontaminierte Abfälle enthaltenden, zwischen- oder endlagerfähigen Gebinden verwendet wird.
  5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass zur Erzeugung eines zwischen- oder endlagerfähigen Gebindes das mit dem aus dem Granulat und der Hüllmasse erzeugten Gemenge im fließfähigen oder formbaren Zustand ein anderer kontaminierter Abfall vollständig umhüllt wird.
  6. Verfahren nach Anspruch 1 oder 4, dadurch gekennzeichnet, dass das aus dem Granulat und der Hüllmasse erzeugte Gemenge zu einem Behälter geformt, der Behälter mit weiterem kontaminiertem Abfall gefüllt, verschlossen und mit diesem Inhalt zwischen- oder endgelagert wird.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass bei kohlestoffhaltigen Gegenständen als Hüllmasse ein Carbidbildner eingesetzt wird.
  8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Hüllmasse oder dem aus dem Granulat und der Hüllmasse erzeugten Gemenge verstärkende keramische Fasern zugefügt werden.
  9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das Umgießen mit der verflüssigten Hüllmasse oder das Erhitzen des Gemenges aus Hüllmasse und Granulat in einem Vakuum erfolgt.
  10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass der Gegenstand und das entstehende Granulat während der Zerkleinerung mit einer nicht brennbaren Flüssigkeit befeuchtet werden.
  11. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass der Gegenstand zur Zerkleinerung in eine nicht brennbare Flüssigkeit getaucht wird.
  12. Verfahren nach Anspruch 10 oder 11, dadurch gekennzeichnet, dass während der Zerkleinerung des Gegenstandes entstehender und in der Flüssigkeit schwimmender Staub aufgefangen und zusammen mit dem Granulat mit der Hüllmasse umgossen wird.
  13. Verfahren nach einem der.Ansprüche 10 bis 12, dadurch gekennzeichnet, dass die Flüssigkeit aufgefangen und dem Verfahren erneut zugeführt wird.
  14. Verfahren nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass die Oberfläche des Gemenges oxidiert wird.
  15. Verfahren nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass Gebinde, die das aus dem Granulat und der Hüllmasse erzeugte Gemenge enthalten, derart geformt werden, dass sie mit flächigem Kontakt aneinander gestellt werden können.
  16. Verfahren nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass es am Einsatzort des Gegenstandes durchgeführt wird.
EP02758142A 2001-09-28 2002-08-10 Verfahren zur entsorgung eines mit mindestens einem toxikum, insbesondere radiotoxikum, kontaminierten gegenstandes aus keramik, graphit und/oder kohlestein Expired - Fee Related EP1430487B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10148146 2001-09-28
DE10148146A DE10148146B4 (de) 2001-09-28 2001-09-28 Verfahren zur Entsorgung eines mit mindestens einem Radiotoxikum kontaminierten Gegenstandes aus Reaktorgraphit und/oder Kohlestein
PCT/DE2002/002951 WO2003032328A1 (de) 2001-09-28 2002-08-10 Verfahren zur entsorgung eines mit mindestens einem toxikum, insbesondere radiotoxikum, kontaminierten gegenstandes aus keramik, graphit und/oder kohlestein

Publications (2)

Publication Number Publication Date
EP1430487A1 EP1430487A1 (de) 2004-06-23
EP1430487B1 true EP1430487B1 (de) 2010-03-17

Family

ID=7700803

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02758142A Expired - Fee Related EP1430487B1 (de) 2001-09-28 2002-08-10 Verfahren zur entsorgung eines mit mindestens einem toxikum, insbesondere radiotoxikum, kontaminierten gegenstandes aus keramik, graphit und/oder kohlestein

Country Status (4)

Country Link
EP (1) EP1430487B1 (de)
DE (2) DE10148146B4 (de)
ES (1) ES2343003T3 (de)
WO (1) WO2003032328A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004036631B4 (de) * 2004-07-28 2013-02-21 Forschungszentrum Jülich GmbH Verfahren zur Behandlung einer mit Radiokarbon kontaminierten Keramik, insbesondere Reaktorgraphit
DE102013003847B3 (de) * 2013-03-07 2014-09-04 Forschungszentrum Jülich GmbH Fachbereich Patente Verfahren zur Dekontamination von Radionukliden aus neutronenbestrahlten Kohlenstoff- und/ oder Graphitwerkstoffen

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3001629A1 (de) * 1980-01-17 1981-09-24 Alkem Gmbh, 6450 Hanau Verfahren zur endkonditionierung fester radioaktiverabfaelle
US4834914A (en) * 1987-06-09 1989-05-30 Jackson O L Radioactive waste disposal system and method
US5265545A (en) * 1989-04-12 1993-11-30 Miltox Holdings Pte, Limited Method and apparatus for waste treatment
FR2659876B1 (fr) * 1990-03-23 1992-08-21 Tanari Rene Procede et four de traitement de dechets fusibles.
FR2659877B1 (fr) * 1990-03-23 1992-11-27 Tanari Rene Procede et four de traitement de dechets incinerables.
US5424042A (en) * 1993-09-13 1995-06-13 Mason; J. Bradley Apparatus and method for processing wastes
DE19737891C2 (de) * 1997-08-29 2002-08-01 Forschungszentrum Juelich Gmbh Verfahren zur Entsorgung eines mit Radiotoxika kontaminierten Gegenstandes aus Reaktorgraphit oder Kohlestein

Also Published As

Publication number Publication date
DE10148146B4 (de) 2009-08-27
DE10148146A1 (de) 2003-05-15
DE50214295D1 (de) 2010-04-29
ES2343003T3 (es) 2010-07-21
WO2003032328A1 (de) 2003-04-17
EP1430487A1 (de) 2004-06-23

Similar Documents

Publication Publication Date Title
DE2922382A1 (de) Verfahren zur einkapselung von verbrauchtem kernbrennstoff in eine dessen langzeitlagerung ermoeglichende sicherheitshuelle
EP2347422B1 (de) Matrixmaterial aus graphit und anorganischen bindemitteln geeignet zur endlagerung von radioaktiven abfällen, verfahren zu dessen herstellung, dessen verarbeitung und verwendung
EP2550664B1 (de) Verfahren zur herstellung von gebinden zur lagerung von abfällen
EP1771865B1 (de) Verfahren zur behandlung einer mit radiokarbon kontaminierten keramik, insbesondere reaktorgraphit
DE2418518A1 (de) Speichervorrichtung fuer radioaktiven abfall
EP0129782A1 (de) Vorrichtung zur Handhabung und zum Schutz von Lagergebinden für radioaktive Stoffe
DE2917437A1 (de) Verfahren zur konditionierung von radioaktiven und toxischen abfaellen
DE3321250A1 (de) Betonbehaelter zur aufnahme bioschaedlicher stoffe
EP1430487B1 (de) Verfahren zur entsorgung eines mit mindestens einem toxikum, insbesondere radiotoxikum, kontaminierten gegenstandes aus keramik, graphit und/oder kohlestein
DE3144754A1 (de) Formkoerper zur einbindung radioaktiver abfaelle und verfahren zu seiner herstellung
DE102009044963B4 (de) Blöcke aus Graphit-Matrix mit anorganischem Bindemittel geeignet zur Lagerung von radioaktiven Abfällen und Verfahren zur Herstellung derselben
DE19737891C2 (de) Verfahren zur Entsorgung eines mit Radiotoxika kontaminierten Gegenstandes aus Reaktorgraphit oder Kohlestein
EP3170187B1 (de) Verfahren zur dekontamination von kontaminiertem graphit
EP2368254B1 (de) Verfahren zur reduzierung oder zumindest teilweisen entfernung spezifischer radiotoxika aus einer kerntechnischen anlage
DE19636563C1 (de) Kernreaktor-Brennelemente mit hohem Abbrand und Verfahren zu ihrer Fertigung
DE3144764A1 (de) Formkoerper zur einbindng radioaktiver abfaelle und verfahren zu seiner herstellung (ii)
DE102012009119A1 (de) Thermische Graphit-Dekontaminierung mit Reduktionsgasen
DE3046539A1 (de) Verfahren und vorrichtung zum herstellen von tritium
US20160260512A1 (en) Waste immobilization methods and storage systems
Forsberg et al. A new repository waste form: graphite–carbon high-level waste
DE2944720A1 (de) Verfahren zur konditionierung von radioaktiven brennelementhuelsen
Anshits et al. Method for solidification of radioactive and other hazardous waste
DE102010000974A1 (de) Form-, strahlungs- und temperaturstabiler Körper, geeignet zum Transport und/oder zur Lagerung von radioaktiven Abfällen
Anfimov Management of radioactive waste in nuclear power: Handling of irradiated graphite from water-cooled graphite reactors
Chikalla Nuclear waste management. Quarterly progress report, July-September 1980

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040416

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

17Q First examination report despatched

Effective date: 20070621

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FORSCHUNGSZENTRUM JUELICH GMBH

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50214295

Country of ref document: DE

Date of ref document: 20100429

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2343003

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20101220

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140703

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140819

Year of fee payment: 13

Ref country code: GB

Payment date: 20140821

Year of fee payment: 13

Ref country code: ES

Payment date: 20140827

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50214295

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150810

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160301

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150831

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20170202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150811