EP1430207B1 - Procede et dispositif de commande d'un consommateur electro-magnetique - Google Patents

Procede et dispositif de commande d'un consommateur electro-magnetique Download PDF

Info

Publication number
EP1430207B1
EP1430207B1 EP02762226A EP02762226A EP1430207B1 EP 1430207 B1 EP1430207 B1 EP 1430207B1 EP 02762226 A EP02762226 A EP 02762226A EP 02762226 A EP02762226 A EP 02762226A EP 1430207 B1 EP1430207 B1 EP 1430207B1
Authority
EP
European Patent Office
Prior art keywords
time
current
voltage
switching
solenoid valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02762226A
Other languages
German (de)
English (en)
Other versions
EP1430207A1 (fr
Inventor
Uwe Guenther
Andreas Glaser
Bernd Kudicke
Wolfgang Schmauder
Juergen Eckhardt
Oliver Heyna
Beate Leibbrand
Hartmut Albrodt
Thomas Wenzler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1430207A1 publication Critical patent/EP1430207A1/fr
Application granted granted Critical
Publication of EP1430207B1 publication Critical patent/EP1430207B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2055Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit with means for determining actual opening or closing time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2058Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit using information of the actual current value

Definitions

  • the invention relates to a method and a device for controlling an electromagnetic consumer.
  • a method and a device for controlling an electromagnetic consumer are known. Such electromagnetic consumers are used in particular for controlling the metering of fuel in internal combustion engines.
  • a solenoid valve determines the duration of injection and / or the start of injection.
  • solenoid valves In solenoid valves usually passes between the actuation time and the response of the solenoid valve a certain period of time. This period of time is commonly referred to as the switching time of the valve. This switching time depends on various parameters. Such parameters are, for example, the coil voltage and / or the coil temperature and / or the current flowing through the coil.
  • a variable switching time of the solenoid valve in turn has a variable injection duration and / or a variable start of injection and thus an undesirably changing amount of injected fuel result.
  • the DE 40 20 094 describes a method and a device for controlling an electromagnetic consumer. This device is based on the task of safely closing the solenoid valve and terminating the injection when an error occurs. For this purpose, the voltage applied to the switching means, which corresponds to the extinguishing voltage, monitored. Upon detection of a fault, the control of the solenoid valve is terminated. It is provided that the solenoid valve is driven so long that a certain amount of fuel is still metered, so that emergency operation is possible. When switching off the solenoid valve, a high voltage is induced at this, which is limited by the extinguishing device to a certain value. It is checked whether this voltage increase occurs. For this purpose, the voltage at a point B is compared with a reference value. If the voltage at the point B exceeds the reference value, a signal is generated. If this is the case, then the device works properly. If this is not the case, then errors are detected. That is, based on the period during which the erase voltage is applied is detected on error.
  • the time duration is determined during which the erase voltage is applied to the load.
  • the time is determined at which the erase voltage drops below a threshold value (TS).
  • TS threshold value
  • the duration of the erase voltage then corresponds to the time interval between the switching off of the consumer and the falling below the threshold value.
  • a switch-on time in the specification of the beginning and the switch-off time in the specification of the duration of the control is taken into account. Instead of the duration of the control and the end of the control can be specified. When setting the end, the switch-on time and the switch-off time must be taken into account.
  • the erase voltage is the voltage applied to the load during the shutdown process. This voltage is preferably detected at the terminal of the consumer, which is connected to the power supply.
  • FIG. 1 essential elements of a device that FIGS. 2 and 3 various signals plotted over time
  • FIG. 3 a valve characteristic that FIG. 5 essential elements of the device according to the invention and the FIG. 6 various signals plotted over time.
  • the invention will be described below using the example of a device FIG. 5 for controlling the amount of fuel to be injected into an internal combustion engine. It is not limited to this application. It can always be used if the activation duration of an electromagnetic consumer is to be controlled. This is the case in particular if the activation duration defines a variable, such as the volume flow of a medium flowing through the solenoid valve.
  • FIG. 1 is at 100 an electromagnetic consumer, in particular a solenoid valve called.
  • a first connection of the solenoid valve 100 is connected to a supply voltage Ubat.
  • a second terminal of the solenoid valve is connected via a switching means 110 and a current measuring means 120 to ground 130 in connection.
  • the switching means 110 is preferably realized as a transistor.
  • the two connections of the Switching means are preferably connected via a voltage limiting means 111.
  • the current measuring means is preferably an ohmic resistor, wherein the voltage drop across the ohmic resistor is evaluated for current measurement.
  • the switching means 110 is acted upon by a drive logic 115 with a drive signal.
  • the voltage drop at the current measuring means 120 is evaluated by a current detection 125.
  • This current detection includes, among other things, an analog-to-digital converter and a register 126 for storing the current value.
  • the components 110 to 125 form the so-called output stage 140, which is preferably designed as an output stage IC.
  • the output stage 140 is preferably connected to a control unit 150 via an interface and transmits via this at least the value of the current I to the control unit 150.
  • the control unit 150 sends a control signal T, which specifies, in particular, the activation duration and / or the start of the activation Amplifier, in particular to the drive logic 115, transmitted.
  • the control unit 150 includes, among other things, a switching time determination 152 which is connected to the register of the current detection 125. Furthermore, the control unit 150 includes a drive time specification 154, which applies the drive logic 115 to the drive signal T.
  • the control unit 150 calculates the drive signal T on the basis of various operating parameters of the internal combustion engine and / or ambient conditions.
  • This actuation signal T contains the information regarding the actuation start and / or the actuation duration of the electromagnetic load.
  • This drive signal T- is then converted by the drive logic 115 into signals for acting on the switching means 110.
  • the current I flowing through the load 100 generates a voltage drop at the current measuring resistor 120 which is detected by the current detection 125. Starting from the voltage drop, the current detection determines the current value I and writes this into the register 126. The switching time determination 152 reads the current value I from the SPI register and determines, based on the current value I, the switching times TA. The switching times TA are taken into account by the drive timing 154 in the determination of the drive signal T.
  • FIG. 2 the course of the current during switching on over time t is plotted. Three current curves with different final values of the current I1, I2 and I3 are shown.
  • the switching means 110 is closed and the current flow
  • FIG. 2 the course of the current during switching on over time t is plotted. Three current curves with different final values of the current I1, I2 and I3 are shown.
  • the switching means 110 is closed and the current flow through the load 100 begins. Due to the inductance of the load, the current increases according to the exponential function. After a period of time, the needle of the solenoid valve begins to move and the inductance of the load changes.
  • the solenoid valve needle reaches its new end position, ie the solenoid valve opens, the current in the example shown has a kink. From this point on, the current then rises to its final value 11, 12 or 13.
  • the time at which the solenoid valve opens is denoted by t3, t2 and t1, respectively.
  • the distance between the switch-on time te and the opening of the solenoid valve at time t3, t2 or t1 is commonly referred to as switching time, in particular as the switch-on time. For large currents, preferably sets a small on-time. For smaller currents results in a longer turn-on time.
  • This switch-on time depends on the final value of the current. This relationship is preferably stored as a map in the switching time setting 152. Alternatively, it can also be provided that the current detection already carries out a conversion of the current into a switching time and, instead of the current, transmits a switching time or a correction value to the control unit 150.
  • FIG. 3 the course of the Nadelhubs h when switching off, ie when opening the switch 110 at time ta applied.
  • three stationary current values given starting from which is switched off. From time ta, the current drops to zero according to an exponential function. As a result, the solenoid valve needle slowly moves toward its closed position. Depending on the current level and the clamp voltage, the switch-off will be shorter or longer. If the needle lift curve touches the time axis at times t1, t2 and t3, the solenoid valve is closed. With a high current results in a long turn-off time, with a small current results in a shorter turn-off time. For large currents, preferably sets a large turn-off. For smaller currents results in a shorter shutdown time.
  • the relationship between the steady state end value of the current before shutdown and the switching time is as well as the turn-on time in the switching timing 152 preferably stored as a map.
  • the current value flowing through the load is measured in steady state, steady state. This is preferably done about 2 ms after switching on the current flow, at the latest immediately before switching off the consumer.
  • the supply voltage Ubat is measured at the same time. Based on the measured current value, the ohmic resistance of the load is determined directly. Based on this can also be concluded on the temperature of the consumer.
  • the main influencing variables on the switch-on times and the switch-off times are known and can thus be compensated. For this purpose, preferably maps or calculation methods are used.
  • the switch-on time and the switch-off time are used to correct the duration of the fuel metering. It is particularly advantageous if the switch-on time for correcting the beginning of the fuel metering and the switch-off time for correcting the end of the fuel metering is used. Preferably, the switching times determined in the preceding injection are used in the subsequent metering of fuel. In a particularly advantageous embodiment, it is provided that when several similar consumers are provided, as is usually the case with the metering of fuel, the measurement takes place only at one consumer, since the other consumers the same environmental conditions, such as supply voltage or temperature exposed are.
  • the current is measured several times during activation and only the highest measured current is used as the value for a metering.
  • the drive timing includes a valve characteristic.
  • this valve characteristic the relationship between the desired amount of fuel QK to be injected and the duration ti of the drive signal T is stored.
  • a valve characteristic is exemplary in FIG. 4 shown.
  • An idealized characteristic is indicated by a solid line. Up to a judgmentan Kunststoffdauer ti0 no injection takes place. From the foundedan Kunststoffdauer the amount of fuel increases steeply. In the further course There is an almost linear relationship between the time ti and the injected fuel quantity QK.
  • the current value is determined accordingly and based on this, a correction of the valve characteristic.
  • this can be realized in such a way that different characteristic curves are stored and used in the activation time specification for different current values.
  • a correction value is determined with which the output variable and / or the input variable of the characteristic map is corrected.
  • the embodiment of the invention is in FIG. 5 shown.
  • the embodiment of the FIG. 5 differs from the example of FIG. 1 essentially in that, instead of a current detection 125, a voltage detection 128 is provided which detects the voltage U which is present at the connection point between the load 100 and the switching means 110.
  • This voltage detection 128 supplies a signal t, which represents a time value, to the switching time determination 152.
  • the voltage detection 128 is in FIG. 5 shown in more detail.
  • the voltage signal U reaches a comparator 128a, at whose second input an output signal TS of a threshold value 128b is located.
  • the time at which the threshold is exceeded and / or the time since the consumer is driven is entered in the register 126.
  • FIG. 6a is the course of the current I, which flows through the load 100, applied during the shutdown.
  • FIG. 6b is applied to the load applied voltage U over the appropriate time.
  • FIG. 6c the stroke of the solenoid valve needle is plotted over time. Until the time ta, the steady state current value flows through the consumer. At the time ta, the control of the switching means 110 ends. From this point on, the current drops to 0 according to an exponential function. This has the consequence that from a certain delay time, the solenoid valve needle Simultaneously with the operation of the switching means 110, the clamp voltage U rises to a value determined by the zener diode 111.
  • the voltage U As soon as the current I has dropped to 0, the voltage U also drops exponentially. This time, from which the voltage drops, corresponds to the time t1, t2 or t3, at which the current I has dropped to 0. At the time when the solenoid valve needle has reached its end position, the voltage drops to the battery voltage U Bat . According to the invention, it has been recognized that there is a relationship between the time t1, t2, t3 at which the voltage U drops and the time AT1, AT2, AT3 at which the solenoid valve reaches its end position.
  • this relationship is preferably stored as a map in the switching time specification 152.
  • the voltage detection already converts the times t1, t2, t3 into a switching time and, instead of the time at which the voltage drops, transmits a switching time or a correction value to the control unit 150.
  • the time t1, t2 or t3 is determined by checking whether the voltage U drops below a threshold value TS predetermined by the threshold value specification 128b. This time t1, t2 or t3 is stored in the register 126 and transferred to the switching timing 152.
  • the mechanical fall time At, d. H. the time until the consumer reaches his final position, u. a. depends on the electrical parameters such as the amount of cut-off current and the inductance. These parameters go into the temporal length of the cut-off voltage, d. H. in the difference between the time ta and the times t1, t2 or t3.
  • the shutdown voltage is also referred to as erase voltage.
  • this period of time is measured between the time ta and the time t1, t2 or t3. Based on the length of the shutdown voltage is then closed on the mechanical shutdown time At1, At2 or At3. This is done, for example, with the in FIG. 5 Due to the knowledge of the exact mechanical turn-off time, the accuracy in the control of the electromagnetic load can be significantly improved. By reducing the erase voltage, which is thereby possible, there is a significant cost advantage.
  • the mechanical switch-off time depends on the electrical variables, such as the current in the shutdown case, the inductance, the level of the erase voltage, the coil resistance and / or the supply voltage U Bat . All these variables are included in the length of the pending extinguishing voltage in the case of a shutdown.
  • the length from the switch-off time ta until reaching the trigger threshold is measured according to the invention.
  • the mechanical switch-off time is determined from this period of time, in particular by means of a family of characteristics. This turn-off time At thus determined is then corresponding to the drive time determination 154 for determining the drive time T, as in the first embodiment according to FIG. 1 , considered.
  • the procedure according to the invention is generally applicable to electromagnetic consumers.
  • it can be used in motor vehicles in injectors or other solenoid valves, which are in the field of fuel metering or in the area of control.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

L'invention concerne un dispositif et un procédé de commande d'un consommateur électromagnétique, notamment d'une électrovanne destinée à influencer la quantité de carburant à injecter dans le moteur à combustion interne. Au moins un temps de commande du consommateur est pris en considération lors de la commande. Le ou les temps de commande est/sont déterminé(s) à partir d'une valeur courant.

Claims (4)

  1. Procédé de commande d'un consommateur électromagnétique, en particulier d'une soupape électromagnétique pour influencer le débit de carburant à injecter dans un moteur à combustion interne, selon lequel on tient compte d'au moins un temps de réponse du consommateur lors de la commande,
    caractérisé en ce que
    l'on détermine le temps de réponse à partir d'une durée, pendant laquelle une tension d'extinction est présente.
  2. Procédé selon la revendication 1,
    caractérisé en ce que
    l'on détermine le temps de réponse à partir de l'instant auquel la tension d'extinction baisse en dessous d'une valeur de seuil (TS).
  3. Procédé selon l'une des revendications précédentes,
    caractérisé en ce que
    l'on effectue une correction de la durée de dosage du carburant à partir d'un temps de connexion et/ou d'un temps de coupure.
  4. Dispositif de commande d'un consommateur électromagnétique, en particulier d'une soupape électromagnétique pour influencer le débit de carburant à injecter dans un moteur à combustion interne, dans lequel on tient compte d'au moins un temps de réponse du consommateur lors de la commande,
    caractérisé en ce que
    des moyens déterminent le temps de réponse à partir d'une durée, pendant laquelle une tension d'extinction est présente.
EP02762226A 2001-08-16 2002-07-27 Procede et dispositif de commande d'un consommateur electro-magnetique Expired - Lifetime EP1430207B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10140313 2001-08-16
DE10140313 2001-08-16
PCT/DE2002/002781 WO2003023211A1 (fr) 2001-08-16 2002-07-27 Procede et dispositif de commande d'un consommateur electro-magnetique

Publications (2)

Publication Number Publication Date
EP1430207A1 EP1430207A1 (fr) 2004-06-23
EP1430207B1 true EP1430207B1 (fr) 2008-02-20

Family

ID=7695715

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02762226A Expired - Lifetime EP1430207B1 (fr) 2001-08-16 2002-07-27 Procede et dispositif de commande d'un consommateur electro-magnetique

Country Status (6)

Country Link
US (1) US7089915B2 (fr)
EP (1) EP1430207B1 (fr)
JP (1) JP4015619B2 (fr)
KR (1) KR100857638B1 (fr)
DE (2) DE50211745D1 (fr)
WO (1) WO2003023211A1 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITTO20030921A1 (it) * 2003-11-20 2005-05-21 Fiat Ricerche Dispositivo di comando di elettroattuatori con rilevamento dell'istante di fine attuazione e metodo di rilevamento dell'istante di fine attuazione di un elettroattuatore.
GB2470211B (en) * 2009-05-14 2013-07-31 Gm Global Tech Operations Inc Hysteresis-type electronic controlling device for fuel injectors and associated method
DE102009028650B4 (de) 2009-08-19 2019-08-01 Robert Bosch Gmbh Verfahren zum Betreiben eines Kraftstoff-Einspritzventils einer Brennkraftmaschine
EP2375041A3 (fr) * 2010-04-08 2018-04-04 Delphi Technologies, Inc. Système et procédé de contrôle du temps d'injection d'un injecteur de carburant
EP2469064A1 (fr) 2010-12-24 2012-06-27 Delphi Technologies, Inc. Procédé pour contrôler un moteur à combustion interne
EP2514956A1 (fr) 2011-04-22 2012-10-24 Delphi Automotive Systems Luxembourg SA Procédé pour commander un actionneur électromagnétique
EP2650518A1 (fr) 2012-04-12 2013-10-16 Delphi Automotive Systems Luxembourg SA Procédé de commande d'une durée d'injection d'un injecteur de carburant
DE102013218149B4 (de) * 2013-09-11 2022-06-23 Vitesco Technologies GmbH Schaltungsanordnung zur Ermittlung von Induktivitätsänderungen der Spule eines magnetischen Aktuators aufgrund der Bewegung des betätigten Aktuators
WO2015077410A1 (fr) * 2013-11-20 2015-05-28 Eaton Corporation Solénoïde et procédé de commande associé
DE102019200572A1 (de) * 2019-01-17 2020-07-23 Robert Bosch Gmbh Verfahren zur Ermittlung der Bewegung eines Ankers eines elektrischen Saugventils

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3729954A1 (de) * 1987-09-07 1989-03-16 Sikora Gernot Verfahren und einrichtung zum ansteuern von einspritzventilen
JP2892717B2 (ja) * 1989-11-15 1999-05-17 株式会社日立製作所 電力開閉制御装置
DE4020094C2 (de) * 1990-06-23 1998-01-29 Bosch Gmbh Robert Verfahren und Einrichtung zur Ansteuerung eines elektromagnetischen Verbrauchers
DE69320826T2 (de) * 1992-03-26 1999-01-21 Zexel Corp Kraftstoff-Einspritzvorrichtung
DE4305488A1 (de) * 1993-02-23 1994-08-25 Bosch Gmbh Robert Steuerschaltung für ein Magnetventil
JP3494383B2 (ja) * 1993-05-21 2004-02-09 富士重工業株式会社 エンジンの燃料噴射弁駆動回路
DE4329981A1 (de) * 1993-09-04 1995-03-09 Bosch Gmbh Robert Verfahren und Vorrichtung zur Ansteuerung eines elektromagnetischen Verbrauchers
DE4341797A1 (de) * 1993-12-08 1995-06-14 Bosch Gmbh Robert Verfahren und Vorrichtung zur Ansteuerung eines elektromagnetischen Verbrauchers
DE4415361B4 (de) 1994-05-02 2005-05-04 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung eines elektromagnetischen Verbrauchers
DE19513878A1 (de) * 1995-04-12 1996-10-17 Bosch Gmbh Robert Verfahren und Vorrichtung zur Steuerung eines elektromagnetischen Verbrauchers
DE19611885B4 (de) * 1996-03-26 2007-04-12 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung eines elektromagnetischen Schaltorgans
JP3613885B2 (ja) * 1996-05-24 2005-01-26 国産電機株式会社 内燃機関用インジェクタの駆動制御方法及び駆動制御装置
DE19839863C1 (de) * 1998-09-02 1999-10-28 Bosch Gmbh Robert Elektromagnetisches Einspritzventil
DE19860272B4 (de) * 1998-12-24 2005-03-10 Conti Temic Microelectronic Verfahren und Vorrichtung zum Vermindern der Geräuschentwicklung bei elektromagnetisch betätigten Vorrichtungen
JP3932474B2 (ja) * 1999-07-28 2007-06-20 株式会社日立製作所 電磁式燃料噴射装置及び内燃機関
JP4110751B2 (ja) * 2001-06-18 2008-07-02 株式会社日立製作所 インジェクタ駆動制御装置
DE102004032721A1 (de) * 2004-07-07 2006-02-16 Robert Bosch Gmbh Vorrichtung und Verfahren zur Ansteuerung einer Induktivität

Also Published As

Publication number Publication date
JP2005501998A (ja) 2005-01-20
KR100857638B1 (ko) 2008-09-08
WO2003023211A1 (fr) 2003-03-20
US7089915B2 (en) 2006-08-15
DE50211745D1 (de) 2008-04-03
EP1430207A1 (fr) 2004-06-23
US20040264096A1 (en) 2004-12-30
JP4015619B2 (ja) 2007-11-28
DE10234265A1 (de) 2003-02-27
KR20040029432A (ko) 2004-04-06

Similar Documents

Publication Publication Date Title
EP0692067A1 (fr) Procede et dispositif d'excitation d'un consommateur electromagnetique
EP0765438B1 (fr) Procede et dispositif de commande d'un consommateur electromagnetique
DE102015217945A1 (de) Vorrichtung zur Steuerung von wenigstens einem schaltbaren Ventil
EP1430207B1 (fr) Procede et dispositif de commande d'un consommateur electro-magnetique
DE102015206729A1 (de) Steuern eines Kraftstoffeinspritz-Magnetventils
DE4322199A1 (de) Verfahren und Einrichtung zur Ansteuerung eines elektromagnetischen Verbrauchers
WO2012156241A2 (fr) Détermination du comportement en déplacement d'un injecteur de carburant sur la base de l'intervalle-temps entre les deux premières impulsions de tension dans une phase de maintien
DE4140043A1 (de) System zur ansteuerung eines induktiven verbrauchers
DE102010041880A1 (de) Ermitteln der ballistischen Flugbahn eines elektromagnetisch angetriebenen Ankers eines Spulenaktuators
DE10319530A1 (de) Verfahren und Vorrichtung zur Überwachung eines elektromechanischen Aktors
DE10336606B4 (de) Stellverfahren und Stellvorrichtung für einen Aktor
DE19958406A1 (de) Verfahren und Vorrichtung zur Steuerung eines Stellers mit einem kapazitiven Element
WO1992000447A1 (fr) Procede et dispositif pour commander l'excitation d'un consommateur electromagnetique
EP0720770B1 (fr) Procede et dispositif permettant d'exciter un consommateur electromagnetique
WO2008049704A1 (fr) Procédé de détermination du diagramme caractéristique de la quantité d'injection au moyen de la grandeur électrique d'une soupape d'injection commandée électriquement
WO2007104770A1 (fr) Procédé et dispositif d'étalonnage d'un actionneur piézo-électrique
EP0889223B1 (fr) Procédé et dispositif pour détecter l'instant de commutation d'une électrovalve
EP1005051B1 (fr) Procédé de commande d'un consommateur électromagnétique
DE4411789A1 (de) Verfahren und Vorrichtung zur Steuerung der Kraftstoffzumessung in eine Brennkraftmaschine
WO2017060078A1 (fr) Détermination d'un moment où un injecteur de carburant se trouve dans un état prédéterminé
DE4222650A1 (de) Verfahren und Vorrichtung zur Ansteuerung eines elektromagnetischen Verbrauchers
DE10140093A1 (de) Verfahren und Vorrichtung zum Ansteuern eines Magnetventils
DE10138483A1 (de) Verfahren und Vorrichtung zur Steuerung eines elektromagnetischen Verbrauchers
DE102004052690B4 (de) Treiber- und Auswerteeinrichtung für ein Einspritzventil,Verfahren und Vorrichtung zum Steuern eines Einspritzventils und Computerprogramm
DE112016005122B4 (de) Korrekturverfahren für die Ansteuereigenschaften von Einspritzventilen und Steuervorrichtung für Fahrzeuge

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040316

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

17Q First examination report despatched

Effective date: 20050617

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50211745

Country of ref document: DE

Date of ref document: 20080403

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20081121

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100924

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20120723

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120721

Year of fee payment: 11

Ref country code: FR

Payment date: 20120803

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130201

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50211745

Country of ref document: DE

Effective date: 20130201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130727

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130727

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130731