WO2012156241A2 - Détermination du comportement en déplacement d'un injecteur de carburant sur la base de l'intervalle-temps entre les deux premières impulsions de tension dans une phase de maintien - Google Patents

Détermination du comportement en déplacement d'un injecteur de carburant sur la base de l'intervalle-temps entre les deux premières impulsions de tension dans une phase de maintien Download PDF

Info

Publication number
WO2012156241A2
WO2012156241A2 PCT/EP2012/058496 EP2012058496W WO2012156241A2 WO 2012156241 A2 WO2012156241 A2 WO 2012156241A2 EP 2012058496 W EP2012058496 W EP 2012058496W WO 2012156241 A2 WO2012156241 A2 WO 2012156241A2
Authority
WO
WIPO (PCT)
Prior art keywords
holding
fuel injector
temporal
pulse
behavior
Prior art date
Application number
PCT/EP2012/058496
Other languages
German (de)
English (en)
Other versions
WO2012156241A3 (fr
Inventor
Frank Denk
Original Assignee
Continental Automotive Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive Gmbh filed Critical Continental Automotive Gmbh
Publication of WO2012156241A2 publication Critical patent/WO2012156241A2/fr
Publication of WO2012156241A3 publication Critical patent/WO2012156241A3/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • F02D41/2467Characteristics of actuators for injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2024Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit the control switching a load after time-on and time-off pulses
    • F02D2041/2027Control of the current by pulse width modulation or duty cycle control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2055Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit with means for determining actual opening or closing time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2058Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit using information of the actual current value

Definitions

  • the present invention relates to the technical field of reflectors controlling Kraftstoffinj having a valve needle with a mechanically coupled magnetic armature and a coil having a spool drive for moving the magnetic ⁇ tables armature.
  • the present invention relates to a method, a device and a computer program for determining the temporal opening behavior and / or the temporal closing behavior of such
  • Fuel injector further relates to a method for driving a coil drive having a fuel injector.
  • a method for driving a coil drive having a fuel injector In operation, in particular of direct-drive motor ⁇ stoffinj reflectors which have a with a valve needle mechanically coupled magnetic armature and a a coil having coil drive for moving the magnetic armature, with the same current / voltage parameters occurs due to electrical, magnetic and / or mechanical tolerances at a different time opening and / or
  • required coil current is typically provided by an appropriate current controller hardware.
  • Coil drive is dependent on the inductance and the electrical resistance of the coil.
  • the electrical resistance is composed of the ohmic resistance of the winding (s) of the coil and the resistance of the (ferro) magnetic material of the coil injector.
  • the finite resistance of the (fer ⁇ ro) magnetic material leads to eddy currents tiling in the material. Eddy currents are caused by induction and are the greater, the stronger the magnetic flux changes in the coil drive of the Spuleninjektors are.
  • the eddy currents which are degraded or attenuated in the (fer ⁇ ro) magnetic material by the generation of heat, counteract the changes of the magnetic field in accordance with the so-called Lenz's rule.
  • the eddy currents which are generated by strong current changes, lead to the beginning of the energization phase of the Spuleninjektors to a delay of the magnetic force build-up. At the end of the energization phase, the eddy currents lead to a delay of the magnetic force reduction.
  • the actual movement behavior of the magnet armature of a Spuleninjektors both during the opening process of a Spuleninjektors and during the closing of a Spuleninjektors thus depends on the strength of each induced eddy currents.
  • the present invention has for its object, as possible without an additional equipment expense to characterize the movement behavior of a Kraftstoffinj ector. This object is solved by the subject matters of the independent claims.
  • Advantageous embodiments of the vorlie ⁇ constricting invention are described in the dependent claims. According to a first aspect of the invention, a method for determining the temporal opening behavior and / or the temporal closing behavior of a coil drive on ⁇ pointing fuel injector for an internal combustion engine of a motor vehicle is described.
  • the method comprises (a) an energizing the coil drive with a boost voltage in an amplification stage for moving an armature of the coil drive from a closed position to an ⁇ réellespo ⁇ sition, (b) a pressurizing the coil drive with a holding voltage in a holding period for holding the magnet armature in the opening position, wherein the holding voltage is applied in the form of a plurality of holding pulses, so that sets a predetermined holding current with a lower holding level and an upper holding level, (c) detecting the time interval between the first holding pulse of the plurality of holding pulses and the second holding pulse of the plurality of holding pulses, and (d) determining the temporal opening behavior and / or the temporal closing behavior of the fuel injector as a function of the detected time interval between the first holding pulse and the second holding pulse.
  • the method described is based on the finding that in the holding phase, the time interval between the first two holding pulses at the beginning of the holding phase is appreciably greater than the time interval between two consecutive later holding pulses in the holding phase. This is due to still existing induced eddy currents in the (ferro) magnetic material of the coil drive, in particular the ferromagnetic magnet armature of the coil drive, which eddy currents typically ⁇ with a strong current change and thus with a large change in the magnetic flux immediately before the beginning and at the beginning of Holding phase occur.
  • the invention is based on the finding that the time interval between the first two holding pulses at the beginning of the Holding phase is a measure of the time delay with which the coil drive or the actual movement of the armature responds to the beginning of the gain phase and to a subsequent end of the hold phase.
  • the amplification voltage which is often referred to as boost voltage
  • boost voltage generated in a known manner by an up-conversion of a battery voltage and a corresponding amount of charge in a capacitor, for example, an electrolytic capacitor stored.
  • the con ⁇ capacitor such as an electrolytic capacitor discharged so that the boost voltage during the reinforcement phase may drop slightly.
  • the holding voltage can in particular be taken directly from the battery of the motor vehicle, so that the holding voltage corresponds to the battery voltage.
  • the energizing phase is typically from a boost phase (generated with a gain ⁇ or boost voltage) and a subsequent holding phase (generated with the holding or battery voltage).
  • Boost phase is set with a suitable hardware circuit, a holding current that is typically smaller than the gain or the boost current.
  • the current through the coil drive of the Spuleninjektors can be made after the boost phase and immediately before the holding phase using a suitable hardware clamping structure, for example by a time clamp against the negative boost voltage to a current level, which is lower than the level of ei ⁇ ternary holding voltage. Consequently, the current regulator must switch on the battery voltage after this clamping phase in order to increase the level of the current through the coil drive of the Spuleninjektors again. If a predetermined upper current limit of the holding level is reached, then the controller switches off and in turn waits until the current reaches a lower current limit value of the n
  • the detected time interval between the first holding pulse and the second holding pulse is the time interval between the end of the first holding pulse and the beginning of the second holding pulse. This means that the detected time interval is exactly the period of time within which the holding current through the Spuleninjektor without the influence of an externally applied voltage according to the physical laws of electrodynamics (in particular the law of induction and Lenz 'see rule) among others Influence of the above-mentioned eddy currents can develop freely.
  • the time period within which falls the holding current from its upper current limit value of the holding levels on its lower current ⁇ limit value of the holding level is a particularly accurate measure of the actual existing eddy currents and thus also for the delay with which the actual movement of the armature of the coil drive of the Spuleninjektors the beginning of energization of Spuleninjektors (the beginning of the boost phase) or and / or the end of the energization (at the end of the holding phase) lagging behind in time.
  • the duration of the period between the end of the first holding pulse and the beginning of the second holding pulse is largely independent of the current battery voltage, since during this phase an electrical freewheel is realized by means of a so-called freewheeling diode.
  • the voltage then applied to the coil drive of the fuel injector is the forward voltage of the freewheeling diode during this freewheeling phase.
  • the temperature dependence of this pre ⁇ Wind particular voltage of the freewheeling diode can usually be assumed to be negligible in good approximation.
  • the temporal opening behavior (a) is the time difference between the beginning of the movement of the armature of the opening
  • Fuel injector relevant time points are determined. By a knowledge of these points in time can later fuel ⁇ amount which is inj ied in the course of injection, accurately determined and thus the amount accuracy of the Kraftstoffinj by a correspondingly adapted control of the fuel injector arrival ector be improved.
  • the temporal closing behavior (a) is the time difference between the beginning of the movement of the armature of the closing
  • the detection of the time interval between the first holding pulse of the plurality of holding pulses and the second holding pulse of the plurality of holding pulses is carried out by means of a time detection unit which is implemented in an engine control unit.
  • the time detection unit may be any timer that is realized by hardware and / or by software in the engine control unit.
  • the electrical control of the fuel injector and possibly also the electrical activation of at least one further Kraftstoffinj ector is preferably implemented by the MotorCon ⁇ ergo. This has the advantage that no additional hardware is required to carry out the method described starting from the already existing engine control unit.
  • the time measurement in the time recording unit can be triggered, for example, by a start pulse, which in time with the first switching off the holding voltage after the above-described short-term terminals of the coil drive of the
  • Fuel injector against the negative boost voltage zusam ⁇ falls together.
  • the time measurement can also be terminated by a stop pulse, which coincides with the time of the second turn-on of the second hold pulse in the hold phase.
  • the map has been previously determined in an engine test bench for a reference Kraftstoffinj ector, which corresponds to the used Kraftstoffinj ector.
  • the actual fuel flow can be measured in a known manner.
  • it can be accurately determined when the movement of the armature of the reference fuel injector begins and when it ends.
  • it can be determined when the opening operation begins, when the opening operation ends, when the closing operation begins and when the closing operation ends.
  • the beginning of the opening process may be determined by the time (OPP_l) at which the flow of the fuel begins.
  • the end of the Publ ⁇ drying process may be determined by the time (OPP_2) to which the fuel flow reaches its maximum value.
  • the start of the closing operation may be determined by the time (OPP_3) at which the fuel flow again decreases, and the end of the closing operation may be determined by the time (OPP_4), at which the fuel flow returns to zero achieved or disappeared.
  • the reference fuel injector is a fuel injector of the same type as the fuel injector used.
  • the temporal opening behavior and / or the temporal closing behavior of the reference fuel injector can be determined as a function of different time intervals between the first two holding pulses of the holding phase.
  • the relationship between the actually measured time intervals between the first two sustain pulses in the shark tephase and the actual temporal opening behavior and / or the actual temporal closure behavior is the same as the corresponding relationship of measured in the engine test bench reference Kraftstoffinj ector.
  • the actual temporal opening behavior and / or the actual temporal closing behavior can be determined with high accuracy.
  • the at least one further physical parameter is the temperature of the fuel injected by the fuel injector, the time interval to a previous injection of a multiple injection and / or the voltage provided by a battery of the motor vehicle.
  • a method for driving a coil drive having a fuel ⁇ injector for an internal combustion engine of a motor vehicle comprises (a) determining the temporal opening behavior and / or the temporal closing behavior of the fuel injector according to one of the preceding claims, (b) adapting the electrical control of the fuel injector based on the determined temporal opening behavior and / or the determined temporal closing behavior so that a predetermined amount of fuel is injected with an injection process.
  • the driving method described is based on the knowledge that the above-explained method for determining the temporal opening behavior and / or the temporal
  • Closing behavior of a spool drive having fuel injector may be used to (a) the tat ⁇ neuter movement behavior of a magnet armature of the motor ⁇ stoffinj ector to determine to determine (b) based on the determined movement behavior of the actual fuel injection quantity and (c) a subsequent injection process, the electrical control of the Kraftstoffinj ector such ⁇ fit that the fuel injection quantity corresponds as accurately as possible predetermined for a given operating condition setpoint.
  • the quantity accuracy of the fuel injector can be significantly improved, in particular for small quantities, and thus an important contribution can be made to low fuel consumption and / or reduced pollutant emissions.
  • an apparatus for determining the temporal opening behavior and / or the temporal closing behavior of a coil drive on ⁇ pointing fuel injector for an internal combustion engine of a motor vehicle comprises (a) a current control unit for (al) charging the coil drive with a boost voltage in a boost phase for moving a solenoid armature of the coil drive from a closed position to an open position and for (a2) energizing the coil drive with a holding voltage in a holding phase Holding the armature in the opening position, wherein the holding voltage is applied in the form of a plurality of holding pulses, so that a predetermined holding current with a lower holding level and an upper holding level is established.
  • the described apparatus further comprises (c) a detection unit for detecting the time interval between the first holding pulse of the plurality of holding pulses and the second holding pulse of the plurality of holding pulses, and (d) a determination unit for determining the time-opening behavior and / or the time-closed behavior of the fuel injector as a function of the detected time interval between the first holding pulse and the second holding pulse.
  • the device described is based on the finding that the time interval between the first two holding pulses at the beginning of the holding phase is appreciably greater than the time interval between two consecutive later holding pulses in the holding phase and that a knowledge of this time interval can be used to Characterize temporal opening behavior and / or the temporal closing behavior of the fuel injector.
  • the detection unit and the determination unit can be realized by a common data processing device.
  • the detection unit and the determination unit can in particular be implemented in an engine control unit of the motor vehicle and implemented by means of hardware, by means of software or in hybrid form by means of a combination of hardware and software.
  • a computer program for determining the temporal opening behavior and / or the temporal closing behavior of a Spu ⁇ lenantrieb having Kraftstoffinj ector for an internal combustion engine of a motor vehicle is described.
  • the Compu ⁇ terprogramm when executed by a processor, is capable of performing the method described above for determining the temporal behavior of opening and / or the time
  • the computer program may be implemented as a computer-readable instruction code in any suitable programming language such as JAVA, C ++, etc.
  • the computer program can be stored on a computer-readable storage medium (CD-ROM, DVD, Blu-ray Disc, removable drive, volatile or non-volatile memory, built-in memory or processor, etc.).
  • the instruction code may program a computer or other programmable device such as, in particular, an engine control unit of a motor vehicle to perform the desired functions.
  • the computer program may be provided in a network, such as the Internet, from where it may be downloaded by a user as needed.
  • the invention can be realized both by means of a computer program, ie a software, and by means of one or more special electrical circuits, ie in hardware or in any hybrid form, ie by means of software components and hardware components. It should be noted that embodiments of the invention have been described with reference to different subject matters ⁇ . In particular, some embodiments of the invention are described with method claims and other embodiments of the invention with apparatus claims. the
  • FIG. 1 shows a device for determining the movement behavior of a fuel injector.
  • FIG. 2 shows, according to an exemplary embodiment of the invention, the time profile of the voltage applied to a coil injector and of the current flowing through a coil injector.
  • FIG. 3 shows a schematic representation of the typical
  • FIG. 4 shows a pilot control characteristic for optimized driving of a coil injector.
  • FIG. 1 shows a device 100 for determining the temporal opening behavior and / or the temporal closing behavior of a fuel injector for an internal combustion engine of a motor vehicle.
  • the fuel injector is a conventional fuel injector which, in a known manner, has a coil drive with a magnet coil.
  • Mag ⁇ netspule a magnetic field is generated, which moves a magnet armature of the coil drive along a displacement axis.
  • With the magnet armature a needle of the fuel injector is connected, which depending on their position closes an opening of the fuel injector or releases for purposes of Kraftstoffein ⁇ injection for a certain time.
  • the device 100 has a current control unit 102, a detection unit 104 and a determination unit 106.
  • a Verstär ⁇ kung voltage to move the armature as fast as possible from its closed position to its open position by means of the current Rege ⁇ averaging unit 102 first in a reinforcing phase.
  • the Mag ⁇ net coil of the coil drive of the Kraftstoffinj ector is applied in a holding phase with a significantly smaller compared to the boost voltage holding voltage to hold the armature in its open position.
  • the holding voltage is applied in the form of a plurality of holding pulses, so that a predetermined holding current with a lower holding level and an upper holding level is established.
  • the detection unit 104 is for detecting the time interval between the first sustain pulse of the plurality of sustain pulses and the second sustain pulse of the plurality of sustain pulses.
  • the determination unit 106 is used to determine the temporal opening behavior and / or the temporal closing behavior of the fuel injector as a function of the detected time interval between the first holding pulse and the second holding pulse.
  • FIG. 2 shows, according to an exemplary embodiment of the invention, the time profile of the voltage U applied to a coil injector and the current I flowing through a coil injector.
  • the time t is plotted in the unit 200ys on the abscissa.
  • the ordinate represents the voltage U in the unit 20V and the current I in the unit 2A.
  • the boost voltage can be generated in ⁇ be known manner by a highly convert the battery voltage.
  • a charged capacitor is then partially discharged, resulting in the slight voltage drop during the boost phase shown in FIG.
  • Boost voltage is disconnected from the coil injector by a suitable current bridge circuit. After reaching I_peak closes up to a time t ⁇ 580ys a so-called. Freewheel phase in which no voltage is applied to the coil of Spuleninjektors. Due to the self-inductance of the coil, the coil current drops exponentially within the freewheeling phase with a time delay. The transition from the boost phase to the freewheel phase is triggered or triggered by reaching I_peak.
  • the significantly lower battery voltage is applied to the coil of the Spuleninjektors compared to the boost voltage .
  • a clamp phase which is often referred to as Aufkommut istsphase
  • the Spuleninjektor clamped for a short period against the negative boost voltage is set to a value which is lower than the later holding level.
  • the current regulator must reconnect the battery voltage after this clamp phase to increase the current level again. If then the upper current edge of the holding level is reached, the current regulator switches off and waits again until the current has dropped to the lower holding level in order then to connect the battery voltage again.
  • the upper current edge of the hold level is approximately 2, 4A
  • the lower current edge of the hold level is approximately 2.0A.
  • the time span ⁇ can be measured, for example, by means of a timer.
  • the timer can be realized in particular by means of software.
  • the software which may also be responsible for the electrical control of the Spuleninjektoren, can be implemented in particular in an engine control unit.
  • the timer can be started by means of a suitable hardware circuit whose start pulse (trigger) is the first shutdown of the hold phase after the clamp phase. It should be noted that the period ⁇ is largely independent of the actual battery voltage, since during this phase, an electrical freewheel is realized by means of a freewheeling diode. The then at the coil or
  • Fuel injector voltage is during the freewheeling phase, the forward voltage of the so-called freewheeling diode.
  • Temperature dependence of the forward voltage of the freewheeling diode can typically be assumed to be negligible.
  • time interval ⁇ between the first two holding pulses Hl and H2 at the beginning of the holding phase represents a measure of the time delay with which the coil drive or the actual movement of the armature on the Beginning of the boost phase (in Figure 2 at 200ys) and on a subsequent end of the holding phase (not shown in Figure 2) reacted.
  • a knowledge of the period ⁇ in real operation of the coil injector can be used to determine temporal correlations between ⁇ and the following periods of time by means of suitable pilot control characteristics or pilot control parameters, which were determined for a coil injector of the same type in advance by means of measurements in a motor test stand. which are characteristic of the movement behavior of the magnet armature of the respective Spuleninjektors:
  • A Time span At_OPP_l between the start of the energization in the boost phase and the beginning of the injection (valve begins to open)
  • B time period At_OPP_2 between the start of the energization in the boost phase and the achievement of a complete injection (valve fully open)
  • FIG. 3 shows a schematic representation of the typical time profile of the current I flowing through the coil injector and of the resulting fuel flow MFF through the coil injector per working cycle.
  • the course of the current I corresponds to the current profile from FIG. 2.
  • the course of the current I as well as the fuel flow MFF are measured at a motor test stand.
  • the o.g. Time spans At_OPP_l, At_OPP_2, At_OPP_3 and At_OPP_4 clearly visible. By knowing these time periods At_OPP_l, At_OPP_2,
  • At_OPP_3 and At_OPP_4 can now be set in real operation by adjusting the duration of the energization and / or the beginning of the energization of the injection amount MFF by a Spuleninjektor the same type as the measured in the engine test stand Spuleninjektor. Since the correction to be applied may depend on other physical system parameters (e.g.
  • pilot control characteristics Function of fuel temperature, distance to the previous injection in the case of multiple injection, battery voltage, etc.
  • pilot control characteristics Function of fuel temperature, distance to the previous injection in the case of multiple injection, battery voltage, etc.
  • FIG. 4 shows a schematic representation of such a precontrol characteristic, which indicates the time period At_OPP_x as a function of ⁇ . Where "x" corresponds to the above. Time periods At OPP 1, At OPP 2, At OPP 3 and At OPP 4 for 1, 2, 3 or 4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

L'invention concerne un procédé pour déterminer le comportement temporel en ouverture et/ou le comportement temporel en fermeture d'un injecteur de carburant présentant un entraînement par bobine. Ledit procédé comprend les étapes suivantes: (a) appliquer une tension d'amplification à l'entraînement par bobine dans une phase d'amplification pour faire passer un noyau magnétique de l'entraînement par bobine d'une position fermée dans une position ouverte; (b) appliquer une tension de maintien à l'entraînement par bobine dans une phase de maintien pour maintenir le noyau magnétique en position d'ouverture, la tension de maintien se présentant sous forme d'une pluralité d'impulsions de maintien, de sorte à ajuster un courant de maintien prédéterminé à haut niveau de maintien et à bas niveau de maintien; (c) détecter l'intervalle-temps (ΔT) entre la première impulsion de maintien (H1) et la pluralité d'impulsions de maintien et la seconde impulsion de maintien (H2) et (d) déterminer le comportement temporel en ouverture et/ou le comportement temporel en fermeture de l'injecteur de carburant en fonction de l'intervalle-temps détecté entre la première impulsion de maintien (H1) et la seconde impulsion de maintien (H2). L'invention concerne également un dispositif correspondant et un programme informatique pour déterminer le comportement en déplacement temporel d'un injecteur de carburant de ce type. L'invention concerne en outre un procédé de commande pour un injecteur de carburant doté d'un entraînement par bobine, qui est fondé sur le procédé mentionné pour déterminer le comportement en déplacement dudit injecteur de carburant.
PCT/EP2012/058496 2011-05-19 2012-05-09 Détermination du comportement en déplacement d'un injecteur de carburant sur la base de l'intervalle-temps entre les deux premières impulsions de tension dans une phase de maintien WO2012156241A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011076113.6 2011-05-19
DE102011076113.6A DE102011076113B4 (de) 2011-05-19 2011-05-19 Bestimmung des Bewegungsverhaltens eines Kraftstoffinjektors basierend auf dem zeitlichen Abstand zwischen den ersten beiden Spannungspulsen in einer Haltephase

Publications (2)

Publication Number Publication Date
WO2012156241A2 true WO2012156241A2 (fr) 2012-11-22
WO2012156241A3 WO2012156241A3 (fr) 2013-03-07

Family

ID=46051682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/058496 WO2012156241A2 (fr) 2011-05-19 2012-05-09 Détermination du comportement en déplacement d'un injecteur de carburant sur la base de l'intervalle-temps entre les deux premières impulsions de tension dans une phase de maintien

Country Status (2)

Country Link
DE (1) DE102011076113B4 (fr)
WO (1) WO2012156241A2 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2796695A1 (fr) * 2013-04-26 2014-10-29 Continental Automotive GmbH Procédé pour faire fonctionner un dispositif d'alimentation en carburant, dispositif de commande pour dispositif d'alimentation en carburant, dispositif d'alimentation en carburant et produit de programme informatique
WO2017142727A1 (fr) * 2016-02-16 2017-08-24 Woodward, Inc. Détection du temps d'ouverture de vanne pour injecteurs de carburant actionnés par solénoïde
GB2551536A (en) * 2016-06-21 2017-12-27 Delphi Automotive Systems Lux Method of controlling and monitoring a fuel injector
US11220969B1 (en) 2021-03-18 2022-01-11 Ford Global Technologies, Llc Methods and systems for improving fuel injection repeatability
US11313310B1 (en) 2021-05-04 2022-04-26 Ford Global Technologies, Llc Methods and systems for improving fuel injection repeatability

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013220407B4 (de) * 2013-10-10 2022-09-29 Vitesco Technologies GmbH Verfahren und Vorrichtung zum Betreiben eines Einspritzventils
GB201513222D0 (en) * 2015-07-28 2015-09-09 Delphi Int Operations Lux Srl Method to determine the coking of a fuel injector
EP3385527B1 (fr) * 2017-04-06 2020-04-01 Continental Automotive GmbH Procédé pour détecter un échec d'actionnement d'une soupape à solénoïde commutable, circuit électronique pour l'application du procédé, pompe et véhicule à moteur

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4237706C2 (de) * 1992-11-07 1996-09-12 Mtu Friedrichshafen Gmbh Einrichtung zur Aufschlagzeitpunkt-Erkennung für den Anker eines Magnetventils
DE4341797A1 (de) * 1993-12-08 1995-06-14 Bosch Gmbh Robert Verfahren und Vorrichtung zur Ansteuerung eines elektromagnetischen Verbrauchers
GB2306679B (en) * 1995-11-03 2000-05-17 Motorola Ltd Method for detecting closure of a solenoid coil
WO1997030462A1 (fr) * 1996-02-13 1997-08-21 Siemens Aktiengesellschaft Dispositif de commande pour moteur a combustion interne
DE19742038A1 (de) * 1997-09-24 1999-03-25 Wabco Gmbh Verfahren zur Zustandserkennung bei einem Magnetventil
DE10138483A1 (de) * 2001-08-04 2003-02-13 Bosch Gmbh Robert Verfahren und Vorrichtung zur Steuerung eines elektromagnetischen Verbrauchers
DE102007026947B4 (de) * 2007-06-12 2009-06-10 Continental Automotive Gmbh Verfahren und Vorrichtung zum Betreiben eines Einspritzventils
DE102009045309B4 (de) * 2009-10-02 2020-02-06 Robert Bosch Gmbh Verfahren und Steuergerät zum Betreiben eines Ventils

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2796695A1 (fr) * 2013-04-26 2014-10-29 Continental Automotive GmbH Procédé pour faire fonctionner un dispositif d'alimentation en carburant, dispositif de commande pour dispositif d'alimentation en carburant, dispositif d'alimentation en carburant et produit de programme informatique
WO2017142727A1 (fr) * 2016-02-16 2017-08-24 Woodward, Inc. Détection du temps d'ouverture de vanne pour injecteurs de carburant actionnés par solénoïde
US10234496B2 (en) 2016-02-16 2019-03-19 Woodward, Inc. Detection of valve open time for solenoid operated fuel injectors
GB2551536A (en) * 2016-06-21 2017-12-27 Delphi Automotive Systems Lux Method of controlling and monitoring a fuel injector
GB2551536B (en) * 2016-06-21 2019-10-23 Delphi Automotive Systems Lux Method of controlling and monitoring a fuel injector
US11220969B1 (en) 2021-03-18 2022-01-11 Ford Global Technologies, Llc Methods and systems for improving fuel injection repeatability
US11313310B1 (en) 2021-05-04 2022-04-26 Ford Global Technologies, Llc Methods and systems for improving fuel injection repeatability

Also Published As

Publication number Publication date
DE102011076113B4 (de) 2016-04-14
DE102011076113A1 (de) 2012-11-22
WO2012156241A3 (fr) 2013-03-07

Similar Documents

Publication Publication Date Title
DE102011076113B4 (de) Bestimmung des Bewegungsverhaltens eines Kraftstoffinjektors basierend auf dem zeitlichen Abstand zwischen den ersten beiden Spannungspulsen in einer Haltephase
DE102009032521B4 (de) Bestimmung des Schließzeitpunkts eines Kraftstoffeinspritzventils basierend auf einer Auswertung der Ansteuerspannung
DE102010018290B4 (de) Elektrische Ansteuerung eines Ventils basierend auf einer Kenntnis des Schließzeitpunkts des Ventils
DE102011076363B4 (de) Verfahren und Vorrichtung zur Bestimmung des Öffnungsverhaltens eines Kraftstoffinjektors für eine Brennkraftmaschine
DE102012213883B4 (de) Gleichstellung des Stromverlaufs durch einen Kraftstoffinjektor für verschiedene Teileinspritzvorgänge einer Mehrfacheinspritzung
DE102012217121B4 (de) Elektrische Ansteuerung eines Ventils basierend auf Kenntnis des Schließzeitpunkts bzw. Öffnungszeitpunktes des Ventils
DE102015210794B3 (de) Verfahren zum Ermitteln eines Referenzstromwertes zur Ansteuerung eines Kraftstoffinjektors
DE102010040123A1 (de) Kraftstoffeinspritz-Steuervorrichtung
EP2449238A1 (fr) Procédé et dispositif permettant de faire fonctionner un moteur à combustion interne
DE102013207842A1 (de) Verfahren und Vorrichtung zur Ermittlung eines Referenz-Stromverlaufs für einen Kraftstoffinjektor zur Ermittlung des Zeitpunkts eines vorbestimmten Öffnungszustandes des Kraftstoffinjektors
DE102010041880B4 (de) Ermitteln der ballistischen Flugbahn eines elektromagnetisch angetriebenen Ankers eines Spulenaktuators
WO2013149924A1 (fr) Détermination du comportement de mouvement dans le temps d'un injecteur de carburant sur la base d'une évaluation de la courbe dans le temps de différentes grandeurs de mesure électriques
WO2016166142A1 (fr) Commande d'une électrovanne d'un système d'injection de carburant
DE102010014825A1 (de) Verfahren zum Betrieb eines Einspritzsystems und ein Einspritzsystem, welches ein Einspritzventil und eine Steuervorrichtung aufweist
DE102010027806B4 (de) Verfahren zum Betreiben einer Brennkraftmaschine, bei dem eine Größe ermittelt wird
WO2014154449A1 (fr) Détermination de l'instant où un injecteur de carburant se trouve dans un état d'ouverture prédéterminé
WO2017063824A1 (fr) Reconnaissance d'un état d'ouverture prédéterminé d'un injecteur de carburant présentant un entraînement à bobine magnétique
WO2017144267A1 (fr) Détermination d'une période d'activation électrique pour un injecteur de carburant à entraînement à bobine magnétique
WO2018069041A1 (fr) Commande d'un injecteur de carburant à tampon hydraulique
DE102016204054B3 (de) Ermitteln der Remanenz eines Kraftstoffinjektors
DE102014208753B4 (de) Ermittlung von Parameterwerten für einen Kraftstoffinjektor
WO2017207726A1 (fr) Procédé et dispositif pour adapter le comportement d'ouverture d'un injecteur de carburant
DE102016208492B3 (de) Verfahren zum Betreiben eines Kraftstoffinjektors mit Leerhub
DE102012200275A1 (de) Ermitteln eines Bewegungsverhaltens eines Kraftstoffinjektors basierend auf dem Bewegungsverhalten in einem eine Mehrfacheinspritzung aufweisenden modifizierten Betriebszustand
DE102016203645A1 (de) Verfahren zur Ansteuerung eines Magnetventils

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12719970

Country of ref document: EP

Kind code of ref document: A2