EP1412334A1 - Pyrazolin-derivate und ihre verwendung als schädlingsbekämpfungsmittel - Google Patents

Pyrazolin-derivate und ihre verwendung als schädlingsbekämpfungsmittel

Info

Publication number
EP1412334A1
EP1412334A1 EP02758322A EP02758322A EP1412334A1 EP 1412334 A1 EP1412334 A1 EP 1412334A1 EP 02758322 A EP02758322 A EP 02758322A EP 02758322 A EP02758322 A EP 02758322A EP 1412334 A1 EP1412334 A1 EP 1412334A1
Authority
EP
European Patent Office
Prior art keywords
formula
spp
meanings given
cyano
pyrazoline derivatives
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02758322A
Other languages
English (en)
French (fr)
Inventor
Fritz Maurer
Rainer Fuchs
Christoph Di Erdelen
Udo Reckmann
Andreas Turberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer CropScience AG
Original Assignee
Bayer CropScience AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer CropScience AG filed Critical Bayer CropScience AG
Publication of EP1412334A1 publication Critical patent/EP1412334A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/01Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms
    • C07C255/24Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms containing cyano groups and singly-bound nitrogen atoms, not being further bound to other hetero atoms, bound to the same saturated acyclic carbon skeleton
    • C07C255/29Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms containing cyano groups and singly-bound nitrogen atoms, not being further bound to other hetero atoms, bound to the same saturated acyclic carbon skeleton containing cyano groups and acylated amino groups bound to the carbon skeleton
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N47/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid
    • A01N47/08Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid the carbon atom having one or more single bonds to nitrogen atoms
    • A01N47/28Ureas or thioureas containing the groups >N—CO—N< or >N—CS—N<
    • A01N47/38Ureas or thioureas containing the groups >N—CO—N< or >N—CS—N< containing the group >N—CO—N< where at least one nitrogen atom is part of a heterocyclic ring; Thio analogues thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/01Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms
    • C07C255/24Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms containing cyano groups and singly-bound nitrogen atoms, not being further bound to other hetero atoms, bound to the same saturated acyclic carbon skeleton
    • C07C255/25Aminoacetonitriles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C271/00Derivatives of carbamic acids, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C271/04Carbamic acid halides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C323/00Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
    • C07C323/23Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton
    • C07C323/31Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton having the sulfur atom of at least one of the thio groups bound to a carbon atom of a six-membered aromatic ring of the carbon skeleton
    • C07C323/33Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton having the sulfur atom of at least one of the thio groups bound to a carbon atom of a six-membered aromatic ring of the carbon skeleton having at least one of the nitrogen atoms bound to a carbon atom of the same non-condensed six-membered aromatic ring
    • C07C323/35Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton having the sulfur atom of at least one of the thio groups bound to a carbon atom of a six-membered aromatic ring of the carbon skeleton having at least one of the nitrogen atoms bound to a carbon atom of the same non-condensed six-membered aromatic ring the thio group being a sulfide group
    • C07C323/36Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton having the sulfur atom of at least one of the thio groups bound to a carbon atom of a six-membered aromatic ring of the carbon skeleton having at least one of the nitrogen atoms bound to a carbon atom of the same non-condensed six-membered aromatic ring the thio group being a sulfide group the sulfur atom of the sulfide group being further bound to an acyclic carbon atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C323/00Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
    • C07C323/23Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton
    • C07C323/39Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton at least one of the nitrogen atoms being part of any of the groups, X being a hetero atom, Y being any atom
    • C07C323/43Y being a hetero atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D231/00Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
    • C07D231/02Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings
    • C07D231/10Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D231/14Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms

Definitions

  • the present invention relates to new pyrazoline derivatives, ner processes for their preparation and their use as pesticides.
  • R 1 represents cyano, alkoxycarbonyl, carbamoyl, thiocarbamoyl, alkylaminocarbonyl or dialkylaminocarbonyl,
  • R 2 represents halogen, haloalkyl, alkoxy, haloalkoxy, alkylthio, haloalkylthio, alkylsulfonyl, haloalkylsulfmyl, haloalkylsulfonyl or cyano,
  • R 3 represents halogen, haloalkyl, alkoxy, haloalkoxy, alkylthio, haloalkylthio, haloalkylsulfmyl, haloalkylsulfonyl or cyano and
  • R 4 represents hydrogen, cyanomethyl or alkoxycarbonyl.
  • the Neritatien of the formula (I) can optionally be present as geometric and / or optical isomers, regioisomers or confectioning isomers or their isomer mixtures in different compositions. Both the pure isomers and the isomer mixtures are claimed according to the invention.
  • R 1 and R 2 have the meanings given above,
  • R 3 has the meanings given above if appropriate in the presence of a ner diluent and if appropriate in the presence of a catalyst;
  • R 1 , R 2 and R 3 have the meanings given above,
  • R 4 has the meanings given above and
  • R 1 , R 2 and R 3 have the meanings given above,
  • R 1 and R 2 have the meanings given above,
  • R 3 has the meanings given above
  • the new pyrazoline derivatives of the formula (I) have highly pronounced biological properties and above all to control animal pests, in particular insects, arachnids and nematodes, which are used in agriculture, in forests, in the protection of stocks and materials as well as in the hygiene sector are suitable.
  • Formula (I) generally defines the pyrazoline derivatives according to the invention.
  • R 1 preferably represents cyano, -CC 4 alkoxy-carbonyl, carbamoyl, thiocarbamoyl, -C-C 4 -alkylamino-carbonyl or di-C ⁇ -C 4 -alkylamino-carbonyl.
  • R 2 preferably represents fluorine, chlorine, bromine, iodine; -C-C 4 haloalkyl, C1-C4 haloalkoxy, C r C - alkylthio, C ⁇ haloalkylthio, C 1 -C alkylsulfonyl, CC ⁇ haloalkylsulfonyl or cyano.
  • R 3 preferably represents fluorine, chlorine, bromine, iodine; -C-C 4 haloalkyl, Cj-C 4 haloalkoxy, C j -C haloalkylthio, C i -C haloalkylsulfmyl, C 1 -C 4 haloalkylsulfonyl or cyano.
  • R 4 preferably represents hydrogen, cyanomethyl or C jC -alkoxy-carbonyl.
  • R 1 particularly preferably represents cyano, -CC 4 -alkoxy-carbonyl, carbamoyl, thiocarbamoyl, -C-C2-alkylamino-carbonyl or di- -C-C2-alkylamino-carbonyl.
  • R 2 particularly preferably represents fluorine, chlorine, bromine, iodine, cyano; -C-C2-alkyl thio, C j ⁇ -alkylsulfonyl and for Cj -C2-haloalkyl, C j ⁇ -haloalkoxy, C ⁇ -C2-haloalkylthio or C ⁇ -C 2 -haloalkylsulfonyl, each with 1 to 5 identical or different halogen atoms from the series fluorine, chlorine and bromine.
  • R 3 particularly preferably represents chlorine, bromine, iodine, cyano; as well as for C1-C2-haloalkyl, Ci ⁇ -haloalkoxy, C ] -C2-haloalkylthio, Ci ⁇ -haloalkylsulfmyl or C ! -C2-Haloalkylsulfonyl, each with 1 to 5 identical or different halogen atoms from the fluorine, chlorine and bromine series.
  • R 4 particularly preferably represents hydrogen, cyanomethyl or C1-C4-alkoxycarbonyl.
  • R 4 represents hydrogen or CH 2 CN.
  • R 2 represents halogen, preferably fluorine, chlorine, bromine or iodine, particularly preferably fluorine, chlorine or bromine, very particularly preferably chlorine.
  • carbon radicals such as alkyl - are also straight-chain or branched as far as possible, also in conjunction with heteroatoms such as alkoxy.
  • reaction sequence of process (a) according to the invention can be carried out by the following formula scheme can be reproduced:
  • Formula (II) provides a general definition of the pyrazolines to be used as starting materials for carrying out processes (a) and (c) according to the invention.
  • R 1 and R 2 preferably or particularly preferably have those meanings which have already been mentioned as preferred or particularly preferred for these radicals in connection with the description of the compounds of the formula (I) according to the invention.
  • R 1 and R 2 have the meanings given above,
  • Alk represents C r C 4 alkyl
  • Halogenated hydrocarbons e.g. Methylene chloride or ethylene chloride
  • temperatures between 0 ° C and 120 ° C, preferably between 20 ° C and 80 ° C (see e.g. EP-A 0 546 420) and the resulting dialkylaminoalkyl ketones of the formula (VIII)
  • R 1 , R 2 and Alk have the meanings given above, optionally isolated and reacted in a second stage with hydrazine (hydrate) in the presence of an inert organic solvent (preferably alcohols, such as methanol or ethanol) at temperatures between 0 ° C. and 80 ° C., preferably between 20 ° C. and 50 ° C. (see also the manufacturing examples).
  • an inert organic solvent preferably alcohols, such as methanol or ethanol
  • Formula (III) provides a general definition of the isocyanates to be used as starting materials in process (a) according to the invention.
  • R 3 preferably or particularly preferably has those meanings which have already been associated with the description of the compounds of the invention
  • the isocyanates of the formula (III) are generally known compounds of organic chemistry and / or can be obtained in a generally known manner.
  • Formula (VI) provides a general definition of the substituted acetophenones to be used as starting materials for carrying out process (d) according to the invention.
  • R 1 and R 2 preferably or particularly preferably have those meanings which have already been mentioned as preferred or particularly preferred for these radicals in connection with the description of the compounds of the formula (I) according to the invention.
  • R 1 has the meanings given above,
  • an organic or inorganic base eg potassium carbonate
  • an inert organic solvent eg acetonitrile
  • Formula (VII) provides a general definition of the bis-dialkylaminomethanes to be used as starting materials in process (d) according to the invention.
  • Alk preferably represents methyl.
  • Bis-dialkylaminomethanes of the formula (VII) are generally known compounds of organic chemistry and / or can be obtained in a generally known manner.
  • Formula (IX) provides a general definition of the haloacetophenones to be used as starting materials for carrying out process (e) according to the invention.
  • R 2 preferably or particularly preferably has those meanings which are already in connection with the description of the invention Ner compounds of the formula (I) were mentioned as preferred or particularly preferred for this radical.
  • Shark 2 is preferably chlorine or bromine.
  • Formula (X) provides a general definition of the pyrazoles to be used as starting materials in the ner process (e) according to the invention.
  • R 1 preferably or particularly preferably has those meanings which have already been mentioned as preferred or particularly preferred for this radical in connection with the description of the novel compounds of the formula (I) according to the invention.
  • haloacetophenones of the formula (IX) and the pyrazoles of the formula (X) are generally known compounds of organic chemistry and / or can be obtained in a generally known manner.
  • R 5 and R 6 independently of one another represent hydrogen or alkyl
  • R 2 has the meanings given above
  • mineral acids such as preferably hydrochloric acid or
  • R 2 has the meanings given above
  • R 5 and R 6 have the meanings given above,
  • an inert, organic solvent for example methylene chloride or tetrahydrofuran
  • an inert, organic solvent for example methylene chloride or tetrahydrofuran
  • the ammonia or the amine is used in excess, which also have the function of a base here (cf. also the preparation examples).
  • Formula (VIb) provides a general definition of the substituted acetophenones to be used as starting materials for carrying out process (f) according to the invention.
  • R 2 preferably or particularly preferably has those meanings which have already been mentioned as preferred or particularly preferred for this radical in connection with the description of the compounds of the formula (I) according to the invention.
  • substituted acetophenones of the formula (VIb) are likewise compounds of the invention and can be obtained by process (e).
  • Formula (XI) generally defines the amines to be used as starting materials in process (f) according to the invention.
  • R 5 and R 6 independently of one another preferably represent hydrogen or Cj-C 4 - alkyl, particularly preferably represents hydrogen or C -C 2 alkyl!.
  • the amines of the formula (XI) are generally known compounds of organic chemistry.
  • Formula (IV) provides a general definition of the halides to be used as starting materials for carrying out process (b) according to the invention.
  • R 4 preferably or particularly preferably has those meanings which have already been mentioned as preferred or particularly preferred for this radical in connection with the description of the compounds of the formula (I) according to the invention.
  • Shark 1 preferably represents chlorine or bromine.
  • the halides of the formula (IV) are generally known compounds of organic chemistry.
  • Formula (V) provides a general definition of the carbamic acid chlorides to be used as starting materials in process (c) according to the invention.
  • R 3 preferably or particularly preferably has those meanings which have already been mentioned as preferred or particularly preferred for this radical in connection with the description of the compounds of the formula (I) according to the invention.
  • carbamic acid chlorides of the formula (V) are known (cf. e.g. DE 27 30 325). Not yet known and also the subject of this application are carbamic acid chlorides of the formula (Va)
  • R 7 represents haloalkyl, haloalkoxy or haloalkylthio, preferably the corresponding preferred meanings of R 3 .
  • the carbamic acid chlorides of the formula (Va) are obtained, for example, by
  • phosgene in the presence of an inert organic diluent (e.g. toluene) and in the presence of a base (preferably tertiary organic amines such as triethylamine) at temperatures between -10 ° C and
  • an inert organic diluent e.g. toluene
  • a base preferably tertiary organic amines such as triethylamine
  • R 7 has the meanings given above
  • Process (a) according to the invention is preferably carried out using diluents.
  • diluents Practically all inert organic solvents can be used as diluents. These preferably include aliphatic ones and aromatic, optionally halogenated hydrocarbons such as pentane, hexane, heptane, cyclohexane, petroleum ether, gasoline, ligroin, benzene, toluene, xylene, methylene chloride, ethylene chloride, chloroform, carbon tetrachloride, chlorobenzene and o-dichlorobenzene, ethers such as diethyl and dibutyl ether, methyl ether tert-butyl ether, methyl tert-amyl ether, glycol dimethyl ether and diglycol dimethyl ether, tetrahydrofuran and dioxane, ketones such as acetone, methyl ethyl
  • Process (a) according to the invention is preferably also carried out using a catalyst.
  • a catalyst In particular, tertiary organic amines such as triethylamine are suitable as catalysts.
  • reaction temperatures in process (a) according to the invention can be varied within a substantial range. In general, temperatures between 0 ° C and 120 ° C, preferably at temperatures between 20 ° C and 80 ° C.
  • Process (a) according to the invention is generally carried out under normal pressure. However, it is also possible to work under increased or reduced pressure.
  • the starting materials are generally used in approximately equimolar amounts. However, it is also possible to use one of the two components used in a smaller excess. Working up is carried out using customary methods (cf. the production examples).
  • Suitable diluents are all inert organic solvents. These preferably include aliphatic and aromatic, optionally halogenated hydrocarbons such as pentane, hexane, heptane, cyclohexane, petroleum ether, gasoline, ligroin, benzene, toluene, xylene, methylene chloride, ethylene chloride, chloroform, carbon tetrachloride, chlorobenzene and o-dichlorobenzene, ethers such as diethyl - And dibutyl ether, glycol dimethyl ether and diglycol dimethyl ether, tetrahydrofuran and dioxane, ketones such as acetone, methyl ethyl, methyl isopropyl or methyl isobutyl ketone, esters such as methyl acetate or
  • Bases which can be used in carrying out processes (b) and (c) according to the invention are all acid binders which can customarily be used for such reactions.
  • Alkali metal and alkaline earth metal hydrides such as lithium, sodium, potassium or calcium hydride
  • Alkali metal and alkaline earth metal hydroxides such as lithium, sodium, potassium or calcium hydroxide
  • Alkali metal and alkaline earth metal carbonates or bicarbonates such as sodium or potassium carbonate or bicarbonate or calcium carbonate
  • Alkali metal acetates such as sodium or potassium acetate, alkali metal alcoholates, such as sodium or potassium tert-butoxide
  • basic nitrogen compounds such as trimethylamine, triethylamine, tripropylamine, tributylamine, diisobutylamine, dicyclohexylamine, ethyldiisopropylamine, ethyldicyclohexylamine, N, N-dimethylbenzylamine, N, N
  • reaction temperatures in process (b) according to the invention can be varied within a substantial range. In general, temperatures between 0 ° C and 120 ° C, preferably at temperatures between 20 ° C and 80 ° C.
  • Process (b) according to the invention is generally carried out under normal pressure. However, it is also possible to work under increased or reduced pressure.
  • the starting materials are generally used in approximately equimolar amounts. However, it is also possible to use the halide and the base in excess. Working up is carried out using customary methods (cf. the production examples).
  • reaction temperatures in process (c) according to the invention can be varied within a substantial range. In general, temperatures between - 10 ° C and + 130 ° C, preferably at temperatures between 0 ° C and 110 ° C.
  • Process (c) according to the invention is generally carried out under normal pressure. However, it is also possible to work under increased or reduced pressure.
  • the starting materials are generally used in approximately equimolar amounts. However, it is also possible to use the chloride and the base in excess. Working up is carried out using customary methods (cf. the production examples).
  • the active substances are suitable for controlling animal pests, especially insects,
  • the pests mentioned above include: From the order of the Isopoda, for example Oniscus asellus, Armadillidium vulgare, Porcellio scaber.
  • Thysanura e.g. Lepisma saccharina.
  • Phthiraptera e.g. Pediculus humanus corporis, Haematopinus spp., Linognathus spp., Trichodectes spp., Damalinia spp.
  • Thysanoptera e.g. Hercinothrips femoralis, Thrips tabaci
  • Trialeurodes vaporariorum Aphis gossypii, Brevicoryne brassicae, Cryptomyzus ribis, Aphis fabae, Aphis pomi, Eriosoma lanigerum, Hyalopterus arundinis,
  • Hymenoptera e.g. Diprion spp., Hoplocampa spp., Lasius spp., Monomorium pharaonis, Vespa spp.
  • Scorpio maurus Latrodectus mactans, Acarus siro, Argas spp., Ornithodoros spp., Dermanyssus gallinae, Eriophyes ribis, Phyllocoptruta oleivora, Boophilus spp., Rhipicephalus spp., Amblyomma spp., ., Psoroptes spp., Chorioptes spp., Sarcoptes spp., Tarsonemus spp., Bryobia praetiosa, Panonychus spp., Tetranychus spp., Hemitarsonemus spp., Brevipalpus spp.
  • the plant-parasitic nematodes include, for example, Pratylenchus spp., Radopholus similis, Ditylenchus dipsaci, Tylenchulus semipenetrans, Heterodera spp., Globodera spp., Meloidogyne spp., Aphelenchoides spp., Longidorus spp., Tripusichpp. Spp., Xiphinema spp.
  • the substances according to the invention can be used with particularly good success for combating plant-damaging insects, such as e.g. against the larvae of the cucumber beetle (Diabrotica balteata), the caterpillars of the cotton capsule worm (Heliothis virescens), the larvae of the horseradish beetle (Phaedon cochleariae), the caterpillars of the cockroach (Plutella xylostella) and caterpillars of the army worm
  • plant-damaging insects such as e.g. against the larvae of the cucumber beetle (Diabrotica balteata), the caterpillars of the cotton capsule worm (Heliothis virescens), the larvae of the horseradish beetle (Phaedon cochleariae), the caterpillars of the cockroach (Plutella xylostella) and caterpillars of the army worm
  • the substances according to the invention also show a very good duration of action, e.g. against the caterpillars of the cotton capsule worm (Heliothis virescens) or the caterpillars of the army worm (Spodoptera frugiperda).
  • the compounds according to the invention can also be used in certain concentrations or application rates as herbicides and microbicides, for example as fungicides, antifungals and bactericides. If appropriate, they can also be used as intermediates or precursors for the synthesis of further active compounds.
  • plants and parts of plants can be treated.
  • Plants are understood here to mean all plants and plant populations, such as desired and unwanted wild plants or crop plants (including naturally occurring crop plants).
  • Crop plants can be plants which can be obtained by conventional breeding and optimization methods or by biotechnological and genetic engineering methods or combinations of these methods, including the transgenic plants and including those which can or cannot be protected by plant breeders' rights
  • Plant varieties Under plant parts, all above-ground and underground Parts and organs of the plants, such as sprout, leaf, flower and root, are to be understood, examples being leaves, needles, stems, stems, flowers, fruiting bodies, fruits and seeds, and roots, tubers and rhizomes.
  • the plant parts also include crops and vegetative and generative propagation material, for example cuttings, tubers, rhizomes, offshoots and
  • the treatment of the plants and parts of plants with the active compounds according to the invention is carried out directly or by acting on their surroundings, living space or storage space according to the customary treatment methods, e.g. by dipping, spraying,
  • the active ingredients can be converted into the customary formulations, such as solutions, emulsions, wettable powders, suspensions, powders, dusts, pastes, soluble powders, granules, suspension emulsion concentrates, active ingredient-impregnated natural and synthetic substances and very fine encapsulations in polymers substances.
  • formulations are made in a known manner, e.g. by mixing the active ingredients with extenders, that is liquid solvents and / or solid
  • Carriers where appropriate using surface-active agents, that is to say emulsifiers and / or dispersants and / or foam-generating agents.
  • water is used as an extender, e.g. also organic
  • Solvents are used as auxiliary solvents.
  • the following are essentially suitable as liquid solvents: aromatics, such as xylene, toluene, or alkylnaphthalenes, chlorinated aromatics and chlorinated aliphatic hydrocarbons, such as chlorobenzenes, chlorethylenes or methylene chloride, aliphatic hydrocarbons, such as cyclohexane or paraffins, e.g. Petroleum fractions, mineral and vegetable
  • Oils Oils, alcohols such as butanol or glycol and their ethers and esters, ketones such as Acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone, strongly polar solvents such as dimethylformamide and dimethyl sulfoxide, and water.
  • ketones such as Acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone
  • strongly polar solvents such as dimethylformamide and dimethyl sulfoxide
  • Possible solid carriers are: e.g. Ammonium salts and natural rock flours, such as kaolins, clays,
  • Talc, chalk, quartz, attapulgite, montmorillonite or diatomaceous earth and synthetic rock powder, such as highly disperse silica, aluminum oxide and silicates, are suitable as solid carriers for granules: e.g. broken and fractionated natural rocks such as calcite, marble, pumice, sepiolite, dolomite and synthetic granules from inorganic and organic flours and granules from organic material such as sawdust, coconut shells, corn cobs and tobacco stems; as emulsifying and / or foaming agents are possible: e.g.
  • non-ionic and anionic emulsifiers such as polyoxyethylene fatty acid esters, polyoxyethylene fatty alcohol ethers, e.g. Alkylaryl polyglycol ethers, alkyl sulfonates, alkyl sulfates, aryl sulfonates and protein hydrolyzates;
  • Possible dispersants are: e.g. Lignin sulfite liquor and methyl cellulose.
  • Adhesives such as carboxymethyl cellulose, natural and synthetic powdery, granular or latex-shaped polymers, such as gum arabic, polyvinyl alcohol, polyvinyl acetate, and natural phospholipids such as cephalins and lecithins and synthetic phospholipids can be used in the formulations.
  • Other additives can be mineral and vegetable oils.
  • Dyes such as inorganic pigments, e.g. Iron oxide, titanium oxide, ferrocyan blue and organic dyes such as alizarin, azo and metal phthalocyanine dyes and trace nutrients such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc can be used.
  • the formulations generally contain between 0.1 and 95% by weight of active compound, preferably between 0.5 and 90%.
  • the active compounds according to the invention can also be used in a mixture with known fungicides, bactericides, acaricides, nematicides or insecticides, in order, for example, to broaden the activity spectrum or to prevent the development of resistance. In many cases, synergistic effects are obtained, ie the effectiveness of the mixture is greater than that
  • Calcium polysulphide carpropamid, capsimycin, captafol, captan, carbendazim, carbonyl xin, carvone, chinomethionat (Quinomethionat) Chlobenthiazon, chlorfenazole, chlorides roneb, chloropicrin, chlorothalonil, chlozolinate, Clozylacon, Cufraneb, cymoxanil, cyproconazole, cyprodinil, cyprofuram, debacarb , Dichlorophene, diclobutrazole, diclofluanide, diclomezin, dicloran,
  • Iodocarb Ipconazol
  • Iprobefos IBP
  • Iprodione Iprovalicarb
  • Irumamycin Iprobefos
  • copper preparations such as: copper hydroxide, copper phthalate, copper oxychloride, copper sulfate, copper oxide, oxy-copper and
  • Mancopper Mancozeb, Maneb, Meferimzone, Mepanipyrim, Mepronil, Metalaxyl,
  • Metconazole methasulfocarb, methfuroxam, metiram, metomeclam, metsulfovax,
  • Oxadixyl Oxamocarb, Oxolinicacid, Oxycarboxim, Oxyfenthiin,
  • Paclobutrazole pefurazoate, penconazole, pencycuron, phosdiphen, picoxystrobin,
  • Tebuconazole Tebuconazole, tecloftalam, tecnazen, tetcyclacis, tetraconazole, thiabendazole,
  • Thicyofen Thifluzamide, Thiophanate-methyl, Thiram, Tioxymid, Tolclofos-methyl, Tolylfluanid, Triadimefon, Triadimenol, Triazbutil, Triazoxid, Trichlamid, Tricyclazol,
  • Tridemorph Tridemorph, trifloxystrobin, triflumizole, triforin, triticonazole,
  • N- (2-chloro-4-nitrophenyl) -4-methyl-3-nitro-benzenesulfonamide N- (4-cyclohexylphenyl) -1, 4,5,6-tetrahydro-2-pyrimidinamine, N- (4-hexylphenyl ) -l, 4,5,6-tetrahydro-2-pyrimidinamine, N- (5-chloro-2-methylphenyl) -2-methoxy-N- (2-oxo-3-oxazolidinyl) acetamide, N- (6 methoxy) -3-pyridyl) cyclopropanecarboxamide,
  • Chloethocarb Chlorethoxyfos, Chlorfenapyr, Chlorfenvinphos, Chlorfluazuron, Chlormephos, Chlo ⁇ yrifos, Chlo ⁇ yrifos M, Chlovaporthrin, Chromafenozide, Cis-Resmethrin, Cispermethrin, Clocythrin, Cloethocarb, Clofentezyan, Cyclophrine, Cyclophrine, Cyclophrinine, Clothianhrinin, Cytophrine, Clothianhrinin, Cyclophrinine .
  • Fenamiphos Fenazaquin, Fenbutatin oxide, Fenitrothion, Fenothiocarb, Fenoxacrim, Fenoxycarb, Fenpropathrin, Fenpyrad, Fenpyrithrin, Fenpyroximate, Fenvalerate, Fipronil, Fluazuron, Flubrocythrinate, Flucycloxuron, Flcythrinate, Fluftoxinhrininate, Fufonoxhrhrininate, Fumetoxinhrininate, Fumetoxin , Furathiocarb,
  • Halofenozide HCH, Heptenophos, Hexaflumuron, Hexythiazox, Hydroprene, Imidacloprid, Indoxacarb, Isazofos, Isofenphos, Isoxathion, Ivermectin, Kernpolyederviruses Lambda-cyhalothrin, Lufenuron Malathion, Mecarbam, Metaldehyde, Methamidophyllis, Methamidophosphate, Methamidophosphate
  • Metharhizin flavoviride methidathione, methiocarb, methoprene, methomyl, methoxyfenozide, metolcarb, metoxadiazone, Mevinphos, Milbemectin, milbemycin, Monocrotophos, Naled, Nitenpyram, Nithiazine, Novaluron Omethoat, Oxamyl Myd
  • Paecilomyces fumosoroseus Parathion A, Parathion M, Permethrin, Phenthoat, Phorat, Phosalone, Phosmet, Phosphamidon, Phoxim, Pirimicarb, Pirimiphos A, Pirimiphos M, Profenofos, Promecarb, Propargite, Propoxur, Prothiofos, Prothrohrinos, Pothrohrinos, Pothrohrine, Pothrohrinate , Pyridaben, pyridathione, pyrimidifen, pyriproxyfen,
  • the active compounds according to the invention can also be present in their commercially available formulations and in the use forms prepared from these formulations in a mixture with synergists.
  • Synergists are compounds that increase the effectiveness of the active ingredients without the added synergist itself having to be active.
  • the active substance content of the use forms prepared from the commercially available formulations can vary within wide ranges.
  • the active substance concentration of the use forms can be from 0.0000001 to 95% by weight of active substance, preferably between 0.0001 and 1% by weight.
  • the application takes place in a customary manner adapted to the application forms
  • the active ingredient When used against hygiene pests and pests of stored products, the active ingredient is distinguished by an excellent residual action on wood and clay as well as a good stability to alkali on limed substrates.
  • plants and their parts can be treated according to the invention.
  • plant species and plant cultivars and their parts occurring wildly or obtained by conventional biological breeding methods, such as crossing or protoplast fusion, are treated.
  • transgenic plants and plant cultivars which have been obtained by genetic engineering methods, if appropriate in combination with conventional methods (genetic modified organisms) and their parts are treated.
  • the term “parts” or “parts of plants” or “parts of plants” was explained above. Plants of the plant varieties which are in each case commercially available or in use are particularly preferably treated according to the invention.
  • Plant cultivars are understood to mean plants with new properties (“traits”) which have been cultivated both by conventional breeding, by mutagenesis or by recombinant DNA techniques. These can be cultivars, bio- and genotypes.
  • the treatment according to the invention can also result in superadditive (“synergistic”) effects.
  • superadditive for example, reduced application rates and or widening the spectrum of action and / or strengthening the effect of the substances and agents which can be used according to the invention, better plant growth, increased tolerance to high or low temperatures, increased tolerance to dryness or to water or soil salt content, increased flowering performance, easier harvesting, acceleration of ripeness, higher crop yields, higher quality and / or higher
  • Nutritional value of the harvested products higher shelf life and / or workability of the harvested products possible, which go beyond the effects that are actually to be expected.
  • the preferred transgenic plants or plant cultivars to be treated according to the invention include all plants which have received genetic material through the genetic engineering modification, which gives these plants particularly advantageous, valuable properties (“traits”). Examples of such properties are better plant growth, increased tolerance to high or low temperatures, increased tolerance to drought or to water or soil salt content, increased flowering performance, easier harvesting, acceleration of ripening, higher harvest yields, higher quality and / or higher nutritional value of the harvested products, higher shelf life and / or Machinability of the harvested products Further and particularly highlighted examples of such properties are an increased defense of the plants against animal and microbial pests, such as against insects, mites, phytopathogenic fungi, Bacteria and / or viruses and an increased tolerance of the plants to certain herbicidal active ingredients.
  • the important cultivated plants such as cereals (wheat, rice), corn, soybeans, potatoes, cotton, rapeseed and fruit plants (with the fruits apples, pears, citrus fruits and grapes) are mentioned as examples of transgenic plants, with corn, soybeans , Potato, cotton and rapeseed are highlighted.
  • the properties (“traits”) which are particularly emphasized are the plants' increased defense against insects by toxins arising in the plants, in particular those which are caused by the genetic material from Bacillus thuringiensis (for example by the genes Cry ⁇ A (a), Cry ⁇ A (b), Cry ⁇ A (c), CryllA, CrylllA, CryIIIB2, Cry9c, Cry2Ab, Cry3Bb and CrylF as well as their combinations) are produced in the plants (hereinafter "Bt plants”).
  • Bt plants The increased defense of plants against fungi, bacteria and viruses by systemic acquired resistance (SAR), systemin, phytoalexins, elicitors and resistance genes and correspondingly expressed proteins and toxins are also particularly emphasized as properties (“traits”).
  • Traits are also particularly emphasized the increased tolerance of the plants to certain herbicidal active ingredients, for example imidazolinones, sulfonylureas, glyphosate or phosphinotricin (for example” PAT "gene).
  • herbicidal active ingredients for example imidazolinones, sulfonylureas, glyphosate or phosphinotricin (for example” PAT "gene).
  • the genes which impart the desired properties can also occur in combinations with one another in the transgenic plants. Examples of “Bt plants” are maize varieties,
  • Cotton varieties, soy varieties and potato varieties named under the trade names YIELD GARD® (e.g. corn, cotton, soy), KnockOut® (e.g. corn), StarLink® (e.g. corn), Bollgard® (cotton), Nucotn® (cotton) and NewLeaf ® (potato) are sold.
  • Examples of herbicide-tolerant plants include maize, cotton and soybeans, which are among the
  • plants listed can be treated particularly advantageously according to the invention with the compounds of the general formula (I) or the active compound mixtures according to the invention.
  • the preferred ranges given above for the active substances or mixtures also apply to the treatment of these plants. Plant treatment with the compounds or mixtures specifically listed in the present text should be particularly emphasized.
  • the active compounds according to the invention act not only against plant, hygiene and stored-product pests, but also in the veterinary sector against animal parasites (ectoparasites) such as tick ticks, leather ticks, mites, running mites, flies (stinging and licking), parasitic fly larvae, lice, hair Hangings, featherlings and fleas.
  • animal parasites ectoparasites
  • tick ticks leather ticks
  • mites running mites
  • flies stinging and licking
  • parasitic fly larvae lice, hair Hangings, featherlings and fleas.
  • Xenopsylla spp. Ceratophyllus spp. From the order of the Heteropterida, for example Cimex spp., Triatoma spp., Rhodnius spp., Panstrongylus spp.
  • Mesostigmata e.g. Argas spp., Ornithodorus spp., Otobius spp., Ixodes spp., Amblyomma spp., Boophilus spp., Dermacentor spp., Haemophysalis spp., Hyalomma spp., Rhipicephalus spp., Dermanyssus spp., Raillietssus spp., ., Sternostoma spp., Varroa spp. From the order of the Actinedida (Prostigmata) and Acaridida (Astigmata) e.g.
  • the active compounds of the formula (I) according to the invention are also suitable for controlling arthropods which are used in agricultural animals, e.g. Cattle, sheep, goats, horses, pigs, donkeys, camels, buffalo, rabbits, chickens, turkeys, ducks, geese, bees, other pets such as e.g. Dogs, cats, house birds, aquarium fish and so-called experimental animals, such as Infest hamsters, guinea pigs, rats and mice.
  • arthropods e.g. Cattle, sheep, goats, horses, pigs, donkeys, camels, buffalo, rabbits, chickens, turkeys, ducks, geese, bees, other pets such as e.g. Dogs, cats, house birds, aquarium fish and so-called experimental animals, such as Infest hamsters, guinea pigs, rats and mice.
  • the active compounds according to the invention are used in the veterinary sector in a known manner by enteral administration in the form of, for example, tablets, capsules, drinkers, drenches, granules, pastes, boluses, the feed-through method, suppositories, by parenteral administration, for example by injections
  • implants through nasal Application, through dermal application in the form of, for example, diving or bathing (dipping), spraying (spray), pouring on (pour-on and spot-on), washing, powdering and with the help of shaped articles containing active ingredients, such as collars, ear tags, tail marks , Limb straps, holsters, marking devices etc.
  • active ingredients such as collars, ear tags, tail marks , Limb straps, holsters, marking devices etc.
  • the active compounds of the formula (I) can be used as formulations (for example powders, emulsions, flowable agents) which contain the active compounds in an amount of 1 to 80% by weight, directly or apply after 100 to 10,000-fold dilution or use it as a chemical bath.
  • formulations for example powders, emulsions, flowable agents
  • insects may be mentioned by way of example and preferably, but without limitation:
  • Termites like Kalotermes flavicollis, Cryptotermes brevis, Heterotermes indicola, Reticulitermes flavipes, Reticulitermes santonensis, Reticulitermes lucifugus, Mastotermes darwiniensis, Zootermopsis nevadensis, Coptotermes formosanus.
  • Bristle tails such as Lepisma saccharina.
  • non-living materials such as preferably plastics, adhesives, glues, papers and cartons, leather, wood, wood processing products and paints.
  • the one to be protected against insect attack is very particularly preferably
  • Wood and wood processing products which can be protected by the agent according to the invention or mixtures containing it are to be understood as examples:
  • the active substances can be used as such, in the form of concentrates or generally customary formulations such as powders, granules, solutions, suspensions, emulsions or pastes.
  • the formulations mentioned can be prepared in a manner known per se, for example by mixing the active ingredients with at least one solvent or diluent, emulsifier, dispersant and / or binder or fixative, water repellants, optionally siccatives and UV stabilizers and added - if necessary dyes and pigments and other processing aids.
  • the insecticidal compositions or concentrates used to protect wood and wood-based materials contain the active compound according to the invention in a concentration of 0.0001 to 95% by weight, in particular 0.001 to 60% by weight.
  • the amount of the agents or concentrates used depends on the type and occurrence of the insects and on the medium. The optimal amount can be determined in each case by test series. In general, however, it is sufficient to use 0.0001 to 20% by weight, preferably 0.001 to 10% by weight, of the active compound, based on the material to be protected.
  • organic-chemical solvent or solvent mixture and / or an oily or oily or low-volatility organic-chemical solvent or solvent mixture and / or a polar organic-chemical solvent or solvent mixture and / or water and optionally an emulsifier and / or wetting agents.
  • the organic chemical solvents used are preferably oily or oily solvents with an evaporation number above 35 and a flash point above 30 ° C., preferably above 45 ° C.
  • Corresponding mineral oils or their aromatic fractions or mineral oil-containing solvent mixtures, preferably white spirit, petroleum and / or alkylbenzene, are used as such low-volatility, water-insoluble, oily and oily solvents.
  • Mineral oils with a boiling range of 170 to 220 ° C, test gasoline with a boiling range of 170 to 220 ° C, spindle oil with a boiling range of 250 to 350 ° C, petroleum or aromatics with a boiling range of 160 to 280 ° C are advantageous. Te ⁇ entinöl and the like. For use.
  • the organic semi-volatile oily or oily solvents with an evaporation number above 35 and a flash point above 30 ° C, preferably above 45 ° C, can be partially replaced by slightly or medium-volatile organic chemical solvents, with the proviso that the solvent mixture also has an evaporation number above 35 and has a flash point above 30 ° C, preferably above 45 ° C, and that the insecticide-fungicide mixture is soluble or emulsifiable in this solvent mixture.
  • part of the organic chemical solvent or solvent mixture is replaced by an aliphatic polar organic chemical solvent or solvent mixture.
  • Aliphatic organic chemical solvents containing hydroxyl and / or ester and / or ether groups, such as, for example, glycol ethers, esters or the like, are preferably used.
  • the known organic-chemical binders are the water-dilutable synthetic resins and / or synthetic resins which are soluble or dispersible or emulsifiable in the organic-chemical solvents used and / or binding drying oils, in particular binders consisting of or containing Acrylate resin, a vinyl resin, e.g. Polyvinyl acetate, polyester resin, polycondensation or polyaddition resin, polyurethane resin, alkyd resin or modified alkyd resin, phenolic resin, hydrocarbon resin such as indene
  • the synthetic resin used as a binder can be used in the form of an emulsion, dispersion or solution. Bitumen or bituminous nous substances up to 10 wt .-%, are used. In addition, known dyes, pigments, water-repellants, odor correctors and inhibitors or anticorrosive agents and the like can be used.
  • At least one alkyd resin or modified alkyd resin and / or a drying vegetable oil is preferably contained in the agent or in the concentrate as the organic chemical binder.
  • Alkyd resins with an oil content of more than 45% by weight, preferably 50 to 68% by weight, are preferably used according to the invention.
  • binder mentioned can be replaced by a fixing agent (mixture) or a plasticizer (mixture). These additives are intended to prevent volatilization of the active ingredients and crystallization or precipitation. They preferably replace 0.01 to 30% of the binder (based on 100% of the binder used).
  • the plasticizers come from the chemical classes of phthalic acid esters such as dibutyl, dioctyl or benzyl butyl phthalate, phosphoric acid esters such as tributyl phosphate, adipic acid esters such as di- (2-ethylhexyl) adipate, stearates such as butyl stearate or amyl stearate, oleates such as butyl oleate, higher glycerol glycerol or glycerol ether - Kolether, glycerol ester and p-toluenesulfonic acid ester.
  • phthalic acid esters such as dibutyl, dioctyl or benzyl butyl phthalate
  • phosphoric acid esters such as tributyl phosphate
  • adipic acid esters such as di- (2-ethylhexyl) adipate
  • Fixing agents are chemically based on polyvinyl alkyl ethers such as e.g. Polyvinyl methyl ether or ketones such as benzophenone, ethylene benzophenone.
  • Water is also particularly suitable as a solvent or diluent, if appropriate in a mixture with one or more of the above-mentioned organic chemical solvents or diluents, emulsifiers and dispersants.
  • a particularly effective wood protection is achieved by industrial impregnation processes, e.g. vacuum, double vacuum or pressure processes.
  • the ready-to-use compositions can optionally contain further insecticides and, if appropriate, one or more fungicides.
  • insecticides and fungicides mentioned in WO 94/29 268 are preferably suitable as additional admixing partners.
  • the ones mentioned in this document are preferably suitable as additional admixing partners.
  • Insecticides such as chloropyriphos, phoxime, silafluofin, alphamethrin, cyfluthrin, cypermethrin, deltamethrin, permethrin, imidacloprid, NI-25, flufenoxuron, hexaflumuron, transfluthron, trifluoropuron, methifluoropuron, methifluoropuron, methifluoropuron
  • fungicides such as epoxyconazole, hexaconazole, azaconazole, propiconazole, tebuconazole, cyproconazole, metconazole, imazalil, dichlorofluoride, tolylfluanid, 3-iodo-2-propynylbutylcarbamate, N-octyl-isothiazolin-3-one and 4,5-dichloro -octyl-isothiazolin-3-one.
  • the compounds according to the invention can be used to protect objects, in particular ship hulls, sieves, nets, structures, quay systems and signaling systems which come into contact with sea or brackish water.
  • Baianus or pollicipes species increases the frictional resistance of ships and, as a result, leads to a significant increase in operating costs due to increased energy consumption and, moreover, frequent dry dock stays.
  • heavy metals such as e.g. in bis (trialkyltin) sulfides, tri-butyltin laurate, tri-rc-butyltin chloride, copper (I) oxide,
  • Triethyltin chloride tri - «- butyl (2-phenyl-4-chloro-phenoxy) -tin, tributyltin oxide, molybdenum disulfide, antimony oxide, polymeric butyl titanate, phenyl- (bispyridine) - bismuth chloride, tri-w-butylzirine fluoride, manganese ethylenebisto- dimethylcarbamate, zinc thiocarbamate, Zinc and copper salts of 2-pyridinthiol-1-oxide, bisdimethyldithiocarbamoylzinkethylenististhiocarbamate,
  • Zinc oxide, copper (I) ethylene bisdithiocarbamate, copper thiocyanate, copper phthalate and tributyltin halides can be omitted or the concentration of these compounds can be significantly reduced.
  • the ready-to-use antifouling paints can also be used if necessary
  • active ingredients preferably algicides, fungicides, herbicides, molluscicides or other antifouling active ingredients.
  • Suitable combination partners for the antifouling agents according to the invention are preferably:
  • thiophenecarboxylic acid cyclohexylamide-S, S-dioxide, dichlofluanid, fluorofolpet, 3-iodo-2-propynyl-butylcarbamate, tolylfluanid and azoles such as azaconazole, cyproconazole, epoxyconazole, hexaconazole, metconazole, propiconazole, propiconazole
  • the antifouling agents used contain the active compound according to the invention of the compounds according to the invention in a concentration of 0.001 to 50% by weight, in particular of 0.01 to 20% by weight.
  • the antifouling agents according to the invention further contain the usual ingredients such as e.g. in Ungerer, Chem. Ind. 1985, 37, 730-732 and Williams, Antifouling Marine Coatings, Noyes, Park Ridge, 1973.
  • antifouling paints contain in particular binders.
  • Examples of recognized binders are polyvinyl chloride in a solvent system, chlorinated rubber in a solvent system, acrylic resins in a solvent system, in particular in an aqueous system, vinyl chloride / vinyl acetate copolymer systems in the form of aqueous dispersions or in the form of organic solvent systems, butadiene / styrene / acrylonitrile rubbers, drying oils, such as linseed oil, resin esters or modified hard resins in combination with tar or bitumen, asphalt and epoxy compounds, small amounts of chlorinated rubber, chlorinated polypropylene and ninyl resins.
  • Paints may also contain inorganic pigments, organic pigments or dyes, which are preferably insoluble in sea water. Paints may also contain materials such as rosin to enable controlled release of the active ingredients. The paints may also contain plasticizers, modifiers that affect the rheological properties, and other conventional ingredients.
  • the self-compounds according to the invention or the abovementioned mixtures can also be incorporated into self-polishing antifouling systems.
  • the active ingredients are also suitable for controlling animal pests, in particular insects, arachnids and mites, which live in closed spaces such as apartments, factory halls, offices, vehicle cabins, etc. occurrence.
  • animal pests in particular insects, arachnids and mites, which live in closed spaces such as apartments, factory halls, offices, vehicle cabins, etc. occurrence.
  • insects in particular insects, arachnids and mites
  • they can be used alone or in combination with other active ingredients and auxiliaries in household insecticide products. They are effective against sensitive and resistant species and against all stages of development.
  • insects in particular insects, arachnids and mites, which live in closed spaces such as apartments, factory halls, offices, vehicle cabins, etc. occurrence.
  • auxiliaries in household insecticide products. They are effective against sensitive and resistant species and against all stages of development.
  • Sco ⁇ ionidea e.g. Buthus occitanus.
  • Acarina e.g. Argas persicus, Argas reflexus, Bryobia ssp., Dermanyssus gallinae, Glyciphagus domesticus, Ornithodorus moubat,
  • Opiliones e.g. Pseudosco ⁇ iones chelifer, Pseudosco ⁇ iones cheiridium, Opiliones phalangium.
  • Isopoda for example Oniscus asellus, Porcellio scaber.
  • Diplopoda for example, Blaniulus guttulatus, Polydesmus spp.
  • Lepismodes inquilinus From the order of the Blattaria e.g. Blatta orientalies, Blattella germanica, Blattella asahinai, Leucophaea maderae, Panchlora spp., Parcoblatta spp., Periplaneta australasiae, Periplaneta americana, Periplaneta brunnea, Periplaneta fuliginosa,
  • Saltatoria e.g. Acheta domesticus.
  • Dermaptera e.g. Forficula auricularia.
  • Lepidoptera e.g. Achroia grisella, Galleria mellonella, Plodia inte ⁇ unctella, Tinea cloacella, Tinea pellionella, Tineola bisselliella.
  • Ctenocephalides canis From the order of the Siphonaptera e.g. Ctenocephalides canis, Ctenocephalides felis, Pulex irritans, Tunga penetrans, Xenopsylla cheopis. From the order of the Hymenoptera e.g. Camponotus herculeanus, Lasius fuliginosus, Lasius niger, Lasius umbratus, Monomorium pharaonis, Paravespula spp., Tetramorium caespitum.
  • Rhodinus prolixus Triatoma infestans.
  • the application in the field of household insecticides is carried out alone or in combination with other suitable active ingredients such as phosphoric acid esters, carbamates, pyrethroids, growth regulators or active ingredients from other known classes of insecticides.
  • logP values specified in the tables and manufacturing examples above are determined in accordance with EEC Directive 79/831 Annex V.A8 by HPLC (High Performance Liquid Chromatography) on a phase reversal column (C 18). Temperature: 43 ° C.
  • the determination is carried out in the acidic range at pH 2.3 with 0.1% aqueous phosphoric acid and acetonitrile as eluents; linear gradient from 10% acetonitrile to 90% acetonitrile.
  • the calibration is carried out with unbranched alkan-2-ones (with 3 to 16 carbon atoms) whose logP values are known (determination of the logP values on the basis of the retention times by linear interpolation between two successive alkanones).
  • unbranched alkan-2-ones with 3 to 16 carbon atoms
  • logP values are known (determination of the logP values on the basis of the retention times by linear interpolation between two successive alkanones).
  • Solvent 7 parts by weight of dimethylformamide emulsifier: 2 parts by weight of alkylaryl polyglycol ether
  • active compound 1 part by weight of active compound is mixed with the stated amounts of solvent and emulsifier, and the concentrate is diluted to the desired concentration with water containing emulsifier.
  • Pots filled with earth are poured with the active ingredient preparation. Immediately after the preparation, 5 corn kernels are laid out per pot and after 3 days the Diabrotica balteata larvae are placed on the treated soil. The concentration given relates to the amount of active ingredient per unit volume in the soil (mg / 1).
  • Active substances Active ingredient Degree of killing in% after 10 d m ppm
  • Emulsifier 1 part by weight of alkylaryl polyglycol ether
  • active compound 1 part by weight of active compound is mixed with the stated amounts of solvent and emulsifier, and the concentrate is diluted to the desired concentration with water containing emulsifier.
  • Soybean shoots (Glycine max) are treated by dipping into the active ingredient preparation of the desired concentration and populated with Heliothis virescens caterpillars while the leaves are still moist.
  • the kill is determined in%. 100% means that all caterpillars have been killed; 0% means that no caterpillars have been killed.
  • Emulsifier 2 parts by weight of alkylaryl polyglycol ether
  • Cabbage leaves (Brassica oleracea) are treated by being dipped into the preparation of active compound of the desired concentration and populated with larvae of the horseradish leaf beetle (Phaedon cochleariae) while the leaves are still moist.
  • the kill is determined in%. 100% means that all beetle larvae have been killed; 0% means that no beetle larvae have been killed.
  • Emulsifier 1 part by weight of alkylaryl polyglycol ether
  • Cabbage leaves (Brassica oleracea) are treated by being dipped into the preparation of active compound of the desired concentration and populated with caterpillars of the cockroach (Plutella xylostella) while the leaves are still moist.
  • the kill is determined in%. 100% means that all caterpillars have been killed; 0% means that no caterpillars have been killed.
  • Emulsifier 1 part by weight of alkylaryl polyglycol ether
  • Cabbage leaves (Brassica oleracea) are treated by being dipped into the preparation of active compound of the desired concentration and populated with caterpillars of the army worm (Spodoptera exigua) while the leaves are still moist.
  • the kill is determined in%. 100% means that all caterpillars have been killed; 0% means that no caterpillars have been killed.
  • Emulsifier 1 part by weight of alkylaryl polyglycol ether
  • active compound 1 part by weight of active compound is mixed with the stated amounts of solvent and emulsifier, and the concentrate is diluted to the desired concentration with water containing emulsifier.
  • Cabbage leaves (Brassica oleracea) are treated by being dipped into the preparation of active compound of the desired concentration and populated with caterpillars of the army worm (Spodoptera frugiperda) while the leaves are still moist.
  • the kill is determined in%. 100% means that all caterpillars have been killed; 0% means that no caterpillars have been killed.
  • Emulsifier 1 part by weight of alkylaryl polyglycol ether
  • active compound 1 part by weight of active compound is mixed with the stated amounts of solvent and emulsifier, and the concentrate is diluted to the desired concentration with water containing emulsifier.
  • Cotton plants (Gossypium hirsutum) are sprayed with an active ingredient preparation of the desired concentration. After the specified days, Heliothis virescens larvae are placed on the treated leaves in infection chambers.
  • the kill is determined in%. 100% means that all caterpillars have been killed; 0% means that no caterpillars have been killed.
  • Active substances Active ingredient Degree of killing concentration in% in ppm 7 d after infection
  • Emulsifier 1 part by weight of alkylaryl polyglycol ether
  • active compound 1 part by weight of active compound is mixed with the stated amounts of solvent and emulsifier, and the concentrate is diluted to the desired concentration with water containing emulsifier.
  • Cotton plants (Gossypium hirsutum) are sprayed with an active ingredient preparation of the desired concentration. After the specified days, larvae of the army worm (Spodoptera frugiperda) are transferred to the treated in infection chambers
  • the kill is determined in%. 100% means that all caterpillars have been killed; 0% means that no caterpillars have been killed.
  • Active substances Active ingredient Degree of killing concentration in% in ppm 7 d after infection
  • Solvent 7 parts by weight of dimethylformamide emulsifier: 1 part by weight of alkylaryl polyglycol ether
  • Amount of emulsifier and dilute the concentrate with water to the desired concentration is required.
  • the active ingredient preparation is poured onto the floor.
  • the concentration of the active ingredient in the preparation is practically irrelevant, the only decisive factor is the amount of active ingredient per unit volume of soil, which is given in ppm (mg / 1). You fill the bottom in 0.25 1 pots and let them stand at 20 ° C.
  • Emulsifier 1 part by weight of alkylaryl polyglycol ether
  • Soybean shoots (Glycine max) of the Roundup Ready variety (trademark of Monsanto Comp. USA) are treated by dipping into the preparation of active compound of the desired concentration and are populated with the tobacco bud caterpillar Heliothis virescens while the leaves are still moist.
  • the kill is determined in%. 100% means that all caterpillars have been killed; 0% means that no caterpillars have been killed.
  • Test animals Lucilia cuprina larvae
  • test tube containing approx. 1 cm 3 horse meat and 0.5 ml of the active ingredient preparation to be tested. The effectiveness of the active substance preparation is determined after 24 h and 48 h.
  • the test tubes are then transferred to beakers with a bottom covered with sand. After a further 2 days, the test tubes are removed and the dolls are counted.
  • the effect of the active substance preparation is assessed according to the number of flies hatched after 1.5 times the development time of an untreated control. 100% means that no flies have hatched; 0% means that all flies hatched normally.
  • Test animals adult sucked females
  • the test is carried out in 5-fold determination. 1 ⁇ l of the solutions is injected into the abdomen, the animals are transferred into dishes and kept in an air-conditioned room. The effects are checked after 7 days on the laying of fertile eggs. Eggs whose fertility is not externally visible are kept in glass tubes until larvae hatch in the climatic chamber. An effect of 100% means that no tick has laid fertile eggs.
  • Test animals adult Musca domestica, trunk Reichswald (OP, SP,
  • the effectiveness of the active ingredient preparation is determined. 100% means that all flies have been killed, 0% means that none of the flies have been killed.
  • Test animals Periplaneta americana solvent: dimethyl sulfoxide
  • test animals are immersed in the drug preparation to be tested for 1 minute. After being transferred to a plastic cup and stored for 7 days in an air-conditioned room, the degree of killing is determined. 100% means that all cockroaches have been killed, 0% means that none of the cockroaches have been killed.

Abstract

Neue Pyrazolin-Derivate der Formel (I), in welcher R<1>, R<2>, R<3> und R<4> die in der Beschreibung angegebenen Bedeutungen haben, mehrere Verfahren zur Herstellung dieser Stoffe und deren Verwendung zur Bekämpfung von Schädlingen, sowie neue Zwischenprodukte und Verfahren zu deren Herstellung.

Description

PYRAZOLIN- DERIVATE UND IHRE VERWENDUNG ALS SCHÄDLINGSBEKÄMPFUNGSMITTEL
Die vorliegende Erfindung betrifft neue Pyrazolin-Derivate, Nerfahren zu ihrer Herstellung und ihre Verwendung als Schädlingsbekämpfungsmittel.
Es ist bekannt, dass bestimmte substituierte Pyrazoline insektizide und akarizide Eigenschaften aufweisen (vgl. z.B. DE-A 44 16 112, EP-A 0 679 644 oder EP-A 0 438 690). Die Wirkung dieser Verbindungen ist jedoch, insbesondere bei niedrigen Wirkstoffkonzentrationen und Aufwandmengen nicht immer ganz befriedigend.
Es wurden neue Pyrazolin-Derivate der Formel (I) gefunden,
in welcher
R1 für Cyano, Alkoxycarbonyl, Carbamoyl, Thiocarbamoyl, Alkylaminocarbonyl oder Dialkylaminocarbonyl steht,
R2 für Halogen, Halogenalkyl, Alkoxy, Halogenalkoxy, Alkylthio, Halogenalkyl- thio, Alkylsulfonyl, Halogenalkylsulfmyl, Halogenalkylsulfonyl oder Cyano steht,
R3 für Halogen, Halogenalkyl, Alkoxy, Halogenalkoxy, Alkylthio, Halogenalkyl- thio, Halogenalkylsulfmyl, Halogenalkylsulfonyl oder Cyano steht und
R4 für Wasserstoff, Cyanomethyl oder Alkoxycarbonyl steht. Die Nerbindungen der Formel (I) können gegebenenfalls in Abhängigkeit der Art und Anzahl der Substituenten als geometrische und/oder optische Isomere, Regio- isomere bzw. Konfϊgurationsisomere oder deren Isomerengemische in unterschiedlicher Zusammensetzung vorliegen. Sowohl die reinen Isomere als auch die Isomerengemische werden erfindungsgemäß beansprucht.
Weiterhin wurde gefunden, dass man die Pyrazolin-Derivate der Formel (I) erhält, indem man
a) Pyrazoline der Formel (II)
R1 und R2 die oben angegebenen Bedeutungen haben,
mit Isocyanaten der Formel (III)
in welcher
R3 die oben angegebenen Bedeutungen hat gegebenenfalls in Gegenwart eines Nerdünnungsmittels und gegebenenfalls in Gegenwart eines Katalysators umsetzt; und
b) gegebenenfalls die so erhaltenen erfϊndungsgemäßen Pyrazolin-Derivate der Formel (Ia)
R1, R2 und R3 die oben angegebenen Bedeutungen haben,
mit Halogeniden der Formel (IN)
Hai1— R4 (IV) in welcher
R4 die oben angegebenen Bedeutungen hat und
Hai1 für Halogen steht,
gegebenenfalls in Gegenwart eines Nerdünnungsmittels und gegebenenfalls in Gegenwart einer Base umsetzt.
Außerdem wurde gefunden, dass man Pyrazolin-Derivate der Formel (Ib) in welcher
R1, R2 und R3 die oben angegebenen Bedeutungen haben,
auch erhält, indem man
c) Pyrazoline der Formel (II)
R1 und R2 die oben angegebenen Bedeutungen haben,
mit Carbamidsäurechloriden der Formel (N)
in welcher
R3 die oben angegebenen Bedeutungen hat,
in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart einer Base umsetzt.
Schließlich wurde gefunden, dass die neuen Pyrazolin-Derivate der Formel (I) stark ausgeprägte biologische Eigenschaften besitzen und vor allem zur Bekämpfung von tierischen Schädlingen, insbesondere von Insekten, Spinnentieren und Nematoden, die in der Landwirtschaft, in Forsten, im Vorrats- und Materialschutz sowie auf dem Hygienesektor vorkommen, geeignet sind.
Die erfϊndungsgemäßen Pyrazolin-Derivate sind durch die Formel (I) allgemein defi- niert.
Bevorzugte Substituenten bzw. Bereiche der in den oben und nachstehend erwähnten Formeln aufgeführten Reste werden im folgenden erläutert:
R1 steht bevorzugt für Cyano, Cι-C4-Alkoxy-carbonyl, Carbamoyl, Thiocarb- amoyl, Cι-C4-Alkylamino-carbonyl oder Di-Cι-C4-Alkylamino-carbonyl.
R2 steht bevorzugt für Fluor, Chlor, Brom, Iod; Cι-C4-Halogenalkyl, C1-C4- Halogenalkoxy, CrC - Alkylthio, C^ -Halogenalkylthio, C1-C -Alkyl- sulfonyl, C C^Halogenalkylsulfonyl oder Cyano.
R3 steht bevorzugt für Fluor, Chlor, Brom, Iod; Cι-C4-Halogenalkyl, Cj-C4- Halogenalkoxy, C j -C -Halogenalkylthio, C i -C -Halogenalkylsulfmyl, C1-C4-Halogenalkylsulfonyl oder Cyano.
R4 steht bevorzugt für Wasserstoff, Cyanomethyl oder C j-C -Alkoxy-carbonyl. R1 steht besonders bevorzugt für Cyano, Cι-C4-Alkoxy-carbonyl, Carbamoyl, Thiocarbamoyl, Cι-C2-Alkylamino-carbonyl oder Di- Cι-C2-Alkylamino- carbonyl.
R2 steht besonders bevorzugt für Fluor, Chlor, Brom, Iod, Cyano; Cι-C2-Alkyl- thio, Cj^-Alkylsulfönyl sowie für Cj -C2-Halogenalkyl, Cj^-Halogen- alkoxy, Cι-C2-Halogenalkylthio oder Cι-C2-Halogenalkylsulfonyl mit jeweils 1 bis 5 gleichen oder verschiedenen Halogenatomen aus der Reihe Fluor, Chlor und Brom.
R3 steht besonders bevorzugt für Chlor, Brom, Iod, Cyano; sowie für C1-C2- Halogenalkyl, Ci ^-Halogenalkoxy, C]-C2-Halogenalkylthio, Ci ^-Halogenalkylsulfmyl oder C!-C2-Halogenalkylsulfonyl mit jeweils 1 bis 5 gleichen oder verschiedenen Halogenatomen aus der Reihe Fluor, Chlor und Brom.
R4 steht besonders bevorzugt für Wasserstoff, Cyanomethyl oder C1-C4- Alkoxycarbonyl.
Bevorzugt sind außerdem Verbindungen der Formel (I), in welchen R1 für Cyano steht.
Bevorzugt sind außerdem Verbindungen der Formel (I), in welchen R4 für Wasserstoff oder CH2CN steht.
Bevorzugt sind außerdem Verbindungen der Formel (I), in welchen R2 für Halogen, vorzugsweise für Fluor, Chlor, Brom oder Iod, besonders bevorzugt für Fluor, Chlor oder Brom, ganz besonders bevorzugt für Chlor steht.
Die oben aufgeführten allgemeinen oder in Vorzugsbereichen aufgeführten Restede- finitionen bzw. Erläuterungen gelten für die Endprodukte und für die Ausgangs- und Zwischenprodukte entsprechend. Diese Restedefinitionen können untereinander, also auch zwischen den jeweiligen Vorzugsbereichen, beliebig kombiniert werden.
Erfmdungsgemäß bevorzugt werden die Verbindungen der Formel (I), in welchen eine Kombination der vorstehend als bevorzugt aufgeführten Bedeutungen vorliegt.
Erfindungsgemäß besonders bevorzugt werden die Verbindungen der Formel (I), in welchen eine Kombination der vorstehend als besonders bevorzugt aufgeführten Bedeutungen vorliegt.
In den oben und nachstehend aufgeführten Restedefinitionen sind Kohlenstoffreste, wie Alkyl - auch in Verbindung mit Heteroatomen wie Alkoxy - soweit möglich jeweils geradkettig oder verzweigt.
Verwendet man beispielsweise 3-(4-Chlorphenyl)-4-(4-cyanpyrazol-l-yl)-4,5- dihydro-lH-pyrazol und 4-Chlorphenylisocyanat als Ausgangsstoffe, so kann der Reaktionsablauf des erfindungsgemäßen Verfahrens (a) durch das folgende Formelschema wiedergegeben werden:
Verwendet man beispielsweise 3-(4-Chlo henyl)-4-(4-cyan-pyrazol-l-yl)-4,5-di- hydro-l-pyrazolcarbonsäure-4-chloranilid und Bromacetonitril als Ausgangsstoffe, so kann der Reaktionsablauf des erfindungsgemäßen Verfahrens (b) durch das folgende Formelschema wiedergegeben werden:
Verwendet man beispielsweise 3-(4-Chlorphenyl)-4-(4-cyanpyrazol-l-yl)-4,5- dihydro- 1 H-pyrazol und N-Cyanomethyl-N-(4-trifluormethoxyphenyl)-carbamid- säurechlorid als Ausgangsstoffe, so kann der Reaktionsablauf des erfindungsgemäßen Verfahrens (c) durch das folgende Formelschema wiedergegeben werden:
Die zur Durchführung der erfindungsgemäßen Verfahren (a) und (c) als Ausgangsstoffe zu verwendenden Pyrazoline sind durch die Formel (II) allgemein definiert. In dieser Formel stehen R1 und R2 bevorzugt bzw. besonders bevorzugt für diejenigen Bedeutungen, die bereits in Zusammenhang mit der Beschreibung der erfindungsgemäßen Verbindungen der Formel (I) für diese Reste als bevorzugt bzw. besonders bevorzugt genannt wurden.
Die Pyrazoline der Formel (II) sind neu und ebenfalls Gegenstand dieser Anmeldung. Sie werden erhalten, indem man substituierte Acetophenone der Formel (VI)
in welcher
R1 und R2 die oben angegebenen Bedeutungen haben,
in einer ersten Stufe mit Bis-dialkylaminomethanen der Formel (VII)
(Alk)2N-CH2— N(Alk)2 (VII)
in welcher
Alk für CrC4-Alkyl steht,
in Gegenwart eines inerten, organischen Lösungsmittels (vorzugsweise
Halogenkohlenwasserstoffen, wie z.B. Methylenchlorid oder Ethylenchlorid) bei Temperaturen zwischen 0°C und 120°C, vorzugsweise zwischen 20°C und 80°C umsetzt (vgl. z.B. EP-A 0 546 420) und die dabei entstehenden Dialkylaminoalkylketone der Formel (VIII)
in welcher
R1, R2 und Alk die oben angegebenen Bedeutungen haben, gegebenenfalls isoliert und in einer zweiten Stufe mit Hydrazin(hydrat) in Gegenwart eines inerten, organischen Lösungsmittels (vorzugsweise Alkohole, wie z.B. Methanol oder Ethanol) bei Temperaturen zwischen 0°C und 80°C, vorzugsweise zwischen 20°C und 50°C umsetzt (vgl. auch die Herstel- lungsbeispiele).
Die außerdem beim erfindungsgemäßen Verfahren (a) als Ausgangsstoffe zu verwendenden Isocyanate sind durch die Formel (III) allgemein definiert. In dieser Formel steht R3 bevorzugt bzw. besonders bevorzugt für diejenigen Bedeutungen, die bereits in Zusammenhang mit der Beschreibung der erfindungsgemäßen Verbindungen der
Formel (I) für diesen Rest als bevorzugt bzw. besonders bevorzugt genannt wurden.
Die Isocyanate der Formel (III) sind allgemein bekannte Verbindungen der organischen Chemie und/oder können in allgemein bekannter Art und Weise erhalten werden.
Die zur Durchführung des erfindungsgemäßen Verfahrens (d) als Ausgangsstoffe zu verwendenden substituierten Acetophenone sind durch die Formel (VI) allgemein definiert. In dieser Formel stehen R1 und R2 bevorzugt bzw. besonders bevorzugt für diejenigen Bedeutungen, die bereits in Zusammenhang mit der Beschreibung der erfindungsgemäßen Verbindungen der Formel (I) für diese Reste als bevorzugt bzw. besonders bevorzugt genannt wurden.
Die substituierten Acetophenone der Formel (VI) sind neu und ebenfalls Gegenstand dieser Anmeldung. Sie werden erhalten, indem man
e) Halogenacetophenone der Formel (IX)
in welcher R2 die oben angegebenen Bedeutungen hat und
Hai2 für Halogen steht,
mit Pyrazolen der Formel (X)
in welcher
R1 die oben angegebenen Bedeutungen hat,
in Gegenwart einer organischen oder anorganischen Base (z.B. Kaliumcar- bonat) und gegebenenfalls in Gegenwart eines inerten, organischen Lösungsmittels (z.B. Acetonitril), bei Temperaturen zwischen 0°C und 100°C, vor- zugsweise zwischen 20°C und 80°C umsetzt (vgl. z.B. EP-A 0438 690 und auch die Herstellungsbeispiele).
Die außerdem beim erfindungsgemäßen Verfahren (d) als Ausgangsstoffe zu verwendenden Bis-dialkylaminomethane sind durch die Formel (VII) allgemein definiert. In dieser Formel steht Alk bevorzugt für Methyl.
Bis-dialkylaminomethane der Formel (VII) sind allgemein bekannte Verbindungen der organischen Chemie und/oder können in allgemein bekannter Art und Weise erhalten werden. Die zur Durchführung des erfindungsgemäßen Verfahrens (e) als Ausgangsstoffe zu verwendenden Halogenacetophenone sind durch die Formel (IX) allgemein definiert. In dieser Formel steht R2 bevorzugt bzw. besonders bevorzugt für diejenigen Bedeutungen, die bereits in Zusammenhang mit der Beschreibung der erfindungsgemäßen Nerbindungen der Formel (I) für diesen Rest als bevorzugt bzw. besonders bevorzugt genannt wurden. Hai2 steht bevorzugt für Chlor oder Brom.
Die außerdem beim erfindungsgemäßen Nerfahren (e) als Ausgangsstoffe zu verwendenden Pyrazole sind durch die Formel (X) allgemein definiert. In dieser Formel steht R1 bevorzugt bzw. besonders bevorzugt für diejenigen Bedeutungen, die bereits in Zusammenhang mit der Beschreibung der erfindungsgemäßen Nerbindungen der Formel (I) für diesen Rest als bevorzugt bzw. besonders bevorzugt genannt wurden.
Die Halogenacetophenone der Formel (IX) und die Pyrazole der Formel (X) sind allgemein bekannte Verbindungen der organischen Chemie und/oder können in allgemein bekannter Art und Weise erhalten werden.
Die substituierten Acetophenone der Formel (Via)
in welcher
R5 und R6 unabhängig voneinander für Wasserstoff oder Alkyl stehen,
können auch erhalten werden, indem man
f) substituierte Acetophenone der Formel (VIb)
in welcher
R2 die oben angegebenen Bedeutungen hat,
in einer ersten Stufe mit Mineralsäuren (wie vorzugsweise Salzsäure oder
Schwefelsäure) in Gegenwart eines inerten Lösungsmittels (vorzugsweise eines polaren Lösungsmittels, wie z.B. Wasser oder Essigsäure) bei Temperaturen zwischen 50°C und 140°C, vorzugsweise zwischen 80°C und 120°C umsetzt, wobei die Mineralsäure im Uberschuss eingesetzt wird; und die dabei entstehenden substituierten Acetophenone der Formel (VIc)
in welcher
R2 die oben angegebenen Bedeutungen hat,
isoliert und in einer zweiten Stufe zunächst mit Thionylchlorid und anschließend mit Ammoniak oder einem Amin der Formel (XI)
HNR5R6 (XI) in welcher
R5 und R6 die oben angegebenen Bedeutungen haben,
in Gegenwart eines inerten, organischen Lösungsmittels (z.B. Methylenchlorid oder Tetrahydrofuran) bei Temperaturen zwischen 0°C und 100°C, vorzugsweise zwischen 20°C und 80°C umsetzt, wobei der Ammoniak bzw. das Amin im Uberschuss eingesetzt wird, welche hier auch die Funktion einer Base besitzen (vgl. auch die Herstellungsbeispiele).
Die zur Durchführung des erfindungsgemäßen Verfahrens (f) als Ausgangsstoffe zu verwendenden substituierten Acetophenone sind durch die Formel (VIb) allgemein definiert. In dieser Formel steht R2 bevorzugt bzw. besonders bevorzugt für diejenigen Bedeutungen, die bereits in Zusammenhang mit der Beschreibung der erfindungsgemäßen Verbindungen der Formel (I) für diesen Rest als bevorzugt bzw. besonders bevorzugt genannt wurden.
Die substituierten Acetophenone der Formel (VIb) sind ebenfalls erfindungsgemäße Verbindungen und können nach Verfahren (e) erhalten werden.
Die außerdem beim erfindungsgemäßen Verfahren (f) als Ausgangsstoffe zu verwen- denden Amine sind durch die Formel (XI) allgemein definiert. In dieser Formel stehen R5 und R6 unabhängig voneinander bevorzugt für Wasserstoff oder Cj-C4- Alkyl, besonders bevorzugt für Wasserstoff oder C!-C2-Alkyl.
Die Amine der Formel (XI) sind allgemein bekannte Verbindungen der organischen Chemie.
Die zur Durchführung des erfindungsgemäßen Verfahrens (b) als Ausgangsstoffe zu verwendenden Halogenide sind durch die Formel (IV) allgemein definiert. In dieser Formel steht R4 bevorzugt bzw. besonders bevorzugt für diejenigen Bedeutungen, die bereits in Zusammenhang mit der Beschreibung der erfindungsgemäßen Verbindungen der Formel (I) für diesen Rest als bevorzugt bzw. besonders bevorzugt genannt wurden. Hai1 steht bevorzugt für Chlor oder Brom.
Die Halogenide der Formel (IV) sind allgemein bekannte Verbindungen der orga- nischen Chemie. Die außerdem beim erfindungsgemäßen Verfahren (c) als Ausgangsstoffe zu verwendenden Carbamidsäurechloride sind durch die Formel (V) allgemein definiert. In dieser Formel steht R3 bevorzugt bzw. besonders bevorzugt für diejenigen Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Verbindungen der Formel (I) für diesen Rest als bevorzugt bzw. besonders bevorzugt genannt wurden.
Die Carbamidsäurechloride der Formel (V) sind teilweise bekannt (vgl. z.B. DE 27 30 325). Noch nicht bekannt und ebenfalls Gegenstand dieser Anmeldung sind Carbamidsäurechloride der Formel (Va)
in welcher
R7 für Halogenalkyl, Halogenalkoxy oder Halogenalkylthio, vorzugsweise für die entsprechenden vorzugsweisen Bedeutungen von R3 steht.
Die Carbamidsäurechloride der Formel (Va) werden beispielsweise erhalten, indem man
g) Cyanomethylaniline der Formel (XII)
in welcher R7 die oben angegebenen Bedeutungen hat,
mit Phosgen in Gegenwart eines inerten organischen Verdünnungsmittels (z.B. Toluol) und in Gegenwart einer Base (vorzugsweise tertiäre organische Amine, wie z.B. Triethylamin) bei Temperaturen zwischen -10°C und
+120°C, vorzugsweise zwischen 0°C und 100°C umsetzt, wobei das Phosgen in geringem Uberschuss eingesetzt werden kann (vgl. auch die Herstellungsbeispiele).
Die Cyanomethylaniline der Formel (XII) sind neu und ebenfalls Gegenstand dieser
Anmeldung. Sie werden beispielsweise erhalten, indem man
h) bekannte Aniline der Formel (XIII)
in welcher
R7 die oben angegebenen Bedeutungen hat,
in Gegenwart von Essigsäure mit Paraformaldehyd und Alkalimetallcyanid bei Temperaturen zwischen 20°C und 60°C umsetzt (vgl. z.B. Helv. Chim. Acta 1954, 37, 166 und die Herstellungsbeispiele).
In einer besonderen Ausführungsform des Verfahrens (c) ist es auch möglich, das Verfahren in einem sogenannten EintopfVerfahren, ausgehend von den Cyanomethyl- anilinen der Formel (XII), durchzuführen.
Das erfindungsgemäße Verfahren (a) wird vorzugsweise unter Verwendung von Verdünnungsmitteln durchgeführt. Als Verdünnungsmittel kommen praktisch alle in- erten organischen Lösungsmittel in Frage. Hierzu gehören vorzugsweise aliphatische und aromatische, gegebenenfalls halogenierte Kohlenwasserstoffe wie Pentan, Hexan, Heptan, Cyclohexan, Petrolether, Benzin, Ligroin, Benzol, Toluol, Xylol, Methylenchlorid, Ethylenchlorid, Chloroform, Tetrachlorkohlenstoff, Chlorbenzol und o-Dichlorbenzol, Ether wie Diethyl- und Dibutylether, Methyl-tert.-butyl-ether, Methyl-tert.-amylether, Glykoldimethylether und Diglykoldimethylether, Tetra- hydrofuran und Dioxan, Ketone wie Aceton, Methyl-ethyl-, Methyl-isopropyl- oder Methyl-isobutyl-keton, Ester wie Essigsäuremethylester oder -ethylester, Nitrile wie z.B. Acetonitril oder Propionitril, Amide wie z.B. Dimethylformamid, Dimethyl- acetamid und N-Methylpyrrolidon sowie Dimethylsulfoxid, Tetramethylensulfon oder Hexamethylphosphorsäuretriamid.
Das erfindungsgemäße Verfahren (a) wird vorzugsweise auch unter Verwendung eines Katalysators durchgeführt. Als Katalysatoren kommen dabei insbesondere tertiäre organische Amine, wie beispielsweise Triethylamin infrage.
Die Reaktionstemperaturen können beim erfindungsgemäßen Verfahren (a) in einem größeren Bereich variiert werden. Im allgemeinen arbeitet man bei Temperaturen zwischen 0°C und 120°C, vorzugsweise bei Temperaturen zwischen 20°C und 80°C.
Das erfindungsgemäße Verfahren (a) wird im allgemeinen unter Normaldruck durchgeführt. Es ist jedoch auch möglich, unter erhöhtem oder vermindertem Druck zu arbeiten.
Zur Durchführung des erfindungsgemäßen Verfahrens (a) werden die Ausgangsstoffe im allgemeinen in angenähert äquimolaren Mengen eingesetzt. Es ist jedoch auch möglich, eine der beiden eingesetzten Komponenten in einem kleineren Uberschuss zu verwenden. Die Aufarbeitung erfolgt nach üblichen Methoden (vgl. die Herstellungsbeispiele).
Die erfindungsgemäßen Verfahren (b) und (c) werden vorzugsweise unter Verwendung von Verdünnungsmitteln durchgeführt. Als Verdünnungsmittel kommen prak- tisch alle inerten organischen Lösungsmittel infrage. Hierzu gehören vorzugsweise aliphatische und aromatische, gegebenenfalls halogenierte Kohlenwasserstoffe wie Pentan, Hexan, Heptan, Cyclohexan, Petrolether, Benzin, Ligroin, Benzol, Toluol, Xylol, Methylenchlorid, Ethylenchlorid, Chloroform, Tetrachlorkohlenstoff, Chlor- benzol und o-Dichlorbenzol, Ether wie Diethyl- und Dibutylether, Glykoldimethyl- ether und Diglykoldimethylether, Tetrahydrofuran und Dioxan, Ketone wie Aceton, Methyl-ethyl-, Methyl-isopropyl- oder Methyl-isobutyl-keton, Ester wie Essigsäuremethylester oder -ethylester, Nitrile wie z.B. Acetonitril oder Propionitril, Amide wie z.B. Dimethylformamid, Dimethylacetamid und N-Methylpyrrolidon sowie Di- methylsulfoxid, Tetramethylensulfon oder Hexamethylphosphorsäuretriamid.
Als Basen können bei der Durchführung der erfindungsgemäßen Verfahren (b) und (c) alle üblicherweise für derartige Umsetzungen verwendbaren Säurebindemittel eingesetzt werden. Vorzugsweise in Frage kommen Alkalimetall- und Erdalkali- metallhydride, wie Lithium-, Natrium-, Kalium- oder Calciumhydrid; Alkalimetall- und Erdalkalimetallhydroxide, wie Lithium-, Natrium-, Kalium- oder Calcium- hydroxid; Alkalimetall- und Erdalkalimetallcarbonate oder -hydrogencarbonate, wie Natrium- oder Kaliumcarbonat oder -hydrogencarbonat oder Calciumcarbonat; Alkalimetallacetate, wie Natrium- oder Kaliumacetat, Alkalimetallalkoholate, wie Natrium- oder Kalium-tert.-butylat; ferner basische Stickstoffverbindungen, wie Tri- methylamin, Triethylamin, Tripropylamin, Tributylamin, Diisobutylamin, Dicyclo- hexylamin, Ethyldiisopropylamin, Ethyldicyclohexylamin, N,N-Dimethylbenzyl- amin, N,N-Dimethylanilin, Pyridin, 2-Methyl-, 3-Methyl-, 4-Methyl-, 2,4-Dimethyl-, 2,6-Dimethyl-, 2-Ethyl-, 4-Ethyl- und 5-Ethyl-2-methylpyridin, 1,5-Diazabicyclo- [4.3.0]-non-5-en (DBN), l,8-Diaza-bicyclo[5.4.0]-undec-7-en (DBU), 1,4-Diaza- bicyclo[2.2.2]-octan (DABCO).
Die Reaktionstemperaturen können beim erfindungsgemäßen Verfahren (b) in einem größeren Bereich variiert werden. Im allgemeinen arbeitet man bei Temperaturen zwischen 0°C und 120°C, vorzugsweise bei Temperaturen zwischen 20°C und 80°C. Das erfindungsgemäße Verfahren (b) wird im allgemeinen unter Normaldruck durchgeführt. Es ist jedoch auch möglich, unter erhöhtem oder vermindertem Druck zu arbeiten.
Zur Durchführung des erfindungsgemäßen Verfahrens (b) werden die Ausgangsstoffe im allgemeinen in angenähert äquimolaren Mengen eingesetzt. Es ist jedoch auch möglich, das Halogenid und die Base im Uberschuss zu verwenden. Die Aufarbeitung erfolgt nach üblichen Methoden (vgl. die Herstellungsbeispiele).
Die Reaktionstemperaturen können beim erfindungsgemäßen Verfahren (c) in einem größeren Bereich variiert werden. Im allgemeinen arbeitet man bei Temperaturen zwischen — 10°C und +130°C, vorzugsweise bei Temperaturen zwischen 0°C und 110°C.
Das erfindungsgemäße Verfahren (c) wird im allgemeinen unter Normaldruck durchgeführt. Es ist jedoch auch möglich, unter erhöhtem oder vermindertem Druck zu arbeiten.
Zur Durchfuhrung des erfindungsgemäßen Verfahrens (c) werden die Ausgangsstoffe im allgemeinen in angenähert äquimolaren Mengen eingesetzt. Es ist jedoch auch möglich, das Chlorid und die Base im Uberschuss zu verwenden. Die Aufarbeitung erfolgt nach üblichen Methoden (vgl. die Herstellungsbeispiele).
Die Wirkstoffe eignen sich bei guter Pflanzenverträglichkeit und günstiger Warm- blütertoxizität zur Bekämpfung von tierischen Schädlingen, insbesondere Insekten,
Spinnentieren und Nematoden, die in der Landwirtschaft, in Forsten, im Vorrats- und Materialschutz sowie auf dem Hygienesektor vorkommen. Sie können vorzugsweise als Pflanzenschutzmittel eingesetzt werden. Sie sind gegen normal sensible und resi- stente Arten sowie gegen alle oder einzelne Entwicklungsstadien wirksam. Zu den oben erwähnten Schädlingen gehören: Aus der Ordnung der Isopoda z.B. Oniscus asellus, Armadillidium vulgäre, Porcellio scaber.
Aus der Ordnung der Diplopoda z.B. Blaniulus guttulatus.
Aus der Ordnung der Chilopoda z.B. Geophilus carpophagus, Scutigera spp. Aus der Ordnung der Symphyla z.B. Scutigerella immaculata.
Aus der Ordnung der Thysanura z.B. Lepisma saccharina.
Aus der Ordnung der Collembola z.B. Onychiurus armatus.
Aus der Ordnung der Orthoptera z.B. Acheta domesticus, Gryllotalpa spp., Locusta migratoria migratorioides, Melanoplus spp., Schistocerca gregaria. Aus der Ordnung der Blattaria z.B. Blatta orientalis, Periplaneta americana,
Leucophaea maderae, Blattella germanica.
Aus der Ordnung der Dermaptera z.B. Forficula auricularia.
Aus der Ordnung der Isoptera z.B. Reticulitermes spp.
Aus der Ordnung der Phthiraptera z.B. Pediculus humanus corporis, Haematopinus spp., Linognathus spp., Trichodectes spp., Damalinia spp.
Aus der Ordnung der Thysanoptera z.B. Hercinothrips femoralis, Thrips tabaci,
Thrips palmi, Frankliniella accidentalis.
Aus der Ordnung der Heteroptera z.B. Eury gaster spp., Dysdercus intermedius,
Piesma quadrata, Cimex lectularius, Rhodnius prolixus, Triatoma spp. Aus der Ordnung der Homoptera z.B. Aleurodes brassicae, Bemisia tabaci,
Trialeurodes vaporariorum, Aphis gossypii, Brevicoryne brassicae, Cryptomyzus ribis, Aphis fabae, Aphis pomi, Eriosoma lanigerum, Hyalopterus arundinis,
Phylloxera vastatrix, Pemphigus spp., Macrosiphum avenae, Myzus spp., Phorodon humuli, Rhopalosiphum padi, Empoasca spp., Euscelis bilobatus, Nephotettix cincticeps, Lecanium corni, Saissetia oleae, Laodelphax striatellus, Nilaparvata lugens, Aonidiella aurantii, Aspidiotus hederae, Pseudococcus spp., Psylla spp.
Aus der Ordnung der Lepidoptera z.B. Pectinophora gossypiella, Bupalus piniarius,
Cheimatobia brumata, Lithocolletis blancardella, Hyponomeuta padella, Plutella xylostella, Malacosoma neustria, Euproctis chrysorrhoea, Lymantria spp., Bucculatrix thurberiella, Phyllocnistis citrella, Agrotis spp., Euxoa spp., Feltia spp.,
Earias insulana, Heliothis spp., Mamestra brassicae, Panolis flammea, Spodoptera spp., Trichoplusia ni, Carpocapsa pomonella, Pieris spp., Chilo spp., Pyrausta nubilalis, Ephestia kuehniella, Galleria mellonella, Tineola bisselliella, Tinea pellionella, Hofmannophila pseudospretella, Cacoecia podana, Capua reticulana, Choristoneura fumiferana, Clysia ambiguella, Homona magnanima, Tortrix viridana, Cnaphalocerus spp., Oulema oryzae.
Aus der Ordnung der Coleoptera z.B. Anobium punctatum, Rhizopertha dominica, Bruchidius obtectus, Acanthoscelides obtectus, Hylotrupes bajulus, Agelastica alni, Leptinotarsa decemlineata, Phaedon cochleariae, Diabrotica spp., Psylliodes chrysocephala, Epilachna varivestis, Atomaria spp., Oryzaephilus surinamensis, Anthonomus spp., Sitophilus spp., Otiorrhynchus sulcatus, Cosmopolites sordidus,
Ceuthorrhynchus assimilis, Hypera postica, Dermestes spp., Trogoderma spp., Anthrenus spp., Attagenus spp., Lyctus spp., Meligethes aeneus, Ptinus spp., Niptus hololeucus, Gibbium psylloides, Tribolium spp., Tenebrio molitor, Agriotes spp., Conoderus spp., Melolontha melolontha, Amphimallon solstitialis, Costelytra zealandica, Lissorhoptrus oryzophilus.
Aus der Ordnung der Hymenoptera z.B. Diprion spp., Hoplocampa spp., Lasius spp., Monomorium pharaonis, Vespa spp.
Aus der Ordnung der Diptera z.B. Aedes spp., Anopheles spp., Culex spp., Drosophila melanogaster, Musca spp., Fannia spp., Calliphora erythrocephala, Lucilia spp., Chrysomyia spp., Cuterebra spp., Gastrophilus spp., Hyppobosca spp.,
Stomoxys spp., Oestrus spp., Hypoderma spp., Tabanus spp., Tannia spp., Bibio hortulanus, Oscinella frit, Phorbia spp., Pegomyia hyoscyami, Ceratitis capitata, Dacus oleae, Tipula paludosa, Hylemyia spp., Liriomyza spp. Aus der Ordnung der Siphonaptera z.B. Xenopsylla cheopis, Ceratophyllus spp. Aus der Klasse der Arachnida z.B. Scorpio maurus, Latrodectus mactans, Acarus siro, Argas spp., Ornithodoros spp., Dermanyssus gallinae, Eriophyes ribis, Phyllocoptruta oleivora, Boophilus spp., Rhipicephalus spp., Amblyomma spp., Hyalomma spp., Ixodes spp., Psoroptes spp., Chorioptes spp., Sarcoptes spp., Tarsonemus spp., Bryobia praetiosa, Panonychus spp., Tetranychus spp., Hemitarsonemus spp., Brevipalpus spp. Zu den pflanzenparasitären Nematoden gehören z.B. Pratylenchus spp., Radopholus similis, Ditylenchus dipsaci, Tylenchulus semipenetrans, Heterodera spp., Globodera spp., Meloidogyne spp., Aphelenchoides spp., Longidorus spp., Xiphinema spp., Trichodorus spp., Bursaphelenchus spp.
Die erfindungsgemäßen Stoffe lassen sich mit besonders gutem Erfolg zur Bekämpfung von pflanzenschädigenden Insekten, wie z.B. gegen die Larven des Gurkenkäfers (Diabrotica balteata), die Raupen des Baumwollkapselwurms (Heliothis virescens), die Larven des Meerrettichkäfers (Phaedon cochleariae), die Raupen der Kohlschabe (Plutella xylostella) sowie Raupen des Heerwurms
(Spodoptera exigua und Spodoptera frugioerda) einsetzen.
Die erfindungsgemäßen Stoffe zeigen darüber hinaus auch eine sehr gute Wirkungsdauer, wie z.B. gegen die Raupen des Baumwollkapselwurms (Heliothis virescens) oder die Raupen des Heerwurms (Spodoptera frugiperda).
Die erfindungsgemäßen Verbindungen können gegebenenfalls in bestimmten Konzentrationen bzw. Aufwandmengen auch als Herbizide und Mikrobizide, beispielsweise als Fungizide, Antimykotika und Bakterizide verwendet werden. Sie lassen sich gegebenenfalls auch als Zwischen- oder Vorprodukte für die Synthese weiterer Wirkstoffe einsetzen.
Erfindungsgemäß können alle Pflanzen und Pflanzenteile behandelt werden. Unter Pflanzen werden hierbei alle Pflanzen und Pflanzenpopulationen verstanden, wie erwünschte und unerwünschte Wildpflanzen oder Kulturpflanzen (einschließlich natürlich vorkommender Kulturpflanzen). Kulturpflanzen können Pflanzen sein, die durch konventionelle Züchtungs- und Optimierungsmethoden oder durch biotechnologische und gentechnologische Methoden oder Kombinationen dieser Methoden erhalten werden können, einschließlich der transgenen Pflanzen und einschließlich der durch Sortenschutzrechte schützbaren oder nicht schützbaren
Pflanzensorten. Unter Pflanzenteilen sollen alle oberirdischen und unterirdischen Teile und Organe der Pflanzen, wie Sproß, Blatt, Blüte und Wurzel verstanden werden, wobei beispielhaft Blätter, Nadeln, Stengel, Stämme, Blüten, Fruchtkörper, Früchte und Samen sowie Wurzeln, Knollen und Rhizome aufgeführt werden. Zu den Pflanzenteilen gehört auch Erntegut sowie vegetatives und generatives Vermehrungsmaterial, beispielsweise Stecklinge, Knollen, Rhizome, Ableger und
Samen.
Die erfindungsgemäße Behandlung der Pflanzen und Pflanzenteile mit den Wirkstoffen erfolgt direkt oder durch Einwirkung auf deren Umgebung, Lebensraum oder Lagerraum nach den üblichen Behandlungsmethoden, z.B. durch Tauchen, Sprühen,
Verdampfen, Vernebeln, Streuen, Aufstreichen und bei Vermehrungsmaterial, insbesondere bei Samen, weiterhin durch ein- oder mehrschichtiges Umhüllen.
Die Wirkstoffe können in die üblichen Formulierungen überfuhrt werden, wie Lö- sungen, Emulsionen, Spritzpulver, Suspensionen, Pulver, Stäubemittel, Pasten, lösliche Pulver, Granulate, Suspensions-Emulsions-Konzentrate, Wirkstoff-imprägnierte Natur- und synthetische Stoffe sowie Feinstverkapselungen in polymeren Stoffen.
Diese Formulierungen werden in bekannter Weise hergestellt, z.B. durch Vermischen der Wirkstoffe mit Streckmitteln, also flüssigen Lösungsmitteln und/oder festen
Trägerstoffen, gegebenenfalls unter Verwendung von oberflächenaktiven Mitteln, also Emulgiermitteln und/oder Dispergiermitteln und/oder schaumerzeugenden Mitteln.
Im Falle der Benutzung von Wasser als Streckmittel können z.B. auch organische
Lösungsmittel als Hilfslösungsmittel verwendet werden. Als flüssige Lösungsmittel kommen im wesentlichen in Frage: Aromaten, wie Xylol, Toluol, oder Alkylnaph- thaline, chlorierte Aromaten und chlorierte aliphatische Kohlenwasserstoffe, wie Chlorbenzole, Chlorethylene oder Methylenchlorid, aliphatische Kohlenwasserstoffe, wie Cyclohexan oder Paraffine, z.B. Erdölfraktionen, mineralische und pflanzliche
Öle, Alkohole, wie Butanol oder Glykol sowie deren Ether und Ester, Ketone wie Aceton, Methylethylketon, Methylisobutylketon oder Cyclohexanon, stark polare Lösungsmittel, wie Dimethylformamid und Dimethylsulfoxid, sowie Wasser.
Als feste Trägerstoffe kommen in Frage: z.B. Ammoniumsalze und natürliche Gesteinsmehle, wie Kaoline, Tonerden,
Talkum, Kreide, Quarz, Attapulgit, Montmorillonit oder Diatomeenerde und synthetische Gesteinsmehle, wie hochdisperse Kieselsäure, Aluminiumoxid und Silikate, als feste Trägerstoffe für Granulate kommen in Frage: z.B. gebrochene und fraktionierte natürliche Gesteine wie Calcit, Marmor, Bims, Sepiolith, Dolomit sowie synthetische Granulate aus anorganischen und organischen Mehlen sowie Granulate aus organischem Material wie Sägemehl, Kokosnußschalen, Maiskolben und Tabakstengeln; als Emulgier- und/oder schaumerzeugende Mittel kommen in Frage: z.B. nichtionogene und anionische Emulgatoren, wie Polyoxyethylen-Fettsäure- Ester, Polyoxyethylen-Fettalkohol-Ether, z.B. Alkylaryl-polyglykolether, Alkylsul- fonate, Alkylsulfate, Arylsulfonate sowie Einweißhydrolysate; als Dispergiermittel kommen in Frage: z.B. Lignin-Sulfitablaugen und Methylcellulose.
Es können in den Formulierungen Haftmittel wie Carboxymethylcellulose, natürliche und synthetische pulvrige, körnige oder latexförmige Polymere verwendet werden, wie Gummiarabicum, Polyvinylalkohol, Polyvinylacetat, sowie natürliche Phospho- lipide, wie Kephaline und Lecithine und synthetische Phospholipide. Weitere Additive können mineralische und vegetabile Öle sein.
Es können Farbstoffe wie anorganische Pigmente, z.B. Eisenoxid, Titanoxid, Ferro- cyanblau und organische Farbstoffe, wie Alizarin-, Azo- und Metallphthalocyanin- farbstoffe und Spurennährstoffe wie Salze von Eisen, Mangan, Bor, Kupfer, Kobalt, Molybdän und Zink verwendet werden.
Die Formulierungen enthalten im allgemeinen zwischen 0,1 und 95 Gew.-% Wirkstoff, vorzugsweise zwischen 0,5 und 90 %. Die erfindungsgemäßen Wirkstoffe können als solche oder in ihren Formulierungen auch in Mischung mit bekannten Fungiziden, Bakteriziden, Akariziden, Nematiziden oder Insektiziden verwendet werden, um so z.B. das Wirkungsspektrum zu verbreitern oder Resistenzentwicklungen vorzubeugen. In vielen Fällen erhält man dabei synergistische Effekte, d.h. die Wirksamkeit der Mischung ist größer als die
Wirksamkeit der Einzelkomponenten.
Als Mischpartner kommen zum Beispiel folgende Verbindungen in Frage:
Fungizide:
Aldimorph, Ampropylfos, Ampropylfos-Kalium, Andoprim, Anilazin, Azaconazol,
Azoxystrobin,
Benalaxyl, Benodanil, Benomyl, Benzamacril, Benzamacryl-isobutyl, Bialaphos,
Binapacryl, Biphenyl, Bitertanol, Blasticidin-S, Bromuconazol, Bupirimat, Buthiobat,
Calciumpolysulfid, Carpropamid, Capsimycin, Captafol, Captan, Carbendazim, Carbo- xin, Carvon, Chinomethionat (Quinomethionat), Chlobenthiazon, Chlorfenazol, Chlo- roneb, Chloropicrin, Chlorothalonil, Chlozolinat, Clozylacon, Cufraneb, Cymoxanil, Cyproconazol, Cyprodinil, Cyprofuram, Debacarb, Dichlorophen, Diclobutrazol, Diclofluanid, Diclomezin, Dicloran,
Diethofencarb, Difenoconazol, Dimethirimol, Dimethomorph, Diniconazol, Diniconazol-M, Dinocap, Diphenylamin, Dipyrithione, Ditalimfos, Dithianon, Dodemoφh, Dodine, Drazoxolon, Ediphenphos, Epoxiconazol, Etaconazol, Ethirimol, Etridiazol, Famoxadon, Fenapanil, Fenarimol, Fenbuconazol, Fenfuram, Fenhexamid, Feni- tropan, Fenpiclonil, Fenpropidin, Fenpropimorph, Fentinacetat, Fentinhydroxyd, Ferbam, Ferimzon, Fluazinam, Flumetover, Fluoromid, Fluquinconazol, Flurprimidol, Flusilazol, Flusulfamid, Flutolanil, Flutriafol, Folpet, Fosetyl-Alminium, Fosetyl-Natrium, Fthalid, Fuberidazol, Furalaxyl, Furametpyr, Furcarbonil, Furconazol, Furconazol-cis, Furmecyclox, Guazatin,
Hexachlorobenzol, Hexaconazol, Hymexazol, Imazalil, Imibenconazol, Iminoctadin, Iminoctadinealbesilat, Iminoctadinetriacetat,
Iodocarb, Ipconazol, Iprobenfos (IBP), Iprodione, Iprovalicarb, Irumamycin,
Isoprothiolan, Isovaledione,
Kasugamycin, Kresoxim-methyl, Kupfer-Zubereitungen, wie: Kupferhydroxid, Kupfemaphthenat, Kupferoxychlorid, Kupfersulfat, Kupferoxid, Oxin-Kupfer und
Bordeaux-Mischung,
Mancopper, Mancozeb, Maneb, Meferimzone, Mepanipyrim, Mepronil, Metalaxyl,
Metconazol, Methasulfocarb, Methfuroxam, Metiram, Metomeclam, Metsulfovax,
Mildiomycin, Myclobutanil, Myclozolin, Nickel-dimethyldithiocarbamat, Nitrothal-isopropyl, Nuarimol,
Ofurace, Oxadixyl, Oxamocarb, Oxolinicacid, Oxycarboxim, Oxyfenthiin,
Paclobutrazol, Pefurazoat, Penconazol, Pencycuron, Phosdiphen, Picoxystrobin,
Pimaricin, Piperalin, Polyoxin, Polyoxorim, Probenazol, Prochloraz, Procymidon,
Propamocarb, Propanosine-Natrium, Propiconazol, Propineb, Pyraclostrobin, Pyrazophos, Pyrifenox, Pyrimethanil, Pyroquilon, Pyroxyfur,
Quinconazol, Quintozen (PCNB), Quinoxyfen,
Schwefel und Schwefel-Zubereitungen, Spiroxamine,
Tebuconazol, Tecloftalam, Tecnazen, Tetcyclacis, Tetraconazol, Thiabendazol,
Thicyofen, Thifluzamide, Thiophanate-methyl, Thiram, Tioxymid, Tolclofos-methyl, Tolylfluanid, Triadimefon, Triadimenol, Triazbutil, Triazoxid, Trichlamid, Tricyclazol,
Tridemorph, Trifloxystrobin, Triflumizol, Triforin, Triticonazol,
Uniconazol,
Validamycin A, Vinclozolin, Viniconazol,
Zarilamid, Zineb, Ziram sowie Dagger G,
OK-8705,
OK-8801, α-(l , 1 -Dimethylethyl)-ß-(2-phenoxyethyl)- 1 H- 1 ,2,4-triazol- 1 -ethanol, α-(2,4-Dichlorphenyl)-ß-fluor-ß-propyl-lH-l,2,4-triazol-l-ethanol, α-(2,4-Dichlorphenyl)-ß-methoxy-α-methyl- 1 H- 1 ,2,4-triazol- 1 -ethanol, -(5-Methyl-l,3-dioxan-5-yl)-ß-[[4-(trifluormethyl)-phenyl]-methylen]-lH-l,2,4- triazol-1 -ethanol,
(5RS,6RS)-6-Hydroxy-2,2,7,7-tetramethyl-5-(l H- 1 ,2,4-triazol- 1 -yl)-3-octanon,
(E)-α-(Methoxyimino)-N-methyl-2-phenoxy-phenylacetamid, 1 -(2,4-Dichlorphenyl)-2-( 1 H- 1 ,2,4-triazol- 1 -yl)-ethanon-O-(phenylmethyl)-oxim,
1 -(2-Methyl- 1 -naphthalenyl)- 1 H-pyrrol-2,5-dion, l-(3,5-Dichlorphenyl)-3-(2-propenyl)-2,5-pyrrolidindion,
1 - [(Diiodmethyl)-sulfony 1] -4-methy 1-benzol,
1 -[[2-(2,4-Dichlorphenyl)- 1 ,3-dioxolan-2-yl]-methyl]- 1 H-imidazol, 1 -[[2-(4-Chloφhenyl)-3-phenyloxiranyl]-methyl]- 1 H-l ,2,4-triazol,
1 - [ 1 - [2- [(2,4-Dichlorpheny l)-methoxy ] -phenyl] -ethenyl]- 1 H-imidazol, l-Methyl-5-nonyl-2-(phenylmethyl)-3-pyrrolidinol,
2',6,-Dibrom-2-methyl-4'-trifluormethoxy-4'-trifluor-methyl-l,3-thiazol-5- carboxanilid, 2,6-Dichlor-5-(methylthio)-4-pyrimidinyl-thiocyanat,
2,6-Dichlor-N-(4-trifluormethylbenzyl)-benzamid,
2,6-Dichlor-N-[[4-(trifluormethyl)-phenyl]-methyl]-benzamid,
2-(2,3 ,3 -Triiod-2-propenyl)-2H-tetrazol,
2-[(l-Methylethyl)-sulfonyl]-5-(trichlormethyl)-l,3,4-thiadiazol, 2-[[6-Deoxy-4-O-(4-O-methyl-ß-D-glycopyranosyl)-α-D-glucopyranosyl]-amino]-4- methoxy-lH-pyrrolo[2,3-d]pyrimidin-5-carbonitril,
2-Aminobutan,
2-Brom-2-(brommethyl)-pentandinitril,
2-Chlor-N-(2,3-dihydro-l,l,3-trimethyl-lH-inden-4-yl)-3-pyridincarboxamid, 2-Chlor-N-(2,6-dimethylphenyl)-N-(isothiocyanatomethyl)-acetamid,
2-Phenylphenol(OPP),
3,4-Dichlor-l-[4-(difluormethoxy)-phenyl]-lH-pyrrol-2,5-dion,
3,5-Dichlor-N-[cyan[(l-methyl-2-propynyl)-oxy]-methyl]-benzamid,
3 -( 1 , 1 -Dimethylpropyl- 1 -oxo- 1 H-inden-2-carbonitril, 3-[2-(4-Chlorphenyl)-5-ethoxy-3-isoxazolidinyl]-pyridin,
4-Chlor-2-cyan-N,N-dimethyl-5-(4-methylphenyl)-lH-imidazol-l-sulfonamid, 4-Methyl-tetrazolo [ 1 ,5 -a] quinazolin-5 (4H)-on, 8-Hydroxychinolinsulfat,
9H-Xanthen-9-carbonsäure-2- [(phenylamino)-carbony 1] -hy drazid, bis-(l-Methylethyl)-3-methyl-4-[(3-methylbenzoyl)-oxy]-2,5-thiophendicarboxylat, eis- 1 -(4-Chlorphenyl)-2-( 1 H- 1 ,2,4-triazol- 1 -yl)-cy cloheptanol, cis-4-[3-[4-(l,l-Dimethylpropyl)-phenyl-2-methylpropyl]-2,6-dimethyl-morpholin- hydrochlorid,
Ethyl-[(4-chlorphenyl)-azo]-cyanoacetat,
Kaliumhydrogencarbonat, Methantetrathiol-Natriumsalz,
Methyl- 1 -(2,3-dihydro-2,2-dimethyl- 1 H-inden- 1 -yl)- 1 H-imidazol-5-carboxylat, Methyl-N-(2,6-dimethylphenyl)-N-(5-isoxazolylcarbonyl)-DL-alaninat, Methyl-N-(chloracetyl)-N-(2,6-dimethylphenyl)-DL-alaninat, N-(2,6-Dimethylphenyl)-2-methoxy-N-(tetrahydro-2-oxo-3-furanyl)-acetamid, N-(2,6-Dimethylphenyl)-2-methoxy-N-(tetrahydro-2-oxo-3 -thienyl)-acetamid,
N-(2-Chlor-4-nitrophenyl)-4-methyl-3-nitro-benzolsulfonamid, N-(4-Cyclohexylphenyl)- 1 ,4,5,6-tetrahydro-2-pyrimidinamin, N-(4-Hexylphenyl)-l,4,5,6-tetrahydro-2-pyrimidinamin, N-(5-Chlor-2-methylphenyl)-2-methoxy-N-(2-oxo-3-oxazolidinyl)-acetamid, N-(6-Methoxy)-3-pyridinyl)-cyclopropancarboxamid,
N- [2,2,2-Trichlor- 1 - [(chloracetyl)-amino] -ethyl] -benzamid, N-[3-Chlor-4,5-bis-(2-propinyloxy)-phenyl]-N'-methoxy-methanimidamid, N-Formyl-N-hydroxy-DL-alanin -Natriumsalz, O,O-Diethyl-[2-(dipropylamino)-2-oxoethyl]-ethylphosphoramidothioat, O-Methyl-S-phenyl-phenylpropylphosphoramidothioate,
S-Methyl- 1 ,2,3-benzothiadiazol-7-carbothioat, spiro[2H]-l-Benzopyran-2,r(3Η)-isobenzofuran]-3'-on, 4-(3,4-Dimethoxyphenyl)-3-(4-fluorphenyl)-acryloyl]-morpholin Bakterizide:
Bronopol, Dichlorophen, Nitrapyrin, Nickel-dimethyldithiocarbamat, Kasugamycin, Octhilinon, Furancarbonsäure, Oxytetracyclin, Probenazol, Streptomycin, Teclofta- lam, Kupfersulfat und andere Kupfer-Zubereitungen.
Insektizide / Akarizide / Nematizide:
Abamectin, Acephate, Acetamiprid, Acrinathrin, Alanycarb, Aldicarb, Aldoxycarb, Alpha-cypermethrin, Alphamethrin, Amitraz, Avermectin, AZ 60541, Azadirachtin, Azamethiphos, Azinphos A, Azinphos M, Azocyclotin, Bacillus popilliae, Bacillus sphaericus, Bacillus subtilis, Bacillus thuringiensis,
Baculoviren, Beauveria bassiana, Beauveria tenella, Bendiocarb, Benfüracarb, Bensultap, Benzoximate, Betacyfluthrin, Bifenazate, Bifenthrin, Bioethanomethrin, Biopermethrin, Bistrifluron, BPMC, Bromophos A, Bufencarb, Buprofezin, Butathiofos, Butocarboxim, Butylpyridaben, Cadusafos, Carbaryl, Carbofuran, Carbophenothion, Carbosulfan, Cartap,
Chloethocarb, Chlorethoxyfos, Chlorfenapyr, Chlorfenvinphos, Chlorfluazuron, Chlormephos, Chloφyrifos, Chloφyrifos M, Chlovaporthrin, Chromafenozide, Cis- Resmethrin, Cispermethrin, Clocythrin, Cloethocarb, Clofentezine, Clothianidine, Cyanophos, Cycloprene, Cycloprothrin, Cyfluthrin, Cyhalothrin, Cyhexatin, Cypermethrin, Cyromazine,
Deltamethrin, Demeton M, Demeton S, Demeton-S-methyl, Diafenthiuron, Diazinon, Dichlorvos, Dicofol, Diflubenzuron, Dimethoat, Dimethylvinphos, Diofenolan, Disulfoton, Docusat-sodium, Dofenapyn, Eflusilanate, Emamectin, Empenthrin, Endosulfan, Entomopfthora spp., Esfenvalerate, Ethiofencarb, Ethion, Ethoprophos, Etofenprox, Etoxazole, Etrimfos,
Fenamiphos, Fenazaquin, Fenbutatin oxide, Fenitrothion, Fenothiocarb, Fenoxacrim, Fenoxycarb, Fenpropathrin, Fenpyrad, Fenpyrithrin, Fenpyroximate, Fenvalerate, Fipronil, Fluazuron, Flubrocythrinate, Flucycloxuron, Flucythrinate, Flufenoxuron, Flumethrin, Flutenzine, Fluvalinate, Fonophos, Fosmethilan, Fosthiazate, Fubfenprox, Furathiocarb,
Granuloseviren Halofenozide, HCH, Heptenophos, Hexaflumuron, Hexythiazox, Hydroprene, Imidacloprid, Indoxacarb, Isazofos, Isofenphos, Isoxathion, Ivermectin, Kernpolyederviren Lambda-cyhalothrin, Lufenuron Malathion, Mecarbam, Metaldehyd, Methamidophos, Metharhizium anisopliae,
Metharhizium flavoviride, Methidathion, Methiocarb, Methoprene, Methomyl, Methoxyfenozide, Metolcarb, Metoxadiazone, Mevinphos, Milbemectin, Milbemycin, Monocrotophos, Naled, Nitenpyram, Nithiazine, Novaluron Omethoat, Oxamyl, Oxydemethon M
Paecilomyces fumosoroseus, Parathion A, Parathion M, Permethrin, Phenthoat, Phorat, Phosalone, Phosmet, Phosphamidon, Phoxim, Pirimicarb, Pirimiphos A, Pirimiphos M, Profenofos, Promecarb, Propargite, Propoxur, Prothiofos, Prothoat, Pymetrozine, Pyraclofos, Pyresmethrin, Pyrethrum, Pyridaben, Pyridathion, Pyrimidifen, Pyriproxyfen,
Quinalphos, Ribavirin
Salithion, Sebufos, Silafluofen, Spinosad, Spirodiclofen, Sulfotep, Sulprofos, Tau-fluvalinate, Tebufenozide, Tebufenpyrad, Tebupirimiphos, Teflubenzuron, Tefluthrin, Temephos, Temivinphos, Terbufos, Tetrachlorvinphos, Tetradifon Theta- cypermethrin, Thiacloprid, Thiamethoxam, Thiapronil, Thiatriphos, Thiocyclam hydrogen oxalate, Thiodicarb, Thiofanox, Thuringiensin, Tralocythrin, Tralomethrin, Triarathene, Triazamate, Triazophos, Triazuron, Trichlophenidine, Trichlorfon. Triflumuron, Trimethacarb, Vamidothion, Vaniliprole, Verticillium lecanii
Yl 5302
Zeta-cypermethrin, Zolaprofos
(lR-cis)-[5-(Phenylmethyl)-3-furanyl]-methyl-3-[(dihydro-2-oxo-3(2H)- furanyliden)-methyl]-2,2-dimethylcyclopropancarboxylat (3-Phenoxyphenyl)-methyl-2,2,3,3-tetramethylcyclopropanecarboxylat l-[(2-Chlor-5-thiazolyl)methyl]tetrahydro-3,5-dimethyl-N-nitro-l,3,5-triazin-2(lH)- imin
2-(2-Chlor-6-fluoφhenyl)-4-[4-(l,l-dimethylethyl)phenyl]-4,5-dihydro-oxazol
2-( Acetlyoxy)-3 -dodecyl- 1 ,4-naphthalindion 2-Chlor-N-[[[4-(l-phenylethoxy)-phenyl]-amino]-carbonyl]-benzamid
2-Chlor-N-[[[4-(2,2-dichlor- 1 , 1 -difluorethoxy)-phenyl]-amino]-carbonyl]-benzamid
3 -Methylphenyl-propylcarbamat
4-[4-(4-Ethoxyphenyl)-4-methylpentyl]-l-fluor-2-phenoxy-benzol
4-Chlor-2-(l , 1 -dimethylethyl)-5-[[2-(2,6-dimethyl-4-phenoxyphenoxy)ethyl]thio]- 3(2H)-pyridazinon
4-Chlor-2-(2-chlor-2-methylpropyl)-5-[(6-iod-3-pyridinyl)methoxy]-3(2H)- pyridazinon
4-Chlor-5 - [(6-chlor-3 -pyridinyl)methoxy] -2-(3 ,4-dichloφhenyl)-3 (2H)-pyridazinon
Bacillus thuringiensis strain EG-2348 Benzoesäure [2-benzoyl-l-(l,l-dimethylethyl)-hydrazid
Butansäure 2,2-dimethyl-3-(2,4-dichloφhenyl)-2-oxo- 1 -oxaspiro[4.5]dec-3-en-4-yl- ester
[3-[(6-Chlor-3-pyridinyl)methyl]-2-thiazolidinyliden]-cyanamid
Dihydro-2-(nitromethylen)-2H-l,3-thiazine-3(4H)-carboxaldehyd Ethyl- [2- [ [ 1 ,6-dihy dro-6-oxo- 1 -(pheny lmethyl)-4-pyridazinyl] oxy] ethyl] -carbamat
N-(3 ,4,4-Trifluor- 1 -oxo-3 -butenyl)-gly ein
N-(4-Chlθφhenyl)-3 - [4-(difluormethoxy)pheny 1] -4,5 -dihy dro-4-phenyl- 1 H-pyrazol-
1-carboxamid
N-[(2-Chlor-5-thiazolyl)methyl]-N'-methyl-N"-nitro-guanidin N-Methyl-N'-( 1 -methyl-2-propenyl)- 1 ,2-hydrazindicarbothioamid
N-Methyl-N'-2-propenyl- 1 ,2-hydrazindicarbothioamid
O,O-Diethyl-[2-(dipropylamino)-2-oxoethyl]-ethylphosphoramidothioat
N-Cyanomethyl-4-trifluormethyl-nicotinamid
3,5-Dichlor-l-(3,3-dichlor-2-propenyloxy)-4-[3-(5-trifluormethylpyridin-2-yloxy)- propoxy]-benzol Auch eine Mischung mit anderen bekannten Wirkstoffen, wie Herbiziden oder mit Düngemitteln und Wachstumsregulatoren ist möglich.
Die erfindungsgemäßen Wirkstoffe können ferner beim Einsatz als Insektizide in ihren handelsüblichen Formulierungen sowie in den aus diesen Formulierungen bereiteten Anwendungsformen in Mischung mit Synergisten vorliegen. Synergisten sind Verbindungen, durch die die Wirkung der Wirkstoffe gesteigert wird, ohne dass der zugesetzte Synergist selbst aktiv wirksam sein muss.
Der Wirkstoffgehalt der aus den handelsüblichen Formulierungen bereiteten Anwendungsformen kann in weiten Bereichen variieren. Die Wirkstoffkonzentration der Anwendungsformen kann von 0,0000001 bis zu 95 Gew.-% Wirkstoff, vorzugsweise zwischen 0,0001 und 1 Gew.-% liegen.
Die Anwendung geschieht in einer den Anwendungsformen angepassten üblichen
Weise.
Bei der Anwendung gegen Hygiene- und Vorratsschädlinge zeichnet sich der Wirkstoff durch eine hervorragende Residualwirkung auf Holz und Ton sowie durch eine gute Alkalistabilität auf gekalkten Unterlagen aus.
Wie bereits oben erwähnt, können erfindungsgemäß alle Pflanzen und deren Teile behandelt werden. In einer bevorzugten Ausführungsform werden wild vorkommende oder durch konventionelle biologische Zuchtmethoden, wie Kreuzung oder Proto- plastenfusion erhaltenen Pflanzenarten und Pflanzensorten sowie deren Teile behandelt. In einer weiteren bevorzugten Ausführungsform werden transgene Pflanzen und Pflanzensorten, die durch gentechnologische Methoden gegebenenfalls in Kombination mit konventionellen Methoden erhalten wurden (Genetic Modifϊed Organisms) und deren Teile behandelt. Der Begriff „Teile" bzw. „Teile von Pflanzen" oder „Pflanzenteile" wurde oben erläutert. Besonders bevorzugt werden erfindungsgemäß Pflanzen der jeweils handelsüblichen oder in Gebrauch befindlichen Pflanzensorten behandelt. Unter Pflanzensorten versteht man Pflanzen mit neuen Eigenschaften („Traits"), die sowohl durch konventionelle Züchtung, durch Mutagenese oder durch rekombinante DNA-Techniken gezüchtet worden sind. Dies können Sorten, Bio- und Genotypen sein.
Je nach Pflanzenarten bzw. Pflanzensorten, deren Standort und Wachstumsbedingungen (Böden, Klima, Vegetationsperiode, Ernährung) können durch die erfindungsgemäße Behandlung auch überadditive („synergistische") Effekte auftreten. So sind beispielsweise erniedrigte Aufwandmengen und oder Erweiterungen des Wirkungsspektrums und/oder eine Verstärkung der Wirkung der erfindungsgemäß verwendbaren Stoffe und Mittel, besseres Pflanzenwachstum, erhöhte Toleranz gegenüber hohen oder niedrigen Temperaturen, erhöhte Toleranz gegen Trockenheit oder gegen Wasser- bzw. Bodensalzgehalt, erhöhte Blühleistung, erleichterte Ernte, Beschleunigung der Reife, höhere Ernteerträge, höhere Qualität und/oder höherer
Ernährungswert der Ernteprodukte, höhere Lagerfähigkeit und/oder Bearbeitbarkeit der Ernteprodukte möglich, die über die eigentlich zu erwartenden Effekte hinausgehen.
Zu den bevorzugten erfindungsgemäß zu behandelnden transgenen (gentechnologisch erhaltenen) Pflanzen bzw. Pflanzensorten gehören alle Pflanzen, die durch die gentechnologische Modifikation genetisches Material erhielten, welches diesen Pflanzen besondere vorteilhafte wertvolle Eigenschaften („Traits") verleiht. Beispiele für solche Eigenschaften sind besseres Pflanzenwachstum, erhöhte Toleranz gegen- über hohen oder niedrigen Temperaturen, erhöhte Toleranz gegen Trockenheit oder gegen Wasser- bzw. Bodensalzgehalt, erhöhte Blühleistung, erleichterte Ernte, Beschleunigung der Reife, höhere Ernteerträge, höhere Qualität und/oder höherer Ernährungswert der Ernteprodukte, höhere Lagerfahigkeit und/oder Bearbeitbarkeit der Ernteprodukte. Weitere und besonders hervorgehobene Beispiele für solche Eigenschaften sind eine erhöhte Abwehr der Pflanzen gegen tierische und mikro- bielle Schädlinge, wie gegenüber Insekten, Milben, pflanzenpathogenen Pilzen, Bakterien und/oder Viren sowie eine erhöhte Toleranz der Pflanzen gegen bestimmte herbizide Wirkstoffe. Als Beispiele transgener Pflanzen werden die wichtigen Kultu- φflanzen, wie Getreide (Weizen, Reis), Mais, Soja, Kartoffel, Baumwolle, Raps sowie Obstpflanzen (mit den Früchten Äpfel, Birnen, Zitrusfrüchten und Wein- trauben) erwähnt, wobei Mais, Soja, Kartoffel, Baumwolle und Raps besonders hervorgehoben werden. Als Eigenschaften („Traits") werden besonders hervorgehoben die erhöhte Abwehr der Pflanzen gegen Insekten durch in den Pflanzen entstehende Toxine, insbesondere solche, die durch das genetische Material aus Bacillus Thuringiensis (z.B. durch die Gene CryΙA(a), CryΙA(b), CryΙA(c), CryllA, CrylllA, CryIIIB2, Cry9c Cry2Ab, Cry3Bb und CrylF sowie deren Kombinationen) in den Pflanzen erzeugt werden (im folgenden „Bt Pflanzen"). Als Eigenschaften („Traits") werden auch besonders hervorgehoben die erhöhte Abwehr von Pflanzen gegen Pilze, Bakterien und Viren durch Systemische Akquirierte Resistenz (SAR), Systemin, Phytoalexine, Elicitoren sowie Resistenzgene und entsprechend expri- mierte Proteine und Toxine. Als Eigenschaften („Traits") werden weiterhin besonders hervorgehoben die erhöhte Toleranz der Pflanzen gegenüber bestimmten herbi- ziden Wirkstoffen, beispielsweise Imidazolinonen, Sulfonylharnstoffen, Glyphosate oder Phosphinotricin (z.B. ,,PAT"-Gen). Die jeweils die gewünschten Eigenschaften („Traits") verleihenden Gene können auch in Kombinationen miteinander in den transgenen Pflanzen vorkommen. Als Beispiele für „Bt Pflanzen" seien Maissorten,
Baumwollsorten, Sojasorten und Kartoffelsorten genannt, die unter den Handelsbezeichnungen YIELD GARD® (z.B. Mais, Baumwolle, Soja), KnockOut® (z.B. Mais), StarLink® (z.B. Mais), Bollgard® (Baumwolle), Nucotn® (Baumwolle) und NewLeaf® (Kartoffel) vertrieben werden. Als Beispiele für Herbizid tolerante Pflan- zen seien Maissorten, Baumwollsorten und Sojasorten genannt, die unter den
Handelsbezeichnungen Roundup Ready® (Toleranz gegen Glyphosate z.B. Mais, Baumwolle, Soja), Liberty Link® (Toleranz gegen Phosphinotricin, z.B. Raps), IMI® (Toleranz gegen Imidazolinone) und STS® (Toleranz gegen Sulfonylharnstoffe z.B. Mais) vertrieben werden. Als Herbizid resistente (konventionell auf Herbizid-Tole- ranz gezüchtete) Pflanzen seien auch die unter der Bezeichnung Clearfield® vertriebenen Sorten (z.B. Mais) erwähnt. Selbstverständlich gelten diese Aussagen auch für in der Zukunft entwickelte bzw. zukünftig auf den Markt kommende Pflanzensorten mit diesen oder zukünftig entwickelten genetischen Eigenschaften („Traits").
Die aufgeführten Pflanzen können besonders vorteilhaft erfindungsgemäß mit den Verbindungen der allgemeinen Formel (I) bzw. den erfindungsgemäßen Wirkstoffmischungen behandelt werden. Die bei den Wirkstoffen bzw. Mischungen oben angegebenen Vorzugsbereiche gelten auch für die Behandlung dieser Pflanzen. Besonders hervorgehoben sei die Pflanzenbehandlung mit den im vorliegenden Text speziell aufgeführten Verbindungen bzw. Mischungen.
Die erfindungsgemäßen Wirkstoffe wirken nicht nur gegen Pflanzen-, Hygiene- und Vorratsschädlinge, sondern auch auf dem veterinärmedizinischen Sektor gegen tierische Parasiten (Ektoparasiten) wie Schildzecken, Lederzecken, Räudemilben, Laufmilben, Fliegen (stechend und leckend), parasitierende Fliegenlarven, Läuse, Haar- Hnge, Federlinge und Flöhe. Zu diesen Parasiten gehören:
Aus der Ordnung der Anoplurida z.B. Haematopinus spp., Linognathus spp.,
Pediculus spp., Phtirus spp., Solenopotes spp.
Aus der Ordnung der Mallophagida und den Unterordnungen Amblycerina sowie Ischnocerina z.B. Trimenopon spp., Menopon spp., Trinoton spp., Bovicola spp.,
Werneckiella spp., Lepikentron spp., Damalina spp., Trichodectes spp., Felicola spp. Aus der Ordnung Diptera und den Unterordnungen Nematocerina sowie Brachycerina z.B. Aedes spp., Anopheles spp., Culex spp., Simulium spp., Eusimulium spp., Phlebotomus spp., Lutzomyia spp., Culicoides spp., Chrysops spp., Hybomitra spp., Atylotus spp., Tabanus spp., Haematopota spp., Philipomyia spp.,
Braula spp., Musca spp., Hydrotaea spp., Stomoxys spp., Haematobia spp., Morellia spp., Fannia spp., Glossina spp., Calliphora spp., Lucilia spp., Chrysomyia spp., Wohlfahrtia spp., Sarcophaga spp., Oestrus spp., Hypoderma spp., Gasterophilus spp., Hippobosca spp., Lipoptena spp., Melophagus spp. Aus der Ordnung der Siphonapterida z.B. Pulex spp., Ctenocephalides spp.,
Xenopsylla spp., Ceratophyllus spp. Aus der Ordnung der Heteropterida z.B. Cimex spp., Triatoma spp., Rhodnius spp., Panstrongylus spp.
Aus der Ordnung der Blattarida z.B. Blatta orientalis, Periplaneta americana, Blattela germanica, Supella spp. Aus der Unterklasse der Acaria (Acarida) und den Ordnungen der Meta- sowie
Mesostigmata z.B. Argas spp., Ornithodorus spp., Otobius spp., Ixodes spp., Amblyomma spp., Boophilus spp., Dermacentor spp., Haemophysalis spp., Hyalomma spp., Rhipicephalus spp., Dermanyssus spp., Raillietia spp., Pneumonyssus spp., Sternostoma spp., Varroa spp. Aus der Ordnung der Actinedida (Prostigmata) und Acaridida (Astigmata) z.B.
Acarapis spp., Cheyletiella spp., Omithocheyletia spp., Myobia spp., Psorergates spp., Demodex spp., Trombicula spp., Listrophorus spp., Acarus spp., Tyrophagus spp., Caloglyphus spp., Hypodectes spp., Pterolichus spp., Psoroptes spp., Chorioptes spp., Otodectes spp., Sarcoptes spp., Notoedres spp., Knemidocoptes spp., Cytodites spp., Laminosioptes spp.
Die erfindungsgemäßen Wirkstoffe der Formel (I) eignen sich auch zur Bekämpfung von Arthropoden, die landwirtschaftliche Nutztiere, wie z.B. Rinder, Schafe, Ziegen, Pferde, Schweine, Esel, Kamele, Büffel, Kaninchen, Hühner, Puten, Enten, Gänse, Bienen, sonstige Haustiere wie z.B. Hunde, Katzen, Stubenvögel, Aquarienfische sowie sogenannte Versuchstiere, wie z.B. Hamster, Meerschweinchen, Ratten und Mäuse befallen. Durch die Bekämpfung dieser Arthropoden sollen Todesfälle und Leistungsminderungen (bei Fleisch, Milch, Wolle, Häuten, Eiern, Honig usw.) vermindert werden, so dass durch den Einsatz der erfindungsgemäßen Wirkstoffe eine wirtschaftlichere und einfachere Tierhaltung möglich ist.
Die Anwendung der erfindungsgemäßen Wirkstoffe geschieht im Veterinärsektor in bekannter Weise durch enterale Verabreichung in Form von beispielsweise Tabletten, Kapseln, Tränken, Drenchen, Granulaten, Pasten, Boli, des feed-through- Verfahrens, von Zäpfchen, durch parenterale Verabreichung, wie zum Beispiel durch Injektionen
(intramuskulär, subcutan, intravenös, intraperitonal u.a.), Implantate, durch nasale Applikation, durch dermale Anwendung in Form beispielsweise des Tauchens oder Badens (Dippen), Sprühens (Spray), Aufgießens (Pour-on und Spot-on), des Waschens, des Einpuderns sowie mit Hilfe von wirkstoffhaltigen Formköφern, wie Halsbändern, Ohrmarken, Schwanzmarken, Gliedmaßenbändern, Halftern, Markie- rungsvorrichtungen usw.
Bei der Anwendung für Vieh, Geflügel, Haustiere etc. kann man die Wirkstoffe der Formel (I) als Formulierungen (beispielsweise Pulver, Emulsionen, fließfähige Mittel), die die Wirkstoffe in einer Menge von 1 bis 80 Gew.-% enthalten, direkt oder nach 100 bis 10 000-facher Verdünnung anwenden oder sie als chemisches Bad verwenden.
Außerdem wurde gefunden, dass die erfindungsgemäßen Verbindungen eine hohe insektizide Wirkung gegen Insekten zeigen, die technische Materialien zerstören.
Beispielhaft und vorzugsweise - ohne jedoch zu limitieren - seien die folgenden Insekten genannt:
Käfer wie Hylotrupes bajulus, Chlorophorus pilosis, Anobium punctatum, Xestobium rufovillosum, Ptilinus pecticornis, Dendrobium pertinex, Emobius mollis, Priobium caφini, Lyctus brunneus, Lyctus africanus, Lyctus planicollis, Lyctus linearis, Lyctus pubescens, Trogoxylon aequale, Minthes rugicollis, Xyleborus spec. Tryptodendron spec. Apate monachus, Bostrychus capucins, Heterobostrychus brunneus, Sinoxylon spec. Dinoderus minutus.
Hautflügler wie
Sirex juvencus, Urocerus gigas, Urocerus gigas taignus, Urocerus augur.
Termiten wie Kalotermes flavicollis, Cryptotermes brevis, Heterotermes indicola, Reticulitermes flavipes, Reticulitermes santonensis, Reticulitermes lucifugus, Mastotermes darwiniensis, Zootermopsis nevadensis, Coptotermes formosanus. Borstenschwänze wie Lepisma saccharina.
Unter technischen Materialien sind im vorliegenden Zusammenhang nicht-lebende Materialien zu verstehen, wie vorzugsweise Kunststoffe, Klebstoffe, Leime, Papiere und Kartone, Leder, Holz, Holzverarbeitungsprodukte und Anstrichmittel.
Ganz besonders bevorzugt handelt es sich bei dem vor Insektenbefall zu schützenden
Material um Holz und Holzverarbeitungsprodukte.
Unter Holz und Holzverarbeitungsprodukten, welche durch das erfindungsgemäße Mittel bzw. dieses enthaltende Mischungen geschützt werden kann, ist beispielhaft zu verstehen:
Bauholz, Holzbalken, Eisenbahnschwellen, Brückenteile, Bootsstege, Holzfahrzeuge, Kisten, Paletten, Container, Telefonmasten, Holzverkleidungen, Holzfenster und -türen, Sperrholz, Spanplatten, Tischlerarbeiten oder Holzprodukte, die ganz allge- mein beim Hausbau oder in der Bautischlerei Verwendung finden.
Die Wirkstoffe können als solche, in Form von Konzentraten oder allgemein üblichen Formulierungen wie Pulver, Granulate, Lösungen, Suspensionen, Emulsionen oder Pasten angewendet werden.
Die genannten Formulierungen können in an sich bekannter Weise hergestellt werden, z.B. durch Vermischen der Wirkstoffe mit mindestens einem Lösungs- bzw. Verdünnungsmittel, Emulgator, Dispergier- und/oder Binde- oder Fixiermittels, Wasser-Repellent, gegebenenfalls Sikkative und UV-Stabilisatoren und gegebe- nenfalls Farbstoffen und Pigmenten sowie weiteren Verarbeitungshilfsmitteln. Die zum Schutz von Holz und Holzwerkstoffen verwendeten insektiziden Mittel oder Konzentrate enthalten den erfindungsgemäßen Wirkstoff in einer Konzentration von 0,0001 bis 95 Gew.-%, insbesondere 0,001 bis 60 Gew.-%.
Die Menge der eingesetzten Mittel bzw. Konzentrate ist von der Art und dem Vorkommen der Insekten und von dem Medium abhängig. Die optimale Einsatzmenge kann bei der Anwendung jeweils durch Testreihen ermittelt werden. Im allgemeinen ist es jedoch ausreichend 0,0001 bis 20 Gew.-%, vorzugsweise 0,001 bis 10 Gew.-%, des Wirkstoffs, bezogen auf das zu schützende Material, einzusetzen.
Als Lösungs- und/oder Verdünnungsmittel dient ein organisch-chemisches Lösungsmittel oder Lösungsmittelgemisch und/oder ein öliges oder ölartiges schwer flüchtiges organisch-chemisches Lösungsmittel oder Lösungsmittelgemisch und/oder ein polares organisch-chemisches Lösungsmittel oder Lösungsmittelgemisch und/oder Wasser und gegebenenfalls einen Emulgator und/oder Netzmittel.
Als organisch-chemische Lösungsmittel werden vorzugsweise ölige oder ölartige Lösungsmittel mit einer Verdunstungszahl über 35 und einem Flammpunkt oberhalb 30°C, vorzugsweise oberhalb 45°C, eingesetzt. Als derartige schwerflüchtige, wasserunlösliche, ölige und ölartige Lösungsmittel werden entsprechende Mineralöle oder deren Aromatenfraktionen oder mineralölhaltige Lösungsmittelgemische, vorzugsweise Testbenzin, Petroleum und/oder Alkylbenzol verwendet.
Vorteilhaft gelangen Mineralöle mit einem Siedebereich von 170 bis 220°C, Test- benzin mit einem Siedebereich von 170 bis 220°C, Spindelöl mit einem Siedebereich von 250 bis 350°C, Petroleum bzw. Aromaten vom Siedebereich von 160 bis 280°C, Teφentinöl und dgl. zum Einsatz.
In einer bevorzugten Ausführungsform werden flüssige aliphatische Kohlenwasser- Stoffe mit einem Siedebereich von 180 bis 210°C oder hochsiedende Gemische von aromatischen und aliphatischen Kohlenwasserstoffen mit einem Siedebereich von 180 bis 220°C und/oder Spindeöl und/oder Monochlornaphthalin, vorzugsweise α-Monochlornaphthalin, verwendet.
Die organischen schwerflüchtigen öligen oder ölartigen Lösungsmittel mit einer Verdunstungszahl über 35 und einem Flammpunkt oberhalb 30°C, vorzugsweise oberhalb 45°C, können teilweise durch leicht oder mittelflüchtige organischchemische Lösungsmittel ersetzt werden, mit der Maßgabe, dass das Lösungsmittelgemisch ebenfalls eine Verdunstungszahl über 35 und einen Flammpunkt oberhalb 30°C, vorzugsweise oberhalb 45°C, aufweist und dass das Insektizid-Fungizid- Gemisch in diesem Lösungsmittelgemisch löslich oder emulgierbar ist.
Nach einer bevorzugten Ausführungsform wird ein Teil des organisch-chemischen Lösungsmittel oder Lösungsmittelgemisches durch ein aliphatisches polares organisch-chemisches Lösungsmittel oder Lösungsmittelgemisch ersetzt. Vorzugsweise gelangen Hydroxyl- und/oder Ester- und/oder Ethergruppen enthaltende aliphatische organisch-chemische Lösungsmittel wie beispielsweise Glycolether, Ester oder dgl. zur Anwendung.
Als organisch-chemische Bindemittel werden im Rahmen der vorliegenden Er- findung die an sich bekannten wasserverdünnbaren und/oder in den eingesetzten organisch-chemischen Lösungsmitteln löslichen oder dispergier- bzw. emulgierbaren Kunstharze und/oder bindende trocknende Öle, insbesondere Bindemittel bestehend aus oder enthaltend ein Acrylatharz, ein Vinylharz, z.B. Polyvinylacetat, Polyesterharz, Polykondensations- oder Polyadditionsharz, Polyurethanharz, Alkyd- harz bzw. modifiziertes Alkydharz, Phenolharz, Kohlenwasserstoffharz wie Inden-
Cumaronharz, Siliconharz, trocknende pflanzliche und/oder trocknende Öle und/oder physikalisch trocknende Bindemittel auf der Basis eines Natur- und/oder Kunstharzes verwendet.
Das als Bindemittel verwendete Kunstharz kann in Form einer Emulsion, Dispersion oder Lösung, eingesetzt werden. Als Bindemittel können auch Bitumen oder bitumi- nöse Substanzen bis zu 10 Gew.-%, verwendet werden. Zusätzlich können an sich bekannte Farbstoffe, Pigmente, wasserabweisende Mittel, Geruchskorrigentien und Inhibitoren bzw. Korrosionsschutzmittel und dgl. eingesetzt werden.
Bevorzugt ist gemäß der Erfindung als organisch-chemische Bindemittel mindestens ein Alkydharz bzw. modifiziertes Alkydharz und/oder ein trocknendes pflanzliches Öl im Mittel oder im Konzentrat enthalten. Bevorzugt werden gemäß der Erfindung Alkydharze mit einem Ölgehalt von mehr als 45 Gew.-%, vorzugsweise 50 bis 68 Gew.-%, verwendet.
Das erwähnte Bindemittel kann ganz oder teilweise durch ein Fixierungs- mittel(gemisch) oder ein Weichmacher(gemisch) ersetzt werden. Diese Zusätze sollen einer Verflüchtigung der Wirkstoffe sowie einer Kristallisation bzw. Ausfallen vorbeugen. Vorzugsweise ersetzen sie 0,01 bis 30 % des Bindemittels (bezogen auf 100 % des eingesetzten Bindemittels).
Die Weichmacher stammen aus den chemischen Klassen der Phthalsäureester wie Dibutyl-, Dioctyl- oder Benzylbutylphthalat, Phosphorsäureester wie Tributyl- phosphat, Adipinsäureester wie Di-(2-ethylhexyl)-adipat, Stearate wie Butylstearat oder Amylstearat, Oleate wie Butyloleat, Glycerinether oder höhermolekulare Gly- kolether, Glycerinester sowie p-Toluolsulfonsäureester.
Fixierungsmittel basieren chemisch auf Polyvinylalkylethern wie z.B. Polyvinyl- methylether oder Ketonen wie Benzophenon, Ethylenbenzophenon.
Als Lösungs- bzw. Verdünnungsmittel kommt insbesondere auch Wasser in Frage, gegebenenfalls in Mischung mit einem oder mehreren der oben genannten organischchemischen Lösungs- bzw. Verdünnungsmittel, Emulgatoren und Dispergatoren.
Ein besonders effektiver Holzschutz wird durch großtechnische Imprägnierverfahren, z.B. Vakuum, Doppelvakuum oder Druckverfahren, erzielt. Die anwendungsfertigen Mittel können gegebenenfalls noch weitere Insektizide und gegebenenfalls noch ein oder mehrere Fungizide enthalten.
Als zusätzliche Zumischpartner kommen vorzugsweise die in der WO 94/29 268 genannten Insektizide und Fungizide in Frage. Die in diesem Dokument genannten
Verbindungen sind ausdrücklicher Bestandteil der vorliegenden Anmeldung.
Als ganz besonders bevorzugte Zumischpartner können Insektizide, wie Chloφyri- phos, Phoxim, Silafluofin, Alphamethrin, Cyfluthrin, Cypermethrin, Deltamethrin, Permethrin, Imidacloprid, NI-25, Flufenoxuron, Hexaflumuron, Transfluthrin, Thia- cloprid, Methoxyphenoxid und Triflumuron,
sowie Fungizide wie Epoxyconazole, Hexaconazole, Azaconazole, Propiconazole, Tebuconazole, Cyproconazole, Metconazole, Imazalil, Dichlorfluanid, Tolylfluanid, 3-Iod-2-propinyl-butylcarbamat, N-Octyl-isothiazolin-3-on und 4,5-Dichlor-N-octyl- isothiazolin-3-on, sein.
Zugleich können die erfindungsgemäßen Verbindungen zum Schutz vor Bewuchs von Gegenständen, insbesondere von Schiffsköφern, Sieben, Netzen, Bauwerken, Kaianlagen und Signalanlagen, welche mit See- oder Brackwasser in Verbindung kommen, eingesetzt werden.
Bewuchs durch sessile Oligochaeten, wie Kalkröhrenwürmer sowie durch Muscheln und Arten der Gruppe Ledamoφha (Entenmuscheln), wie verschiedene Lepas- und Scalpellum-Arten, oder durch Arten der Gruppe Balanomoφha (Seepocken), wie
Baianus- oder Pollicipes-Species, erhöht den Reibungswiderstand von Schiffen und führt in der Folge durch erhöhten Energieverbrauch und darüber hinaus durch häufige Trockendockaufenthalte zu einer deutlichen Steigerung der Betriebskosten.
Neben dem Bewuchs durch Algen, beispielsweise Ectocaφus sp. und Ceramium sp., kommt insbesondere dem Bewuchs durch sessile Entomostraken-Gruppen, welche unter dem Namen Cirripedia (Rankenflußkrebse) zusammengefaßt werden, besondere Bedeutung zu.
Es wurde nun überraschenderweise gefunden, dass die erfindungsgemäßen Verbin- düngen allein oder in Kombination mit anderen Wirkstoffen, eine hervorragende
Antifouling (Antibewuchs)-Wirkung aufweisen.
Durch Einsatz von erfindungsgemäßen Verbindungen allein oder in Kombination mit anderen Wirkstoffen, kann auf den Einsatz von Schwermetallen wie z.B. in Bis- (trialkylzinn)-sulfiden, Tri-«-butylzinnlaurat, Tri-rc-butylzinnchlorid, Kupfer(I)-oxid,
Triethylzinnchlorid, Tri-«-butyl(2-phenyl-4-chloφhenoxy)-zinn, Tributylzinnoxid, Molybdändisulfid, Antimonoxid, polymerem Butyltitanat, Phenyl-(bispyridin)- wismutchlorid, Tri-w-butylzirinfluorid, Manganethylenbisthiocarbamat, Zink- dimethyldithiocarbamat, Zinkethylenbisthiocarbamat, Zink- und Kupfersalze von 2- Pyridinthiol-1-oxid, Bisdimethyldithiocarbamoylzinkethylenbisthiocarbamat,
Zinkoxid, Kupfer(I)-ethylen-bisdithiocarbamat, Kupferthiocyanat, Kupfemaphthenat und Tributylzinnhalogeniden verzichtet werden oder die Konzentration dieser Verbindungen entscheidend reduziert werden.
Die anwendungsfertigen Antifoulingfarben können gegebenenfalls noch andere
Wirkstoffe, vorzugsweise Algizide, Fungizide, Herbizide, Molluskizide bzw. andere Antifouling- Wirkstoffe enthalten.
Als Kombinationspartner für die erfindungsgemäßen Antifouling-Mittel eignen sich vorzugsweise:
Algizide wie
2-tert.-Butylamino-4-cyclopropylamino-6-methylthio- 1 ,3 ,5-triazin, Dichlorophen, Diuron, Endothal, Fentinacetat, Isoproturon, Methabenzthiazuron, Oxyfluorfen, Quinoclamine und Terbutryn; Fungizide wie
Benzo[t>]thiophencarbonsäurecyclohexylamid-S,S-dioxid, Dichlofluanid, Fluor- folpet, 3-Iod-2-propinyl-butylcarbamat, Tolylfluanid und Azole wie Azaconazole, Cyproconazole, Epoxyconazole, Hexaconazole, Metconazole, Propi- conazole und Tebuconazole;
Molluskizide wie
Fentinacetat, Metaldehyd, Methiocarb, Niclosamid, Thiodicarb und Trimethacarb;
oder herkömmliche Antifouling- Wirkstoffe wie
4,5-Dichlor-2-octyl-4-isothiazolin-3-on, Diiodmethylparatrylsulfon, 2-(N,N-Di- methylthiocarbamoylthio)-5-nitrothiazyl, Kalium-, Kupfer-, Natrium- und Zinksalze von 2-Pyridinthiol-l-oxid, Pyridin-triphenylboran, Tetrabutyldistannoxan, 2,3,5,6- Tetrachlor-4-(methylsulfonyl)-pyridin, 2,4,5,6-Tetrachloroisophthalonitril, Tetrame- thylthiuramdisulfid und 2,4,6-Trichloφhenylmaleinimid.
Die verwendeten Antifouling-Mittel enthalten die erfindungsgemäßen Wirkstoff der erfindungsgemäßen Verbindungen in einer Konzentration von 0,001 bis 50 Gew.-%, insbesondere von 0,01 bis 20 Gew.-%.
Die erfindungsgemäßen Antifouling-Mittel enthalten des weiteren die üblichen Bestandteile wie z.B. in Ungerer, Chem. Ind. 1985, 37, 730-732 und Williams, Antifouling Marine Coatings, Noyes, Park Ridge, 1973 beschrieben.
Antifouling-Anstrichmittel enthalten neben den algiziden, fungiziden, molluskiziden und erfindungsgemäßen insektiziden Wirkstoffen insbesondere Bindemittel.
Beispiele für anerkannte Bindemittel sind Polyvinylchlorid in einem Lösungsmittelsystem, chlorierter Kautschuk in einem Lösungsmittelsystem, Acrylharze in einem Lösungsmittelsystem insbesondere in einem wässrigen System, Vinylchlorid/Vinyl- acetat-Copolymersysteme in Form wässriger Dispersionen oder in Form von organischen Lösungsmittelsystemen, Butadien/Styrol/Acrylnitril-Kautschuke, trocknende Öle, wie Leinsamenöl, Harzester oder modifizierte Hartharze in Kombination mit Teer oder Bitumina, Asphalt sowie Epoxyverbindungen, geringe Mengen Chlorkautschuk, chloriertes Polypropylen und Ninylharze.
Gegebenenfalls enthalten Anstrichmittel auch anorganische Pigmente, organische Pigmente oder Farbstoffe, welche vorzugsweise in Seewasser unlöslich sind. Ferner können Anstrichmittel Materialien, wie Kolophonium enthalten, um eine gesteuerte Freisetzung der Wirkstoffe zu ermöglichen. Die Anstriche können ferner Weich- macher, die rheologischen Eigenschaften beeinflussende Modifizierungsmittel sowie andere herkömmliche Bestandteile enthalten. Auch in Self-Polishing-Antifouling- Systemen können die erfindungsgemäßen Nerbindungen oder die oben genannten Mischungen eingearbeitet werden.
Die Wirkstoffe eignen sich auch zur Bekämpfung von tierischen Schädlingen, insbesondere von Insekten, Spinnentieren und Milben, die in geschlossenen Räumen, wie beispielsweise Wohnungen, Fabrikhallen, Büros, Fahrzeugkabinen u.a. vorkommen. Sie können zur Bekämpfung dieser Schädlinge allein oder in Kombination mit anderen Wirk- und Hilfsstoffen in Haushaltsinsektizid-Produkten verwendet werden. Sie sind gegen sensible und resistente Arten sowie gegen alle Entwicklungsstadien wirksam. Zu diesen Schädlingen gehören:
Aus der Ordnung der Scoφionidea z.B. Buthus occitanus.
Aus der Ordnung der Acarina z.B. Argas persicus, Argas reflexus, Bryobia ssp., Dermanyssus gallinae, Glyciphagus domesticus, Ornithodorus moubat,
Rhipicephalus sanguineus, Trombicula alfreddugesi, Νeutrombicula autumnalis,
Dermatophagoides pteronissimus, Dermatophagoides forinae.
Aus der Ordnung der Araneae z.B. Aviculariidae, Araneidae.
Aus der Ordnung der Opiliones z.B. Pseudoscoφiones chelifer, Pseudoscoφiones cheiridium, Opiliones phalangium.
Aus der Ordnung der Isopoda z.B. Oniscus asellus, Porcellio scaber. Aus der Ordnung der Diplopoda z.B. Blaniulus guttulatus, Polydesmus spp.
Aus der Ordnung der Chilopoda z.B. Geophilus spp.
Aus der Ordnung der Zygentoma z.B. Ctenolepisma spp., Lepisma saccharina,
Lepismodes inquilinus. Aus der Ordnung der Blattaria z.B. Blatta orientalies, Blattella germanica, Blattella asahinai, Leucophaea maderae, Panchlora spp., Parcoblatta spp., Periplaneta australasiae, Periplaneta americana, Periplaneta brunnea, Periplaneta fuliginosa,
Supella longipalpa.
Aus der Ordnung der Saltatoria z.B. Acheta domesticus. Aus der Ordnung der Dermaptera z.B. Forficula auricularia.
Aus der Ordnung der Isoptera z.B. Kalotermes spp., Reticulitermes spp.
Aus der Ordnung der Psocoptera z.B. Lepinatus spp., Liposcelis spp.
Aus der Ordnung der Coleptera z.B. Anthrenus spp., Attagenus spp., Dermestes spp.,
Latheticus oryzae, Necrobia spp., Ptinus spp., Rhizopertha dominica, Sitophilus granarius, Sitophilus oryzae, Sitophilus zeamais, Stegobium paniceum.
Aus der Ordnung der Diptera z.B. Aedes aegypti, Aedes albopictus, Aedes taeniorhynchus, Anopheles spp., Calliphora erythrocephala, Chrysozona pluvialis,
Culex quinquefasciatus, Culex pipiens, Culex tarsalis, Drosophila spp., Fannia canicularis, Musca domestica, Phlebotomus spp., Sarcophaga carnaria, Simulium spp., Stomoxys calcitrans, Tipula paludosa.
Aus der Ordnung der Lepidoptera z.B. Achroia grisella, Galleria mellonella, Plodia inteφunctella, Tinea cloacella, Tinea pellionella, Tineola bisselliella.
Aus der Ordnung der Siphonaptera z.B. Ctenocephalides canis, Ctenocephalides felis, Pulex irritans, Tunga penetrans, Xenopsylla cheopis. Aus der Ordnung der Hymenoptera z.B. Camponotus herculeanus, Lasius fuliginosus, Lasius niger, Lasius umbratus, Monomorium pharaonis, Paravespula spp., Tetramorium caespitum.
Aus der Ordnung der Anoplura z.B. Pediculus humanus capitis, Pediculus humanus coφoris, Phthirus pubis. Aus der Ordnung der Heteroptera z.B. Cimex hemipterus, Cimex lectularius,
Rhodinus prolixus, Triatoma infestans. Die Anwendung im Bereich der Haushaltsinsektizide erfolgt allein oder in Kombination mit anderen geeigneten Wirkstoffen wie Phosphorsäureestern, Carbamaten, Pyrethroiden, Wachstumsregulatoren oder Wirkstoffen aus anderen bekannten Insektizidklassen.
Die Anwendung erfolgt in Aerosolen, drucklosen Sprühmitteln, z.B. Pump- und Zerstäubersprays, Nebelautomaten, Foggern, Schäumen, Gelen, Verdampfeφro- dukten mit Nerdampfeφlättchen aus Cellulose oder Kunststoff, Flüssigverdampfern, Gel- und Membranverdampfern, propellergetriebenen Verdampfern, energielosen bzw. passiven Verdampfungssystemen, Mottenpapieren, Mottensäckchen und Mottengelen, als Granulate oder Stäube, in Streuködern oder Köderstationen.
Die Herstellung und die Verwendung der erfindungsgemäßen Stoffe geht aus den folgenden Beispielen hervor.
Herstellungsbeispiele:
Beispiel 1:
Zu einer Mischung aus 1,1 g (4,1 mMol) 3-(4-Chloφhenyl)-4-(4-cyanpyrazol-l-yl)- 4,5-dihydro-lH-pyrazol (Bsp. II-l), 0,1 ml Triethylamin und 80 ml Methyl-tert- butylether gibt man bei 70°C 0,63g (4,1 mMol) 4-Chloφhenylisocyanat. Man rührt das Gemisch 15 Minuten bei 70°C nach und lässt es dann langsam auf Raumtemperatur abkühlen. Das ausgefallene Produkt wird abgesaugt und mit etwas Methyl-tert.- butylether nachgewaschen.
Man erhält 1,4 g (80 % der Theorie) 3-(4-Chloφhenyl)-4-(4-cyanpyrazol-l-yl)-4,5- dihydro-l-pyrazolcarbonsäure-4-chloranilid mit dem logP (pH2) = 3,64.
Beispiel 2: (Verfahren b)
Zu einer Suspension von 0,2 g (5 mMol) Natriumhydrid (60 %ig in Mineralöl) in 20 ml Tetrahydrofuran gibt man bei 0°C 2,4 g 3-(4-Chloφhenyl)-4-(4-cyanpyrazol- l-yl)-4,5-dihydro-l-pyrazolcarbonsäure-4-trifluormethoxyanilid (5 mMol) und dann 1,2 g (10 mMol) Bromacetonitril. Das Gemisch wird 18 Stunden unter Rückfluss erhitzt und dann im Vakuum eingedampft. Den Rückstand versetzt man mit 50 ml Wasser und extrahiert das Reaktionsprodukt mit Essigsäureethylether. Die organische Phase wird über Natriumsulfat getrocknet und im Vakuum eingedampft. Den Rückstand reinigt man durch präparative HPLC.
Man erhält 0,15 g (6 % der Theorie) 3-(4-Chloφhenyl)-4-(cyanpyrazol-l-yl)-4,5- dihydro- 1 -pyrazolcarbonsäure-(N-cyanmethyl)-4 ' -trifluormethoxy anilid mit dem logP (pH2) = 3,68.
(Verfahren c)
Zu einer Mischung aus 2,7 g (10 mMol) 3-(4-Chloφhenyl)-4-(4-cyanpyrazol-l-yl)- 4,5-dihydro-lH-pyrazol (Bsp. II-l), 1,5 ml Triethylamin und 50 ml Methylenchlorid gibt man bei 0°C 2,78 g (10 mMol) N-Cyanomethyl-N-(4-trifluormethoxyphenyl)- carbamidsäurechlorid (Bsp. Va-1). Man rührt das Gemisch 18 Stunden bei Raumtemperatur nach und wäscht dann zweimal mit je 30 ml Wasser. Die organische Phase wird über Natriumsulfat getrocknet und im Vakuum eingedampft. Den Rückstand verrührt man mit Ethanol, saugt ab und wäscht mit Ethanol nach.
Man erhält so 4,05 g (79% d.Th.) 3-(4-Chloφhenyl)-4-(4-cyanpyrazol-l-yl)-4.5- dihydro-l-pyrazolcarbonsäure-(N-cyanmethyl-4-trifluormethoxyanilid mit dem logP
(pH2) = 3,68.
(Verfahren c, EintopfVerfahren)
Zu einer Lösung von 16 g (0,054 Mol) Triphosgen (Kohlensäure-bis-trichlormethyl- ester) in 100 ml Methylenchlorid tropft man bei 0°C eine Lösung von 34,56 g (0,16 Mol) N-Cyanomethyl-(4-trifluormethoxy)anilin (Bsp. XII-1) und 16,5 g (0,163 Mol) Triethylamin in 75 ml Methylenchlorid und rührt die Mischung eine halbe Stunde bei Raumtemperatur nach. Dazu tropft man eine Lösung von 43,4 g (0,16 Mol) 3-(4-Chlθφhenyl)-4-(4-cyanpyrazol-l-yl)-4,5-dihydro-lH-pyrazol (Bsp. II-l) und 16,5 g (0,163 Mol) Triethylamin in 75 ml Methylenchlorid. Das Gemisch wird 18 Stunden bei Raumtemperatur nachgerührt und dann zweimal mit je 100 ml Wasser gewaschen. Die organische Phase wird über Natriumsulfat getrocknet und im Vakuum eingedampft. Den Rückstand verrührt man mit Ethanol, saugt ab und wäscht mit Ethanol nach.
Man erhält so 65,3 g (79% d. Th.) 3-(4-Chlθφhenyl)-4-(4-cyanpyrazol-l-yl)-4,5- dihydro-l-pyrazolcarbonsäure-(N-cyanmethyl)-4-trifluormethoxyanilid mit dem logP (pH2) = 3,68.
Analog den Beispielen 1 und 2 bzw. gemäß den allgemeinen Angaben zur Herstellung werden die in der folgenden Tabelle 1 angegebenen Verbindungen der Formel (I) erhalten: Tabelle 1:
Herstellung der Ausgangsprodukte der Formel (II)
Beispiel (II-l):
Zu einer Lösung von 5 g (0,02 Mol) 2-(4-Cyanpyrazol-l-yl)-4'-chloracetophenon (Bsp. VI-1) in 50 ml Methylenchlorid gibt man bei Raumtemperatur 2,16 g (0,021 Mol) Bis-dimethylaminomethan und erhitzt die Mischung 18 Stunden unter Rückfluss. Dann destilliert man das Lösungsmittel im Vakuum ab und löst den Rückstand in 50 ml Ethanol. Nach Zugabe von 1,13 g (0,0226 Mol) Hydrazinhydrat wird das Reaktionsgemisch 3 Stunden bei 30°C gerührt. Das ausgefallene Produkt wird abgesaugt, mit etwas kaltem Ethanol und mit Wasser nachgewaschen.
Man erhält 3,3 g (61 % der Theorie) 3-(4-Chloφhenyl)-4-(4-cyanpyrazol-l-yl)-4,5- dihydro-lH-pyrazol mit dem logP (pH2) = 2,11.
Analog Beispiel (II-l) bzw. gemäß den allgemeinen Angaben zur Herstellung werden die in der folgenden Tabelle 2 angegebenen Verbindungen der Formel (II) erhalten:
Tabelle 2:
Herstellung der Ausgangsprodukte der Formel (V)
Beispiel (Va-1)
Zu einer Lösung von 10,4 g (0,105 Mol) Phosgen in 100 ml Toluol tropft man bei 0°C eine Lösung von 20,7 g (0,0958 Mol) N-Cyanomethyl-4-trifluormethoxyanilin (Bsp. XII-1) und 11,6 g (0,115 Mol) Triethylamin in 150 ml Toluol und rührt die Mischung 18 Stunden bei Raumtemperatur nach. Dann wird das überschüssige Phosgen ausgeblasen. Man wäscht mit Wasser, trocknet die organische Phase über Natriumsulfat und destilliert dann das Lösungsmittel im Vakuum ab.
Man erhält so 26,3 g (94% d.Th.) N-Cyanomethyl-N-(4-trifluormethoxy)phenyl- carbamoylchlorid mit dem Brechungsindex njj 1 ,4816.
Analog Beispiel (Va-1) bzw. gemäß den allgemeinen Angaben zur Herstellung werden die in der folgenden Tabelle 4 angegebenen Verbindungen der Formel (Va) erhalten:
Tabelle 3
Herstellung der Vorprodukte der Formel (VI)
Beispiel (VI- 1):
Eine Mischung aus 9,3 g (0,04 Mol) 2-Brom-4'-chloracetophenon, 3,9 g (0,042 Mol) 4-Cyanpyrazol (Herstellung s. JP H59-196868), 6,1 g (0,044 Mol) Kaliumcarbonat und 50 ml Acetonitril wird für 16 Stunden bei Raumtemperatur gerührt. Dann gibt man ca. 200 ml Wasser zum Reaktionsgemisch, saugt das ausgefallene Produkt ab und wäscht es mit Wasser nach. Man erhält 9,5 g (97 % der Theorie) 2-(4-Cyan- pyrazol-l-yl)-4'-chloracetophenon mit dem logP (pH2) = 2,20.
Beispiel (VI-2):
1. Stufe:
Eine Mischung aus 15 g (0,061 Mol) 2-(4-Cyanpyrazol-l-yl)-4'-chloracetophenon, 50 ml konzentrierter Salzsäure und 50 ml Essigsäure wird 5 Stunden unter Rückfluss gekocht. Dann verdünnt man das Reaktionsgemisch mit Wasser, saugt das ausgefallene Produkt ab und wäscht mit Wasser nach. Man erhält 14,4 g (89 % der Theorie) l-(4-Chloφhenacyl)-pyrazol-4-carbonsäure mit dem logP (pH2) = 1,67. 2. Stufe:
Zu einer Lösung von 7,9 g (0,03 Mol) l-(4-Chloφhenacyl)-pyrazol-4-carbonsäure in 50 ml Methylenchlorid gibt man 2 bis 3 Tropfen Dimethylformamid und dann 6 g (0,05 Mol) Thionylchlorid. Die Mischung wird 3 Stunden unter Rückfluss gekocht und dann im Vakuum eingedampft. Den Rückstand löst man in 30 ml Tetrahydro- furan und tropft diese Lösung in 30 ml Dimethylamin-Lösung (40 % in Wasser). Man rührt 2 Stunden bei Raumtemperatur nach und dampft dann das Lösungsmittel im Vakuum ab. Den Rückstand versetzt man mit 100 ml Wasser und extrahiert mit Essigsäureethylester. Die organische Phase wird über Natriumsulfat getrocknet und im Vakuum eingedampft. Man erhält 2,8g (32 % der Theorie) l-(4-Chloφhenacyl)- pyrazol-4-carbonsäuredimethylamid mit dem logP (pH2) = 1,62.
Analog den Beispielen (VI- 1) und (VI-2) bzw. gemäß den allgemeinen Angaben zur
Herstellung werden die in der folgenden Tabelle 3 angegebenen Verbindungen der Formel (VI) erhalten:
Tabelle 4:
Herstellung der Vorprodukte der Formel (XII)
Beispiel (XII- 1)
Zu einer Lösung von 44 g (0,25 Mol) 4-Trifluormethoxyanilin in 200 ml Essigsäure gibt man bei 15°C 7,9 g (0,26 Mol) Paraformaldehyd und tropft dann bei 15-20°C eine Lösung von 20,6 g (0,318 Mol) Kaliumcyanid in 50 ml Wasser zu. Die Mischung wird 18 Stunden bei 30°C gerührt. Dann destilliert man das Lösungsmittel im Vakuum ab, gibt zum Rückstand ca. 200 ml Wasser, saugt das ausgefallene Produkt ab und wäscht es mit gut Wasser nach.
Man erhält so 52,4 g (97% d.Th.) N-Cyanomethyl-4-trifluormethoxyanilin in Form farbloser Kristalle mit dem logP (ρH2) = 2,49.
Analog Beispiel (XII- 1) bzw. gemäß den allgemeinen Angaben zur Herstellung werden die in der folgenden Tabelle 5 angegebenen Verbindungen der Formel (XII) erhalten:
Tabelle 5:
Die Bestimmung der in den voranstehenden Tabellen und Herstellungsbeispielen angegebenen logP-Werte erfolgt gemäß EEC-Directive 79/831 Annex V.A8 durch HPLC (High Performance Liquid Chromatography) an einer Phasenumkehrsäule (C 18). Temperatur: 43 °C.
Die Bestimmung erfolgt im sauren Bereich bei pH 2.3 mit 0,1 % wässriger Phosphorsäure und Acetonitril als Eluenten; linearer Gradient von 10 % Acetonitril bis 90 % Acetonitril.
Die Eichung erfolgt mit unverzweigten Alkan-2-onen (mit 3 bis 16 Kohlenstoffatomen), deren logP-Werte bekannt sind (Bestimmung der logP-Werte anhand der Retentionszeiten durch lineare Inteφolation zwischen zwei aufeinanderfolgenden Alkanonen). Anwendungsbeispiele:
Beispiel A
Diabrotica -Test (Larven im Boden)
Lösungsmittel: 7 Gewichtsteile Dimethylformamid Emulgator: 2 Gewichtsteil Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit emulgatorhaltigem Wasser auf die gewünschte Konzentration.
Mit Erde gefüllte Töpfe werden mit der Wirkstoffzubereitung gegossen. Sofort nach dem Ansatz werden je Topf 5 Maiskörner ausgelegt und nach 3 Tagen die Diabrotica balteata-Larven auf den behandelten Boden gesetzt. Die angegebene Konzentration bezieht sich auf Wirkstoffmenge pro Volumeneinheit im Boden (mg/1).
Nach der gewünschten Zeit werden die aufgelaufenen Maispflanzen gezählt und der
Wirkungsgrad errecht. Dabei bedeutet 100 %, dass alle Maispflanzen aufgelaufen sind; 0 % bedeutet, dass keine Maispflanzen aufgelaufen sind.
Wirkstoffe, Wirkstoffkonzentration und Versuchsergebnisse gehen aus der folgenden Tabelle hervor. Tabelle A pflanzenschädigende Insekten
Diabrotica -Test
Wirkstoffe Wirkstoff Abtötungsgrad konzentration in % nach 10d m ppm
Beispiel B
Heliothis virescens-Test
Lösungsmittel: 30 Gewichtsteile Dimethylformamid
Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit emulgatorhaltigem Wasser auf die gewünschte Konzentration.
Sojatriebe (Glycine max) werden durch Tauchen in die Wirkstoffzubereitung der gewünschten Konzentration behandelt und mit Heliothis virescens-Raupen besetzt, solange die Blätter noch feucht sind.
Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Dabei bedeutet 100 %, dass alle Raupen abgetötet wurden; 0 % bedeutet, dass keine Raupen abgetötet wurden.
Wirkstoffe, Wirkstoffkonzentration und Versuchsergebnisse gehen aus der folgenden Tabelle hervor.
Tabelle B pflanzenschädigende Insekten
Heliothis virescens-Test
Wirkstoffe Wirkstoff Abtötungsgrad konzentration in % nach 7d in ppm
Tabelle B pflanzenschädigende Insekten
Heliothis virescens-Test
Wirkstoffe Wirkstoff Abtötungsgrad konzentration in % nach 7d in ppm
Beispiel C
Phaedon-Larven-Test
Lösungsmittel: 7 Gewichtsteile Dimethylformamid
Emulgator: 2 Gewichtsteil Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit emulgatorhaltigem Wasser auf die gewünschte
Konzentration.
Kohlblätter (Brassica oleracea) werden durch Tauchen in die Wirkstoffzubereitung der gewünschten Konzentration behandelt und mit Larven des Meerrettichblattkäfers (Phaedon cochleariae) besetzt, solange die Blätter noch feucht sind.
Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Dabei bedeutet 100 %, dass alle Käferlarven abgetötet wurden; 0 % bedeutet, dass keine Käferlarven abgetötet wurden.
Wirkstoffe, Wirkstoffkonzentration und Versuchsergebnisse gehen aus der folgenden Tabelle hervor.
Tabelle C pflanzenschädigende Insekten
Phaedon Larven-Test
Wirkstoffe Wirkstoff Abtötungsgrad konzentration in % nach 7d in ppm
Tabelle C pflanzenschädigende Insekten
Phaedon Larven-Test
Wirkstoffe Wirkstoff Abtötungsgrad konzentration in % nach 7d in ppm
Tabelle C pflanzenschädigende Insekten
Phaedon Larven-Test
Wirkstoffe Wirkstoff Abtötungsgrad konzentration in % nach 7d in ppm
Beispiel D
Plutella-Test
Lösungsmittel: 30 Gewichtsteile Dimethylformamid
Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit emulgatorhaltigem Wasser auf die gewünschte
Konzentration.
Kohlblätter (Brassica oleracea) werden durch Tauchen in die Wirkstoffzubereitung der gewünschten Konzentration behandelt und mit Raupen der Kohlschabe (Plutella xylostella) besetzt, solange die Blätter noch feucht sind.
Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Dabei bedeutet 100 %, dass alle Raupen abgetötet wurden; 0 % bedeutet, dass keine Raupen abgetötet wurden.
Wirkstoffe, Wirkstoffkonzentration und Versuchsergebnisse gehen aus der folgenden Tabelle hervor.
Tabelle D pflanzenschädigende Insekten
Plutella-Test
Wirkstoffe Wirkstoff Abtötungsgrad konzentration in % nach 7d in ppm
Tabelle D pflanzenschädigende Insekten
Plutella-Test
Wirkstoffe Wirkstoff Abtötungsgrad konzentration in % nach 7d in ppm
Beispiel E
Spodoptera exigua-Test
Lösungsmittel: 30 Gewichtsteile Dimethylformamid
Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit emulgatorhaltigem Wasser auf die gewünschte
Konzentration.
Kohlblätter (Brassica oleracea) werden durch Tauchen in die Wirkstoffzubereitung der gewünschten Konzentration behandelt und mit Raupen des Heerwurms (Spodoptera exigua) besetzt, solange die Blätter noch feucht sind.
Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Dabei bedeutet 100 %, dass alle Raupen abgetötet wurden; 0 % bedeutet, dass keine Raupen abgetötet wurden.
Wirkstoffe, Wirkstoffkonzentration und Versuchsergebnisse gehen aus der folgenden Tabelle hervor.
Tabelle E pflanzenschädigende Insekten
Spodoptera exigua-Test
Wirkstoffe Wirkstoff Abtötungsgrad konzentration in % nach 7d in ppm
Beispiel F
Spodoptera frugiperda-Test
Lösungsmittel: 30 Gewichtsteile Dimethylformamid
Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit emulgatorhaltigem Wasser auf die gewünschte Konzentration.
Kohlblätter (Brassica oleracea) werden durch Tauchen in die Wirkstoffzubereitung der gewünschten Konzentration behandelt und mit Raupen des Heerwurms (Spodoptera frugiperda) besetzt, solange die Blätter noch feucht sind.
Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Dabei bedeutet 100 %, dass alle Raupen abgetötet wurden; 0 % bedeutet, dass keine Raupen abgetötet wurden.
Wirkstoffe, Wirkstoffkonzentration und Versuchsergebnisse gehen aus der folgenden Tabelle hervor.
Tabelle F pflanzenschädigende Insekten Spodoptera frugiperda-Test
Wirkstoffe Wirkstoff Abtötungsgrad konzentration in % nach 7d in ppm
Tabelle F pflanzenschädigende Insekten Spodoptera frugiperda-Test
Wirkstoffe Wirkstoff Abtötungsgrad konzentration in % nach 7d in ppm
Tabelle F pflanzenschädigende Insekten Spodoptera frugiperda-Test
Wirkstoffe Wirkstoff Abtötungsgrad konzentration in % nach 7d in ppm
Beispiel G
Wirkungsdauertest: Heliothis virescens
Lösungsmittel: 4 Gewichtsteile Aceton
Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit emulgatorhaltigem Wasser auf die gewünschte Konzentration.
Baumwollpflanzen (Gossypium hirsutum) werden mit einer Wirkstoffzubereitung der gewünschten Konzentration gespritzt. Nach den angegebenen Tagen werden Heliothis virescens-Larven in Infektionskammern an die behandelten Blätter gesetzt.
Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Dabei bedeutet 100 %, dass alle Raupen abgetötet wurden; 0 % bedeutet, dass keine Raupen abgetötet wurden.
Wirkstoffe, Wirkstoffkonzentration und Versuchsergebnisse gehen aus der folgenden Tabelle hervor.
Tabelle G pflanzenschädigende Insekten
Wirkungsdauertest: Heliothis virescens
Wirkstoffe Wirkstoff Abtötungsgrad konzentration in % in ppm 7d nach Infektion
Beispiel H
Wirkungsdauertest: Spodoptera frugiperda
Lösungsmittel: 4 Gewichtsteile Aceton
Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit emulgatorhaltigem Wasser auf die gewünschte Konzentration.
Baumwollpflanzen (Gossypium hirsutum) werden mit einer Wirkstoffzubereitung der gewünschten Konzentration gespritzt. Nach den angegebenen Tagen werden Larven des Heerwurmes (Spodoptera frugiperda) in Infektionskammern an die behandelten
Blätter gesetzt.
Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Dabei bedeutet 100 %, dass alle Raupen abgetötet wurden; 0 % bedeutet, dass keine Raupen abgetötet wurden.
Wirkstoffe, Wirkstoffkonzentration und Versuchsergebnisse gehen aus der folgenden Tabelle hervor.
Tabelle H pflanzenschädigende Insekten
Wirkungsdauertest: Spodoptera frugiperda
Wirkstoffe Wirkstoff Abtötungsgrad konzentration in % in ppm 7d nach Infektion
Beispiel I
Diabrotica balteata - Test (Larven im Boden)
Grenzkonzentrations-Test / Bodeninsekten - Behandlung transgener Pflanzen
Lösungsmittel: 7 Gewichtsteile Dimethylformamid Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Ge- wichtsteil Wirkstoff mit der angegebenen Menge Lösungsmittel, gibt die angegebene
Menge Emulgator zu und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.
Die Wirkstoffzubereitung wird auf den Boden gegossen. Dabei spielt die Konzen- tration des Wirkstoffs in der Zubereitung praktisch keine Rolle, entscheidend ist allein die Wirkstoffgewichtsmenge pro Volumeneinheit Boden, welche in ppm (mg/1) angegeben wird. Man füllt den Boden in 0,25 1 Töpfe und lässt diese bei 20°C stehen.
Sofort nach dem Ansatz werden je Topf 5 vorgekeimte Maiskörner der Sorte YIELD
GUARD (Warenzeichen von Monsanto Comp., USA) gelegt. Nach 2 Tagen werden in den behandelten Boden die entsprechenden Testinsekten gesetzt. Nach weiteren 7 Tagen wird der Wirkungsgrad des Wirkstoffs durch Auszählen der aufgelaufenen Maispflanzen bestimmt (1 Pflanze = 20 % Wirkung). Beispiel J
Heliothis virescens - Test (Behandlung transgener Pflanzen)
Lösungsmittel: 7 Gewichtsteile Dimethylformamid
Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit der angegebenen Menge Lösungsmittel und der angegebe- nen Menge Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte
Konzentration.
Sojatriebe (Glycine max) der Sorte Roundup Ready (Warenzeichen der Monsanto Comp. USA) werden durch Tauchen in die Wirkstoffzubereitung der gewünschten Konzentration behandelt und mit der Tabakknospenraupe Heliothis virescens besetzt, solange die Blätter noch feucht sind.
Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Dabei bedeutet 100 %, dass alle Raupen abgetötet wurden; 0 % bedeutet, dass keine Raupen abgetötet wurden.
Beispiel K
Blowfly-Larven-Test / Entwicklungshemmende Wirkung
Testtiere: Lucilia cuprina-Larven
Lösungsmittel: Dimethylsulfoxid
20 mg Wirkstoff werden in 1 ml Dimethylsulfoxid gelöst, geringere Konzentrationen werden durch Verdünnen mit destilliertem Wasser hergestellt.
Etwa 20 Lucilia cuprina-Larven werden in ein Teströhrchen gebracht, welches ca. 1 cm3 Pferdefleisch und 0.5 ml der zu testende Wirkstoffzubereitung enthält. Nach 24 h und 48 h wird die Wirksamkeit der Wirkstoffzubereitung ermittelt. Die Teströhrchen werden anschließend in Becher mit Sand-bedecktem Boden überfuhrt. Nach weiteren 2 Tagen werden die Teströhrchen entfernt und die Puppen ausgezählt.
Die Wirkung der Wirkstoffzubereitung wird nach der Zahl der geschlüpften Fliegen nach 1.5-facher Entwicklungsdauer einer unbehandelten Kontrolle beurteilt. Dabei bedeutet 100 %, dass keine Fliegen geschlüpft sind; 0 % bedeutet, dass alle Fliegen normal geschlüpft sind.
Wirkstoffe, Wirkstoffkonzentration und Versuchsergebnisse gehen aus der folgenden Tabelle hervor.
Tabelle K-l Blowfly-Larven-Test / Entwicklungshemmende Wirkung
Wirkstoffe Konzentration in Wirkung/ ppm Abtötung in % nach 48 h
Tabelle K-l Blowfly-Larven-Test / Entwicklungshemmende Wirkung
Wirkstoffe Konzentration in Wirkung/ ppm Abtötung in % nach 48 h
Tabelle K-2 Blowfly-Larven-Test / Entwicklungshemmende Wirkung
Wirkstoffe Konzentration in Wirkung/ ppm Abtötung in % nach 14 d
Tabelle K-2 Blowfly-Larven-Test / Entwicklungshemmende Wirkung
Wirkstoffe Konzentration in Wirkung/ ppm Abtötung in % nach 14 d
Beispiel L
Test mit Boophilus microplus resistent/SP-resistenter Parkhurst-Stamm
Testtiere: adulte gesogene Weibchen
Lösungsmittel: Dimethylsulfoxid
20 mg Wirkstoff werden in 1 ml Dimethylsulfoxid gelöst. Geringere Konzentrationen werden durch Verdünnen in demselben Lösungsmittel hergestellt.
Der Test wird in 5-fach-Bestimmung durchgeführt. 1 μl der Lösungen wird in das Abdomen injiziert, die Tiere werden in Schalen überführt und in einem klimatisierten Raum aufbewahrt. Die Wirkungskontrolle erfolgt nach 7 Tagen auf Ablage fertiler Eier. Eier, deren Fertilität nicht äußerlich sichtbar ist, werden in Glasröhrchen bis zum Larvenschlupf im Klimaschrank aufbewahrt. Eine Wirkung von 100 % bedeutet, dass keine Zecke fertile Eier gelegt hat.
Wirkstoffe, Wirkstoffkonzentration und Versuchsergebnisse gehen aus der folgenden Tabelle hervor.
Tabelle L Test mit Boophilus microplus resistent/SP-resistenter Parkhurst-Stamm
Wirkstoffe Konzentration μg Wirkung/ Tier Abtötung in %
Beispiel M
Test mit Fliegen (Musca domestica)
Testtiere: adulte Musca domestica, Stamm Reichswald (OP, SP,
Carbamat-resistent) Lösungsmittel: Dimethylsulfoxid
20 mg Wirkstoff werden in 1 ml Dimethylsulfoxid gelöst. Geringere Konzentratio- nen werden durch Verdünnen mit destilliertem Wasser hergestellt.
2 ml dieser Wirkstoffzubereitung werden auf Filteφapierschalen (0 9.5 cm) pipet- tiert, die sich in Petrischalen entsprechender Größe befinden. Nach Trocknung der Filterscheiben werden 25 Testtiere in die Petrischalen überführt und abgedeckt.
Nach 1, 3, 5, 24 und 48 Stunden (oder nach den in den unten stehenden Tabellen angegebenen Zeiten) wird die Wirksamkeit der Wirkstoffzubereitung ermittelt. Dabei bedeutet 100 %, dass alle Fliegen abgetötet wurden, 0 % bedeutet, dass keine Fliege abgetötet wurde.
Wirkstoffe, Wirkstoffkonzentration und Versuchsergebnisse gehen aus der folgenden Tabelle hervor.
Tabelle M Test mit Fliegen (Musca domestica)
Wirkstoffe Konzentration in Wirkung/ ppm Abtötung in %
Beispiel N
Schabentest
Testtiere: Periplaneta americana Lösungsmittel: Dimethylsulfoxid
20 mg Wirkstoff werden in 1 ml Dimethylsulfoxid gelöst. Geringere Konzentrationen werden durch Verdünnen mit destilliertem Wasser hergestellt.
4 Testtiere werden in die zu testende Wirkstoffzubereitung 1 Minute getaucht. Nach Überführung in Plastikbecher und 7 Tagen Aufbewahrung in einem klimatisierten Raum wird der Abtötungsgrad bestimmt. Dabei bedeutet 100 %, dass alle Schaben abgetötet wurden, 0 % bedeutet, dass keine Schaben abgetötet wurde.
Wirkstoffe, Wirkstoffkonzentration und Versuchsergebnisse gehen aus der folgenden Tabelle hervor.
Tabelle N Schabentest
Wirkstoffe Konzentration in Wirkung/ ppm Abtötung in %
Tabelle N Schabentest
Wirkstoffe Konzentration in Wirkung/ ppm Abtötung in %

Claims

Patentansprüche
Pyrazolin-Derivate der Formel (I),
R1 für Cyano, Alkoxycarbonyl, Carbamoyl, Thiocarbamoyl, Alkylamino- carbonyl oder Dialkylaminocarbonyl steht,
R2 für Halogen, Halogenalkyl, Alkoxy, Halogenalkoxy, Alkylthio, Halo- genalkylthio, Alkylsulfonyl, Halogenalkylsulfinyl, Halogenalkylsulfonyl oder Cyano steht,
R3 für Halogen, Halogenalkyl, Alkoxy, Halogenalkoxy, Alkylthio, Halo- genalkylthio, Halogenalkylsulfinyl, Halogenalkylsulfonyl oder Cyano steht und
R4 für Wasserstoff, Cyanomethyl oder Alkoxycarbonyl steht.
Pyrazolin-Derivate der Formel (I) gemäß Anspruch 1 , in welcher
R1 für Cyano, Cj-C4-Alkoxy-carbonyl, Carbamoyl, Thiocarbamoyl, Cr C -Alkylamino-carbonyl oder Di-C1-C4-Alkylamino-carbonyl steht, R2 für Fluor, Chlor, Brom, Iod; Cj -C4-Halogenalkyl, Cι-C4-Halogen- alkoxy, C1-C4- Alkylthio, Cι-C -Halogenalkylthio, C1-C4-Alkylsul- fonyl, Cι-C4~Halogenalkylsulfonyl oder Cyano steht,
R3 für Fluor, Chlor, Brom, Iod; Cj ^-Halogenalkyl, C1-C4- Halogenalkoxy, Cι-C4-Halogenalkylthio, Cι-C4-Halogenalkylsul- finyl, Oj ^-Halogenalkylsulfonyl oder Cyano steht und
R4 für Wasserstoff, Cyanomethyl oder Cι-C4-Alkoxy-carbonyl steht.
Pyrazolin-Derivate der Formel (I) gemäß Anspruch 1 , in welcher
R1 für Cyano, Cι-C4-Alkoxy-carbonyl, Carbamoyl, Thiocarbamoyl, C C -Alkylamino-carbonyl oder Di- Cι-C2-Alkylamino-carbonyl steht,
R2 für Fluor, Chlor, Brom, Iod, Cyano; CrC2- Alkylthio, CrC2-
Alkylsulfonyl sowie für Cι-C2-Halogenalkyl, Cι-C2-Halogenalkoxy,
C C - Halogenalkylthio oder Cι-C2-Halogenalkylsulfonyl mit jeweils 1 bis 5 gleichen oder verschiedenen Halogenatomen aus der Reihe Fluor, Chlor und Brom steht,
R3 für Chlor, Brom, Iod, Cyano; sowie für C]-C2-Halogenalkyl, Cι-C2-
Halogenalkoxy, C j -C2-Halogenalkylthio, C 1 -C2-Halogenalkylsulfinyl oder C1-C2-Halogenalkylsulfonyl mit jeweils 1 bis 5 gleichen oder verschiedenen Halogenatomen aus der Reihe Fluor, Chlor und Brom steht und
R4 für Wasserstoff, Cyanomethyl oder C1-C -Alkoxy-carbonyl steht.
Pyrazolin-Derivate der Formel (I) gemäß Anspruch 1, in welcher
R1 für Cyano steht. Verfahren zum Herstellen von Pyrazolin-Derivaten der Formel (I) gemäß Anspruch 1, dadurch gekennzeichnet, dass man
a) Pyrazoline der Formel (II)
in welcher
R1 und R2 die in Anspruch 1 angegebenen Bedeutungen haben,
mit Isocyanaten der Formel (III)
in welcher
R3 die in Anspruch 1 angegebenen Bedeutungen hat,
gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Katalysators umsetzt; und
b) gegebenenfalls die so erhaltenen erfindungsgemäßen Pyrazolin-Derivate der Formel (Ia)
R1, R2 und R3 die in Anspruch 1 angegebenen Bedeutungen haben,
mit Halogeniden der Formel (IV) Hai1— R4 (IV) in welcher
R4 die in Anspruch 1 angegebenen Bedeutungen hat und
Hai1 für Halogen steht,
gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart einer Base umsetzt, oder
c) Pyrazolin-Derivate der Formel (Ib)
in welcher
R1, R2 und R3 die in Anspruch 1 angegebenen Bedeutungen haben,
erhält, indem man
Pyrazoline der Formel (II)
in welcher
R1 und R2 die in Anspruch 1 angegebenen Bedeutungen haben,
mit Carbamidsäurechloriden der Formel (V)
in welcher
R3 die in Anspruch 1 angegebenen Bedeutungen hat,
in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart einer Base umsetzt.
6. Schädlingsbekämpfungsmittel, gekennzeichnet durch einen Gehalt an mindestens einer Verbindung der Formel (I) gemäß Anspruch 1 neben Streckmitteln und/oder oberflächenaktiven Stoffen.
7. Verwendung von Verbindungen der Formel (I) gemäß Anspruch 1 zur Bekämpfung von Schädlingen.
Verfahren zur Bekämpfung von Schädlingen, dadurch gekennzeichnet, dass man Verbindungen der Formel (I) gemäß Anspruch 1 auf Schädlinge und/oder ihren Lebensraum einwirken lässt.
Verfahren zur Herstellung von Schädlingsbekämpfungsmitteln, dadurch gekennzeichnet, dass man Verbindungen der Formel (I) gemäß Anspruch 1 mit Streckmitteln und/oder oberflächenaktiven Stoffen vermischt.
10. Pyrazoline der Formel (II)
in welcher
R1 und R2 die in Anspruch 1 angegebenen Bedeutungen haben.
11. Verfahren zum Herstellen von Pyrazolinen der Formel (II) gemäß Anspruch 10, dadurch gekennzeichnet, dass man
d) substituierte Acetophenone der Formel (VI) in welcher
R1 und R2 die in Anspruch 1 angegebenen Bedeutungen haben,
in einer ersten Stufe mit Bis-dialkylaminomethanen der Formel (VII)
(Alk)2N-CH— N(Alk)2 (VH)
in welcher
Alk für C j -C4- Alkyl steht,
in Gegenwart eines inerten, organischen Lösungsmittels (vorzugs- weise Halogenkohlenwasserstoffen) bei Temperaturen zwischen 0°C und 120°C, vorzugsweise zwischen 20°C und 80°C, umsetzt und die dabei entstehenden Dialkylaminoalkylketone der Formel (VIII)
in welcher
R1 und R2 die in Anspruch 1 angegebenen Bedeutungen haben und
Alk die oben angegebenen Bedeutungen hat, gegebenenfalls isoliert und in einer zweiten Stufe mit Hydrazin- (hydrat) in Gegenwart eines inerten, organischen Lösungsmittels (vorzugsweise Alkohole) bei Temperaturen zwischen 0°C und 80°C, vorzugsweise zwischen 20°C und 50°C, umsetzt.
12. Carbamidsäurechloride der Formel (Va)
in welcher
R7 für Halogenalkyl, Halogenalkoxy oder Halogenalkylthio steht.
13. Verfahren zum Herstellen von substituierten Carbamidsäurechloride der Formel (Va) gemäß Anspruch 12, dadurch gekennzeichnet, dass man
g) Cyanomethylaniline der Formel (XII)
in welcher
R7 die in Anspruch 12 angegebenen Bedeutungen hat,
mit Phosgen in Gegenwart eines inerten organischen Verdünnungsmittels und in Gegenwart einer Base bei Temperaturen zwischen -10°C und +120°C umsetzt, wobei das Phosgen in geringem Uberschuss eingesetzt werden kann.
14. Substituierte Acetophenone der Formel (VI)
in welcher
R1 und R2 die in Anspruch 1 angegebenen Bedeutungen haben.
15. Verfahren zum Herstellen von substituierten Acetophenonen der Formel (VI) gemäß Anspruch 14, dadurch gekennzeichnet, dass man
d) Halogenacetophenone der Formel (IX)
in welcher
R2 die in Anspruch 1 angegebenen Bedeutungen hat und
Hai2 für Halogen steht,
mit Pyrazolen der Formel (X)
R1
N (X) I H in welcher R1 die in Anspruch 1 angegebenen Bedeutungen hat,
in Gegenwart einer organischen oder anorganischen Base und gegebenenfalls in Gegenwart eines inerten, organischen Lösungsmittels, bei Temperaturen zwischen 0°C und 100°C, vorzugsweise zwischen 20°C und 80°C umsetzt.
16. Cyanomethylaniline der Formel (XII)
in welcher
R7 für Halogenalkyl, Halogenalkoxy oder Halogenalkylthio steht.
17. Verfahren zum Herstellen von substituierten Cyanomethylanilinen der Formel
(XII) gemäß Anspruch 16, dadurch gekennzeichnet, dass man
h) Aniline der Formel (XIII)
in welcher
R7 die in Anspruch 16 angegebenen Bedeutungen hat,
in Gegenwart von Essigsäure mit Paraformaldehyd und Alkalimetallcyanid bei Temperaturen zwischen 20°C und 60°C umsetzt. Pyrazolin-Derivate
Zusammenfassung
Neue Pyrazolin-Derivate der Formel (I)
in welcher
R1, R2, R3 und R4 die in der Beschreibung angegebenen Bedeutungen haben,
mehrere Verfahren zur Herstellung dieser Stoffe und deren Verwendung zur Bekämpfung von Schädlingen, sowie neue Zwischenprodukte und Verfahren zu deren Herstellung.
EP02758322A 2001-07-20 2002-07-08 Pyrazolin-derivate und ihre verwendung als schädlingsbekämpfungsmittel Withdrawn EP1412334A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10135551 2001-07-20
DE10135551A DE10135551A1 (de) 2001-07-20 2001-07-20 Pyrazolin-Derivate
PCT/EP2002/007569 WO2003010148A1 (de) 2001-07-20 2002-07-08 Pyrazolin-derivate und ihre verwendung als schädlingsbekämpfungsmittel

Publications (1)

Publication Number Publication Date
EP1412334A1 true EP1412334A1 (de) 2004-04-28

Family

ID=7692609

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02758322A Withdrawn EP1412334A1 (de) 2001-07-20 2002-07-08 Pyrazolin-derivate und ihre verwendung als schädlingsbekämpfungsmittel

Country Status (9)

Country Link
US (1) US20090143454A1 (de)
EP (1) EP1412334A1 (de)
JP (1) JP2005504748A (de)
KR (1) KR20040022453A (de)
CN (1) CN1271058C (de)
BR (1) BR0211337A (de)
DE (1) DE10135551A1 (de)
MX (1) MXPA04000537A (de)
WO (1) WO2003010148A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10206791A1 (de) * 2002-02-19 2003-08-28 Bayer Cropscience Ag Substituierte 4-Pyrazolyl-pyrazoline
DE10257080A1 (de) * 2002-12-06 2004-06-24 Bayer Cropscience Ag Substituierte Pyrazolincarboxanilide
WO2007080430A1 (en) * 2006-01-16 2007-07-19 Generics [Uk] Limited Novel process
US10743535B2 (en) 2017-08-18 2020-08-18 H&K Solutions Llc Insecticide for flight-capable pests
CN113679716B (zh) 2021-10-13 2024-03-26 史大永 溴酚-吡唑啉化合物在治疗猫冠状病毒疾病中的应用

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3991073A (en) * 1972-02-09 1976-11-09 U.S. Philips Corporation Pyrazoline compounds having insecticidal activity
US3992073A (en) * 1975-11-24 1976-11-16 Technical Wire Products, Inc. Multi-conductor probe
DE4032089A1 (de) * 1990-01-24 1991-07-25 Bayer Ag Substituierte pyrazolinderivate
DE4117076A1 (de) * 1991-05-25 1992-11-26 Bayer Ag Substituierte 4-hetaryl-pyrazoline
DE4141187A1 (de) * 1991-12-13 1993-06-17 Bayer Ag Verfahren zur herstellung von substituierten pyrazolinen
US5338856A (en) * 1992-08-17 1994-08-16 Dowelanco 3,4-N,trisubstituted-4,5-dihydro-1H-pyrazole-1-carboxamides and their use as insecticides
DE4336307A1 (de) * 1993-10-25 1995-04-27 Bayer Ag Substituiertes Pyrazolinderivat
DE4416112A1 (de) * 1994-05-06 1995-11-09 Bayer Ag Substituierte Tetrahydropyrazole

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03010148A1 *

Also Published As

Publication number Publication date
CN1555363A (zh) 2004-12-15
DE10135551A1 (de) 2003-01-30
CN1271058C (zh) 2006-08-23
JP2005504748A (ja) 2005-02-17
US20090143454A1 (en) 2009-06-04
WO2003010148A1 (de) 2003-02-06
MXPA04000537A (es) 2004-07-07
BR0211337A (pt) 2004-09-28
KR20040022453A (ko) 2004-03-12

Similar Documents

Publication Publication Date Title
EP1523472A1 (de) Cis-alkoxysubstituierte spirocyclische 1-h-pyrrolidin-2,4-dion-derivate als schädlingsbekämpfungsmittel
WO2003059903A2 (de) Substituierte 4-aminopyridin-derivate als schädlingsbekämpfungsmittel
EP1363905A1 (de) Pyrazolylpyrimidine
WO2003024220A1 (de) Delta 1-pyrroline als schädlingsbekämpfungsmittel
WO2002067684A1 (de) Pyridylpyrimidine als schädlingsbekämpfungsmittel
EP1359803B1 (de) Synergistische pestizide mischungen gegen tierische schädlinge
WO2002062807A1 (de) Phthalsäurediamide, ein verfahren zu ihrer herstellung und ihre verwendung als schädlingsbekämpfungsmittel
WO2001085705A1 (de) Substituierte n-benzoyl-n&#39;-(tetrazolylphenyl)-harnstoffe und ihre verwendung als schädlingsbekämpfungsmittel
WO2003064385A2 (de) Delta1-pyrroline und deren verwendung als schädlingsbekämpfungsmittel
WO2003064386A1 (de) Delta1-pyrroline als schädlingsbekämpfungsmittel
EP1412334A1 (de) Pyrazolin-derivate und ihre verwendung als schädlingsbekämpfungsmittel
WO2003010162A1 (de) Tetrahydropyridazin-derivate und ihre verwendung als pestizide
WO2003004464A2 (de) Heterozyklische amidderivate und deren verwendung als schädlingsbekämpfungsmittel
WO2002076978A1 (de) Δ1-pyrroline
EP1444221A1 (de) Halogen-nitro-butadiene zur bekämpfung von tierischen schädlingen
WO2002064561A1 (de) Delta1-pyrroline zur bekämpfung von schädlingen
WO2003059887A1 (de) Substituierte pyrazoline als schädlingsbekämpfunsmittel
EP1322608A1 (de) Delta1-pyrroline als pestizide
EP1474418A1 (de) Substituierte 4-hetaryl-pyrazoline als schädlingsbekämpfungsmittel
WO2002096872A1 (de) Substituerte imidate als scädlingsbekämpfungsmittel
EP1448549A1 (de) Delta1 -pyrroline
WO2003070724A1 (de) Substituierte 4-pyrazolil-pyryzoline als schädlingskämpungsmittel
WO2003040092A2 (de) Δpyrroline
WO2003016293A1 (de) Oxadiazolyl-u. thiadiazolyl-benzoylharnstoffe und ihre verwendung als schädlingsbekämpfungsmittel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040220

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17Q First examination report despatched

Effective date: 20040908

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20080704