EP1401757B1 - Method for preventing an inadmissibly high speed of the load receiving means of an elevator - Google Patents

Method for preventing an inadmissibly high speed of the load receiving means of an elevator Download PDF

Info

Publication number
EP1401757B1
EP1401757B1 EP02732317A EP02732317A EP1401757B1 EP 1401757 B1 EP1401757 B1 EP 1401757B1 EP 02732317 A EP02732317 A EP 02732317A EP 02732317 A EP02732317 A EP 02732317A EP 1401757 B1 EP1401757 B1 EP 1401757B1
Authority
EP
European Patent Office
Prior art keywords
speed
load receiving
elevator
receiving means
monitoring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02732317A
Other languages
German (de)
French (fr)
Other versions
EP1401757B2 (en
EP1401757A1 (en
Inventor
Philipp Angts
Romeo Deplazes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inventio AG
Original Assignee
Inventio AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8184004&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1401757(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Inventio AG filed Critical Inventio AG
Priority to EP02732317A priority Critical patent/EP1401757B2/en
Publication of EP1401757A1 publication Critical patent/EP1401757A1/en
Application granted granted Critical
Publication of EP1401757B1 publication Critical patent/EP1401757B1/en
Publication of EP1401757B2 publication Critical patent/EP1401757B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/34Details, e.g. call counting devices, data transmission from car to control system, devices giving information to the control system
    • B66B1/36Means for stopping the cars, cages, or skips at predetermined levels
    • B66B1/44Means for stopping the cars, cages, or skips at predetermined levels and for taking account of disturbance factors, e.g. variation of load weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/24Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
    • B66B1/28Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical
    • B66B1/285Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical with the use of a speed pattern generator

Definitions

  • the invention relates to a method for preventing an impermissibly high travel speed of the load-receiving means of an elevator.
  • Conventional lifts are equipped with a safety gear which, if the travel speed of the load handling device exceeds a defined speed limit, is activated by a speed limiter and brakes and stops the load handling device with the maximum delay.
  • No. 6,170,614 B1 discloses an electronic speed limiting system which continuously receives information from a position-measuring device about the current position of the load-receiving device and calculates from it its current speed. This current speed is constantly compared by a microprocessor with fixed programmed limit values which are constant over the entire driving range and which are assigned to specific operating modes of the elevator, for example an ascending or descending run. If the current speed of the lifting device exceeds the currently active limit, the electronic speed limiting system activates an electromagnetically operated safety gear that stops the load handling device.
  • the electronic speed limit system described has significant disadvantages. Each detected exceeding of the active limit leads to the triggering of the safety gear and thus to an interruption of the operation of the elevator, wherein in most cases the passengers can not leave the elevator before a skilled person has put the elevator back in operation or has brought the load handling device in the area of access. Any over-speeding thus results in a braking of the load-handling device with deceleration values in the maximum permissible range, which is very unpleasant for the passengers, causing anxiety and even frail persons can cause injury.
  • the present invention has for its object to provide a method for preventing an inadmissibly high speed of the lifting device of an elevator, with the help of which in some cases of detected overspeed interruptions can be avoided, passengers never included in the elevator and only in the extreme emergency of Exposure to the strong deceleration to be suspended by a safety gear.
  • a specific braking measure is triggered by the speed monitoring device when a speed limit assigned to this particular braking measure is exceeded.
  • a further braking measure is triggered in each case if a preceding braking measure has not led to a defined speed reduction within a defined time.
  • a safety-relevant particularly advantageous development of the invention is achieved in that in each case a further braking action is triggered when a braking action associated with this speed limit is exceeded, or if a previous braking action has not led within a defined time to a defined speed reduction. Both criteria are monitored simultaneously, and a further braking action is activated if one of the two criteria is met.
  • a particularly advantageous embodiment of the method according to the invention results from the fact that one of the braking measures is that the speed monitoring device attempts to influence the speed control device in such a way that it reduces the drive speed of the load receiving means.
  • a particularly simple and expedient proves to be an embodiment of the method described above, in which the reduction of the drive speed of the load receiving means is to be achieved by applying a fixed stored speed setpoint to a setpoint input of the speed control device.
  • advantageous braking measures are that the speed monitoring device increasingly restricts the flow of a hydraulic medium via a separate flow valve or activates a friction brake acting on a piston rod of a hydraulic lifter, thereby reducing or reducing the travel speed of the lifting device to be shut down.
  • one of the braking measures is that a safety device is provided by the speed monitoring device is activated, which is attached to the load-carrying means and, when activated, acting on along the guideway permanently installed rails and the load handling device is stopped.
  • a particularly advantageous embodiment of the method according to the invention is that the speed limit values associated with the individual braking measures, with which the speed monitoring device continuously compares the current driving speed, are dependent on the current position of the load receiving means and include a reduction of the driving speed required in both end regions of the travel path. Moreover, these speed limits may also depend on a particular mode of operation (e.g., ramp travel, inspection, fault mode, etc.). This eliminates the need for conventional deceleration, control devices in both end regions of the travel path of the lifting device. In addition, so that the buffers that prevent in conventional lifts a hard impact of the lifting device at the lower and upper end of the track can be omitted or built much smaller, since the caused by the control delay of the lifting device is monitored safety relevant in the end of the route.
  • a particular mode of operation e.g., ramp travel, inspection, fault mode, etc.
  • the speed limit values assigned to the individual braking measures, with which the speed monitoring device continuously compares the current driving speed are defined and electronically defined, for example in tables, for each position of the load receiving means on its travel path, possibly in dependence on a currently activated special operating mode. saved.
  • the permanently stored position-dependent speed limits give the inventive method a high reliability.
  • a further advantageous refinement of the method results from the fact that the speed limit values associated with the individual braking measures, with which the speed monitoring device continuously compares the current driving speed, are continuously calculated in accordance with the current position of the load receiving means by a microprocessor integrated in the speed monitoring device.
  • An additional advantageous development of the invention consists in the elevator automatically resuming normal operation or an evacuation mode following a successful braking action triggered by overspeed, if the type of last braking measure and the results of an automatically performed functional check of the safety-relevant components permit this.
  • a particularly preferred embodiment of the method according to the invention is that all the functions involved in this method take place using fail-safe concepts.
  • Such concepts include, for example, redundant position and / or speed measuring devices, actuators for activating brake devices in fail-safe design, data backup data transfer methods, redundant data processing by several, possibly different processors with comparison of results, etc.
  • suitable safety measures are taken triggered.
  • Fig. 1A shows schematically an elevator system with cable drive.
  • An elevator shaft 1 with a machine room 2 and storey accesses 3 can be seen.
  • a drive unit 4 is arranged which carries and drives a lift cage (load-carrying means) 8 guided on guide rails 7 via a traction sheave 5 and carrying cables 6.
  • the drive unit 4 has a drive motor 9 with an electromechanical drive brake 10.
  • Direction of rotation, speed and drive torque of the drive motor 9 are controlled by a speed control device 14, wherein the speed control device receives control commands from an elevator control 15.
  • the speed control device receives control commands from an elevator control 15.
  • two electromagnetically activated safety gear 18 are mounted, with which the elevator car 8 can be braked and stopped in case of emergency.
  • Denoted at 20 is a scale extending over the entire travel path of the elevator car 8, which has a plurality of binary coded parallel code tracks. These code tracks are scanned by a position detection device 21 fixed to the elevator car 8, which continuously decodes the current absolute position of the elevator car 8 from the binary signal states and transmits these to the elevator control 15. By differentiating the position value differences over time, the current travel speed of the elevator car 8 is calculated in the elevator control 15, which serves, inter alia, as actual value feedback for the speed control device 14 of the drive motor 9.
  • a speed monitoring device 24 has the task of detecting an impermissibly high driving speed of the elevator car 8 and if necessary to initiate suitable countermeasures. Elevator control 15, speed control device 14 and speed monitoring device 24 are connected to each other according to FIG.
  • Fig. 1B shows schematically an elevator system with hydraulic drive.
  • an elevator shaft 1 with a machine room 2 and floor access 3.
  • a hydraulic drive unit 50 is arranged, which drives the piston rod 52 of a hydraulic jack 51, which has a deflection roller 53 at its upper end.
  • suspension cables 54 which are each secured with its one end to a fixed point 55 on the lifter 51 and carry with its other end an elevator car (load-carrying means) 8 and drive, which is guided on guide rails 7.
  • the drive unit 50 is equipped with a speed control device 14, which determines, for example via a variable displacement pump 56, the amount and direction of the oil flow which moves the hydraulic lifter 51, wherein the speed control device 14 receives control commands from an elevator control 15.
  • two electromagnetically activated safety gear 18 are mounted, with which the elevator car 8 can be braked and stopped in emergencies, for example in a suspension rope break.
  • an electromagnetically activatable, acting on the piston rod 52 clamp brake 58 is attached. From detail X it can be seen that between the caliper brake 58 and the piston rod 52, when the magnet 59 is de-energized, a braking force can be generated by the force of a compression spring 60. This braking force is able to brake the elevator car 8, for example, in the case of failure of the speed control of the hydraulic drive.
  • the magnet 59 is controlled by the speed monitor 24.
  • the hydraulic drive unit 50 has, among other valves on a safety flow valve 61 which can be activated by the speed monitor 24 at detected overspeed of the elevator car 8, the safety flow valve in such a case, the oil flow is continuously reduced so that the elevator car 8 with is decelerated defined delay.
  • Denoted at 20 is a scale extending over the entire travel path of the elevator car 8, which has a plurality of binary coded parallel code tracks. These code tracks are scanned by a position detection device 21 fixed to the elevator car 8, which continuously decodes the current absolute position of the elevator car 8 from the binary signal states and transmits these to the elevator control 15.
  • the current travel speed of the elevator car 8 is calculated in the elevator control 15, which serves, inter alia, as actual value feedback for the speed control device 14 of the drive motor 9.
  • a speed monitoring device 24 has the task of detecting an impermissibly high driving speed of the elevator car 8 and if necessary to initiate suitable countermeasures. Elevator control 15, speed control device 14 and speed monitoring device 24 are connected to each other according to FIG. 1B via signal and / or data lines, which does not exclude that these devices can be integrated together in a larger unit. The data and signal transmission between these devices on the one hand and the position detection device 21 and the safety gears 18 on the other hand takes place via a suspension cable 25 rolling down below the elevator car 8.
  • Fig. 2 shows a diagram, the vertical axis of the track (Position in the shaft) and its horizontal axis represent the traveling speed of the elevator car 8, which illustrates the relationship between the speed profile during normal driving and the speed limit values monitored by the speed monitor 24.
  • Entered are a curve with a normal driving speed curve 27 in a journey with intermediate stop and a speed limit curve 28, which also includes the mandatory in both Fahrweg end areas speed reduction.
  • the values of the speed limit curve 28 are in this embodiment for each position of the elevator car 8 in the elevator shaft 1 fixed in the speed monitoring device 24, for example in the form of a table, programmed.
  • a speed limit curve 28 or a plurality of different speed limit curves 28 associated with different braking actions are stored.
  • special operating modes eg ramp travel, inspection, fault mode, etc.
  • Fig. 3 shows a same diagram as Fig. 2, but with the speed limit curve 28 in the area between the track end areas additionally incorporating the speed course when stopping on intermediate storeys.
  • the limits for these ranges are continuously calculated in the speed monitor 24 based on speed setpoint information provided by the elevator controller 15.
  • speed limit curves with different permissible deviations can be used and, depending on possibly activated special operating modes (eg ramp travel), Inspection, fault mode etc), also run differently, but this is not shown here.
  • FIG. 4 and 5 show in the way / speed diagram the sequence of the inventive method with only a single speed limit curve.
  • Fig. 4 at 27 (for comparison) a curve with a normal driving speed course and at 28 the speed limit curve is shown.
  • a registered actual speed 29 runs in such a way that it exceeds the speed limit curve 28 outside of the travel end regions at curve point 30.
  • the speed monitoring device 24.1 recognizes this and activates a first braking measure, ie in the present example it tries to cause the speed control device 14 to reduce the drive speed with a predefined delay in accordance with the controller brake curve 33.
  • This first braking measure does not necessarily lead to the standstill of the elevator.
  • the elevator can continue its travel as scheduled. After a defined short time, which is measured from the moment of activation of the first braking measure, checks the speed monitor 24.1, if the speed limit curve 28 is still exceeded, and optionally activates (at curve point 31) a second braking action (the mechanical drive brake 10 on the drive motor 9 in Fig. 1A or acting on the piston rod 52 pliers brake 58 in Fig. 1B), whereby the elevator according to the drive brake curve 34 is to be braked.
  • a second braking action the mechanical drive brake 10 on the drive motor 9 in Fig. 1A or acting on the piston rod 52 pliers brake 58 in Fig. 1B
  • the speed monitoring device 24.1 recognizes that the speed limit curve has expired after another short waiting time has elapsed 28 is still exceeded, it triggers (at curve point 32) according to this embodiment last braking action, ie it activates the electromagnetic triggering device 18, which stops the elevator according to the safety brake curve 35.
  • Fig. 5 is shown in the way / speed diagram, as it comes in the inventive method with a single speed limit curve 28 for triggering braking measures when the actual speed 29 of the elevator, without exceeding the rated speed, in a guideway -End Scheme or floor stop area exceeds the falling speed limit curve 28 here, because, for example, the required here reduction of the actual speed does not occur.
  • FIG. 6 schematically shows an electronic speed monitoring device 24.1 according to the invention, as used for the method with a single speed limit curve 28. It consists essentially of a limit value module 38, a comparator 39 and a reaction generator 40.1 with a timer 44.
  • the speed monitoring device 24.1 receives on the one hand via its position data input 41 continuously generated by the position detection device 21 information about the current position of the elevator car 8 in the elevator shaft. On the other hand, it receives via its actual speed input 42 from the elevator control 15 information about the current actual speed of the elevator. From a table stored in the limit value module 38, the speed limit values assigned to each shaft position are continuously updated read out and compared in the comparator 39 with the current actual speed.
  • the comparator 39 determines that the current actual speed exceeds the position-dependent defined current speed limit, it sends a corresponding overspeed signal to the reaction generator 40.1.
  • This activates via one of its brake signal outputs 43.1, 43.2, 43.3 immediately the first braking measure, ie, to a setpoint input of the speed control device 14 is a fixed speed setpoint or a permanently stored delay setpoint applied.
  • the timer 44 is started with an adjustable waiting time. If the overspeed signal is still pending after the waiting time has expired, the reaction generator 40.1 activates the next following braking action and restarts the timer 44. If the speed limit value is exceeded even after the second waiting time has elapsed, a last braking measure or the safety gear is activated ,
  • the speed limit value 28 supplied to the comparator 39 by the limit value module 38 does not always correspond to the position-dependent speed limit values permanently stored in the tables of the limit value module, but the stored speed limit values are in the areas where the elevator control 15 predetermines a reduced speed setpoint, continuously adapted by a processor integrated in the limit value module 38 to these reduced setpoint values. This happens especially when stopping on a floor.
  • the required information from the elevator control 15 receives the limit value module via a data line 45.
  • inventive method can also be applied to elevator systems with more than three different braking measures.
  • FIGS. 7 and 8 show in the path / speed diagram the sequence of the method according to the invention with a plurality of different speed limit curves 28, which are respectively assigned to different braking measures.
  • the chart for comparison again includes a curve 27 representing a normal vehicle speed profile.
  • three speed limit curves 28 are entered.
  • An assumed actual speed 29 is such that it exceeds the first speed limit curve 28.1 above the nominal speed and outside a track end area or a floor stop area at curve point 46.
  • the speed monitoring device 24.2 recognizes this and activates a first braking action, ie, in the present example it tries to cause the speed control device 14 to reduce the drive speed with a predefined delay in accordance with the regulator brake curve 33.
  • this first braking measure does not necessarily lead to the standstill of the elevator. If the second speed limit curve 28.2 is not also exceeded and the system test device integrated in the elevator control 15 does not report a relevant error, the elevator can continue its travel according to the program. However, if the first braking measure is not or not sufficiently effective, so that the second speed limit curve 28.2 is exceeded, the speed monitoring device 24.2 activates a second braking measure at curve point 47 (the mechanical drive brake 10 on the drive motor 9 in FIG. 1A or on the piston rod 52 acting clamp brake 58 in Fig. 1B), whereby the elevator according to the drive brake curve 34 is to be braked to a standstill.
  • a second braking measure at curve point 47 the mechanical drive brake 10 on the drive motor 9 in FIG. 1A or on the piston rod 52 acting clamp brake 58 in Fig. 1B
  • the speed monitoring device 24.2 triggers the last braking action according to this exemplary embodiment at curve point 48, ie activates the electromagnetically triggered safety gear 18, which stops the elevator according to the safety brake curve 35.
  • Fig. 8 is shown in the way / speed diagram, as it comes in the inventive method with multiple speed limit curves 28.1, 28.2, 28.3 for triggering braking measures when an assumed actual speed 29 of the elevator, without exceeding the rated speed , one or more of the falling speed limit curves 28.1, 28.2, 28.3 in a track end area or floor stop area, because, for example, the required reduction of the actual speed does not occur here.
  • It essentially consists of the same modules as the speed monitoring device 24.1 described above in connection with FIG. 6, but with one threshold module and one comparator per each of the speed limit curves 28.1, 28.2, 28.3 to be monitored. It therefore contains three limit modules 38.1, 38.2, 38.3 and three comparators 39.1, 39.2, 39.3 and a common reaction generator 40.2.
  • the speed monitoring device 24.2 via its actual speed input 42, the speed monitoring device 24.2 continually receives the information about the current position of the elevator car 8 in the elevator shaft 1 generated by the position detection device 21.
  • each of the three limit value modules 38.1, 38.2, 38.3, position-dependent speed limit values are stored in a respective table, the values contained in each of the tables representing one of the three speed limit value curves 28.1, 28.2, 28.3 described with reference to FIGS. ie, each of the tables is assigned to one of the three different braking measures and contains for each position of the elevator in the shaft one of these braking measures associated speed limit.
  • the speed limit values for the three different braking measures corresponding to the current shaft position of the elevator car are continuously read from each of the three tables stored in the limit module 38.1, 38.2, 38.3, and in the comparators 39.1 assigned to each of the limit module 38.1, 38.2, 38.3. 39.2, 39.3 compared with the current actual speed.
  • the comparators 39.1, 39.2, 39.3 ascertains that the current actual speed exceeds the position-dependent speed limit value stored in the respectively associated table, it sends an overspeed signal to the reaction generator 40.2. This activates via one of its brake signal outputs 43.1, 43.2, 43.3 immediately that of the three possible braking measures that the signal-giving Comparator and the corresponding limit value module is assigned.
  • the speed limit values supplied by the three limit value modules 38.1, 38.2, 38.3 to the comparators 39.1, 39.2, 39.3 do not always correspond
  • the stored speed limit values are stored in the travel path areas, where the elevator control 15 prescribes a reduced speed setpoint, by processors in the limit value modules 38.1, 38.2, 38.3 of these reduced setpoint values, instead of the position-dependent speed limit values permanently stored in the tables of the limit module continuously adjusted. This happens especially when stopping on a floor.
  • the information required for this purpose by the elevator control 15 is received by the limit value modules 38.1, 38.2, 38.3 via a data line 45.
  • a speed monitoring method that meets particularly high safety requirements can be realized by combining the time-dependent reaction control method of FIGS. 4, 5, 6 with the method having a plurality of different speed limit curves 28 of FIGS. 7, 8, 9, respectively a further braking action is triggered if the previous braking action has not led to a defined speed reduction within a defined time, or if one of these further braking action assigned position-dependent speed limit is exceeded.
  • the important for the inventive method circuits in the event of a breakdown are fed by suitable emergency power supplies, for example by means of batteries or capacitors.

Abstract

A method for preventing an inadmissibly high speed of a load receiving unit of an elevator, including the steps of supplying information about an actual position and an actual speed of the load receiving unit in an area of an entire travel way of the load receiving unit to a speed monitoring device by at least one measuring system, continuously comparing the actual speed with a speed limit value by the speed monitoring device, and activating braking measures if the speed of the load receiving unit exceeds a speed limit value. At least three different braking measures are successively triggered by the speed monitoring device.

Description

Die Erfindung betrifft ein Verfahren zum Verhindern einer unzulässig hohen Fahrgeschwindigkeit des Lastaufnahmemittels eines Aufzugs.The invention relates to a method for preventing an impermissibly high travel speed of the load-receiving means of an elevator.

Vorschriften für den Bau und den Betrieb von Aufzügen verlangen die Anwendung von Einrichtungen und Verfahren, die in jeder Phase des Aufzugsbetriebs mit höchster Sicherheit eine unzulässig hohe Fahrgeschwindigkeit des Lastaufnahmemittels verhindern.Regulations governing the construction and operation of lifts require the use of equipment and procedures which, at every stage of the lift operation, are designed to prevent an inadmissibly high traveling speed of the load-handling device with the utmost security.

Konventionelle Aufzüge sind mit einer Fangvorrichtung ausgerüstet, die, wenn die Fahrgeschwindigkeit des Lastaufnahmemittels eine definierte Geschwindigkeitslimite überschreitet, durch einen Geschwindigkeitsbegrenzer aktiviert wird und das Lastaufnahmemittel mit höchstzulässiger Verzögerung bremst und stillsetzt.Conventional lifts are equipped with a safety gear which, if the travel speed of the load handling device exceeds a defined speed limit, is activated by a speed limiter and brakes and stops the load handling device with the maximum delay.

US 6,170,614 B1 offenbart ein elektronisches Geschwindigkeitsbegrenzungssystem, das von einer Positionsmesseinrichtung laufend Informationen über die aktuelle Position des Lastaufnahmemittels erhält und aus diesen dessen aktuelle Geschwindigkeit berechnet. Diese aktuelle Geschwindigkeit wird durch einen Mikroprozessor laufend mit fest programmierten, über den gesamten Fahrbereich gleich bleibenden Grenzwerten verglichen, die bestimmten Betriebsarten des Aufzugs, beispielsweise einer Aufwärts- oder einer Abwärtsfahrt, zugeordnet sind. Wenn die aktuelle Geschwindigkeit des Lastaufnahmemittels den momentan aktiven Grenzwert überschreitet, so aktiviert das elektronische Geschwindigkeitsbegrenzungssystem eine elektromagnetisch betätigte Fangvorrichtung, die das Lastaufnahmemittel stillsetzt.No. 6,170,614 B1 discloses an electronic speed limiting system which continuously receives information from a position-measuring device about the current position of the load-receiving device and calculates from it its current speed. This current speed is constantly compared by a microprocessor with fixed programmed limit values which are constant over the entire driving range and which are assigned to specific operating modes of the elevator, for example an ascending or descending run. If the current speed of the lifting device exceeds the currently active limit, the electronic speed limiting system activates an electromagnetically operated safety gear that stops the load handling device.

Das beschriebene elektronische Geschwindigkeitsbegrenzungssystem weist wesentliche Nachteile auf. Jede detektierte Überschreitung des aktiven Grenzwerts führt zur Auslösung der Fangvorrichtung und somit zu einer Betriebsunterbrechung für den Aufzug, wobei meistens die Passagiere den Aufzug nicht verlassen können, bevor ein Fachmann den Aufzug wieder in Betrieb gesetzt oder das Lastaufnahmemittel in den Bereich eines Zugangs gebracht hat. Jede Geschwindigkeitsüberschreitung hat somit eine Bremsung des Lastaufnahmemittels mit Verzögerungswerten im höchstzulässigen Bereich zur Folge, was für die Passagiere sehr unangenehm ist, Angst verursachen und für gebrechliche Personen sogar Verletzungsgefahr bedeuten kann.The electronic speed limit system described has significant disadvantages. Each detected exceeding of the active limit leads to the triggering of the safety gear and thus to an interruption of the operation of the elevator, wherein in most cases the passengers can not leave the elevator before a skilled person has put the elevator back in operation or has brought the load handling device in the area of access. Any over-speeding thus results in a braking of the load-handling device with deceleration values in the maximum permissible range, which is very unpleasant for the passengers, causing anxiety and even frail persons can cause injury.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren zum Verhindern einer unzulässig hohen Fahrgeschwindigkeit des Lastaufnahmemittels eines Aufzugs vorzuschlagen, mit dessen Hilfe in einem Teil der Fälle von detektierter Übergeschwindigkeit Betriebsunterbrechungen vermieden werden können, Passagiere möglichst nie im Aufzug eingeschlossen und nur im äussersten Notfall der Einwirkung der starken Verzögerung durch eine Fangvorrichtung ausgesetzt werden.The present invention has for its object to provide a method for preventing an inadmissibly high speed of the lifting device of an elevator, with the help of which in some cases of detected overspeed interruptions can be avoided, passengers never included in the elevator and only in the extreme emergency of Exposure to the strong deceleration to be suspended by a safety gear.

Diese Aufgabe wird durch die im Patentanspruch 1 angegebene Verfahren gelöst. Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung gehen aus den Unteransprüchen hervor.This object is achieved by the method specified in claim 1. Advantageous embodiments and modifications of the invention will become apparent from the dependent claims.

Die durch das erfindungsgemässe Verfahren erreichten Vorteile sind im Wesentlichen darin zu sehen, dass für die Aufzugsanlage eine höhere Verfügbarkeit erreicht wird, und dass durch möglichst weitgehende Vermeidung von Fangbremsungen einerseits die Aufzugsbenutzer nicht unnötigerweise erschreckt und im Lastaufnahmemittel blockiert werden und andererseits keine Kosten für die Entpannung des Aufzugs nach einer Fangbremsung anfallen.The advantages achieved by the method according to the invention can essentially be seen in the fact that higher availability is achieved for the elevator installation, and that the elevator users are not unnecessarily frightened and blocked in the load-handling device as far as possible by avoiding catch braking, on the one hand Cost of the relaxation of the elevator incurred after a fall arrest.

In einer bevorzugten Ausführungsform der Erfindung wird durch die Geschwindigkeitsüberwachungseinrichtung jeweils eine bestimmte Bremsmassnahme ausgelöst, wenn ein dieser bestimmten Bremsmassnahme zugeordneter Geschwindigkeitsgrenzwert überschritten wird. Mit dieser Methode kann eine sichere und einfache Form einer mehrstufigen Geschwindigkeitsüberwachungseinrichtung realisiert werden.In a preferred embodiment of the invention, a specific braking measure is triggered by the speed monitoring device when a speed limit assigned to this particular braking measure is exceeded. With this method, a safe and simple form of a multi-stage speed monitoring device can be realized.

Gemäss einer kostengünstigeren Ausführungsform der Erfindung wird jeweils eine weitere Bremsmassnahme ausgelöst, wenn eine vorangegangene Bremsmassnahme nicht innerhalb einer definierten Zeit zu einer definierten Geschwindigkeitsreduktion geführt hat.According to a more cost-effective embodiment of the invention, a further braking measure is triggered in each case if a preceding braking measure has not led to a defined speed reduction within a defined time.

Eine sicherheitstechnisch besonders vorteilhafte Weiterbildung der Erfindung wird dadurch erreicht, dass jeweils eine weitere Bremsmassnahme ausgelöst wird, wenn ein dieser Bremsmassnahme zugeordneter Geschwindigkeitsgrenzwert überschritten wird, oder wenn eine vorangegangene Bremsmassnahme nicht innerhalb einer definierten Zeit zu einer definierten Geschwindigkeitsreduktion geführt hat. Beide Kriterien werden dabei gleichzeitig überwacht, und eine weitere Bremsmassnahme wird aktiviert, wenn eines der beiden Kriterien erfüllt ist.A safety-relevant particularly advantageous development of the invention is achieved in that in each case a further braking action is triggered when a braking action associated with this speed limit is exceeded, or if a previous braking action has not led within a defined time to a defined speed reduction. Both criteria are monitored simultaneously, and a further braking action is activated if one of the two criteria is met.

Bei Aufzügen, die eine Antriebseinheit mit einer Geschwindigkeitsregeleinrichtung aufweisen, ergibt sich eine besonders vorteilhafte Ausgestaltung des erfindungsgemässen Verfahrens dadurch, dass eine der Bremsmassnahmen darin besteht, dass die Geschwindigkeitsüberwachungseinrichtung die Geschwindigkeitsregeleinrichtung so zu beeinflussen versucht, dass diese die Antriebsgeschwindigkeit des Lastaufnahmemittels reduziert.In elevators having a drive unit with a speed control device, a particularly advantageous embodiment of the method according to the invention results from the fact that one of the braking measures is that the speed monitoring device attempts to influence the speed control device in such a way that it reduces the drive speed of the load receiving means.

Damit wird in vielen Fällen das Eingreifen einer mechanischen Reibungsbremse und die Stillsetzung des Aufzugs vermieden.This avoids the intervention of a mechanical friction brake and the shutdown of the elevator in many cases.

Als besonders einfach und zweckmässig erweist sich eine Ausgestaltung des vorstehend beschriebenen Verfahrens, bei der die Reduktion der Antriebsgeschwindigkeit des Lastaufnahmemittels dadurch erreicht werden soll, dass an einen Sollwerteingang der Geschwindigkeitsregeleinrichtung ein fest abgespeicherter Geschwindigkeitssollwert angelegt wird.A particularly simple and expedient proves to be an embodiment of the method described above, in which the reduction of the drive speed of the load receiving means is to be achieved by applying a fixed stored speed setpoint to a setpoint input of the speed control device.

Eine weitere mit dem erfindungsgemässen Verfahren anwendbare Bremsmassnahme besteht darin, dass bei einem seilgetriebenen Aufzug mit einer Antriebsmaschine und einer Treibscheibe eine direkt oder indirekt auf die Treibscheibe wirkende Reibungsbremse aktiviert wird, die die Fahrgeschwindigkeit des Lastaufnahmemittels reduzieren oder dieses stillsetzen soll, wobei vorher die Antriebsmaschine ausgeschaltet wird. Dadurch wird mit grosser Sicherheit das Lastaufnahmemittel gebremst, so dass der Einsatz einer Fangvorrichtung meist vermieden werden kann.Another applicable with the inventive method braking action is that in a rope-driven elevator with a prime mover and a traction sheave acting directly or indirectly on the traction sheave friction brake is activated, which reduce the driving speed of the lifting device or shut down this, with previously switched off the prime mover becomes. As a result, the load receiving means is braked with great certainty, so that the use of a safety gear can usually be avoided.

Bei der Anwendung des erfindungsgemässen Verfahrens in einer hydraulisch angetriebenen Aufzugsanlage, bestehen vorteilhafte Bremsmassnahmen darin, dass die Geschwindigkeitsüberwachungseinrichtung über ein separates Stromventil den Durchfluss eines Hydraulikmediums zunehmend einschränkt oder eine auf eine Kolbenstange eines hydraulischen Hebers wirkende Reibungsbremse aktiviert, wodurch die Fahrgeschwindigkeit des Lastaufnahmemittels reduziert oder dieses stillgesetzt werden soll.When using the method according to the invention in a hydraulically driven elevator installation, advantageous braking measures are that the speed monitoring device increasingly restricts the flow of a hydraulic medium via a separate flow valve or activates a friction brake acting on a piston rod of a hydraulic lifter, thereby reducing or reducing the travel speed of the lifting device to be shut down.

In einer weiteren zweckmässigen Weiterbildung des Verfahrens besteht eine der Bremsmassnahmen darin, dass durch die Geschwindigkeitsüberwachungseinrichtung eine Fangvorrichtung aktiviert wird, die am Lastaufnahmemittel angebracht ist und, wenn aktiviert, auf entlang des Fahrwegs fest installierte Schienen wirkt und das Lastaufnahmemittel stillsetzt.In a further expedient development of the method, one of the braking measures is that a safety device is provided by the speed monitoring device is activated, which is attached to the load-carrying means and, when activated, acting on along the guideway permanently installed rails and the load handling device is stopped.

Eine besonders vorteilhafte Ausgestaltung des erfindungsgemässen Verfahrens besteht darin, dass die den einzelnen Bremsmassnahmen zugeordneten Geschwindigkeitsgrenzwerte, mit denen die Geschwindigkeitsüberwachungseinrichtung die aktuelle Fahrgeschwindigkeit kontinuierlich vergleicht, von der aktuellen Position des Lastaufnahmemittels abhängig sind und eine in beiden Endbereichen des Fahrwegs erforderliche Reduktion der Fahrgeschwindigkeit beinhalten. Diese Geschwindigkeitsgrenzwerte können überdies auch von einem besonderen Betriebsmodus (z.B. Rampenfahrt, Inspektion, Fehlermode etc) abhängen. Dadurch erübrigen sich konventionelle Verzögerungs-, kontrolleinrichtungen in beiden Endbereichen des Fahrwegs des Lastaufnahmemittels. Ausserdem können damit auch die Puffer, die in konventionellen Aufzügen einen harten Aufprall des Lastaufnahmemittels am unteren und oberen Fahrweg-Ende verhindern, weggelassen oder erheblich kleiner gebaut werden, da die durch die Steuerung veranlasste Verzögerung des Lastaufnahmemittels in den Endbereichen des Fahrwegs sicherheitsrelevant überwacht wird.A particularly advantageous embodiment of the method according to the invention is that the speed limit values associated with the individual braking measures, with which the speed monitoring device continuously compares the current driving speed, are dependent on the current position of the load receiving means and include a reduction of the driving speed required in both end regions of the travel path. Moreover, these speed limits may also depend on a particular mode of operation (e.g., ramp travel, inspection, fault mode, etc.). This eliminates the need for conventional deceleration, control devices in both end regions of the travel path of the lifting device. In addition, so that the buffers that prevent in conventional lifts a hard impact of the lifting device at the lower and upper end of the track can be omitted or built much smaller, since the caused by the control delay of the lifting device is monitored safety relevant in the end of the route.

In zweckmässiger Weise sind die den einzelnen Bremsmassnahmen zugeordneten Geschwindigkeitsgrenzwerte, mit denen die Geschwindigkeitsüberwachungseinrichtung die aktuelle Fahrgeschwindigkeit kontinuierlich vergleicht, für jede Position des Lastaufnahmemittels auf seinem Fahrweg, ggf. in Abhängigkeit von einem momentan aktivierten besonderen Betriebsmodus, fix definiert und elektronisch, beispielsweise in Tabellen, gespeichert. Die fix gespeicherten positionsabhängigen Geschwindigkeitsgrenzwerte verleihen dem erfindungsgemässen Verfahren eine hohe Funktionssicherheit.Conveniently, the speed limit values assigned to the individual braking measures, with which the speed monitoring device continuously compares the current driving speed, are defined and electronically defined, for example in tables, for each position of the load receiving means on its travel path, possibly in dependence on a currently activated special operating mode. saved. The permanently stored position-dependent speed limits give the inventive method a high reliability.

Eine weitere vorteilhafte Ausgestaltung des Verfahrens ergibt sich dadurch, dass die den einzelnen Bremsmassnahmen zugeordneten Geschwindigkeitsgrenzwerte, mit denen die Geschwindigkeitsüberwachungseinrichtung die aktuelle Fahrgeschwindigkeit kontinuierlich vergleicht, laufend entsprechend der aktuellen Position des Lastaufnahmemittels durch einen in der Geschwindigkeitsüberwachungseinrichtung integrierten Mikroprozessor berechnet werden. Dabei werden einerseits die positionsabhängig fix programmierten Geschwindigkeitsgrenzwerte und andererseits von der Aufzugssteuerung gelieferte Informationen über den Fahrtablauf, insbesondere Geschwindigkeitsreduktionen bei Stockwerkshalten, mit einbezogen. Dies hat den Vorteil, dass die Geschwindigkeitsüberwachungseinrichtung auch in diesen Bereichen reduzierter Geschwindigkeit wirksam ist.A further advantageous refinement of the method results from the fact that the speed limit values associated with the individual braking measures, with which the speed monitoring device continuously compares the current driving speed, are continuously calculated in accordance with the current position of the load receiving means by a microprocessor integrated in the speed monitoring device. In this case, on the one hand, the position-dependent, permanently programmed speed limit values and, on the other hand, information about the driving sequence supplied by the elevator control, in particular speed reductions in the case of landing stops, are included. This has the advantage that the speed monitoring device is also effective in these areas of reduced speed.

Eine zusätzliche vorteilhafte Weiterbildung der Erfindung besteht darin, dass nach einer durch Übergeschwindigkeit ausgelösten erfolgreichen Bremsmassnahme der Aufzug automatisch wieder den Normalbetrieb oder einen Evakuationsbetrieb aufnimmt, sofern die Art der letzten Bremsmassnahme sowie die Resultate einer automatisch durchgeführten Funktionsüberprüfung der sicherheitsrelevanten Komponenten dies zulassen.An additional advantageous development of the invention consists in the elevator automatically resuming normal operation or an evacuation mode following a successful braking action triggered by overspeed, if the type of last braking measure and the results of an automatically performed functional check of the safety-relevant components permit this.

Eine besonders bevorzugte Ausgestaltung des erfindungsgemässen Verfahrens besteht darin, dass sämtliche an diesem Verfahren beteiligten Funktionen unter Anwendung von Fail-Safe-Konzepten ablaufen. Solche Konzepte beinhalten beispielsweise redundante Positions- und/oder Geschwindigkeitsmesseinrichtungen, Aktoren zur Aktivierung von Bremseinrichtungen in Fail-Safe-Ausführung, Datensicherungsverfahren bei Datenübertragung, redundante Datenverarbeitung durch mehrere, eventuell unterschiedliche Prozessoren mit Resultatvergleich, etc. Bei auftretenden Unstimmigkeiten werden geeignete Sicherheitsmassnahmen ausgelöst. Durch die Anwendung eines solchen Fail-Safe-Konzepts im erfindungsgemässen Verfahren kann auf aufwändige mechanische Geschwindigkeitsbegrenzersysteme sowie auf zusätzliche Verzögerungskontrollschaltungen in beiden Bereichen der Fahrwegsenden des Lastaufnahmemittels verzichtet werden.A particularly preferred embodiment of the method according to the invention is that all the functions involved in this method take place using fail-safe concepts. Such concepts include, for example, redundant position and / or speed measuring devices, actuators for activating brake devices in fail-safe design, data backup data transfer methods, redundant data processing by several, possibly different processors with comparison of results, etc. In case of inconsistencies, suitable safety measures are taken triggered. By applying such a fail-safe concept in the inventive method can be dispensed with complex mechanical Geschwindigkeitsbegrenzersysteme and additional delay control circuits in both areas of the travel end of the lifting device.

Im Folgenden wird die Erfindung anhand von Beispielen und mit Bezug auf die beiliegenden Zeichnungen näher erläutert. Dabei zeigen:

Fig. 1A
eine schematisch dargestellte Aufzugsanlage mit Seilantrieb, mit den für die Darstellung der Erfindung wichtigen Aufzugskomponenten
Fig. 1B
eine schematisch dargestellte Aufzugsanlage mit hydraulischem Antrieb, mit den für die Darstellung der Erfindung wichtigen Aufzugskomponenten
Fig. 2, 3
die Zusammenhänge zwischen dem Geschwindigkeitsverlauf bei Normalfahrt und den beim erfindungsgemässen Verfahren angewandten Geschwindigkeits-Grenzwerten
Fig. 4, 5
den Verfahrensablauf mit einer einzigen Geschwindigkeits-Grenzwertkurve
Fig. 6
eine schematische Darstellung der Geschwindigkeitsüberwachungseinrichtung für die Anwendung mit einer einzigen Geschwindigkeits-Grenzwertkurve
Fig. 7, 8
den Verfahrensablauf mit mehreren unterschiedlichen Geschwindigkeits-Grenzwertkurven
Fig. 9
eine schematische Darstellung der Geschwindigkeitsüberwachungseinrichtung für die Anwendung mit mehreren Geschwindigkeits-Grenzwertkurven
In the following the invention will be explained in more detail by means of examples and with reference to the accompanying drawings. Showing:
Fig. 1A
a schematically illustrated elevator system with cable drive, with the important for the representation of the invention elevator components
Fig. 1B
a schematically illustrated elevator system with hydraulic drive, with the important for the representation of the invention elevator components
Fig. 2, 3rd
the relationships between the speed course during normal driving and the speed limit values used in the method according to the invention
Fig. 4, 5
the procedure with a single speed limit curve
Fig. 6
a schematic representation of the speed monitor for the application with a single speed limit curve
Fig. 7, 8
the procedure with several different speed limit curves
Fig. 9
a schematic representation of the speed monitoring device for the application with multiple speed limit curves

Fig. 1A zeigt schematisch eine Aufzugsanlage mit Seilantrieb. Zu erkennen sind ein Aufzugsschacht 1 mit einem Maschinenraum 2 und Stockwerkszugängen 3. Im Maschinenraum 2 ist eine Antriebseinheit 4 angeordnet, die über eine Treibscheibe 5 und Tragseile 6 eine an Führungsschienen 7 geführte Aufzugskabine (Lastaufnahmemittel) 8 trägt und antreibt. Die Antriebseinheit 4 weist einen Antriebsmotor 9 mit einer elektromechanischen Antriebsbremse 10 auf. Drehrichtung, Drehzahl und Antriebsmoment des Antriebsmotors 9 werden durch eine Geschwindigkeitsregeleinrichtung 14 geregelt, wobei die Geschwindigkeitsregeleinrichtung Steuerbefehle von einer Aufzugssteuerung 15 erhält. An der Aufzugskabine 8 sind zwei beispielsweise elektromagnetisch aktivierbare Fangvorrichtungen 18 montiert, mit denen in Notfällen die Aufzugskabine 8 gebremst und stillgesetzt werden kann. Mit 20 ist ein sich über den gesamten Fahrweg der Aufzugskabine 8 erstreckender Massstab bezeichnet, der mehrerere binär codierte parallele Code-Spuren aufweist. Diese Code-Spuren werden durch eine an der Aufzugskabine 8 fixierte Positionserfassungseinrichtung 21 abgetastet, die aus den binären Signalzuständen laufend die aktuelle Absolut-Position der Aufzugskabine 8 decodiert und diese an die Aufzugssteuerung 15 übermittelt. Durch Differenzierung der Positionswertdifferenzen über die Zeit wird in der Aufzugssteuerung 15 die aktuelle Fahrgeschwindigkeit der Aufzugskabine 8 errechnet, die unter anderem als Istwert-Rückführung für die Geschwindigkeitsregeleinrichtung 14 des Antriebsmotors 9 dient. Eine Geschwindigkeitsüberwachungseinrichtung 24 hat die Aufgabe, eine unzulässig hohe Fahrgeschwindigkeit der Aufzugskabine 8 zu detektieren und gegebenenfalls geeignete Gegenmassnahmen zu initiieren. Aufzugssteuerung 15, Geschwindigkeitsregeleinrichtung 14 und Geschwindigkeitsüberwachungseinrichtung 24 sind gemäss Fig. 1A über Signal- und/oder Datenleitungen miteinander verbunden, was jedoch nicht ausschliesst, dass diese Einrichtungen gemeinsam in einer grösseren Einheit integriert sein können. Die Daten- und Signalübertragung zwischen diesen Einrichtungen einerseits und der Positionserfassungseinrichtung 21 sowie den Fangvorrichtungen 18 andererseits findet über ein sich zwischen Aufzugskabine 8 und Schachtwand abrollendes Hängekabel 25 statt.Fig. 1A shows schematically an elevator system with cable drive. An elevator shaft 1 with a machine room 2 and storey accesses 3 can be seen. In the machine room 2, a drive unit 4 is arranged which carries and drives a lift cage (load-carrying means) 8 guided on guide rails 7 via a traction sheave 5 and carrying cables 6. The drive unit 4 has a drive motor 9 with an electromechanical drive brake 10. Direction of rotation, speed and drive torque of the drive motor 9 are controlled by a speed control device 14, wherein the speed control device receives control commands from an elevator control 15. At the elevator car 8, for example, two electromagnetically activated safety gear 18 are mounted, with which the elevator car 8 can be braked and stopped in case of emergency. Denoted at 20 is a scale extending over the entire travel path of the elevator car 8, which has a plurality of binary coded parallel code tracks. These code tracks are scanned by a position detection device 21 fixed to the elevator car 8, which continuously decodes the current absolute position of the elevator car 8 from the binary signal states and transmits these to the elevator control 15. By differentiating the position value differences over time, the current travel speed of the elevator car 8 is calculated in the elevator control 15, which serves, inter alia, as actual value feedback for the speed control device 14 of the drive motor 9. A speed monitoring device 24 has the task of detecting an impermissibly high driving speed of the elevator car 8 and if necessary to initiate suitable countermeasures. Elevator control 15, speed control device 14 and speed monitoring device 24 are connected to each other according to FIG. 1A via signal and / or data lines, but this does not exclude that these devices together in one larger unit can be integrated. The data and signal transmission between these devices on the one hand and the position detection device 21 and the safety gears 18 on the other hand takes place via a suspension cable 25 rolling off between the elevator car 8 and the shaft wall.

Fig. 1B zeigt schematisch eine Aufzugsanlage mit hydraulischem Antrieb. Zu erkennen sind ein Aufzugsschacht 1 mit einem Maschinenraum 2 und Stockwerkszugängen 3. Im Maschinenraum 2 ist eine hydraulische Antriebseinheit 50 angeordnet, welche die Kolbenstange 52 eines hydraulischen Hebers 51 antreibt, die an ihrem oberen Ende eine Umlenkrolle 53 aufweist. Über diese Umlenkrolle 53 führen Tragseile 54, die jeweils mit ihrem einen Ende an einem Fixpunkt 55 am Heber 51 befestigt sind und mit ihrem anderen Ende eine Aufzugskabine (Lastaufnahmemittel) 8 tragen und antreiben, welche an Führungsschienen 7 geführt ist. Die Antriebseinheit 50 ist mit einer Geschwindigkeitsregeleinrichtung 14 ausgerüstet, die beispielsweise über eine Verstellpumpe 56 Menge und Richtung des Ölstroms bestimmt, der den hydraulischen Heber 51 bewegt, wobei die Geschwindigkeitsregeleinrichtung 14 Steuerbefehle von einer Aufzugssteuerung 15 erhält. An der Aufzugskabine 8 sind zwei beispielsweise elektromagnetisch aktivierbare Fangvorrichtungen 18 montiert, mit denen in Notfällen, beispielsweise bei einem Tragseilbruch, die Aufzugskabine 8 gebremst und stillgesetzt werden kann. Am oberen Ende des Heberzylinders 57 ist eine elektromagnetisch aktivierbare, auf die Kolbenstange 52 wirkende Zangenbremse 58 befestigt. Aus Detail X ist erkennbar, dass zwischen dieser Zangenbremse 58 und der Kolbenstange 52 bei stromlosem Magnet 59 durch die Kraft einer Druckfeder 60 eine Bremskraft erzeugt werden kann. Diese Bremskraft ist in der Lage ist, beispielsweise beim Versagen der Geschwindigkeitsregelung des hydraulischen Antriebs, die Aufzugskabine 8 zu bremsen. Der Magnet 59 wird durch die Geschwindigkeitsüberwachungseinrichtung 24 gesteuert. Die hydraulische Antriebseinheit 50 weist neben anderen Ventilen ein Sicherheits-Stromventil 61 auf, welches durch die Geschwindigkeitsüberwachungseinrichtung 24 bei detektierter Übergeschwindigkeit der Aufzugskabine 8 aktiviert werden kann, wobei das Sicherheits-Stromventil in einem solchen Fall den Ölstrom kontinuierlich so reduziert, dass die Aufzugskabine 8 mit definierter Verzögerung abgebremst wird. Mit 20 ist ein sich über den gesamten Fahrweg der Aufzugskabine 8 erstreckender Massstab bezeichnet, der mehrerere binär codierte parallele Code-Spuren aufweist. Diese Code-Spuren werden durch eine an der Aufzugskabine 8 fixierte Positionserfassungseinrichtung 21 abgetastet, die aus den binären Signalzuständen laufend die aktuelle Absolut-Position der Aufzugskabine 8 decodiert und diese an die Aufzugssteuerung 15 übermittelt. Durch Differenzierung der Positionswertdifferenzen über die Zeit wird in der Aufzugssteuerung 15 die aktuelle Fahrgeschwindigkeit der Aufzugskabine 8 errechnet, die unter anderem als Istwert-Rückführung für die Geschwindigkeitsregeleinrichtung 14 des Antriebsmotors 9 dient. Eine Geschwindigkeitsüberwachungseinrichtung 24 hat die Aufgabe, eine unzulässig hohe Fahrgeschwindigkeit der Aufzugskabine 8 zu detektieren und gegebenenfalls geeignete Gegenmassnahmen zu initiieren. Aufzugssteuerung 15, Geschwindigkeitsregeleinrichtung 14 und Geschwindigkeitsüberwachungseinrichtung 24 sind gemäss Fig. 1B über Signal- und/oder Datenleitungen miteinander verbunden, was jedoch nicht ausschliesst, dass diese Einrichtungen gemeinsam in einer grösseren Einheit integriert sein können. Die Daten- und Signalübertragung zwischen diesen Einrichtungen einerseits und der Positionserfassungseinrichtung 21 sowie den Fangvorrichtungen 18 andererseits findet über ein sich unterhalb der Aufzugskabine 8 abrollendes Hängekabel 25 statt.Fig. 1B shows schematically an elevator system with hydraulic drive. Evident are an elevator shaft 1 with a machine room 2 and floor access 3. In the engine room 2, a hydraulic drive unit 50 is arranged, which drives the piston rod 52 of a hydraulic jack 51, which has a deflection roller 53 at its upper end. About this pulley 53 carry suspension cables 54, which are each secured with its one end to a fixed point 55 on the lifter 51 and carry with its other end an elevator car (load-carrying means) 8 and drive, which is guided on guide rails 7. The drive unit 50 is equipped with a speed control device 14, which determines, for example via a variable displacement pump 56, the amount and direction of the oil flow which moves the hydraulic lifter 51, wherein the speed control device 14 receives control commands from an elevator control 15. At the elevator car 8, for example, two electromagnetically activated safety gear 18 are mounted, with which the elevator car 8 can be braked and stopped in emergencies, for example in a suspension rope break. At the upper end of the lifter cylinder 57 an electromagnetically activatable, acting on the piston rod 52 clamp brake 58 is attached. From detail X it can be seen that between the caliper brake 58 and the piston rod 52, when the magnet 59 is de-energized, a braking force can be generated by the force of a compression spring 60. This braking force is able to brake the elevator car 8, for example, in the case of failure of the speed control of the hydraulic drive. The magnet 59 is controlled by the speed monitor 24. The hydraulic drive unit 50 has, among other valves on a safety flow valve 61 which can be activated by the speed monitor 24 at detected overspeed of the elevator car 8, the safety flow valve in such a case, the oil flow is continuously reduced so that the elevator car 8 with is decelerated defined delay. Denoted at 20 is a scale extending over the entire travel path of the elevator car 8, which has a plurality of binary coded parallel code tracks. These code tracks are scanned by a position detection device 21 fixed to the elevator car 8, which continuously decodes the current absolute position of the elevator car 8 from the binary signal states and transmits these to the elevator control 15. By differentiating the position value differences over time, the current travel speed of the elevator car 8 is calculated in the elevator control 15, which serves, inter alia, as actual value feedback for the speed control device 14 of the drive motor 9. A speed monitoring device 24 has the task of detecting an impermissibly high driving speed of the elevator car 8 and if necessary to initiate suitable countermeasures. Elevator control 15, speed control device 14 and speed monitoring device 24 are connected to each other according to FIG. 1B via signal and / or data lines, which does not exclude that these devices can be integrated together in a larger unit. The data and signal transmission between these devices on the one hand and the position detection device 21 and the safety gears 18 on the other hand takes place via a suspension cable 25 rolling down below the elevator car 8.

Fig. 2 zeigt ein Diagramm, dessen vertikale Achse den Fahrweg (Position im Schacht) und dessen horizontale Achse die Fahrgeschwindigkeit der Aufzugskabine 8 repräsentieren, das den Zusammenhang zwischen dem Geschwindigkeitsverlauf bei Normalfahrt und den durch die Geschwindigkeitsüberwachungseinrichtung 24 überwachten Geschwindigkeits-Grenzwerten veranschaulicht. Eingetragen sind eine Kurve mit einem normalem Fahrgeschwindigkeitsverlauf 27 bei einer Fahrt mit Zwischenhalt sowie eine Geschwindigkeits-Grenzwertkurve 28, die auch die in beiden Fahrweg-Endbereichen zwingend erforderliche Geschwindigkeitsreduktion beinhaltet. Die Werte der Geschwindigkeits-Grenzwertkurve 28 sind bei dieser Ausführung für jede Position der Aufzugskabine 8 im Aufzugsschacht 1 fest in der Geschwindigkeitsüberwachungseinrichtung 24, beispielsweise in Form einer Tabelle, einprogrammiert. Abhängig von der Ausführung des Geschwindigkeitsüberwachungsverfahrens werden eine Geschwindigkeits-Grenzwertkurve 28 oder mehrere unterschiedliche Geschwindigkeits-Grenzwertkurven 28, die unterschiedlichen Bremsmassnahmen zugeordnet sind, gespeichert. In Abhängigkeit von allenfalls aktivierten besonderen Betriebsarten (z.B. Rampenfahrt, Inspektion, Fehlermode etc), können diese positionsabhängigen Geschwindigkeits-Grenzwertkurven unterschiedlich verlaufen.Fig. 2 shows a diagram, the vertical axis of the track (Position in the shaft) and its horizontal axis represent the traveling speed of the elevator car 8, which illustrates the relationship between the speed profile during normal driving and the speed limit values monitored by the speed monitor 24. Entered are a curve with a normal driving speed curve 27 in a journey with intermediate stop and a speed limit curve 28, which also includes the mandatory in both Fahrweg end areas speed reduction. The values of the speed limit curve 28 are in this embodiment for each position of the elevator car 8 in the elevator shaft 1 fixed in the speed monitoring device 24, for example in the form of a table, programmed. Depending on the execution of the speed monitoring method, a speed limit curve 28 or a plurality of different speed limit curves 28 associated with different braking actions are stored. Depending on possibly activated special operating modes (eg ramp travel, inspection, fault mode, etc.), these position-dependent speed limit curves can run differently.

Fig. 3 zeigt ein gleiches Diagramm wie Fig. 2, wobei jedoch die Geschwindigkeits-Grenzwertkurve 28 im Bereich zwischen den Fahrweg-Endbereichen zusätzlich den Geschwindigkeitsverlauf beim Anhalten auf Zwischenstockwerken mit einbezieht. Die Grenzwerte für diese Bereiche werden in der Geschwindigkeitsüberwachungseinrichtung 24 aufgrund von Geschwindigkeitssollwert-Informationen laufend errechnet, welche die Aufzugssteuerung 15 liefert. Auch hier können mehrere Geschwindigkeits-Grenzwettkurven mit unterschiedlichen zulässigen Abweichungen zur Anwendung kommen und, in Abhängigkeit von allenfalls aktivierten besonderen Betriebsarten (z.B. Rampenfahrt, Inspektion, Fehlermode etc), auch unterschiedlich verlaufen, was jedoch hier nicht dargestellt ist.Fig. 3 shows a same diagram as Fig. 2, but with the speed limit curve 28 in the area between the track end areas additionally incorporating the speed course when stopping on intermediate storeys. The limits for these ranges are continuously calculated in the speed monitor 24 based on speed setpoint information provided by the elevator controller 15. Here, too, several speed limit curves with different permissible deviations can be used and, depending on possibly activated special operating modes (eg ramp travel), Inspection, fault mode etc), also run differently, but this is not shown here.

Fig. 4 und 5 zeigen im Weg/Geschwindigkeits-Diagramm den Ablauf des erfindungsgemässen Verfahrens mit nur einer einzigen Geschwindigkeits-Grenzwertkurve. In Fig. 4 ist mit 27 (zum Vergleich) eine Kurve mit einem normalem Fahrgeschwindigkeitsverlauf und mit 28 die Geschwindigkeits-Grenzwertkurve dargestellt. Eine eingetragene Ist-Geschwindigkeit 29 verläuft so, dass sie ausserhalb der Fahrweg-Endbereiche bei Kurvenpunkt 30 die Geschwindigkeits-Grenzwertkurve 28 überschreitet. Die Geschwindigkeitsüberwachungseinrichtung 24.1 erkennt dies und aktiviert eine erste Bremsmassnahme, d. h. im vorliegenden Beispiel versucht sie, die Geschwindigkeitsregeleinrichtung 14 zu veranlassen, die Antriebsgeschwindigkeit mit vordefinierter Verzögerung entsprechend der Reglerbremskurve 33 zu reduzieren. Diese erste Bremsmassnahme muss nicht unbedingt zum Stillstand des Aufzugs führen. Falls die Bremsmassnahme mit der Geschwindigkeitsregeleinrichtung 14 eine Fahrgeschwindigkeit unterhalb der Geschwindigkeits-Grenzwertkurve 28 bewirkt hat, und falls eine in der Aufzugssteuerung 15 integrierte Systemtesteinrichtung keinen relevanten Fehler meldet, kann der Aufzug seine Fahrt programmgemäss fortsetzen. Nach Ablauf einer definierten kurzen Zeit, die vom Moment der Aktivierung der ersten Bremsmassnahme an gemessen wird, überprüft die Geschwindigkeitsüberwachungseinrichtung 24.1, ob die Geschwindigkeits-Grenzwertkurve 28 noch immer überschritten ist, und aktiviert gegebenenfalls (bei Kurvenpunkt 31) eine zweite Bremsmassnahme (die mechanische Antriebsbremse 10 am Antriebsmotor 9 in Fig. 1A oder die auf die Kolbenstange 52 wirkende Zangenbremse 58 in Fig. 1B), wodurch der Aufzug entsprechend der Antriebsbremskurve 34 abgebremst werden soll. Erkennt die Geschwindigkeitsüberwachungseinrichtung 24.1 nach Ablauf einer weiteren kurzen Wartezeit, dass die Geschwindigkeits-Grenzwertkurve 28 noch immer überschritten ist, so löst sie (bei Kurvenpunkt 32) eine gemäss diesem Ausführungsbeispiel letzte Bremsmassnahme aus, d. h. sie aktiviert die elektromagnetisch auslösbare Fangvorrichtung 18, die den Aufzug entsprechend der Fangbremskurve 35 stillsetzt.4 and 5 show in the way / speed diagram the sequence of the inventive method with only a single speed limit curve. In Fig. 4 at 27 (for comparison) a curve with a normal driving speed course and at 28 the speed limit curve is shown. A registered actual speed 29 runs in such a way that it exceeds the speed limit curve 28 outside of the travel end regions at curve point 30. The speed monitoring device 24.1 recognizes this and activates a first braking measure, ie in the present example it tries to cause the speed control device 14 to reduce the drive speed with a predefined delay in accordance with the controller brake curve 33. This first braking measure does not necessarily lead to the standstill of the elevator. If the braking measure with the cruise control device 14 has caused a travel speed below the speed limit curve 28, and if a system test device integrated in the elevator control 15 does not report a relevant fault, the elevator can continue its travel as scheduled. After a defined short time, which is measured from the moment of activation of the first braking measure, checks the speed monitor 24.1, if the speed limit curve 28 is still exceeded, and optionally activates (at curve point 31) a second braking action (the mechanical drive brake 10 on the drive motor 9 in Fig. 1A or acting on the piston rod 52 pliers brake 58 in Fig. 1B), whereby the elevator according to the drive brake curve 34 is to be braked. If the speed monitoring device 24.1 recognizes that the speed limit curve has expired after another short waiting time has elapsed 28 is still exceeded, it triggers (at curve point 32) according to this embodiment last braking action, ie it activates the electromagnetic triggering device 18, which stops the elevator according to the safety brake curve 35.

In Fig. 5 ist im im Weg/Geschwindigkeits-Diagramm dargestellt, wie es bei dem erfindungsgemässen Verfahren mit einer einzigen Geschwindigkeits-Grenzwertkurve 28 zur Auslösung von Bremsmassnahmen kommt, wenn die Ist-Geschwindigkeit 29 des Aufzugs, ohne Überschreitung der Nenngeschwindigkeit, in einem Fahrweg-Endbereich oder Stockwerkshalt-Bereich die hier abfallende Geschwindigkeits-Grenzwertkurve 28 überschreitet, weil beispielsweise die hier erforderliche Reduktion der Ist-Geschwindigkeit nicht eintritt. Nachdem in Punkt 30 durch die Geschwindigkeitsüberwachungseinrichtung 24.1 die erste Bremsmassnahme ausgelöst wurde, laufen dieselben Vorgänge ab, die vorstehend im Zusammenhang mit Fig. 4 beschrieben sind.In Fig. 5 is shown in the way / speed diagram, as it comes in the inventive method with a single speed limit curve 28 for triggering braking measures when the actual speed 29 of the elevator, without exceeding the rated speed, in a guideway -Endbereich or floor stop area exceeds the falling speed limit curve 28 here, because, for example, the required here reduction of the actual speed does not occur. After the first braking measure has been triggered by the speed monitoring device 24.1 in point 30, the same operations that were described above in connection with FIG. 4 take place.

Fig. 6 zeigt schematisch eine erfindungsgemässe elektronische Geschwindigkeitsüberwachungseinrichtung 24.1, wie sie für das Verfahren mit einer einzigen Geschwindigkeits-Grenzwertkurve 28 zur Anwendung kommt. Sie besteht im Wesentlichen aus einem Grenzwertemodul 38, einem Vergleicher 39 und einem Reaktionsgenerator 40.1 mit einem Timer 44. Die Geschwindigkeitsüberwachungseinrichtung 24.1 erhält einerseits über ihren Positionsdaten-Eingang 41 kontinuierlich die von der Positionserfassungseinrichtung 21 generierten Informationen über die aktuelle Position der Aufzugskabine 8 im Aufzugsschacht. Andererseits erhält sie über ihren Ist-Geschwindigkeits-Eingang 42 von der Aufzugssteuerung 15 Informationen über die aktuelle Ist-Geschwindigkeit des Aufzugs. Aus einer im Grenzwertemodul 38 gespeicherten Tabelle werden laufend die jeder Schachtposition zugeordneten Geschwindigkeits-Grenzwerte ausgelesen und im Vergleicher 39 mit der aktuellen Ist-Geschwindigkeit verglichen.
Sobald und solange der Vergleicher 39 feststellt, dass die aktuelle Ist-Geschwindigkeit den positionsabhängig definierten aktuellen Geschwindigkeits-Grenzwert überschreitet, sendet er ein entsprechendes Übergeschwindigkeitssignal an den Reaktionsgenerator 40.1. Dieser aktiviert über einen seiner Bremssignal-Ausgänge 43.1, 43.2, 43.3 unverzüglich die erste Bremsmassnahme, d.h., an einen Sollwerteingang der Geschwindigkeitsregeleinrichtung 14 wird ein fest gespeicherter Geschwindigkeitssollwert oder ein fest gespeicherter Verzögerungssollwert angelegt. Gleichzeitig wird der Timer 44 mit einer einstellbaren Wartezeit gestartet. Ist nach abgelaufener Wartezeit das Übergeschwindigkeitssignal noch immer anstehend, aktiviert der Reaktionsgenerator 40.1 die nächstfolgende Bremsmassnahme und startet erneut den Timer 44. Ist auch nach Ablauf der zweiten Wartezeit der Geschwindigkeits-Grenzwert noch überschritten, so wird eine letzte Bremsmassnahme, bzw. die Fangvorrichtung, aktiviert.
FIG. 6 schematically shows an electronic speed monitoring device 24.1 according to the invention, as used for the method with a single speed limit curve 28. It consists essentially of a limit value module 38, a comparator 39 and a reaction generator 40.1 with a timer 44. The speed monitoring device 24.1 receives on the one hand via its position data input 41 continuously generated by the position detection device 21 information about the current position of the elevator car 8 in the elevator shaft. On the other hand, it receives via its actual speed input 42 from the elevator control 15 information about the current actual speed of the elevator. From a table stored in the limit value module 38, the speed limit values assigned to each shaft position are continuously updated read out and compared in the comparator 39 with the current actual speed.
As soon as and as long as the comparator 39 determines that the current actual speed exceeds the position-dependent defined current speed limit, it sends a corresponding overspeed signal to the reaction generator 40.1. This activates via one of its brake signal outputs 43.1, 43.2, 43.3 immediately the first braking measure, ie, to a setpoint input of the speed control device 14 is a fixed speed setpoint or a permanently stored delay setpoint applied. At the same time, the timer 44 is started with an adjustable waiting time. If the overspeed signal is still pending after the waiting time has expired, the reaction generator 40.1 activates the next following braking action and restarts the timer 44. If the speed limit value is exceeded even after the second waiting time has elapsed, a last braking measure or the safety gear is activated ,

Gemäss einer Ausführungsvariante des erfindungsgemässen, Verfahrens entsprechen die vom Grenzwertemodul 38 an den Vergleicher 39 gelieferten Geschwindigkeits-Grenzwert 28 nicht immer den in den Tabellen des Grenzwertemoduls fix gespeicherten positionsabhängigen Geschwindigkeits-Grenzwerten, sondern die gespeicherten Geschwindigkeits-Grenzwerte werden in den Bereichen, wo die Aufzugssteuerung 15 einen reduzierten Geschwindigkeits-Sollwert vorgibt, durch einen im Grenzwertemodul 38 integrierten Prozessor diesen reduzierten Sollwerten kontinuierlich angepasst. Dies geschieht insbesondere beim Anhalten auf einem Stockwerk. Die dafür erforderlicher Informationen von der Aufzugsteuerung 15 erhält das Grenzwertemodul über eine Datenleitung 45.According to an embodiment variant of the method according to the invention, the speed limit value 28 supplied to the comparator 39 by the limit value module 38 does not always correspond to the position-dependent speed limit values permanently stored in the tables of the limit value module, but the stored speed limit values are in the areas where the elevator control 15 predetermines a reduced speed setpoint, continuously adapted by a processor integrated in the limit value module 38 to these reduced setpoint values. This happens especially when stopping on a floor. The required information from the elevator control 15 receives the limit value module via a data line 45.

Selbstverständlich kann das erfindungsgemässe Verfahren auch für Aufzugsanlagen mit mehr als drei unterschiedlichen Bremsmassnahmen angewandt werden.Of course, the inventive method can also be applied to elevator systems with more than three different braking measures.

Fig. 7 und 8 zeigen im Weg/Geschwindigkeits-Diagramm den Ablauf des erfindungsgemässen Verfahrens mit mehreren unterschiedlichen Geschwindigkeits-Grenzwertkurven 28, welche jeweils unterschiedlichen Bremsmassnahmen zugeordnet sind. In Fig. 7 enthält das Diagramm zum Vergleich wiederum eine Kurve 27, die einen normalen Fahrgeschwindigkeitsverlauf darstellt. Ausserdem sind drei Geschwindigkeits-Grenzwertkurven 28 eingetragen. Eine angenommene Ist-Geschwindigkeit 29 verläuft so, dass sie oberhalb der Nenngeschwindigkeit und ausserhalb eines Fahrweg-Endbereichs oder eines Stockwerkshalt-Bereichs bei Kurvenpunkt 46 die erste Geschwindigkeits-Grenzwertkurve 28.1 überschreitet. Die Geschwindigkeitsüberwachungseinrichtung 24.2 erkennt dies und aktiviert eine erste Bremsmassnahme, d. h., im vorliegenden Beispiel versucht sie, die Geschwindigkeitsregeleinrichtung 14 zu veranlassen, die Antriebsgeschwindigkeit mit vordefinierter Verzögerung entsprechend der Reglerbremskurve 33 zu reduzieren. Diese erste Bremsmassnahme muss auch in diesem Fall nicht unbedingt zum Stillstand des Aufzugs führen. Falls die zweite Geschwindigkeits-Grenzwertkurve 28.2 nicht auch noch überschritten wird und die in der Aufzugssteuerung 15 integrierte Systemtesteinrichtung keinen relevanten Fehler meldet, kann der Aufzug seine Fahrt programmgemäss fortsetzen. Ist jedoch die erste Bremsmassnahme nicht oder nicht ausreichend wirksam, so dass auch die zweite Geschwindigkeits-Grenzwertkurve 28.2 überschritten wird, aktiviert die Geschwindigkeitsüberwachungseinrichtung 24.2 bei Kurvenpunkt 47 eine zweite Bremsmassnahme (die mechanische Antriebsbremse 10 am Antriebsmotor 9 in Fig. 1A oder die auf die Kolbenstange 52 wirkende Zangenbremse 58 in Fig. 1B), wodurch der Aufzug entsprechend der Antriebsbremskurve 34 zum Stillstand abgebremst werden soll. Falls auch diese Bremsmassnahme die Geschwindigkeit nicht oder nicht ausreichend reduziert, so löst die Geschwindigkeitsüberwachungseinrichtung 24.2 bei Kurvenpunkt 48 die gemäss diesem Ausführungsbeispiel letzte Bremsmassnahme aus, d. h. sie aktiviert die elektromagnetisch auslösbare Fangvorrichtung 18, die den Aufzug entsprechend der Fangbremskurve 35 stillsetzt.FIGS. 7 and 8 show in the path / speed diagram the sequence of the method according to the invention with a plurality of different speed limit curves 28, which are respectively assigned to different braking measures. In Fig. 7, the chart for comparison again includes a curve 27 representing a normal vehicle speed profile. In addition, three speed limit curves 28 are entered. An assumed actual speed 29 is such that it exceeds the first speed limit curve 28.1 above the nominal speed and outside a track end area or a floor stop area at curve point 46. The speed monitoring device 24.2 recognizes this and activates a first braking action, ie, in the present example it tries to cause the speed control device 14 to reduce the drive speed with a predefined delay in accordance with the regulator brake curve 33. Even in this case, this first braking measure does not necessarily lead to the standstill of the elevator. If the second speed limit curve 28.2 is not also exceeded and the system test device integrated in the elevator control 15 does not report a relevant error, the elevator can continue its travel according to the program. However, if the first braking measure is not or not sufficiently effective, so that the second speed limit curve 28.2 is exceeded, the speed monitoring device 24.2 activates a second braking measure at curve point 47 (the mechanical drive brake 10 on the drive motor 9 in FIG. 1A or on the piston rod 52 acting clamp brake 58 in Fig. 1B), whereby the elevator according to the drive brake curve 34 is to be braked to a standstill. If this braking measure also does not reduce the speed or does not sufficiently reduce it, then the speed monitoring device 24.2 triggers the last braking action according to this exemplary embodiment at curve point 48, ie activates the electromagnetically triggered safety gear 18, which stops the elevator according to the safety brake curve 35.

In Fig. 8 ist im im Weg/Geschwindigkeits-Diagramm dargestellt, wie es bei dem erfindungsgemässen Verfahren mit mehreren Geschwindigkeits-Grenzwertkurven 28.1, 28.2, 28.3 zur Auslösung von Bremsmassnahmen kommt, wenn eine angenommene Ist-Geschwindigkeit 29 des Aufzugs, ohne Überschreitung der Nenngeschwindigkeit, in einem Fahrweg-Endbereich oder Stockwerkshalt-Bereich eine oder mehrere der hier abfallenden Geschwindigkeits-Grenzwertkurven 28.1, 28.2, 28.3 überschreitet, weil beispielsweise die hier erforderliche Reduktion der Ist-Geschwindigkeit nicht eintritt. Nachdem durch die Geschwindigkeitsüberwachungseinrichtung 24.2 bei Kurvenpunkt 46 die erste Bremsmassnahme ausgelöst wurde, laufen dieselben Vorgänge ab, die vorstehend im Zusammenhang mit Fig. 7 beschrieben sind.In Fig. 8 is shown in the way / speed diagram, as it comes in the inventive method with multiple speed limit curves 28.1, 28.2, 28.3 for triggering braking measures when an assumed actual speed 29 of the elevator, without exceeding the rated speed , one or more of the falling speed limit curves 28.1, 28.2, 28.3 in a track end area or floor stop area, because, for example, the required reduction of the actual speed does not occur here. After the first braking measure has been triggered by the speed monitoring device 24.2 at the curve point 46, the same operations that have been described above in connection with FIG. 7 take place.

Fig. 9 zeigt schematisch die erfindungsgemässe elektronische Geschwindigkeitsüberwachungseinrichtung 24.2, wie sie für das im Zusammenhang mit Fig. 7, 8 beschriebene Verfahren mit mehreren Geschwindigkeits-Grenzwertkurven 28.1, 28.2, 28.3 zur Anwendung kommt. Sie besteht im Wesentlichen aus denselben Modulen, wie die vorstehend im Zusammenhang mit Fig. 6 beschriebene Geschwindigkeitsüberwachungseinrichtung 24.1, wobei jedoch für jede der zu überwachenden Geschwindigkeits-Grenzwertkurven 28.1, 28.2, 28.3 je ein Grenzwertemodul und je ein Vergleicher vorhanden sind. Sie enthält also drei Grenzwertemodule 38.1, 38.2, 38.3 und drei Vergleicher 39.1, 39.2, 39.3 sowie einen gemeinsamen Reaktionsgenerator 40.2. Über ihren Positionsdateneingang 41 erhält die Geschwindigkeitsüberwachungseinrichtung 24.2 einerseits laufend die von der Positionserfassungseinrichtung 21 generierten Informationen über die aktuelle Position der Aufzugskabine 8 im Aufzugsschacht 1. Anderseits erhält sie über ihren Ist-Geschwindigkeits-Eingang 42 von der Aufzugsteuerung 15 kontinuierlich Informationen über die aktuelle Ist-Geschwindigkeit des Aufzugs. In jedem der drei Grenzwertemodule 38.1, 38.2, 38.3 sind in je einer Tabelle positionsabhängige Geschwindigkeits-Grenzwerte gespeichert, wobei die in jeweils einer der Tabellen enthaltenen Werte eine der mit Fig. 7, 8 beschriebenen drei Geschwindigkeits-Grenzwertkurven 28.1, 28.2, 28.3 abbilden, d. h., jede der Tabellen ist einer der drei unterschiedlichen Bremsmassnahmen zugeordnet und enthält für jede Position des Aufzugs im Schacht einen dieser Bremsmassnahme zugeordneten Geschwindigkeits-Grenzwert.9 schematically shows the electronic speed monitoring device 24.2 according to the invention, as used for the method with several speed limit curves 28.1, 28.2, 28.3 described in connection with FIGS. 7, 8. It essentially consists of the same modules as the speed monitoring device 24.1 described above in connection with FIG. 6, but with one threshold module and one comparator per each of the speed limit curves 28.1, 28.2, 28.3 to be monitored. It therefore contains three limit modules 38.1, 38.2, 38.3 and three comparators 39.1, 39.2, 39.3 and a common reaction generator 40.2. On the one hand, via its actual speed input 42, the speed monitoring device 24.2 continually receives the information about the current position of the elevator car 8 in the elevator shaft 1 generated by the position detection device 21. On the other hand, it continuously receives information about the current actual speed from the elevator control 15 via its actual speed input 42. Speed of the elevator. In each of the three limit value modules 38.1, 38.2, 38.3, position-dependent speed limit values are stored in a respective table, the values contained in each of the tables representing one of the three speed limit value curves 28.1, 28.2, 28.3 described with reference to FIGS. ie, each of the tables is assigned to one of the three different braking measures and contains for each position of the elevator in the shaft one of these braking measures associated speed limit.

Während einer Aufzugsfahrt werden aus jeder der drei in den Grenzwertemodulen 38.1, 38.2, 38.3 abgespeicherten Tabellen laufend die der aktuellen Schachtposition der Aufzugskabine 8 entsprechenden Geschwindigkeitsgrenzwerte für die drei unterschiedlichen Bremsmassnahmen ausgelesen und in den jeweils einem der Grenzwertemodule 38.1, 38.2, 38.3 zugeordneten Vergleichern 39.1, 39.2, 39.3 mit der aktuellen Ist-Geschwindigkeit verglichen. Sobald und solange einer der Vergleicher 39.1, 39.2, 39.3 feststellt, dass die aktuelle Ist-Geschwindigkeit den in der jeweils zugehörigen Tabelle gespeicherten positionsabhängigen Geschwindigkeits-Grenzwert überschreitet, sendet er ein Übergeschwindigkeitssignal an den Reaktionsgenerator 40.2. Dieser aktiviert über einen seiner Bremssignal-Ausgänge 43.1, 43.2, 43.3 unverzüglich diejenige der drei möglichen Bremsmassnahmen, die dem signalgebenden Vergleicher und dem entsprechenden Grenzwertemodul zugeordnet ist.During an elevator journey, the speed limit values for the three different braking measures corresponding to the current shaft position of the elevator car are continuously read from each of the three tables stored in the limit module 38.1, 38.2, 38.3, and in the comparators 39.1 assigned to each of the limit module 38.1, 38.2, 38.3. 39.2, 39.3 compared with the current actual speed. As soon as and as long as one of the comparators 39.1, 39.2, 39.3 ascertains that the current actual speed exceeds the position-dependent speed limit value stored in the respectively associated table, it sends an overspeed signal to the reaction generator 40.2. This activates via one of its brake signal outputs 43.1, 43.2, 43.3 immediately that of the three possible braking measures that the signal-giving Comparator and the corresponding limit value module is assigned.

Gemäss einer Ausführungsvariante des im Zusammenhang mit Fig.9 beschriebenen erfindungsgemässen Verfahrens mit mehreren unterschiedlichen Geschwindigkeits-Grenzwertkurven 28.1, 28.2, 28.3, entsprechen die von den drei Grenzwertemodulen 38.1, 38.2, 38.3 an die Vergleicher 39.1, 39.2, 39.3 gelieferten Geschwindigkeits-Grenzwerte nicht immer den in den Tabellen des Grenzwertemoduls fix gespeicherten positionsabhängigen Geschwindigkeits-Grenzwerten, sondern die gespeicherten Geschwindigkeits-Grenzwerte werden in den Fahrweg-Bereichen, wo die Aufzugssteuerung 15 einen reduzierten Geschwindigkeits-Sollwert vorgibt, durch Prozessoren in den Grenzwertemodulen 38.1, 38.2, 38.3 diesen reduzierten Sollwerten kontinuierlich angepasst. Dies geschieht insbesondere beim Anhalten auf einem Stockwerk. Die dafür erforderlichen Informationen von der Aufzugsteuerung 15 erhalten die Grenzwertemodule 38.1, 38.2, 38.3 über eine Datenleitung 45.According to an embodiment variant of the method according to the invention described in connection with FIG. 9 with several different speed limit curves 28.1, 28.2, 28.3, the speed limit values supplied by the three limit value modules 38.1, 38.2, 38.3 to the comparators 39.1, 39.2, 39.3 do not always correspond The stored speed limit values are stored in the travel path areas, where the elevator control 15 prescribes a reduced speed setpoint, by processors in the limit value modules 38.1, 38.2, 38.3 of these reduced setpoint values, instead of the position-dependent speed limit values permanently stored in the tables of the limit module continuously adjusted. This happens especially when stopping on a floor. The information required for this purpose by the elevator control 15 is received by the limit value modules 38.1, 38.2, 38.3 via a data line 45.

Selbstverständlich kann das gesamte im Zusammenhang mit Fig. 9 beschriebene Verfahren auch für Aufzüge mit mehr als drei unterschiedlichen Bremsmassnahmen angewandt werden.Of course, the entire method described in connection with FIG. 9 can also be used for elevators with more than three different braking measures.

Ein Geschwindigkeitsüberwachungsverfahren, das besonders hohe Sicherheitsanforderungen erfüllt, kann realisiert werden, indem das Verfahren mit zeitabhängiger Reaktionskontrolle gemäss Fig. 4, 5, 6 kombiniert wird mit dem Verfahren mit mehreren unterschiedlichen Geschwindigkeits-Grenzwertkurven 28 gemäss Fig. 7, 8, 9, wobei jeweils eine weitere Bremsmassnahme ausgelöst wird, wenn die vorausgegangene Bremsmassnahme nicht innerhalb einer definierten Zeit zu einer definierten Geschwindigkeitsreduktion geführt hat, oder wenn ein dieser weiteren Bremsmassnahme zugeordneter positionsabhängiger Geschwindigkeitsgrenzwert überschritten wird.A speed monitoring method that meets particularly high safety requirements can be realized by combining the time-dependent reaction control method of FIGS. 4, 5, 6 with the method having a plurality of different speed limit curves 28 of FIGS. 7, 8, 9, respectively a further braking action is triggered if the previous braking action has not led to a defined speed reduction within a defined time, or if one of these further braking action assigned position-dependent speed limit is exceeded.

Damit das erfindungsgemässe Verfahren den hohen Sicherheitsanforderungen an ein Aufzugsystem genügen kann, sind mindestens alle an der Aktivierung der Fangvorrichtung beteiligten Funktionen sicherheitsrelevant auszuführen. Geeignete Massnahmen zur Realisierung solcher "Fail-Safe"-Konzepte sind dem Fachmann bekannt und umfassen beispielsweise:

  • Redundanz bei Positions- oder Geschwindigkeitserfassungseinrichtungen, bei Datenverarbeitungsprozessoren, bei Aktoren für die Aktivierung von Bremseinrichtungen, usw.
  • Datensicherungsverfahren bei Datenübertragung
  • parallele Datenverarbeitung durch mehrere, eventuell unterschiedliche Prozessoren, mit Resultatevergleich und Auslösung von geeigneten Sicherheitsmassnahmen im Falle von auftretenden Fehlern.
In order for the method according to the invention to be able to meet the high safety requirements for an elevator system, at least all functions involved in the activation of the safety gear are to be carried out with safety relevance. Suitable measures for implementing such "fail-safe" concepts are known to the person skilled in the art and include, for example:
  • Redundancy in position or speed detection devices, in data processing processors, actuators for activation of braking devices, etc.
  • Data backup method
  • Parallel data processing by several, possibly different processors, with the same result and triggering of appropriate safety measures in case of errors.

Um einen sicheren Verfahrensablauf auch bei Netzstromausfall oder bei Versagen der steuerungsinternen Stromversorgung zu gewährleisten, werden die für das erfindungsgemässe Verfahren wichtigen Stromkreise im Pannenfall durch geeignete Notstromversorgungseinrichtungen, beispielsweise mittels Batterien oder Kondensatoren gespeist.In order to ensure a safe process even in case of power failure or failure of the control power supply, the important for the inventive method circuits in the event of a breakdown are fed by suitable emergency power supplies, for example by means of batteries or capacitors.

Claims (15)

  1. Method for preventing an inadmissibly high speed of the load receiving means (8) of an elevator in which
    in the area of the entire travel way of the load receiving means (8), information about the actual position and the speed of the load receiving means is supplied to a speed monitoring device (24.1; 24.2) by at least one measuring system (20, 21) and the actual speed is continuously compared with a speed limit value (28; 28.1, 28.2, 28.3) by this speed monitoring device (24.1; 24.2) and braking measures are activated if the speed of the load receiving means (8) exceeds a speed limit value (28; 28.1, 28.2, 28.3),
    characterized in that
    at least three different braking measures are successively triggered by the speed monitoring device (24.1; 24.2).
  2. Method according to claim 1, characterized in that, in each case one of the braking measures is activated when a speed limit value (28; 28.1, 28.2, 28.3) assigned to this braking measure, is exceeded.
  3. Method according to claim 1, characterized in that, in each case, a further braking measure is activated if a preceding braking measure has not produced the defined speed reduction within a certain period.
  4. Method according to claim 1, characterized in that, in each case, a further braking measure is activated if a speed limit value (28.1, 28.2, 28.3) allocated to this braking measure is exceeded or if a preceding braking measure has not produced the defined speed reduction within a certain period.
  5. Method according to one of the claims 1 to 4, characterized in that in case of an elevator comprising a drive unit (4) for the load receiving means (8) including a speed control device (14), a braking measure consists of an attempt by the speed monitoring device to influence the speed control device (14) of the drive unit (4) in such a way that it reduced the drive speed of the load receiving means (8).
  6. Method according to claim 5, characterized in that the reduction of the drive speed of the load receiving means (8) is to be achieved by a permanently stored set speed value or a permanently stored set delay value being applied to a set value input of the speed control device (14).
  7. Method according to one of the claims 1 to 6, characterized in that in case of a cable-pulled elevator with a drive machine (4), a driving wheel (5) and a pulling cable (6), a further braking measure consists of a friction brake (10), acting directly or indirectly on the driving wheel (5) being activated by a speed monitoring device (24; 24.1; 24.2).
  8. Method according to one of the claims 1 to 6, characterized in that in case of an elevator with a load receiving means (8) guided along guide rails (7), a further braking measure consists of friction brakes acting between the load receiving means (8) and its guide rails (7) being activated by the speed monitoring device (24; 24.1; 24.2).
  9. Method according to one of the claims 1 to 6, characterized in that in case of a hydraulically operated elevator, another braking measure consists of the flow of a hydraulic medium determining the movement of a hydraulic lifter (51) being increasingly restricted by a speed monitoring device (24) through a flow valve (61) or of a friction brake (58) acting on a piston rod (52) of a hydraulic lifter that is activated by the speed monitoring device (24).
  10. Method according to one of the claims 1 to 9, characterized in that a braking measure consists of at least one safety catch (18) being activated by the speed monitoring device (24; 24.1; 24.2), with said safety catch being mounted on the load receiving means (8) and acting on rails permanently installed along the travel way and stopping the load receiving means (8).
  11. Method according to one of the claims 1 to 10, characterized in that the speed limit values (28; 28.1, 28.2, 28.3) assigned to the braking measures with which the actual speed (29) is continuously compared by the speed monitoring device (24, 24.1; 24.2), depend on the actual position of the load receiving means (9) and contain a required speed reduction in both end zones of the travel way.
  12. Method according to one of the claims 1 to 11, characterized in that the speed limit values (28; 28.1, 28.2, 28.3) assigned to the braking measures with which the actual speed (29) is continuously compared by the speed monitoring device (24, 24.1; 24.2), are permanently defined and stored for each position of the load receiving means (8).
  13. Method according to one of the claims 1 to 11, characterized in that the speed limit values (28; 28.1, 28.2, 28.3) assigned to the braking measures with which the actual speed (29) is continuously compared by the speed monitoring device (24, 24.1; 24.2), are continuously calculated by a micro processor according to the actual position of the load receiving means (9), taking into consideration the permanently programmed speed limit values (28) as well as information from the elevator controls (15) about the planned travel operation (45).
  14. Method according to one of the claims 1 to 13, characterized in that after a successful braking measure triggered by an excessive speed, the elevator automatically returns to its normal operation or enters an evacuation operation as long as the type of the last braking measure and the results of an automatically carried out functional test of the safety-relevant components allow this.
  15. Method according to one of the claims 1 to 14, characterized in that for the determination of the position and the speed of the load receiving means, the comparison of the speed with the speed limit values as well as for the activation of the braking measures, a comprehensive fail safe concept is used.
EP02732317A 2001-07-04 2002-06-27 Method for preventing an inadmissibly high speed of the load receiving means of an elevator Expired - Lifetime EP1401757B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP02732317A EP1401757B2 (en) 2001-07-04 2002-06-27 Method for preventing an inadmissibly high speed of the load receiving means of an elevator

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP01810654 2001-07-04
EP01810654 2001-07-04
PCT/CH2002/000350 WO2003004397A1 (en) 2001-07-04 2002-06-27 Method for preventing an inadmissibly high speed of the load receiving means of an elevator
EP02732317A EP1401757B2 (en) 2001-07-04 2002-06-27 Method for preventing an inadmissibly high speed of the load receiving means of an elevator

Publications (3)

Publication Number Publication Date
EP1401757A1 EP1401757A1 (en) 2004-03-31
EP1401757B1 true EP1401757B1 (en) 2006-12-20
EP1401757B2 EP1401757B2 (en) 2011-07-13

Family

ID=8184004

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02732317A Expired - Lifetime EP1401757B2 (en) 2001-07-04 2002-06-27 Method for preventing an inadmissibly high speed of the load receiving means of an elevator

Country Status (13)

Country Link
US (1) US7117979B2 (en)
EP (1) EP1401757B2 (en)
JP (2) JP2005515134A (en)
CN (1) CN1308213C (en)
AT (1) ATE348779T1 (en)
BR (1) BR0210750B1 (en)
CA (1) CA2448538C (en)
DE (1) DE50209017D1 (en)
DK (1) DK1401757T4 (en)
ES (1) ES2278027T5 (en)
HK (1) HK1065014A1 (en)
PT (1) PT1401757E (en)
WO (1) WO2003004397A1 (en)

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005061362A1 (en) * 2003-11-18 2005-07-07 Otis Elevator Company Elevator governor device
WO2005049468A1 (en) * 2003-11-21 2005-06-02 Mitsubishi Denki Kabushiki Kaisha Elevator system
CA2543381C (en) * 2004-03-30 2009-06-23 Mitsubishi Denki Kabushiki Kaisha Elevator control apparatus
WO2005100224A1 (en) * 2004-04-06 2005-10-27 Mitsubishi Denki Kabushiki Kaisha Elevator apparatus and method of controlling the apparatus
CN100537389C (en) * 2004-04-20 2009-09-09 三菱电机株式会社 Emergency stop system of elevator
EP1741656B2 (en) 2004-04-27 2015-06-17 Mitsubishi Denki Kabushiki Kaisha Elevator apparatus
US7650966B2 (en) * 2004-06-21 2010-01-26 Otis Elevator Company Elevator system including multiple cars in a hoistway, destination entry control and parking positions
US7637357B2 (en) * 2004-09-09 2009-12-29 Mitsubishi Electric Corporation Elevator apparatus with sheave rotational speed difference determination for detecting an abnormality
JP5031577B2 (en) * 2004-12-16 2012-09-19 オーチス エレベータ カンパニー Elevator system with multiple cars in hoistway
MY192706A (en) 2004-12-17 2022-09-02 Inventio Ag Lift installation with a braking device, and method for braking and holding a lift installation
EP1843963B1 (en) * 2004-12-29 2012-05-02 Otis Elevator Company Compensation in an elevator system having multiple cars within a single hoistway
ATE371624T1 (en) * 2005-01-07 2007-09-15 Thyssen Krupp Aufzuege Gmbh ELEVATOR SYSTEM WITH A CONTROL DEVICE
AU2005327255B2 (en) * 2005-02-04 2009-02-12 Otis Elevator Company Announcements indicating one car is waiting for another car in the same hoistway
US7784588B2 (en) * 2005-02-04 2010-08-31 Otis Elevator Company Calls assigned to one of two cars in a hoistway to minimize delay imposed on either car
WO2006088457A1 (en) * 2005-02-17 2006-08-24 Otis Elevator Company Communicating to elevator passengers re car movement to pit or overhead
US7819228B2 (en) * 2005-02-17 2010-10-26 Otis Elevator Company Collison prevention in hoistway with two elevator cars
CN101128383B (en) * 2005-02-25 2010-10-13 奥蒂斯电梯公司 Elevator car having an angled underslung roping arrangement
EP1698580B1 (en) 2005-03-05 2007-05-09 ThyssenKrupp Aufzugswerke GmbH Elevator system
PT1880967E (en) * 2005-03-30 2014-12-31 Mitsubishi Electric Corp Elevator apparatus
JP2006298645A (en) * 2005-04-21 2006-11-02 Inventio Ag Method for monitoring speed of elevator cage and detection system
JP4705407B2 (en) * 2005-05-13 2011-06-22 株式会社日立製作所 Elevator control device
EP1910207A1 (en) * 2005-07-19 2008-04-16 Bucher Hydraulics AG Hydraulic elevator without machine room
WO2007013141A1 (en) * 2005-07-26 2007-02-01 Mitsubishi Denki Kabushiki Kaisha Control device for elevator
US20070029052A1 (en) * 2005-08-03 2007-02-08 Nien Made Enterprise Co., Ltd. Equilibrium device for a blind without pull cords
EP1834917B1 (en) * 2006-03-16 2015-05-20 ThyssenKrupp Aufzugswerke GmbH Elevator system with an electric motor
WO2007108069A1 (en) * 2006-03-17 2007-09-27 Mitsubishi Denki Kabushiki Kaisha Elevator device
JP5053074B2 (en) 2006-03-17 2012-10-17 三菱電機株式会社 Elevator equipment
WO2007132523A1 (en) * 2006-05-16 2007-11-22 Mitsubishi Denki Kabushiki Kaisha Control device for elevator
FR2904594B1 (en) 2006-08-04 2008-10-17 Pomagalski Sa METHOD FOR CONTROLLING A BRAKING UNIT OF A CABLE TRANSPORTATION SYSTEM AND BRAKING UNIT
WO2008079147A1 (en) * 2006-12-22 2008-07-03 Otis Elevator Company Elevator system with multiple cars in a single hoistway
FI119508B (en) * 2007-04-03 2008-12-15 Kone Corp Fail safe power control equipment
ES2343608B1 (en) 2007-08-03 2011-06-16 Orona, S.Coop PROCEDURE AND DEVICE FOR ACTION IN EMERGENCY SITUATION IN LIFTING DEVICES.
KR101207905B1 (en) * 2007-12-05 2012-12-04 오티스 엘리베이터 컴파니 Control strategy for operating two elevator cars in a single hoistway
JP5371991B2 (en) * 2008-09-01 2013-12-18 三菱電機株式会社 Elevator equipment
JP2012512116A (en) * 2008-12-17 2012-05-31 オーチス エレベータ カンパニー Elevator brake control
RU2487074C2 (en) * 2009-03-16 2013-07-10 Отис Элевэйтор Компани System for detection and processing excess acceleration and speed
JP5600399B2 (en) * 2009-05-19 2014-10-01 株式会社日立製作所 Elevator equipment
JP5241623B2 (en) * 2009-06-11 2013-07-17 株式会社日立製作所 Elevator with safety device
US8191689B2 (en) * 2009-06-19 2012-06-05 Tower Elevator Systems, Inc. Elevator safety rescue system
EP2998260B1 (en) 2010-12-17 2018-10-17 Inventio AG Lift assembly with cabin and counterweight
WO2012080102A1 (en) 2010-12-17 2012-06-21 Inventio Ag Arrangement for actuating and restoring an intercepting apparatus
US9169104B2 (en) 2010-12-17 2015-10-27 Inventio Ag Activating a safety gear
EP2607282A1 (en) 2011-12-23 2013-06-26 Inventio AG Safety device for a lift with multiple cabins
FR2984864A1 (en) * 2011-12-27 2013-06-28 Arnoult Serge CONTROL OF THE MOVEMENT OF AN ELEVATOR CABIN
MX2014008910A (en) 2012-01-25 2014-08-26 Inventio Ag Method and control device for monitoring travelling movements of a lift cabin.
JP5932577B2 (en) * 2012-09-06 2016-06-08 株式会社日立製作所 Elevator safety system
FI124545B (en) * 2013-09-26 2014-10-15 Kone Corp Procedure for monitoring the movement of a lift component and safety arrangements for a lift
KR101993538B1 (en) * 2014-09-09 2019-06-26 미쓰비시덴키 가부시키가이샤 Elevator device
EP3279124B1 (en) 2016-08-02 2019-10-02 Kone Corporation Method, elevator control unit, and elevator system for dynamically adjusting a levelling speed limit of an elevator car
EP3366626B1 (en) * 2017-02-22 2021-01-06 Otis Elevator Company Elevator safety system and method of monitoring an elevator system
EP3608274A1 (en) * 2018-08-10 2020-02-12 Otis Elevator Company Enhancing the transport capacity of an elevator system
EP3744672A1 (en) * 2019-05-31 2020-12-02 Cedes AG Limit curve control for elevators
KR102382611B1 (en) * 2021-10-26 2022-04-08 (주) 청원기연 Carlift safe operation system
DE102022111457A1 (en) 2022-05-09 2023-11-09 Tk Elevator Innovation And Operations Gmbh Method for operating an elevator system

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH502948A (en) * 1968-12-04 1971-02-15 Aufzuege Ag Schaffhausen Hydraulic drive device for a rope elevator
JPS6239017Y2 (en) * 1979-03-17 1987-10-05
JPS56149964A (en) * 1980-04-18 1981-11-20 Hitachi Ltd Controller for elevator
JPS5785779A (en) * 1980-11-12 1982-05-28 Hitachi Ltd Preventive circuit for free-run of elevator
JPH0729746B2 (en) * 1984-01-11 1995-04-05 株式会社日立製作所 Elevator emergency stop control device
US4638888A (en) * 1985-03-18 1987-01-27 Brownie Manufacturing Co., Inc. Hydraulic elevator
JPS62230582A (en) * 1986-03-31 1987-10-09 三菱電機株式会社 Safety device for elevator
US4800990A (en) * 1987-05-07 1989-01-31 Blain Roy W Three speed valve control for high performance hydraulic elevator
JPH04286587A (en) * 1991-03-14 1992-10-12 Mitsubishi Electric Corp Linear motor type elevator control device
JPH0543150A (en) * 1991-08-20 1993-02-23 Hitachi Ltd Elevator
US5226508A (en) * 1991-12-02 1993-07-13 Otis Elevator Company Disc brake for elevator drive sheave
DE59309330D1 (en) * 1993-10-18 1999-03-04 Inventio Ag Brake safety device for an elevator car
US6371248B1 (en) * 1998-12-14 2002-04-16 Inventio Ag Drive unit for elevators
US6170614B1 (en) * 1998-12-29 2001-01-09 Otis Elevator Company Electronic overspeed governor for elevators
EP1309508B1 (en) * 2000-08-18 2007-01-10 Bucher Hydraulics AG Hydraulic lift with an accumulator
US6557670B2 (en) * 2001-07-17 2003-05-06 Jiun Jyh Wang Double brake protection device for elevator

Also Published As

Publication number Publication date
US7117979B2 (en) 2006-10-10
EP1401757B2 (en) 2011-07-13
BR0210750B1 (en) 2012-12-11
JP2009215082A (en) 2009-09-24
WO2003004397A1 (en) 2003-01-16
EP1401757A1 (en) 2004-03-31
BR0210750A (en) 2004-07-20
JP2005515134A (en) 2005-05-26
DK1401757T4 (en) 2011-10-24
CN1308213C (en) 2007-04-04
DK1401757T3 (en) 2007-04-10
DE50209017D1 (en) 2007-02-01
PT1401757E (en) 2007-02-28
ATE348779T1 (en) 2007-01-15
CN1524057A (en) 2004-08-25
CA2448538A1 (en) 2003-01-16
CA2448538C (en) 2010-06-01
US20040173413A1 (en) 2004-09-09
ES2278027T3 (en) 2007-08-01
ES2278027T5 (en) 2011-12-05
HK1065014A1 (en) 2005-02-08

Similar Documents

Publication Publication Date Title
EP1401757B1 (en) Method for preventing an inadmissibly high speed of the load receiving means of an elevator
EP0769469B1 (en) Safety device for multi-mobile elevator groups
EP2170753B1 (en) Elevator system with an elevator car and a braking device for stopping said elevator car in a special operating mode and a method for stopping an elevator car in a special operating mode
EP2794449B2 (en) Safety device for a lift with multiple cabins
DE112009004592B4 (en) Elevator installation and method for checking the same
DE60012792T2 (en) METHOD FOR BRAKING A DRIVE DISK
EP1404603B1 (en) Lift installation having a virtual protection area at the bottom and/or the top of the lift shaft, and method for controlling the same
EP2125592B1 (en) Lift cabin with a braking device fitted in the area of the lift cabin to stop and brake the lift cabin, a lift system with at least one such lift cabin and a method for stopping and braking a lift cabin
WO2018177829A1 (en) Multi-cage lift installation and method for operating a multi-cage lift installation
DE112009002129T5 (en) elevator system
DE112013007449T5 (en) winder
WO2009018886A1 (en) Elevator system
EP3209589A1 (en) Elevator comprising a decentralized electronic safety system
DE102007015277A1 (en) Elevator installation with an elevator car brake device and method for braking an elevator car
WO2009080476A1 (en) Operating method for an elevator having two elevator cabs and one counterweight
DE112014006938T5 (en) winder
WO2008006396A1 (en) Isg-type multifunctional electronic emergency braking safety device
LU501859B1 (en) Safety cabin device for elevator
WO2011107390A1 (en) Method for the energy-saving operation of an elevator system and corresponding elevator system
DE102017202129A1 (en) Elevator system with rotating segments
DE202016101183U1 (en) Elevator with a safety controller for directly influencing the braking force
DE212020000575U1 (en) Safety cabin device for elevator
WO2017121760A1 (en) Method for monitoring a first brake of a car of an elevator system
DE102011118544A1 (en) Auxiliary drive for movement of lift car of lift, has suspension cables and guide rails which are contacted with respect to each other in event of fault of the main drive, so as to exert driving force for driving the lift car
DE102022111457A1 (en) Method for operating an elevator system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040110

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DEPLAZES, ROMEO

Inventor name: ANGTS, PHILIPP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1065014

Country of ref document: HK

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 50209017

Country of ref document: DE

Date of ref document: 20070201

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20070400298

Country of ref document: GR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070205

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20070209

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

ET Fr: translation filed
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1065014

Country of ref document: HK

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2278027

Country of ref document: ES

Kind code of ref document: T3

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: OTIS ELEVATOR COMPANY

Effective date: 20070920

NLR1 Nl: opposition has been filed with the epo

Opponent name: OTIS ELEVATOR COMPANY

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070630

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070627

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061220

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

R26 Opposition filed (corrected)

Opponent name: OTIS ELEVATOR COMPANY

Effective date: 20070920

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20110713

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 50209017

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: AEN

Free format text: AUFRECHTERHALTUNG DES PATENTES IN GEAENDERTER FORM

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 50209017

Country of ref document: DE

Effective date: 20110713

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: DK

Ref legal event code: T4

REG Reference to a national code

Ref country code: SE

Ref legal event code: RPEO

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20110402280

Country of ref document: GR

Effective date: 20111013

REG Reference to a national code

Ref country code: ES

Ref legal event code: DC2A

Ref document number: 2278027

Country of ref document: ES

Kind code of ref document: T5

Effective date: 20111205

REG Reference to a national code

Ref country code: HK

Ref legal event code: AM43

Ref document number: 1065014

Country of ref document: HK

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20150618

Year of fee payment: 14

Ref country code: SE

Payment date: 20150618

Year of fee payment: 14

Ref country code: DK

Payment date: 20150618

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20150618

Year of fee payment: 14

Ref country code: BE

Payment date: 20150618

Year of fee payment: 14

Ref country code: AT

Payment date: 20150619

Year of fee payment: 14

Ref country code: IE

Payment date: 20150619

Year of fee payment: 14

Ref country code: GR

Payment date: 20150611

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20160630

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20160701

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 348779

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160628

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161227

REG Reference to a national code

Ref country code: GR

Ref legal event code: ML

Ref document number: 20110402280

Country of ref document: GR

Effective date: 20170109

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160701

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160627

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160627

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20210622

Year of fee payment: 20

Ref country code: FI

Payment date: 20210618

Year of fee payment: 20

Ref country code: FR

Payment date: 20210625

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20210622

Year of fee payment: 20

Ref country code: GB

Payment date: 20210625

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20210709

Year of fee payment: 20

Ref country code: DE

Payment date: 20210827

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50209017

Country of ref document: DE

REG Reference to a national code

Ref country code: FI

Ref legal event code: MAE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20220626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20220626

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20220628