EP1384027A1 - Gasdichter behälter - Google Patents
Gasdichter behälterInfo
- Publication number
- EP1384027A1 EP1384027A1 EP02712717A EP02712717A EP1384027A1 EP 1384027 A1 EP1384027 A1 EP 1384027A1 EP 02712717 A EP02712717 A EP 02712717A EP 02712717 A EP02712717 A EP 02712717A EP 1384027 A1 EP1384027 A1 EP 1384027A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- container
- diffusion barrier
- layer
- nanoparticles
- barrier layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C1/00—Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
- F17C1/16—Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge constructed of plastics materials
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C1/00—Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
- F17C1/10—Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge with provision for protection against corrosion, e.g. due to gaseous acid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2201/00—Vessel construction, in particular geometry, arrangement or size
- F17C2201/01—Shape
- F17C2201/0104—Shape cylindrical
- F17C2201/0109—Shape cylindrical with exteriorly curved end-piece
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2201/00—Vessel construction, in particular geometry, arrangement or size
- F17C2201/05—Size
- F17C2201/056—Small (<1 m3)
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/01—Reinforcing or suspension means
- F17C2203/011—Reinforcing means
- F17C2203/012—Reinforcing means on or in the wall, e.g. ribs
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0602—Wall structures; Special features thereof
- F17C2203/0604—Liners
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0602—Wall structures; Special features thereof
- F17C2203/0607—Coatings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0602—Wall structures; Special features thereof
- F17C2203/0612—Wall structures
- F17C2203/0614—Single wall
- F17C2203/0619—Single wall with two layers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0602—Wall structures; Special features thereof
- F17C2203/0612—Wall structures
- F17C2203/0614—Single wall
- F17C2203/0621—Single wall with three layers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0602—Wall structures; Special features thereof
- F17C2203/0612—Wall structures
- F17C2203/0614—Single wall
- F17C2203/0624—Single wall with four or more layers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0634—Materials for walls or layers thereof
- F17C2203/0636—Metals
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0634—Materials for walls or layers thereof
- F17C2203/0636—Metals
- F17C2203/0639—Steels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0634—Materials for walls or layers thereof
- F17C2203/0636—Metals
- F17C2203/0646—Aluminium
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0634—Materials for walls or layers thereof
- F17C2203/0636—Metals
- F17C2203/0648—Alloys or compositions of metals
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0634—Materials for walls or layers thereof
- F17C2203/0636—Metals
- F17C2203/0656—Metals in form of filaments
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0634—Materials for walls or layers thereof
- F17C2203/0658—Synthetics
- F17C2203/066—Plastics
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0634—Materials for walls or layers thereof
- F17C2203/0658—Synthetics
- F17C2203/0663—Synthetics in form of fibers or filaments
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0634—Materials for walls or layers thereof
- F17C2203/0658—Synthetics
- F17C2203/0663—Synthetics in form of fibers or filaments
- F17C2203/067—Synthetics in form of fibers or filaments helically wound
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0634—Materials for walls or layers thereof
- F17C2203/0658—Synthetics
- F17C2203/0663—Synthetics in form of fibers or filaments
- F17C2203/0673—Polymers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2205/00—Vessel construction, in particular mounting arrangements, attachments or identifications means
- F17C2205/03—Fluid connections, filters, valves, closure means or other attachments
- F17C2205/0302—Fittings, valves, filters, or components in connection with the gas storage device
- F17C2205/0305—Bosses, e.g. boss collars
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2205/00—Vessel construction, in particular mounting arrangements, attachments or identifications means
- F17C2205/03—Fluid connections, filters, valves, closure means or other attachments
- F17C2205/0388—Arrangement of valves, regulators, filters
- F17C2205/0394—Arrangement of valves, regulators, filters in direct contact with the pressure vessel
- F17C2205/0397—Arrangement of valves, regulators, filters in direct contact with the pressure vessel on both sides of the pressure vessel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2209/00—Vessel construction, in particular methods of manufacturing
- F17C2209/21—Shaping processes
- F17C2209/2154—Winding
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2209/00—Vessel construction, in particular methods of manufacturing
- F17C2209/21—Shaping processes
- F17C2209/2172—Polishing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2209/00—Vessel construction, in particular methods of manufacturing
- F17C2209/22—Assembling processes
- F17C2209/221—Welding
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2209/00—Vessel construction, in particular methods of manufacturing
- F17C2209/22—Assembling processes
- F17C2209/224—Press-fitting; Shrink-fitting
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2209/00—Vessel construction, in particular methods of manufacturing
- F17C2209/22—Assembling processes
- F17C2209/225—Spraying
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2209/00—Vessel construction, in particular methods of manufacturing
- F17C2209/22—Assembling processes
- F17C2209/227—Assembling processes by adhesive means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2209/00—Vessel construction, in particular methods of manufacturing
- F17C2209/22—Assembling processes
- F17C2209/228—Assembling processes by screws, bolts or rivets
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2209/00—Vessel construction, in particular methods of manufacturing
- F17C2209/23—Manufacturing of particular parts or at special locations
- F17C2209/232—Manufacturing of particular parts or at special locations of walls
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2221/00—Handled fluid, in particular type of fluid
- F17C2221/01—Pure fluids
- F17C2221/011—Oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2221/00—Handled fluid, in particular type of fluid
- F17C2221/01—Pure fluids
- F17C2221/012—Hydrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2221/00—Handled fluid, in particular type of fluid
- F17C2221/03—Mixtures
- F17C2221/031—Air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2221/00—Handled fluid, in particular type of fluid
- F17C2221/03—Mixtures
- F17C2221/032—Hydrocarbons
- F17C2221/033—Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/01—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
- F17C2223/0107—Single phase
- F17C2223/0123—Single phase gaseous, e.g. CNG, GNC
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/03—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
- F17C2223/035—High pressure (>10 bar)
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/03—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
- F17C2223/036—Very high pressure (>80 bar)
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2260/00—Purposes of gas storage and gas handling
- F17C2260/03—Dealing with losses
- F17C2260/035—Dealing with losses of fluid
- F17C2260/036—Avoiding leaks
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2260/00—Purposes of gas storage and gas handling
- F17C2260/03—Dealing with losses
- F17C2260/035—Dealing with losses of fluid
- F17C2260/037—Handling leaked fluid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2260/00—Purposes of gas storage and gas handling
- F17C2260/05—Improving chemical properties
- F17C2260/053—Reducing corrosion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2270/00—Applications
- F17C2270/01—Applications for fluid transport or storage
- F17C2270/0165—Applications for fluid transport or storage on the road
- F17C2270/0168—Applications for fluid transport or storage on the road by vehicles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2270/00—Applications
- F17C2270/01—Applications for fluid transport or storage
- F17C2270/0186—Applications for fluid transport or storage in the air or in space
- F17C2270/0189—Planes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2270/00—Applications
- F17C2270/07—Applications for household use
- F17C2270/079—Respiration devices for rescuing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/32—Hydrogen storage
Definitions
- the invention relates to a gas-tight, pressure-resistant storage and / or transport container for low-molecular, reactive filling media, in particular for hydrogen, oxygen, air, methane and / or methanol, with a high filling pressure, which container is essentially rotationally symmetrical and has at least one connection cap has a closure device.
- Thick-walled metal bottles made of steel have the disadvantage that they are extremely heavy compared to the stored content.
- the replacement of steel bottles with appropriate aluminum bottles was a first important step in the right direction in terms of weight, but the above-mentioned mismatch between content and container continues to exist to a lesser extent.
- US 4073400 A describes such a gas container made of a metal, preferably aluminum or steel, which has an outer protective layer made of a fiber-reinforced resin / polymer.
- an anti-corrosion layer is also applied on the inside, which also consists of a fiber-reinforced resin / polymer.
- DE 3821852 A1 also describes a pressurized gas bottle made of a metallic inner container and circumferential, glass fiber-reinforced plastic layers. This compressed gas bottle, intended as a propellant container for motor vehicles, is suitable for filling pressures up to 340 bar. Thanks to the metal bottle, there are no diffusion problems, and there are no corrosion problems when using a corrosion-resistant aluminum alloy for the inner container.
- WO 00/66939 A1 describes the production of a two-layer gas pressure container made of plastic.
- An inner container made of plastic is pretreated in rotation to increase the wetting and adhesion properties.
- a fiber-reinforced wrapping tape is applied in a spiral line, which sticks very well to the inner container and forms an effective pressure reinforcement. Diffusion or corrosion problems are not described or mentioned.
- a double-walled heat storage bottle made of plastic with respect to a gas pressure container for high pressures according to US 3921844 A has in a known manner the heat radiation reflecting silver layers, which also act as diffusion barriers.
- the vacuum between the double walls with comparatively very thin walls can be maintained for a long time and heat convection prevented.
- a pressure vessel such a double wall with a vacuum in between would not only be nonsensical, but counterproductive.
- the inventors have set themselves the task of creating a gas-tight, pressure-resistant storage and / or transport container of the type mentioned at the outset, which is media-specific impermeable and / or, if necessary, corrosion-resistant with a reduced weight.
- the container wall consists essentially of a thermoplastic with at least one diffusion barrier system or a diffusion barrier and corrosion protection system. Special and further developing embodiments of the container are the subject of dependent claims.
- diffusion barrier layer encompasses layers deposited on the container wall as well as films placed on or into the container wall, with or without a functional layer / s.
- a diffusion barrier layer can also be a corrosion protection layer at the same time or exclusively, without this having to be done every time All types of diffusion barrier layers preferably have approximately the same expansion coefficient as the container wall.
- a “diffusion barrier system” or a “corrosion protection system” can comprise a compact layer and / or dispersed, passive or reactive nanoparticles. Reactive nanoparticles react chemically with a permeating gas, passive nanoparticles adsorb (store) this.
- Plastic containers with a high filling pressure ie in the range of at least 50-100 bar, have the usual external dimensions and shapes. They are preferably essentially cylindrical and have a closure cap on one or both sides in the region of their longitudinal axis a closure of the usual type.
- the jacket length of large containers is expediently in the usual range from 1 to 6 m, the inside diameter is up to 40 cm, in particular about 35 cm, the filling pressure is preferably at least 150 bar, in particular at least 250 bar.
- the portable medical bottles for patients, which are also included in the invention are designed to be substantially smaller.
- thermoplastic plastic of the container wall which consists for example of polyethylene, polypropylene, acetylbutadiene styrene, polyamide, polyvinyl acetate or a polyester, is reinforced with a tensile material, preferably with carbon, Glass or ceramic fibers, but also with steel wires.
- a diffusion barrier layer is arranged inside and / or outside the container wall, possibly also or only in this wall itself.
- an external diffusion barrier layer is also applied, which is also a corrosion protection layer.
- a diffusion barrier layer can be integrated into this wall, for example by coextrusion or corresponding winding technology, both are known per se, or the wall of a hydrogen container contains dispersed, passive or reactive nanoparticles. At least one diffusion barrier layer can be applied to the container wall using two fundamentally different methods:
- deposition from the gas phase with or without chemical reaction, also as a thin layer in the range from 10 to 600 nm, in particular up to 100 nm.
- This deposition can take place directly on the container wall and / or on a carrier film subsequently applied to or in the container wall ,
- the outside film is applied, for example, by wrapping, preferably with a strong overlap of film strips applied in a spiral line, by longitudinally applying a film, again with a strong overlap of the side edges, or by applying a shrinking film or one that can be welded to size.
- the inner coating or inner lining with a film for the production of the diffusion barrier layer takes place by introducing a bag cut to size with the dimensions corresponding to the inside of the container, one or two openings being provided corresponding to the container.
- the inserted bag is fastened in the area of the filler neck, e.g. by gluing or clamping by screwing.
- a metal foil usually an aluminum or a steel foil, is applied or extruded as a diffusion barrier layer, preferably as a composite foil.
- LLDPE low density polyethylene with a linear structure
- Pure plastic composite films or multi-layers can also be applied or extruded, e.g. LLDPE (100 ⁇ m) / OPP (20 ⁇ m) / PVA (14 ⁇ m) / OPP (20 ⁇ m) LLDPE (100 ⁇ m).
- PVA polyvinyl alcohol.
- the PVA layer can also be provided with an SiO x or DLC layer (Diamond Like Carbon).
- a container according to the invention, or a film inserted therein, can also be protected with one or more diffusion barrier layers which are separated from the gas phase.
- the deposition from the gas phase takes place in a manner known per se with or without a chemical reaction in the gas phase, also as co-deposition of materials. Specific examples are vaporization with an arc (Are) and cathode sputtering (sputtering). Further examples are the deposition using lasers, electron, ion or molecular beams or thermal action, in each case with or without plasma excitation and with or without magnetic field support, and plasma spraying.
- the deposited layers form a diffusion barrier layer, which is also the corrosion protection layer where necessary.
- a plastic container according to the invention or a film to be applied or inserted is to have a metallic or ceramic diffusion barrier layer
- pretreatment is often advantageous in order to increase the adhesion of this diffusion barrier layer.
- the pretreatment is expediently carried out with a plasma activation of the surface to be treated or with an extremely thin polar plasma layer of clearly ⁇ 1 ⁇ m.
- the coating is deposited immediately after activation, in a second case the polar layer can stabilize the surface tension of the plastic surface for years to> 50 mN / m or, if necessary, even to> 70 mN / m.
- a radio frequency discharge (RF) in a mixture of noble gases (Ar, He), oxygen-containing and / or nitrogen-containing monomer gases is supplied, for example using CO 2l O 2 , N 2 , NO x and / or NH 3 , good results achieved.
- RF includes low frequency, radio frequency and maximum frequency.
- Plasma activation has long been used industrially, for example as a corona discharge or low-pressure discharge.
- mixtures e.g. B. from the monomer gases CO 2 , O 2 , N 2 , NO x , NH 3 , CH 3 OH, CH 4 , CH 3 CN and C 2 H 2 .
- an anhydrous process gas is used for a polar coating, each containing at least one also substituted hydrocarbon compound with up to eight C atoms and one inorganic gas.
- An apolar diffusion barrier layer ie with a barrier effect, can also be applied directly, ie without pretreatment, by means of plasma polymerization, for example as a 0.01 to 1 ⁇ m thick amorphous DLC hydrocarbon layer (diamond-like carbon).
- This is based on carbon and hydrogen, has a content of 20 to 80 at% each of the two elements, and 0.01 to 6 at% each of at least one element of the group consisting of oxygen, nitrogen, fluorine, Contains chlorine, bromine, boron and silicon. Diesbezüg- reference is made to WO 00/32938 (table, item E).
- an actual diffusion barrier layer e.g. B. deposited a metallic, organic metal-containing and / or ceramic layer.
- the metallic layers also include boron and silicon.
- the use of the plasma-supported coating processes is particularly suitable because the substrate temperature can be kept lower and good adhesion of the layer to the substrate through an adhesion-promoting interaction the plasma is reached.
- a targeted variation of the plasma parameters, including the process gases, results in a layer structure that adequately copes with the respective expansions of the container.
- Effective ceramic diffusion barrier layers consist, for example, of Al 2 O 3) TiN, TiC, Si 3 N 4 , SiC, ZrO 2 , Cr 2 O 3 , SiO x and / or SiO x Ny.
- a diffusion barrier system comprises, according to a variant for a hydrogen container in the container wall, in the diffusion barrier layer and / or in a composite film with the diffusion barrier layer, finely dispersed passive nanoparticles for storing hydrogen or reactive nanoparticles for chemical reaction with hydrogen.
- These nanoparticles preferably contain Ti, Pd, Fe, Al, Mg, Mg 2 Ni, TiC, TiO 2 , Ti 3 Al, TiN, Ti 2 Ni, LaNi 5 H 6 , graphite, silicates and / or carbon-containing nanotubes.
- the nano Particles can also be embedded in a matrix, for example passive TiN nanoparticles or active Ti nanoparticles in an Si 3 N matrix with a grain size of at most a few ⁇ m.
- Ti and / or TiC nanoparticles can be embedded in an SiC matrix, or Ti and / or TiO 2 nanoparticles in an SiO 2 matrix.
- reactive gases eg oxygen
- analog diffusion barrier systems (table, item I).
- Reactive nanoparticles react chemically with a gas that diffuses through the container wall, eg Al nanoparticles with oxygen to form Al 2 O 3 .
- Passive, ie non-reactive nanoparticles adsorb a gas diffusing through the container wall, eg Ti nanoparticles H 2 . They can be installed in a wide variety of geometric shapes and form a physical diffusion barrier.
- a hydrogen-storing component must be selected so that the expansion coefficient for hydrogen absorption and the particle size are matched to the container mass and pressure variations.
- - Functional layer system 1 container and film, barrier layer inside and / or outside
- PVD Physical Vapor Deposition
- PVD is carried out, for example, by cathode sputtering and / or arc evaporation inside and outside, thermal and electron beam evaporation outside. If this metal layer is subsequently oxidized using a plasma process, for example by means of RF discharge, a defined additional Al 2 O 3 protective and diffusion barrier layer forms on the
- Functional layer system 2 container or container with film, barrier layer preferably inside
- a DLC layer is deposited directly, without pretreatment, as a diffusion barrier layer, which also acts as a protective layer, on a plastic substrate.
- a gradient layer from polymer-like to diamond-like or from elastic to dense is produced via the process control.
- the electrically non-conductive substrate with the layer material enables inductive coupling of the radio frequency into the container.
- metal-containing nanoparticles eg Al, Ti, Mg
- metal-containing nanoparticles can be deposited finely dispersed on / into the container wall or in a film to be introduced via the gas phase with organometallic components, which absorb the diffusing hydrogen or oxygen and / or save.
- Functional layer system 3 container and film, barrier layer inside (arc, sputtering) and / or outside (arc / sputtering / PA reactive electron beam evaporation).
- a plastic substrate is plasma pretreated to smooth the surface if necessary and to increase the adhesion to the subsequent coating.
- a ceramic layer made of Al 2 O 3 , SiO x , SiON, TiO 2 and / or
- ZrO 2 can be deposited using the aforementioned PVD methods, arcing (Are), reactive cathode sputtering (Sputtem) and plasma-activated reactive electron beam evaporation.
- a sandwich-like structure of the diffusion barrier layer which is completely gas-impermeable overall, but still survives the expansion of the mechanically loaded container without damage, can be achieved by varying the process parameters, eg a dense, hard layer or a soft, stretchable layer.
- Metal-containing (elementary) nanoparticles can be incorporated into the layer by co-deposition or by additional use of a molecular beam.
- a thin diffusion barrier layer namely a DLC layer with or without passive / active nanoparticles or a thin ceramic layer, for example made of SiO 2 , Al 2 O 3 and / or Si 3 N 4 , with or without passive / active nanoparticles, on the
- Plastic substrate to be deposited Plastic substrate to be deposited.
- DLC layers of submicron thickness with metallic nanoparticles i.e. Particles in the nm range of a size corresponding to at most 50% of the layer thickness are referred to WO 01/55489 and the following FIG. 9 despite the other function.
- - Functional layer system 4 container and film, barrier layer inside and / or outside
- a barrier layer comprises a sandwich-like to seven-layer one
- polymer - metal - polymer - metal oxide - polymer namely: UV-hardened polyacrylate (1-5 ⁇ m) / AI (10-1000 nm) / polyacrylate (0.5 ⁇ m) / TiO 2 (10 -100 nm) / polyacrylate (0.5 ⁇ m).
- the metal and metal oxide layers are evaporated.
- a DLC, SiON and / or Al 2 O 3 can also be deposited.
- Thicker layers could e.g. be deposited with plasma spraying (table, item H).
- a polymer layer is applied as a pretreatment, for example Made of polypropylene, one or a few ⁇ m thick, to smooth the surface if necessary, which can also be plasma-activated to increase the adhesion to the following coating.
- a number of metallic and / or ceramic “brick-like” structural layers are then applied, for example sheet silicates.
- a polymer-like protective layer which is finally applied ensures the freedom of movement of the brick-like structure.
- liquid-crystalline polyesters (LCP) can also be stretched biaxially and thereby produce a sheet-like structure.
- a combination of two different deposition processes leads to a composite diffusion barrier layer consisting of an inorganic and an organic Material or from various inorganic materials.
- the inorganic component is a metal (for example aluminum or titanium) or a ceramic (for example Si 3 N 4 or Al 2 O 3 ), the organic component
- a measuring transition i. H. a gradient can be achieved by varying the process parameters or with incorporated particles.
- gas-tight tank systems are created for low molecular weight, reactive media, in particular for hydrogen, oxygen, methane and / or methanol.
- a pressure-resistant plastic container with a weight that is significantly lower for vehicles is lined on the inside and / or outside with a highly effective diffusion barrier layer, which prevents even the smallest quantities of the filling medium from escaping and stores it under legal safety specifications is guaranteed.
- suitable metal foils plastic foils and coatings
- a dimensionally independent functional adjustment of the high barrier film system to the respective specifications of the filling medium is required.
- the most suitable film combination can be inserted for each filling medium, a layer can be deposited or the most suitable nanoparticles can be integrated into the container wall.
- the coating process can be scaled up to the respective dimension.
- the type and combination of the layers can be adapted accordingly.
- a further layer can be applied if methanol is used as the filling medium.
- the diffusion barrier layer can be separated, consists of an equivalent material as the container or has such a low mass fraction that it is of no importance for recycling.
- FIG. 1 shows an axial section through a container
- FIG. 2 shows a radial section according to II-II in FIG. 1
- FIG. 10 shows a reaction chamber for plasma activation and the production of diffusion barrier layers.
- gas-tight, pressure-resistant storage and / or transport container hereinafter referred to as container 10, has the internationally customary standard dimensions.
- the container wall 12 equipped with a non-visible diffusion barrier layer consists exclusively of plastic, this wall being produced, for example, using a winding technique known per se.
- metallic connecting caps 14 are formed, which narrow to a much smaller diameter and coaxially merge into a closure device 16, which is only shown in block form and which can be held in the region of the longitudinal axis L.
- both the container 10 for numerous filling media 20 and its production are known on a broad basis.
- the container wall 12 has a diffusion barrier layer 18 on the inside, which is also corrosion protection in the case of an aggressive filling medium 20.
- the diffusion barrier layer 18 is applied, for example, by inserting a bag made of a metal-plastic composite film or by deposition from the gas phase.
- passive and reactive nanoparticles 19, which act as a diffusion barrier system are finely dispersed in the container wall 12 of a hydrogen container. These particles in the nm range are usually designed as clusters, platelets (eg graphite, layered silicates) or tubes based on carbon.
- the outside atmosphere 24 is also not aggressive, and no corrosion protection is necessary.
- the container wall 12 according to FIG. 3b limits a filling 20 with an aggressive component, which is why a diffusion barrier layer 18 is inserted or deposited in addition to FIG. 3a.
- the passive nanoparticles are drawn so greatly enlarged that their geometric shape can be seen.
- the diffusion barrier layer 18 is applied to the outside of the container wall 12. This is inert to the filling medium 20.
- tensile fibers 22 are indicated, in the present case it is steel fibers, in other cases fibers 22 made of carbon, glass or ceramic.
- the container wall 12 made of plastic is usually reinforced with tensile fibers 22, but for the sake of simplicity these are only shown in FIG. 4.
- the outside diffusion barrier layer 18 also acts as a protection against corrosion.
- the barrier is shrunk, for example, as an organic diffusion barrier film based on plastic polymers, welded to size or deposited as a layer from the gas phase.
- a diffusion barrier layer 18 is applied to the inside and outside of the container wall 12, as shown in FIG. 5.
- At least one diffusion barrier layer 18 can be applied as in FIGS. 3 to 5. As shown in FIG. 6, the diffusion barrier layer 18 can, however, also be integrated into the container wall 12 so that it is formed in two parts.
- FIG. 7 shows a prefabricated diffusion barrier layer 18, which consists of a metal foil 26, the actual barrier, and one plastic film 28 laminated on one side. This composite film gives the metal film 26 the mechanical tear resistance required in the application process.
- a metal foil 26 or a PVA film with a high barrier effect is protected on both sides with an extruded plastic film 28.
- Finely dispersed, passive and reactive nanoparticles 19 are embedded in one plastic film 28 and, depending on their constitution, absorb the hydrogen and / or oxygen that diffuses through.
- FIG. 9 shows in section a diffusion barrier layer 18 with a submicron thickness d, which can be arranged on the inside or outside of the container wall 12.
- the container wall 12 appears flat, although in practice it is cylindrical in shape.
- An organic or inorganic layer matrix 30 forming the diffusion barrier layer 18 contains, as shown in FIGS. 3a, 3b and 8, finely dispersed incorporated passive or reactive nanoparticles 19, which have a grain size substantially below the layer thickness d, e.g. B. ⁇ (0.1 to 0.2) .d.
- This diffusion barrier layer 18 is produced from at least one, also substituted hydrocarbon and / or a metal-containing component (PVD, PE-CVD process).
- a metallic intermediate layer 34 is arranged between the container wall 12 and the diffusion barrier layer 18 and acts as a further diffusion barrier layer.
- a microwave source 38 is arranged in the peripheral region of the essentially cylindrical reaction chamber 36 and is supplied with a radio frequency by a generator 64RF.
- the microwave discharge (GHz) 38 or a radio frequency discharge (kHz, MHz) 66 can be coupled in the central area of the reaction chamber 36, with both sources inside and / or outside treatments of the container wall 12 can be carried out.
- a cathodic sputtering source 40, 40 ' is arranged in the central and in the peripheral region of the reaction chamber 36, which can easily be converted into an arc source 42, 42' if required.
- both sources 40, 42 and 40 ', 42' can be used with target material 41 for the outside, as for the inside coating of the container 10 used as the substrate.
- a filter 60 is installed for the outer coating with the arc source 42 '.
- An electron beam source or a thermal evaporation source can also be used as further energy sources, not shown in FIG. 10, for the deposition of metal-containing components, boron and silicon, which are oxidized to metal oxides in the reactive gas phase. Preferably all methods are additionally stimulated with plasma.
- the reaction chamber 36 can be evacuated via a pump connection 52.
- a vacuum line leads to a high-performance vacuum pump 50 via a vacuum valve 48.
- an inner pump device 54 is arranged.
- the gas supply to the reaction chamber 36 takes place via a plurality of gas inlets 44, each of which via a gas regulating valve 46 to the microwave source 38, into the container 10 itself, into the central and peripheral region of the reaction chamber 36, also behind the arc filter 60 and into the atomization source 40 'or into the arc source 42 ', which is opposite the microwave source 38 are arranged, lead.
- the internal pressure of the reaction chamber 36 is regulated in cooperation with a vacuum measuring device 56.
- Strong coils 58 for generating a magnetic field are arranged outside the reaction chamber 36, in the area of the pump connection 52 and opposite.
- Several generators 64 serve as current sources, which supply the reaction chamber 36 with alternating current in the radio frequency range RF, from low frequency to maximum frequency, and / or with direct current DC.
- the desired position can be controlled or set manually via two process selector switches 62.
- An upper process selector switch 42 acting on the target material 41 has a position for a radio frequency generator 64 RF and a direct current generator 64 D c.
- a lower process selector switch 62 connected to the container 10 has a position B for a direct current radio frequency generator 64DC / RF.
- the container 10, the substrate can thus be placed on earth E, supply voltage B or open F (floating point).
- the coating of a substrate can be carried out in a reaction chamber 36 according to FIG. 10 or in any other reaction chamber, for example by arc, cathode sputtering, plasma-activated evaporation, ion plating, plasma spraying and / or radio frequency discharge. All of these processes can be enhanced with a reactive gas phase and / or with magnetic fields.
- the possible uses of the container according to the invention are extremely diverse. For large containers, gas-tight tank systems, especially hydrogen tanks in automotive vehicles, are of particular importance. Small containers are particularly suitable for ventilation of patients or stationary or mobile rooms closed by occupants, for example of aircraft passengers.
- the following table lists the permeability of coated films and film composites. The last three examples relate to commercially available, uncoated films and are listed shaded.
- Humidity c Water vapor permeability [g / m 2 -d]: ASTM F1249-90 Standard Test Method at 23 ° C and
- PET PETP polyethylene terephthalate, polyethylene glycol terephthalate, polyester
- PVAL PVA polyvinyl acetate, polyvinyl alcohol, polyvinyl ether
- Hybrid polymer Inorganic-organic hydride polymer e.g. ORMOCER®
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Details Of Rigid Or Semi-Rigid Containers (AREA)
- Laminated Bodies (AREA)
- Chemical Vapour Deposition (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
- Packages (AREA)
Abstract
Ein gasdichter, druckresistenter Lager- und/oder Transportbehälter (10) für niedermolekulare, reaktive Füllmedien, insbesondere für Wasserstoff, Sauerstoff, Luft, Methan und/oder Methanol, mit einem hohen Fülldruck ist im wesentlichen rotationssymmetrisch ausgebildet und weist wenigstens eine Anschlusskappe (14) mit einer Verschlusseinrichtung (16) auf. Die Behälterwandung (12) besteht im wesentlichen aus einem thermoplastischen Kunststoff mit wenigstens einem Diffusionssperrsystem (18, 19) oder einem Diffusionssperr- und Korrosionsschutzsystem (18, 19). Das Diffusionssperrsystem kann insbesondere zum Schutz von Wasserstoff- und Sauerstoffbehältern als wenigstens eine kompakte Schicht ausgebildet sein und/oder aus in der Behälterwandung (12), in wenigstens einer Verbundfolie (28) und/oder in wenigstens einer Diffusionssperrschicht (18) fein dispers verteilte, reaktive Nanopartikel (18) enthalten.
Description
Gasdichter Behälter
Die Erfindung bezieht sich auf einen gasdichten, druckresistenten Lagerund/oder Transportbehälter für niedermolekulare, reaktive Füllmedien, insbesondere für Wasserstoff, Sauerstoff, Luft, Methan und/oder Methanol, mit einem hohen Fülldruck, welcher Behälter im wesentlichen rotationssymmetrisch ausgebildet ist und wenigstens eine Anschlusskappe mit einer Verschlusseinrich- tung aufweist.
Es ist seit langer Zeit üblich, niedermolekulare, reaktive Medien, insbesondere Gase wie Wasserstoff, Sauerstoff und Luft, in dickwandigen Metallflaschen mit einer gesicherten Verschlusskappe abzufüllen, zu lagern und/oder zu transpor- tieren. Derart können grosse Gasmengen auf engstem Raum konzentriert und über lange Zeit verlustfrei gelagert und sicher transportiert werden. Erst vor dem Gebrauch wird auf die Verschlusskappe einer Metallflasche ein Druckreduzierventil aufgesetzt.
Dickwandige Metallflaschen aus Stahl haben jedoch den Nachteil, dass sie im Vergleich zum gespeicherten Inhalt äusserst schwer sind. Der Ersatz von Stahlflaschen durch entsprechende Aluminiumflaschen war bezüglich des Gewichts ein erster wichtiger Schritt in die richtige Richtung, trotzdem besteht das erwähnte Missverhältnis Inhalt - Gebinde in vermindertem Umfang weiter.
Die US 4073400 A beschreibt einen derartigen Gasbehälter aus einem Metall, vorzugsweise aus Aluminium oder Stahl, welcher eine äussere Schutzschicht aus einem faserverstärkten Harz/Polymer aufweist. Wahlweise ist innenseitig zusätzlich eine Korrosionsschutzschicht aufgebracht, welche ebenfalls aus einem faserverstärkten Harz/Polymer besteht. Selbstverständlich ist bei diesem Metallbehälter kein Diffusionsschutz notwendig.
Auch die DE 3821852 A1 beschreibt eine Druckgasflasche aus einem metallischen Innenbehälter und umfangseitigen, glasfaserverstärkten Kunststoffschichten. Diese als Treibmittelbehälter für Kraftfahrzeuge gedachte Druckgasflasche eignet sich für Fülldrucke bis 340 bar. Dank der Metallflasche bestehen keine Diffusionsprobleme, beim Einsatz einer korrosionsfesten Aluminiumiegie- rung für den Innenbehälter auch keine Korrosionsprobleme.
Seit der Erdölkrise spielt Erdgas eine zunehmende Rolle, sowohl im Heizungs-, als auch im Fahrzeugsektor. Die französische Firma Ullit S.A., F-36400 La Chätre, bietet ultraleichte Hochdruckflaschen für Erdgasfahrzeuge an, welche im wesentlichen aus einem einstückigen thermoplastischen Wickelkörper bestehen. Diese Flaschen mit 126 Liter Inhalt und einem Betriebsdruck von 200 bar werden batterieweise in ein Fahrzeug eingebaut und dienen als Treib- stoffreserve. Bei den Kunststoffflaschen, auch Kunststoffcompositflaschen, handelt es sich um einen im Vergleich zu Metallflaschen völlig neuen Typ von Gasbehältern im Hochdruckbereich. Kunststoffflaschen haben ein sehr geringes Gewicht, sind nicht korrosionsanfällig, zeigen keine Wechsellastermüdung und sind insbesondere für höhermolekulare Gase, z.B. Erdgase, hinreichend dicht.
In der WO 00/66939 A1 wird die Herstellung eines zweischichtigen Gasdruckbehälters aus Kunststoff beschrieben. Ein Innenbehälter aus Kunststoff wird zur Erhöhung der Benetzungs- und Adhäsionseigenschaften in Rotation vorbehandelt. Nach dem Aufbringen eines Klebers wird spirallinienförmig ein faserverstärktes Wickelband aufgebracht, welches sehr gut auf dem Innenbehälter klebt und eine wirkungsvolle Druckverstärkung bildet. Es werden weder Diffusions- noch Korrosionsprobleme beschrieben oder erwähnt.
Eine bezüglich eines Gasdruckbehälters für hohe Drucke völlig gattungsfremde doppelwandige Wärmespeicherflasche (Thermosflasche) aus Kunststoff nach der US 3921844 A weist in bekannter Weise die Wärmestrahlung reflektierende Silberschichten auf, welche auch als Diffusionsbarrieren wirken. Das Vakuum zwischen der Doppelwandung mit vergleichsweise sehr geringer Wandstärke
kann so langzeitig aufrechterhalten und die Wärmekonvektion unterbunden werden. In einem Druckbehälter wäre eine solche Doppelwandung mit dazwischen liegendem Vakuum nicht nur unsinnig, sondern kontraproduktiv.
Die Erfinder haben sich die Aufgabe gestellt, einen gasdichten, druckresisten- ten Lager- und/oder Transportbehälter der eingangs genannten Art zu schaffen, welcher bei erniedrigtem Eigengewicht medienspezifisch undurchlässig und/oder wenn nötig korrosionsfest ist.
Die Aufgabe wird erfindungsgemäss dadurch gelöst, dass die Behälterwandung im wesentlichen aus einem thermoplastischen Kunststoff mit wenigstens einem Diffusionssperrsystem oder einem Diffusionssperr- und Korrosionsschutzsystem besteht. Spezielle und weiterbildende Ausführungsformen des Behälters sind Gegenstand von abhängigen Patentansprüchen.
Der Begriff „Diffusionssperrschicht" umfasst sowohl auf der Behälterwandung abgeschiedene Schichten, als auch auf der Behälterwandung auf- oder in diese eingebrachte Folien, mit oder ohne funktionale Schicht/en. Eine Diffusionssperrschicht kann auch gleichzeitig oder ausschliesslich Korrosionsschutz- schicht sein, ohne dass dies jedesmal speziell erwähnt wird. Alle Arten von Diffusionssperrschichten haben bevorzugt einen etwa gleichen Ausdehnungskoeffizienten wie die Behälterwandung.
Ein „Diffusionssperrsystem" oder ein „Korrosionsschutzsystem" kann eine kom- pakte Schicht und/oder dispergierte, passive oder reaktive Nanopartikel umfassen. Reaktive Nanopartikel reagieren chemisch mit einem permeierenden Gas, passive Nanopartikel adsorbieren (speichern) dieses.
Kunststoffbehälter mit hohen, d. h. im Bereich von wenigstens 50 - 100 bar lie- gendem Fülldruck, weisen die in der Branche üblichen Aussenmasse und formen auf. Sie sind bevorzugt im wesentlichen zylindrisch ausgebildet und haben im Bereich ihrer Längsachse ein- oder beidseitig eine Verschlusskappe mit
einem Verschluss üblicher Bauart. Die Mantellänge von Grossbehältern liegt zweckmässig im üblichen Bereich von 1 bis 6 m, der Innendurchmesser beträgt bis 40 cm, insbesondere etwa 35 cm, der Fülldruck liegt bei vorzugsweise wenigstens 150 bar, insbesondere wenigstens 250 bar. Die auch von der Erfin- düng umfassten tragbaren Medizinalflaschen für Patienten beispielsweise sind wesentlich kleiner ausgebildet.
Die Stabilität und der Berstdruck des Behälters können wesentlich erhöht werden, wenn der thermoplastische Kunststoff der Behälterwand, welche bei- spielsweise aus Polyethylen, Polypropylen, Acetylbutadienstyrol, Polyamid, Polyvinylacetat oder einem Polyester besteht, mit einem zugfesten Material armiert ist, bevorzugt mit Kohlenstoff-, Glas- oder Keramikfasern, aber auch mit Stahldrähten.
Je nach Aggressivität und Permeationsfähigkeit des Füllmediums und der Aus- senatmosphäre ist eine Diffusionssperrschicht innerhalb und/oder ausserhalb der Behälterwandung angeordnet, gegebenenfalls auch oder nur in dieser Wandung selbst.
- Bei aggressivem Füllmedium in einem in inerter Atmosphäre gelagerten Behälter ist nur eine innenliegende Diffusionssperrschicht notwendig, oder die Wandung eines Wasserstoffbehälters enthält dispergierte, reaktive Nanopartikel.
- Ist ein Behälter mit aggressivem Füllmedium in einer korrosiven Atmosphäre gelagert, ist auch eine aussenliegende Diffusionssperrschicht appliziert, welche gleichzeitig Korrosionsschutzschicht ist.
- Bei einer gegenüber einem reaktiven Füllmedium inerten Behälterwandung kann eine Diffusionssperrschicht in diese Wandung integriert werden, beispielsweise durch Coextrusion oder entsprechende Wickeltechnik, beides ist an sich bekannt, oder die Wandung eines Wasserstoffbehälters enthält dispergierte, passive oder reaktive Nanopartikel.
Wenigstens eine Diffusionssperrschicht kann nach zwei grundsätzlich verschiedenen Methoden auf die Behälterwandung aufgebracht werden:
- als vorzugsweise 10 bis 1000 μm dicke Verbundfolie mit einer Diffusions- Sperrschicht im engeren Sinn von vorzugsweise höchstens etwa 500 μm, insbesondere höchstens etwa 20 μm, Dicke,
- durch Abscheiden aus der Gasphase, mit oder ohne chemische Reaktion, auch als Dünnschicht im Bereich von 10 bis 600 nm, insbesondere bis 100 nm. Dieses Abscheiden kann direkt auf die Behälterwandung und/oder auf eine nachträglich auf oder in die Behälterwandung aufgebrachte Trägerfolie erfolgen.
Der aussenseitige Folienauftrag erfolgt beispielsweise durch Wickeln, vorzugsweise mit starkem Überlappen von spirallinienförmig aufgetragenen Folienbän- dern, durch Längsauftrag einer Folie, wiederum mit starkem Überlappen der Seitenränder oder durch Aufbringen einer schrumpfenden oder auf massver- schweissbaren Folie. Die Innenbeschichtung bzw. Innenauskleidung mit einer Folie zur Herstellung der Diffusionssperrschicht erfolgt durch die Einführung eines auf Mass zugeschnittenen Beutels mit den der Behälterinnenseite ent- sprechenden Dimensionen, wobei entsprechend dem Behälter eine oder zwei Öffnungen vorgesehen sind. Der eingeführte Beutel wird im Bereich des Einfüllstutzens befestigt, z.B. durch Ankleben oder Festklemmen durch Anschrauben.
Das Aufbringen oder Einextrudieren einer Metallfolie, in der Regel eine Alumini- um- oder eine Stahlfolie, als Diffusionssperrschicht erfolgt vorzugsweise als Verbundfolie. Eine Verbundfolie aus einer 9 μm dicken Aluminiumfolie mit einer einseitig oder zwei beidseitig auflaminierten oder aufextrudierten Kunststofffolien LLDPE (Polyethylen niederer Dichte mit linearer Struktur) von beispielsweise etwa 100 μm Dicke ist für alle erwähnten Verfahren genügend reissfest.
Es können auch reine Kunststoff-Verbundfolien bzw. -Multischichten aufgebracht oder einextrudiert werden, z.B. LLDPE (100 μm) / OPP (20 μm) / PVA
(14 μm) / OPP (20 μm) LLDPE (100 μm). OPP ist orientiertes Polypropylen, PVA (= PVAL) Polyvinylalkohol. Die PVA-Schicht kann auch mit einer SiOx- oder DLC-Schicht (Diamond Like Carbon) versehen sein.
Ein erfindungsgemässer Behälter, bzw. eine darin eingebrachte Folie, kann auch mit einer oder mehreren Diffusionssperrschichten, die aus der Gasphase abgeschieden sind, geschützt werden. Die Abscheidung aus der Gasphase erfolgt in an sich bekannter Weise mit oder ohne chemische Reaktion in der Gasphase, auch als Co-Deposition von Materialien. Konkrete Beispiele sind das Verdampfen mit Lichtbogen (Are) und das Kathodenzerstäuben (Sputtern). Weitere Beispiele sind die Abscheidung mit Laser, Elektronen-, Ionen- oder Molekularstrahlen oder thermischer Einwirkung, jeweils mit oder ohne Plasmaanregung sowie mit oder ohne Magnetfeldunterstützung, und Plasmaspritzen. Die abgeschiedenen Schichten bilden eine Diffusionssperrschicht, welche wo nötig auch die Korrosionsschutzschicht ist.
Falls ein erfindungsgemässer Kunststoffbehälter oder eine auf- bzw. einzubringende Folie eine metallische oder keramische Diffusionssperrschicht haben soll, ist oft eine Vorbehandlung vorteilhaft, um die Haftung dieser Diffusions- Sperrschicht zu erhöhen. Die Vorbehandlung erfolgt zweckmässig mit einer Plasma-Aktivierung der zu behandelnden Oberfläche oder mit einer hauchdünnen polaren Plasmaschicht von deutlich < 1 μm. In einem ersten Fall wird die Beschichtung direkt anschliessend an die Aktivierung abgeschieden, in einem zweiten Fall kann die polare Schicht jahrelang die Oberflächenspannung der Kunststoff-Oberfläche auf >50 mN/m oder falls notwendig sogar auf >70 mN/m stabilisieren.
Bei der Plasma-Aktivierung zur Vorbehandlung werden mit einer Radiofrequenz-Entladung (RF) in einem Gemisch aus Edelgasen (Ar, He), sauerstoff- haltigen und/oder stickstoffhaltigen Monomergasen zugeführt, z.B. werden mit CO2l O2, N2, NOx und/oder NH3, gute Ergebnisse erreicht. RF beinhaltet Tieffrequenz, Hochfrequenz sowie Höchstfrequenz.
Die Plasma-Aktivierung wird seit langem industriell angewendet, beispielsweise als Corona-Entladung oder Niederdruck-Entladung.
Beispiele: - Während weniger als 1 min wird ein Kunststoffsubstrat mit Ar und wenig O2 beaufschlagt, bei 200 - 2000 W, 13.56 MHz oder 2.45 GHz, kontinuierlich oder gepulst. - Während weniger als 1 min wird ein Kunststoffsubstrat mit Edelgase enthaltendem NH3 beaufschlagt, bei Hoch- oder Niederfre- quenzentladung. Sehr gute Ergebnisse werden so für die Adhäsion von AI auf Polypropylen erhalten.
Bei einer Plasmabeschichtung als Vorbehandlung werden Gemische aus den Edelgasen Ar und He und/oder je nach zu erreichender Oberflächenspannung Gemische, z. B. aus den Monomergasen CO2, O2, N2, NOx, NH3, CH3OH, CH4, CH3CN und C2H2) zugeführt. Für langzeitstabile hydrophile Bedruckschichten wird auf die WO 99/39842 verwiesen, nach welcher für eine polare Beschichtung ein wasserfreies Prozessgas eingesetzt wird, das mindestens je eine auch substituierte Kohlenwasserstoffverbindung mit bis zu acht C-Atomen und ein anorganisches Gas enthält.
Beispiel: Eine Plasmabeschichtung als Vorbehandlung wird mit einem Gemisch aus gleichen Teilen von: Ar, C2H2 , NO2 und CO2 durchgeführt. Dies ergibt eine Oberflächenspannung von > 60 mN/m.
Eine apolare Diffusionssperrschicht d.h. mit Barrierewirkung, kann auch direkt, d. h. ohne Vorbehandlung, mittels Plasmapolymerisation aufgebracht werden, beispielsweise als 0,01 bis 1 μm dicke amorphe DLC Kohlenwasserstoffschicht (Diamond Like Carbon). Diese ist auf der Basis von Kohlenstoff und Wasser- stoff aufgebaut, hat einen Gehalt von je 20 bis 80 at % der beiden Elemente, und je 0,01 bis 6 at % wenigstens eines Elementes der Gruppe, bestehend aus Sauerstoff, Stickstoff, Fluor, Chlor, Brom, Bor und Silizium enthält. Diesbezüg-
lieh wird auf die WO 00/32938 verwiesen (Tabelle, Pos. E).
Anschliessend an die vorbeschriebene Vorbehandlung wird eine eigentliche Diffusionssperrschicht, z. B. eine metallische, organische metallhaltige und/oder keramische Schicht, abgeschieden. Im Sinne der vorliegenden Erfindung umfassen die metallischen Schichten auch Bor und Silizium. Es stehen hier mehrere an sich bekannte Verfahren und Kombinationen daraus zur Auswahl. Die meisten eignen sich zur Aussenbeschichtung des Behälters, aber nur beschränkt zur Innenbeschichtung. Allenfalls müssen technische Details ange- passt werden, wie die Vergrösserung der Mündung und/oder die Miniaturisierung der Quelle.
Für die Abscheidung einer submikron dicken Diffusionssperrschicht auf der Behälterwandung oder auf einer ein- bzw. aufzubringenden Folie eignet sich die Verwendung der plasmaunterstützten Beschichtungsprozesse besonders gut, weil die Substrattemperatur niedriger gehalten werden kann, und eine gute Haftung der Schicht zum Substrat durch eine adhäsionsfördernde Wechselwirkung mit dem Plasma erreicht wird. Hinzu kommt, dass durch eine gezielte Variation der Plasmaparameter, die Prozessgase eingeschlossen, eine Schicht- Struktur erreicht wird, welche die jeweiligen Dehnungen des Behälters hinreichend mitmacht.
Wirkungsvolle keramische Diffusionssperrschichten bestehen beispielsweise aus AI2O3) TiN, TiC, Si3N4, SiC, ZrO2, Cr2O3, SiOx und/oder SiOxNy.
Ein erfindungsgemässes Diffusionssperrsystem umfasst nach einer Variante für einen Wasserstoff-Behälter in der Behälterwandung, in der Diffusionssperrschicht und/oder in einer Verbundfolie mit der Diffusionssperrschicht feindispers verteilte, passive Nanopartikel zur Speicherung von Wasserstoff oder reaktive Nanopartikel zur chemischen Reaktion mit Wasserstoff. Diese Nanopartikel beinhalten vorzugsweise Ti, Pd, Fe, AI, Mg, Mg2Ni, TiC,Tiθ2, Ti3AI, TiN, Ti2Ni, LaNi5H6, Graphit, Silikate und/oder kohlenstoffhaltige Nanoröhren. Die Nano-
partikel können auch in eine Matrix eingebettet sein, beispielsweise passive TiN-Nanopartikel oder aktive Ti-Nanopartikel in eine Si3N -Matrix einer Korn- grösse von höchstens einigen μm. Analog können Ti- und/oder TiC-Nanoparti- kel in eine SiC-Matrix, oder Ti und/oder TiO2 Nanopartikel in eine SiO2-Matrix eingebettet sein. Für andere reaktive Gase, z.B. Sauerstoff, bestehen analoge Diffusionssperrsysteme (Tabelle, Pos. I).
Reaktive Nanopartikel reagieren chemisch mit einem die Behälterwandung diffundierenden Gas, z.B. Al-Nanopartikel mit Sauerstoff zu AI2O3. Passive, d.h. nicht reaktive Nanopartikel adsorbieren ein durch die Behälterwandung diffundierendes Gas, z.B. Ti-Nanopartikel H2. Sie können in verschiedenster geometrischer Form eingebaut sein und eine physikalische Diffusionssperre bilden.
Eine Wasserstoff speichernde Komponente muss so gewählt werden, dass der Ausdehnungskoeffizient bei der Wasserstoffaufnahme und die Partikelgrösse auf die Behältermasse und die Druckvariationen abgestimmt sind.
Beispiele für Systeme von Diffusionssperrschichten:
- Funktionales Schichtsystem 1: Behälter und Folie, Sperrschicht innen und/oder aussen
Es erfolgt eine Plasma-Aktivierung eines Kunststoffsubstrates, um die Adhäsion zur folgenden Beschichtung zu erhöhen. Eine metallische Alumini- umschicht wird durch PVD (Physical Vapor Deposition) aufgebracht. Die
PVD erfolgt beispielsweise durch Kathodenzerstäubung (Sputtern) und/oder Lichtbogenverdampfung innen und aussen, thermische und Elektronen- strahlverdampfung aussen. Wird diese Metallschicht anschliessend mit einem Plasmaprozess oxidiert, z.B. mittels RF-Entladung, so bildet sich eine definierte zusätzliche AI2O3-Schutz- und Diffusionssperrschicht an der
Oberfläche. Dies ist z. B. für einen Methanol-Behälter unerlässlich, falls innenseitig keine weitere Schutzschicht abgeschieden wird.
Funktionales Schichtsystem 2: Behälter oder Behälter mit Folie, Sperrschicht vorzugsweise innen
Eine DLC-Schicht wird direkt, ohne Vorbehandlung, als Diffusionssperrschicht, welche auch als Schutzschicht wirkt, auf ein Kunststoffsubstrat abgeschieden. Um die notwendige Flexibilität zu erreichen, wird über die Prozessführung eine Gradientenschicht von polymerartig bis diamantartig, bzw. von elastisch bis dicht, hergestellt. Das elektrisch nichtleitende Substrat mit dem Schichtmaterial ermöglicht die induktive Einkoppelung der Radiofrequenz in den Behälter.
Separat oder zusätzlich zu wenigstens einer Sperrschicht können über die Gasphase mit metallorganischen Komponenten metallhaltige Nanopartikel (z.B. AI, Ti, Mg) fein dispers verteilt auf der/in die Behälterwandung oder in eine einzubringende Folie abgeschieden werden, welche den durchdiffundierenden Wasserstoff oder Sauerstoff absorbieren und/oder speichern.
Funktionales Schichtsystem 3: Behälter und Folie, Sperrschicht innen (Lichtbogen, Kathodenzerstäubung) und/oder aussen (Lichtbogen/ Kathodenzerstäubung/PA reaktive Elektronenstrahl-Verdampfung).
Es erfolgt eine Plasmavorbehandlung eines Kunststoffsubstrates, um die Oberfläche ggf. zu glätten und die Adhäsion zur folgenden Beschichtung zu erhöhen. Eine keramische Schicht aus AI2O3, SiOx, SiON, TiO2 und/oder
ZrO2 kann mit den vorerwähnten PVD-Methoden, Lichtbogen (Are), reaktiver Kathodenzerstäubung (Sputtem) und plasmaaktivierter reaktiver Elektronenstrahl-Verdampfung abgeschieden werden. Eine sandwichartige Struktur der Diffusionssperrschicht, welche insgesamt völlig gasundurchläs- sig ist, aber doch die Dehnung des mechanisch belasteten Behälters unbeschadet übersteht, kann durch Variation der Prozessparameter erreicht werden, z.B. eine dichte, harte Schicht oder eine weiche, dehnbare Schicht.
Durch Co-Deposition oder durch zusätzliche Verwendung eines Molekularstrahls können metallhaltige (elementare) Nanopartikel in die Schicht eingebaut werden.
Zusätzlich kann mit plasmaangeregter (metallorganischer) chemischer Va- kuumabscheidung aus der Gasphase (PE(MO)CVD) eine dünne Diffusionssperrschicht, nämlich eine DLC-Schicht mit oder ohne passive/aktive Nanopartikel oder eine dünne keramische Schicht, beispielsweise aus ,SiO2, AI2O3 und/oder Si3N4, mit oder ohne passive/aktive Nanopartikel, auf das
Kunststoffsubstrat abgeschieden werden. Bezüglich der DLC-Schichten von submikroner Dicke mit metallischen Nanopartikeln, d.h. Partikeln im nm-Be- reich von höchstens 50 % der Schichtdicke entsprechender Grosse, wird trotz der andern Funktion auf die WO 01/55489 und die nachfolgende Fig. 9 verwiesen.
- Funktionales Schichtsystem 4: Behälter und Folie, Sperrschicht innen und/oder aussen
Eine Sperrschicht umfasst einen sandwichartigen, bis siebenschichtigen
Aufbau, z.B. von folgenden Schichten: Polymer - Metall - Polymer - Metalloxid - Polymer, nämlich: UV-gehärtetes Polyacrylat (1-5 μm) / AI (10-1000 nm) / Polyacrylat (0,5 μm) / TiO2 (10-100 nm) / Polyacrylat (0,5 μm). Die Metall- und die Metalloxidschicht sind aufgedampft. Anstelle der TiO2- Schicht kann auch eine DLC, SiON und/oder AI2O3 abgeschieden werden.
Damit ist die Dehnbarkeit der Beschichtung gewährleistet. Dickere Schichten könnten z.B. mit Plasmaspritzen abgeschieden werden (Tabelle, Pos. H).
- Funktionales Schichtsystem 5: Behälter, Sperrschicht vorzugsweise innen
Als Vorbehandlung erfolgt ein Auftrag einer Polymerschicht, beispielsweise
aus Polypropylen, von einem oder wenigen μm Dicke, um wenn nötig die Oberfläche zu glätten, welche zusätzlich plasmaaktiviert werden kann, um die Adhäsion zur folgenden Beschichtung zu erhöhen. Dann werden mehrere metallische und/oder keramische „ziegelartige" Strukturschichten auf- getragen, z.B. Schichtsilikate. Eine abschliessend aufgetragenen polymerartige Schutzschicht gewährleistet die Bewegungsfreiheit der ziegelartigen Struktur. Beispielsweise können auch flüssigkristalline Polyester (LCP) biaxial gereckt werden und erzeugen dabei eine blätterartige Struktur.
- Funktionales Schichtsystem 6: Behälter, Sperrschicht innen und/oder aussen
Eine Kombination von zwei verschiedenen Abscheideverfahren, der plasmaangeregten (metallorganisch) chemischen Vakuumabscheidung aus der Gasphase (PE (MO) CVD) und der physikalischen Dampfabscheidung aus der Gasphase (PVD), vorzugsweise Kathodenzerstäubung, führt zu einer Composit-Diffusionssperrschicht aus einem anorganischen und einem organischen Material oder aus verschiedenen anorganischen Materialien. Die anorganische Komponente ist ein Metall (z.B. Aluminium oder Titan) oder eine Keramik (z. B. Si3N4 oder AI2O3), die organische Komponente ein
Plasmapolymer aus hochvemetztem Kohlenwasserstoff oder aus einem co- polymerisierten Kohlenwasserstoff mit Sauerstoff und/oder Stickstoff.
Ein messender Übergang, d. h. ein Gradient, kann durch Variation der Pro- zessparameter oder mit inkorporierten Partikeln erreicht werden.
Für niedermolekulare, reaktive Medien, insbesondere für Wasserstoff, Sauerstoff, Methan und/oder Methanol, werden erfindungsgemäss gasdichte Tanksysteme geschaffen. Ein druckresistenter Kunststoffbehälter mit einem für Fahr- zeuge wesentlich niedrigerem Gewicht wird innen und/oder aussen mit einer hochwirksamen Diffusionssperrschicht ausgekleidet, welche den Austritt des Füllmediums auch in geringsten Mengen verhindert und dessen Lagerung unter
gesetzlichen Sicherheitsspezifikationen gewährleistet ist.
Die Kombination der Eigenschaften von geeigneten Metallfolien, Kunststofffolien und Beschichtungen erlaubt, ein solches vielseitig einsetzbares Hochbar- riere-Foliensystem herzustellen. Für die Innenbeschichtung oder -auskleidung von Kunststoffbehältern ist eine dimensionsunabhängige funktionelle Abstimmung des Hochbarriere-Foliensystems auf die jeweiligen Spezifikationen des Füllmediums erforderlich. Mit anderen Worten kann für jedes Füllmedium die geeignetste Folienkombination eingelegt, Schicht abgeschieden oder die geeig- netsten Nanopartikel in die Behälterwandung integriert werden.
Bei einer direkten Beschichtung des Kunststoffbehälters können die Beschich- tungsverfahren auf die jeweilige Dimension hochskaliert werden. Bei besonders aggressiven Füllmedien kann die Art und Kombination der Schichten entspre- chend angepasst werden. Beispielsweise kann bei einer Diffusionssperrschicht aus Aluminium eine weitere Schicht aufgebracht werden, wenn Methanol als Füllmedium eingesetzt wird.
Schliesslich liegt ein weiterer Vorteil der Erfindung bei der Wiederverwertung des Kunststoffbehälters. Die Diffusionssperrschicht kann abgetrennt werden, besteht aus einem äquivalenten Material wie der Behälter oder hat einen derart geringen Massenanteil, dass dieser bei der Wiederverwertung nicht ins Gewicht fällt.
Die Erfindung wird anhand von in der Zeichnung dargestellten Ausführungsbeispielen, welche auch Gegenstand von abhängigen Patentansprüchen sind, näher erläutert. Es zeigen schematisch:
- Fig. 1 eine Axialschnitt durch einen Behälter, - Fig. 2 einen Radialschnitt gemäss ll-ll in Fig. 1,
- Fig. 3 - 6 Varianten von Details der Behälterwandung im Bereich A von
Fig. 2,
- Fig. 7, 8 Querschnitte durch vorgefertigte Hochbarriere-Folienverbunde,
- Fig. 9 einen Querschnitt durch submikrone Diffusionssperrschichten mit und ohne Nanopartikel, und
- Fig. 10 eine Reaktionskammer zur Plasmaaktivierung und Herstellung von Diffusionssperrschichten.
Ein in Fig. 1 und 2 dargestellter, gasdichter, druckresistenter Lager- und/oder Transportbehälter, im folgenden kurz Behälter 10 genannt, hat die international üblichen Standardmasse. Die mit einer nicht sichtbaren Diffusionssperrschicht ausgerüstete Behälterwandung 12 besteht ausschliesslich aus Kunststoff, wobei diese Wandung beispielsweise mit einer an sich bekannten Wickeltechnik hergestellt ist. Auf wenigstens einer Stirnseite, im vorliegenden Fall beidseitig, sind metallische Anschlusskappen 14 ausgebildet, welche sich auf einen wesentlich kleineren Durchmesser verengen und koaxial in je eine lediglich block- förmig dargestellte Verschlusseinrichtung 16 übergehen, welche im Bereich der Längsachse L gehaltert werden kann. Abgesehen von der nicht erkennbaren, nachfolgend dargestellten Diffusionssperrschicht sind sowohl der Behälter 10 für zahlreiche Füllmedien 20 als auch dessen Herstellung auf breiter Basis bekannt.
In der Ausführungsform gemäss Fig. 3 weist die Behälterwandung 12 innenseitig eine Diffusionssperrschicht 18 auf, welche bei einem aggressiven Füllmedium 20 zugleich Korrosionsschutz ist. Die Diffusionssperrschicht 18 wird beispielsweise aufgebracht durch Einlage eines Beutels aus einer Metall- Kunst- stoffverbundfolie oder durch Abscheidung aus der Gasphase.
Bei der Variante nach Fig. 3a sind in der Behälterwandung 12 eines Wasserstoffbehälters fein dispers angeordnete, passive und reaktive Nanopartikel 19 eingelagert, die als Diffusionssperrsystem wirken. Diese Partikel im nm-Bereich sind in der Regel als Cluster, Plättchen (z.B. Graphit, Schichtsilikate) oder auf Kohlenstoff basierende Röhren ausgebildet. Auch die Aussenatmosphäre 24 ist nicht aggressiv, es ist kein Korrosionsschutz notwendig. Die Behälterwandung
12 nach Fig. 3b dagegen begrenzt ein Füllgut 20 mit einer aggressiven Komponente, weshalb zusätzlich zu Fig. 3a eine Diffusionssperrschicht 18 eingelegt oder abgeschieden ist. Die passiven Nanopartikel sind wie in Fig. 3a so stark vergrössert gezeichnet, dass deren geometrische Form erkennbar ist.
Nach der Ausgestaltung gemäss Fig. 4 ist die Diffusionssperrschicht 18 auf der Aussenseite der Behälterwandung 12 aufgebracht. Diese ist gegenüber dem Füllmedium 20 inert. In der Behälterwandung 12 sind zugfeste Fasern 22 angedeutet, im vorliegenden Fall handelt es sich um Stahlfasern, in andern Fällen um Fasern 22 aus Kohlenstoff, Glas oder Keramik. Die Behälterwandung 12 aus Kunststoff ist in der Regel mit zugfesten Fasern 22 armiert, einfachheitshalber sind diese jedoch nur in Fig. 4 eingezeichnet.
Bei aggressiver Aussenatmosphäre 24 wirkt die aussenliegende Diffusions- Sperrschicht 18 gleichzeitig als Korrosionsschutz. Die Barriere ist beispielsweise als organische Diffusionssperrfolie auf der Basis von Kunststoffpolymeren aufgeschrumpft, auf Mass verschweisst oder als Schicht aus der Gasphase abgeschieden.
Beim Vorliegen eines aggressiven Füllmediums 20 und einer ebenfalls aggressiven Aussenatmosphäre 24 ist gemäss Fig. 5 innen- und aussenseitig der Behälterwandung 12 je eine Diffusionssperrschicht 18 aufgebracht.
Ist weder das Füllmedium 20 noch die Aussenatmosphäre 24 aggressiv oder ist die Behälterwandung 12 gegen beide Medien 20, 24 völlig inert, kann wenigstens eine Diffusionssperrschicht 18 wie in den Fig. 3 bis 5 aufgebracht sein. Wie in Fig. 6 dargestellt, kann die Diffusionssperrschicht 18 jedoch auch in die Behälterwandung 12 integriert werden, so dass diese zweigeteilt ausgebildet ist.
Im Querschnitt gemäss Fig. 7 ist eine vorgefertigte Diffusionssperrschicht 18 dargestellt, welche aus einer Metallfolie 26, der eigentlichen Barriere, und einer
einseitig auflaminierten Kunststofffolie 28 besteht. Diese Verbundfolie verleiht der Metallfolie 26 die beim Auftragungsverfahren notwendige mechanische Reissfestigkeit.
In der Verbundfolie gemäss Fig. 8 mit einer vorgefertigten Diffusionssperrschicht 18 ist eine Metallfolie 26 oder eine PVA-Folie mit hoher Sperrwirkung beidseits mit einer aufextrudierten Kunstofffolie 28 geschützt. In der einen Kunststofffolie 28 sind fein dispergierte, passive und reaktive Nanopartikel 19 eingelagert, welche je nach Konstitution den durchdiffundierenden Wasserstoff und/oder Sauerstoff aufnehmen.
In Fig. 9 ist im Schnitt eine Diffusionssperrschicht 18 einer submikronen Dicke d dargestellt, welche innen- oder aussenseitig der Behälterwandung 12 angeordnet sein kann. Mit Blick auf den sehr hohen Vergrösserungsfaktor erscheint die Behälterwandung 12 eben, obwohl sie in der Praxis zylindermantelförmig ausgebildet ist.
Eine die Diffusionssperrschicht 18 bildende organische oder anorganische Schichtmatrix 30 enthält wie Fig. 3a, 3b und 8 feindispers inkorporierte passive oder reaktive Nanopartikel 19, welche eine wesentlich unter der Schichtdicke d liegende Korngrösse haben, z. B.< (0,1 bis 0,2).d. Diese Diffusionssperrschicht 18 wird ausgehend von wenigstens einem, auch substituierten Kohlenwasserstoff und/oder einer metallhaltigen Komponente hergestellt (PVD-, PE-CVD- Verfahren).
Zwischen der Behälterwandung 12 und der Diffusionssperrschicht 18 ist eine metallische Zwischenschicht 34 angeordnet, welche als weitere Diffusionssperrschicht wirkt.
Fig. 10 zeigt eine Reaktionskammer 36 mit einer Auswahl von Beschichtungs- möglichkeiten für einen Behälter 10, dem Substrat. Dieser Behälter zeigt im Querschnitt eine Behälterwandung 12 und ein Behältergewinde 11.
Im peripheren Bereich der im wesentlichen zylinderförmig ausgebildeten Reaktionskammer 36 ist eine Mikrowellenquelle 38 angeordnet, welche von einem Generator 64RF mit Radiofrequenz versorgt wird. Für die Plasmavorbehand- lung und/oder Plasmabeschichtung kann die Mikrowellenentladung (GHz) 38 oder eine Radiofrequenzentladung (kHz, MHz) 66 im zentralen Bereich der Reaktionskammer 36 eingekoppelt werden, mit beiden Quellen können Innen- und/oder Aussenbehandlungen der Behälterwandung 12 durchgeführt werden.
Weiter ist im zentralen und im peripheren Bereich der Reaktionskammer 36 je eine kathodische Zerstäubungsquelle 40, 40' angeordnet, welche bei Bedarf einfach zu einer Lichtbogenquelle 42, 42' umbaubar ist. Wiederum können beide Quellen 40, 42 bzw. 40', 42' mit Targetmaterial 41 zur Aussen-, wie für die Innenbeschichtung des als Substrat eingesetzten Behälters 10 verwendet werden. Für die Aussenbeschichtung mit der Lichtbogenquelle 42' ist ein Filter 60 installiert.
Als weitere, in Fig. 10 nicht dargestellte Energiequellen für die Abscheidung von metallhaltigen Komponenten, Bor und Silizium eingeschlossen, welche in reak- tiver Gasphase zu Metalloxiden oxidiert werden, können auch eine Elektronen- Strahlquelle oder eine thermische Verdampfungsquelle eingesetzt werden. Vorzugsweise werden alle Methoden mit Plasma zusätzlich angeregt.
Die Reaktionskammer 36 ist über einen Pumpstutzen 52 evakuierbar. Über ein Vakuumventil 48 führt eine Unterdruckleitung zu einer leistungsstarken Vakuumpumpe 50. Zusätzlich ist eine innere Pumpvorrichtung 54 angeordnet.
Die Gasversorgung der Reaktionskammer 36 erfolgt über mehrere Gaseinlässe 44, welche über je ein Gasregulierventil 46 zur Mikrowellenquelle 38, in den Behälter 10 selbst, in den zentralen und peripheren Bereich der Reaktionskammer 36, auch hinter den Lichtbogenfilter 60 und in die Zerstäubungsquelle 40' bzw. in die Lichtbogenquelle 42', welche gegenüber der Mikrowellenquelle
38 angeordnet sind, führen. Der Innendruck der Reaktionskammer 36 wird im Zusammenwirken mit einer Vakuum-Messvorrichtung 56 geregelt.
Ausserhalb der Reaktionskammer 36, im Bereich des Pumpstutzens 52 und gegenüberliegend, sind kräftige Spulen 58 zur Erzeugung eines Magnetfeldes angeordnet. Als Stromquellen dienen mehrere Generatoren 64, welche die Reaktionskammer 36 mit Wechselstrom in Radiofrequenzbereich RF, von Tieffrequenz bis Höchstfrequenz, und/oder mit Gleichstrom DC versorgen. Über zwei Prozesswahlschalter 62 kann die jeweils gewünschte Position angesteuert oder manuell eingestellt werden. Ein oberer, auf das Targetmaterial 41 einwirkender Prozesswahlschalter 42 hat eine Position für einen Radiofrequenzgenerator 64RF und einen Gleichstromgenerator 64Dc. ein unterer, mit dem Behälter 10 verbundener Prozesswahlschalter 62 eine Position B für einen Gleichstrom-Radiofrequenzgenerator 64DC/RF. den Generator für Bias, F für den nicht geerdeten Anschluss und E für die Erde. Der Behälter 10, das Substrat, kann also auf Erde E, Vorlegespannung B oder offen F (floating point) gelegt werden.
Die Beschichtung eines Substrates, sei es der Behälterwandung 12 oder einer auf diese aufzubringende Folie 28, kann in einer Reaktionskammer 36 gemäss Fig. 10 oder in einer beliebigen anderen Reaktionskammer erfolgen, beispielsweise durch Lichtbogen, Kathodenzerstäubung, plasmaaktivierte Verdampfung, lonenplattieren, Plasmaspritzen und/oder Radiofrequenzentladung. Alle diese Prozesse können mit einer reaktiven Gasphase und/oder mit Magnetfeldern verstärkt werden.
Die Verwendungsmöglichkeiten des erfindungsgemässen Behälters sind aus- serordentlich vielfältig. Für grosse Behälter sind gasdichte Tanksysteme, insbesondere Wasserstoffbehälter in automobilen Fahrzeugen, von besonderer Bedeutung. Kleinbehälter eignen sich insbesondere zur Beatmung von Patienten oder von Insassen geschlossener stationärer oder mobiler Räume, z.B. von Flugzeugpassagieren.
In der nachfolgenden Tabelle wird die Permeabilität von beschichteten Folien und Folienverbunden aufgelistet. Die letzten drei Beispiele betreffen handelsübliche, un beschichtete Folien und sind schattiert aufgeführt.
Tab.: Permeabilität von beschichteten Folien und Folienverbunden
*Messgrenze
Legende und Abkürzungen a: Sauerstoff-Durchlässigkeit [ccm/(m2-d bar)]: ASTM D 3985-95 bei 23 °C und 0% rel. Feuchtigkeit b: Sauerstoff-Durchlässigkeit [ccm/(m2-d-bar)]: ASTM D 3985-85 bei 23 °C und 85% rel.
Feuchtigkeit c: Wasserdampf-Durchlässigkeit [g/m2-d]: ASTM F1249-90 Standard Test Method bei 23 °C und
90% rel. Feuchtigkeit (American Society for Testing and Materials, 1997) d: Rissdehnung in [%]: Bildung von Mikrorissen in der Schicht auf einer Folie
DLC Diamond Like Carbon, plasmapolymerisierte amorphe Kohlenwasserstoffschichtfauch: a-C:H)
PPpolar plasmapolymerisierte polare Schicht
PAA Polyacrylat
PET = PETP Polyethylenterephthalat, Polyethylenglykolterephthalat, Polyester
OPP orientiertes Polypropylen
PVAL = PVA Polyvinylacetat, Polyvinylalkohol, Polyvinylether
Hybridpolymer Anorganisch-organisches Hydridpolymer (bsp. ORMOCER®)
Claims
1. Gasdichter, druckresistenter Lager- und/oder Transportbehälter (10) für niedermolekulare, reaktive Füllmedien, insbesondere für Wasserstoff, Sauer- Stoff, Luft, Methan und/oder Methanol, mit einem hohen Fülldruck, welcher
Behälter (10) im wesentlichen rotationssymmetrisch ausgebildet ist und wenigstens eine Anschlusskappe (14) mit einer Verschlusseinrichtung (16) aufweist,
dadurch gekennzeichnet, dass
die Behälterwandung (12) im wesentlichen aus einem thermoplastischen Kunststoff mit wenigstens einem Diffusionssperrsystem (18, 19) oder einem Diffusionssperr- und Korrosionsschutzsystem (18, 19) besteht.
2. Behälter (10) nach Anspruch 1 , dadurch gekennzeichnet, dass er für einen Fülldruck von wenigstens 150 bar, vorzugsweise wenigstens 250 bar, ausgelegt ist, und die Behälterwandung (12) im wesentlichen aus Polyethylen, Polypropylen, Acetylbutadienstyrol, Polyamid oder einem Polyester besteht und wahlweise auch armiert ist.
3. Behälter (10) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Diffusionssperr- (18, 19) oder Diffusionssperr- und Korrosionsschutzsystem (18, 19) vollflächig als wenigstens eine kompakte Schicht ausgebildet ist, wobei deren Dicke vorzugsweise höchstens etwa 500 μm, insbesondere höchstens etwa 20 μm, bei abgeschiedenen oder aufgedampften Dünnschichten bevorzugt 10 - 600, insbesondere bis 100 nm, beträgt.
4. Behälter (10) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Diffusionssperrschichten (18) je nach Aggressivität und Permeationsfähigkeit des Füllmediums (20) und der Aussenatmosphäre (24) innerhalb, ausserhalb und/oder in der Behälterwandung (12) selbst angeordnet sind.
5. Behälter (10) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass als Diffusionssperrschicht (18) eine vorgefertigte Metallfolie (26), vorzugsweise als Metall-Kunststoff-Verbundfolie (26, 28), oder eine reine Kunststoff-Verbundfolie auf- und/oder eingebracht, eine keramische, borhal- tige, siliziumhaltige und/oder metallhaltige Schicht, auch eine mit einer Kunststoffschicht geschützte Schicht, oder eine reine Kunststoffschicht aufgetragen ist.
6. Behälter (10) nach Anspruch 5, dadurch gekennzeichnet, dass ein auf die Innenmasse des Behälters(IO) zugeschnittener Beutel aus einer Metall- Kunststoff-Verbundfolie (26, 28) oder einer reinen Kunststoff-Verbundfolie mit entsprechend einer oder zwei Öffnungen in den Behälter (10) eingeführt ist und an der Innenseite der Behälterwandung (12) anliegt, und/oder auf der Aussenseite der Behälterwandung (12) eine Verbundfolie aus Kunststoff auf Mass verschweisst ist.
7. Behälter (10) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass inner- und/oder ausserhalb der Behälterwandung (12) eine plasmapolymerisierte, apolare oder polare organische Diffusionssperrschicht (18) auf Kohlenwasserstoff-Basis aufgetragen ist.
8. Behälter (10) nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Diffusionssperrschicht (18) auf eine vorgängig plasmabehandelte und/oder geglättete Behälterwandung (12) aufgebracht ist.
9. Behälter (10) nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das Diffusionssperrsystem (19) in der Behälterwandung (12), in wenigstens einer Verbundfolie (26, 28) und/oder in wenigstens einer Diffusionssperrschicht (18) feindispers verteilte, passive oder reaktive Nanopartikel (19) zur Adsorption von oder zur Reaktion mit permeierendem Gas umfasst, welche Nanopartikel (19) vorzugsweise Titan, Palladium, Eisen, Aluminium, Magnesium, Mg2Ni, TiC, TiO2, T AI, TiN, Ti2Ni, LaNi5H6, Graphit, Schichtsilikate und/oder kohlenstoffhaltige Nanoröhren umfasst.
10. Behälter (10) nach Anspruch 9, dadurch gekennzeichnet, dass die Nanopartikel (19) in eine Matrix eingebettet sind, insbesondere reaktive Ti- oder passive TiN-Nanopartikel in eine Si3N -Matrix oder passive TiO2-Nanopartikel in eine SiO2-Matrix.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH00753/01A CH695222A5 (de) | 2001-04-25 | 2001-04-25 | Gasdichter Behälter. |
CH753012001 | 2001-04-25 | ||
PCT/CH2002/000229 WO2002088593A1 (de) | 2001-04-25 | 2002-04-25 | Gasdichter behälter |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1384027A1 true EP1384027A1 (de) | 2004-01-28 |
Family
ID=4534067
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP02712717A Withdrawn EP1384027A1 (de) | 2001-04-25 | 2002-04-25 | Gasdichter behälter |
Country Status (9)
Country | Link |
---|---|
US (1) | US20040149759A1 (de) |
EP (1) | EP1384027A1 (de) |
JP (1) | JP2004522104A (de) |
CN (1) | CN1520500A (de) |
BR (1) | BR0209247A (de) |
CA (1) | CA2445812A1 (de) |
CH (1) | CH695222A5 (de) |
RU (1) | RU2298724C2 (de) |
WO (1) | WO2002088593A1 (de) |
Families Citing this family (63)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6447860B1 (en) * | 2000-05-12 | 2002-09-10 | Pechiney Emballage Flexible Europe | Squeezable containers for flowable products having improved barrier and mechanical properties |
FR2840848B1 (fr) * | 2002-06-13 | 2004-10-15 | Inst Francais Du Petrole | Structure multicouche a permeabilite controlee |
FR2840913B1 (fr) * | 2002-06-13 | 2005-02-04 | Inst Francais Du Petrole | Composition pour reservoir a paroi monocouche |
DE10231856C5 (de) * | 2002-07-12 | 2014-06-12 | Krones Ag | Beschichteter Hohlkörper, Verfahren zu seiner Herstellung und die Verwendung einer Nanopartikel enthaltenden Zusammensetzung |
DE10247504A1 (de) * | 2002-10-11 | 2004-04-22 | Bayerische Motoren Werke Ag | Druckbehälter für kondensierte Gase, insbesondere Kryotank für ein Kraftfahrzeug |
DE202004010821U1 (de) * | 2003-07-23 | 2004-12-23 | The Boc Group Plc, Windlesham | Vakuumpumpenbauteil |
DE102004036063A1 (de) * | 2004-07-24 | 2006-02-16 | Krones Ag | Vorrichtung und Verfahren zur Plasmabeschichtung/Sterilisation |
TWI333081B (en) * | 2004-08-27 | 2010-11-11 | Fih Hong Kong Ltd | Glass-surface protecting film and the method of making it |
TWI257020B (en) * | 2004-12-10 | 2006-06-21 | Hon Hai Prec Ind Co Ltd | Transflective liquid crystal display |
JP2006300207A (ja) * | 2005-04-20 | 2006-11-02 | Toyota Motor Corp | ガス容器 |
US7927948B2 (en) | 2005-07-20 | 2011-04-19 | Micron Technology, Inc. | Devices with nanocrystals and methods of formation |
US7575978B2 (en) | 2005-08-04 | 2009-08-18 | Micron Technology, Inc. | Method for making conductive nanoparticle charge storage element |
US7989290B2 (en) | 2005-08-04 | 2011-08-02 | Micron Technology, Inc. | Methods for forming rhodium-based charge traps and apparatus including rhodium-based charge traps |
US20070051740A1 (en) * | 2005-08-24 | 2007-03-08 | Weili Huang | Flexible fuel tank for fuel cell |
DE102005048714B4 (de) * | 2005-10-12 | 2008-02-14 | Gkss-Forschungszentrum Geesthacht Gmbh | Gasdichter Behälter mit einer Diffusionssperrschicht aus Metallhydriden und Verfahren zur Herstellung desselben |
DE102005055321B4 (de) * | 2005-11-21 | 2019-02-07 | Bayerische Motoren Werke Aktiengesellschaft | Behälter zur Speicherung von Kraftstoff |
EP1850058A1 (de) * | 2006-04-25 | 2007-10-31 | Inergy Automotive Systems Research (SA) | Speichertank |
FR2904819B1 (fr) * | 2006-08-10 | 2009-02-20 | Commissariat Energie Atomique | Procede de stockage de l'hydrogene, dispositif pour sa mise en oeuvre et applications |
AU2006350626B2 (en) * | 2006-11-06 | 2013-09-19 | Agency For Science, Technology And Research | Nanoparticulate encapsulation barrier stack |
JP4457359B2 (ja) * | 2006-12-13 | 2010-04-28 | トヨタ自動車株式会社 | 圧力容器 |
DE102007006416A1 (de) * | 2007-02-05 | 2008-08-07 | Hydrodivide Ag | Behälter zur Lagerung von wasserstoffhaltigen Zusammensetzungen |
US8367506B2 (en) | 2007-06-04 | 2013-02-05 | Micron Technology, Inc. | High-k dielectrics with gold nano-particles |
DE102007029569A1 (de) * | 2007-06-26 | 2009-01-08 | Elkamet Kunststofftechnik Gmbh | Verfahren zur Herstellung von mehrschichtigen Behältern und mehrschichtiger Behälter |
DE102007037422A1 (de) * | 2007-08-08 | 2009-02-19 | Perma-Tec Gmbh & Co. Kg | Schmierstoffspender |
DE102007048807A1 (de) * | 2007-10-10 | 2009-04-16 | Micronas Gmbh | Brennstoffzelle und Verfahren zum Herstellen einer Brennstoffzelle |
US8796600B2 (en) * | 2007-11-30 | 2014-08-05 | Honda Motor Co., Ltd. | Induction warming system for fiber composite gas storage cylinders |
WO2009093924A1 (ru) * | 2008-01-22 | 2009-07-30 | Vladimir Anatolevich Matveev | Устройство защиты внутренней поверхности наливных ёмкостей от нефтяных отложений |
US8652589B2 (en) * | 2008-01-25 | 2014-02-18 | Oerlikon Trading Ag, Truebbach | Permeation barrier layer |
KR101964265B1 (ko) * | 2008-04-09 | 2019-07-31 | 에이전시 포 사이언스, 테크놀로지 앤드 리서치 | 산소 및/또는 수분 민감성 전자 소자들을 밀봉하는 다층막 |
US20100068561A1 (en) * | 2008-09-12 | 2010-03-18 | Gm Global Technology Operations, Inc. | Permeation protection for pressurized hydrogen storage tank |
DE102008054293B4 (de) * | 2008-11-03 | 2010-09-23 | Mt Aerospace Ag | Druckbehälter für den Hochtemperatureinsatz und ein Verfahren zu deren Herstellung |
NL2002792C2 (nl) | 2009-04-24 | 2010-10-28 | Vialle Alternative Fuel Systems Bv | Voorraadhoes en lpg-brandstofvoorraad. |
US9822928B2 (en) | 2010-06-17 | 2017-11-21 | 3M Innovative Properties Company | Composite pressure vessels |
IT1401234B1 (it) * | 2010-07-14 | 2013-07-12 | Polymtec Engineering Ag Mauren Fl Succursale Di Lugano | Serbatoio per contenere carburante e relativo procedimento di realizzazione. |
CA2825865A1 (en) * | 2011-01-26 | 2012-08-02 | Basell Polyolefine Gmbh | Method to improve the barrier properties of composite gas cylinders and high pressure gas cylinder having enhanced barrier properties |
DE102011000674B4 (de) * | 2011-02-11 | 2022-02-17 | Martin Markert | Druckbehälter für Gase |
DE102011107883A1 (de) * | 2011-07-18 | 2013-01-24 | Gaby Traute Reinhardt | Druck-Speichereinrichtung |
DE102011106576A1 (de) * | 2011-06-16 | 2012-12-20 | Gaby Traute Reinhardt | Druck-Speichereinrichtung |
EP2573446B1 (de) | 2011-09-22 | 2018-06-20 | Frauenthal Automotive Elterlein GmbH | Verfahren und Anlage zur Herstellung eines Druckbehälters |
FR2981880B1 (fr) * | 2011-10-28 | 2014-09-19 | Daher Aerospace | Procede pour etancher un reservoir de carburant |
EP2592327A1 (de) * | 2011-11-10 | 2013-05-15 | Roth Werke GmbH | Speicherbehälter für ein fluides Medium, insbesondere Wasser, Flüssiggas oder dergleichen |
JP5395156B2 (ja) * | 2011-11-30 | 2014-01-22 | トヨタ自動車株式会社 | ガスタンク及びその製造方法 |
US11353160B2 (en) * | 2014-02-27 | 2022-06-07 | Hanwha Cimarron Llc | Pressure vessel |
DE102014016410A1 (de) * | 2014-11-05 | 2016-05-12 | Linde Aktiengesellschaft | Gasbehälter |
AT515917B1 (de) * | 2014-11-24 | 2016-01-15 | Mario Paul Stojec | Verfahren und vorrichtung zur innenbeschichtung von druckbehältern |
DE102015219983A1 (de) * | 2015-10-14 | 2017-04-20 | Bayerische Motoren Werke Aktiengesellschaft | Kryogenes Druckbehältersystem |
US10982811B2 (en) * | 2016-04-05 | 2021-04-20 | Kanto Denka Kogyo, Co., Ltd. | Material, storage container using the material, valve attached to the storage container, method of storing ClF and method of using ClF storage container |
KR101871283B1 (ko) * | 2016-06-28 | 2018-06-27 | 현대비에스앤이 주식회사 | 플라스틱제 압력가스용기 |
US20180283613A1 (en) * | 2017-03-31 | 2018-10-04 | United Technologies Corporation | Compressed gas confinement article with barrier coating |
CN110709174A (zh) | 2017-06-22 | 2020-01-17 | 宝洁公司 | 包括水溶性层和气相沉积有机涂层的膜 |
WO2018237213A1 (en) | 2017-06-22 | 2018-12-27 | The Procter & Gamble Company | FILMS COMPRISING A WATER-SOLUBLE LAYER AND AN INORGANIC COATING PRESENTED IN STEAM PHASE |
DE102017215754A1 (de) * | 2017-09-07 | 2019-03-07 | Robert Bosch Gmbh | Tank mit einem Innenbehälter und einer Außenhülle sowie Verfahren zur Herstellung des Tanks |
EP3454029B1 (de) * | 2017-09-12 | 2021-08-25 | TÜV SÜD Schweiz AG | Hochdruckkapsel mit beschichtung |
DE102017125264A1 (de) * | 2017-10-27 | 2019-05-02 | Kautex Textron Gmbh & Co. Kg | Flüssigkeitsbehälter für ein Kraftfahrzeug und Verfahren zum Herstellen eines Flüssigkeitsbehälters |
DE102018220655A1 (de) * | 2018-11-30 | 2020-06-04 | Robert Bosch Gmbh | Herstellungsverfahren für einen Wasserstoff-Druckbehälter, Druckbehälter sowie Kraftfahrzeug mit einem Wasserstoff-Druckbehälter |
JP7372062B2 (ja) * | 2019-07-02 | 2023-10-31 | アズビル株式会社 | 圧力センサ |
DE102019220512A1 (de) * | 2019-12-23 | 2021-06-24 | Robert Bosch Gmbh | Verfahren zur Herstellung einer Komponente zur Speicherung oder Verteilung von Druckgas und Komponente zur Speicherung oder Verteilung von Druckgas |
US11841112B2 (en) * | 2021-03-24 | 2023-12-12 | Lockheed Martin Corporation | Storage vessels with fiber composite reinforcement |
CN113802087B (zh) * | 2021-09-15 | 2023-08-11 | 科汇纳米技术(深圳)有限公司 | 汽车传动部件表面镀制类金刚石涂层的方法及汽车传动部件 |
LU102860B1 (en) * | 2021-10-06 | 2023-04-06 | Plastic Omnium New Energies France | Type V pressure vessel having a gas barrier metal layer |
JP2023056411A (ja) * | 2021-10-07 | 2023-04-19 | 株式会社Space Walker | 高圧ガス容器 |
FR3129386A1 (fr) * | 2021-11-25 | 2023-05-26 | Airbus | Réservoir à hydrogène pourvu d’un système de capture d’hydrogène gazeux. |
US12085216B2 (en) | 2022-02-17 | 2024-09-10 | Arctic Cat Inc. | Multi-use fuel filler tube |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3921844A (en) * | 1972-11-10 | 1975-11-25 | Dow Chemical Co | Heat insulating container having plastic walls retaining vacuum |
GB1495259A (en) * | 1974-11-15 | 1977-12-14 | Fulmer Res Inst Ltd | Gas containers |
US4510115A (en) * | 1982-11-03 | 1985-04-09 | Baxter Travenol Laboratories, Inc. | Method for forming layered thermoplastic articles |
CA1326832C (fr) * | 1987-07-21 | 1994-02-08 | Claude Leon Hembert | Reservoir de fluide et son procede de fabrication |
DE3821852A1 (de) * | 1988-06-29 | 1990-02-22 | Diehl Gmbh & Co | Druckgasflasche aus verbundwerkstoff fuer hohen gasdruck |
JPH0796977A (ja) * | 1993-06-08 | 1995-04-11 | Ajinomoto Co Inc | 易酸化性物品二重包装物 |
US5386706A (en) * | 1993-06-10 | 1995-02-07 | Praxair Technology, Inc. | Low heat-leak, coherent-aerogel, cryogenic system |
DE59904532D1 (de) | 1998-02-05 | 2003-04-17 | Empa | Polare polymerartige beschichtung |
DE19826681B4 (de) * | 1998-06-16 | 2004-02-12 | Marquardt, Niels, Dr. | Verfahren zur Herstellung von neuartigen Getter-Werkstoffen in Form dünner metallischer und kohlenstoffhaltiger nanostrukturierter Schichten und Verwendung derselben zur Hochvakuumerzeugung und Gasspeicherung |
US6123507A (en) | 1998-11-30 | 2000-09-26 | Smith & Loveless, Inc. | Single port impeller |
NO309667B1 (no) * | 1999-04-29 | 2001-03-05 | Raufoss Composites As | Fremgangsmate for fremstilling av en trykkbeholder |
-
2001
- 2001-04-25 CH CH00753/01A patent/CH695222A5/de not_active IP Right Cessation
-
2002
- 2002-04-25 RU RU2003134013/06A patent/RU2298724C2/ru not_active IP Right Cessation
- 2002-04-25 WO PCT/CH2002/000229 patent/WO2002088593A1/de active Application Filing
- 2002-04-25 BR BR0209247-6A patent/BR0209247A/pt not_active IP Right Cessation
- 2002-04-25 JP JP2002585853A patent/JP2004522104A/ja active Pending
- 2002-04-25 US US10/474,416 patent/US20040149759A1/en not_active Abandoned
- 2002-04-25 EP EP02712717A patent/EP1384027A1/de not_active Withdrawn
- 2002-04-25 CN CNA028127528A patent/CN1520500A/zh active Pending
- 2002-04-25 CA CA002445812A patent/CA2445812A1/en not_active Abandoned
Non-Patent Citations (1)
Title |
---|
See references of WO02088593A1 * |
Also Published As
Publication number | Publication date |
---|---|
JP2004522104A (ja) | 2004-07-22 |
US20040149759A1 (en) | 2004-08-05 |
CH695222A5 (de) | 2006-01-31 |
CA2445812A1 (en) | 2002-11-07 |
CN1520500A (zh) | 2004-08-11 |
RU2003134013A (ru) | 2005-05-20 |
BR0209247A (pt) | 2004-06-08 |
WO2002088593A1 (de) | 2002-11-07 |
RU2298724C2 (ru) | 2007-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1384027A1 (de) | Gasdichter behälter | |
EP1415018B1 (de) | Verbundmaterial aus einem substratmaterial und einem barriereschichtmaterial | |
JP5117405B2 (ja) | ナノ多孔質炭素材料及びそれを使用するシステム及び方法 | |
DE60315481T2 (de) | Leichter, mit kryogenen stoffen kompatibler druckbehälter zur speicherung von fahrzeugkraftstoff | |
US8652589B2 (en) | Permeation barrier layer | |
US20190055372A1 (en) | Low volatility, high efficiency gas barrier coating for cryo-compressed hydrogen tanks | |
DE102009040798A1 (de) | Permeationsschutz für einen druckbeaufschlagten Wasserstoffspeichertank | |
US20070092437A1 (en) | Increasing hydrogen adsorption of nanostructured storage materials by modifying sp2 covalent bonds | |
CN113056631B (zh) | 用于氢压力容器的制造方法、压力容器以及具有氢压力容器的机动车 | |
CN1165703C (zh) | 具有吸附剂的气体储存系统 | |
EP0739655B1 (de) | Verfahren zu plasmagestützten Herstellung multifunktionaler Schichten auf Kunststoffteilen | |
DE19826681B4 (de) | Verfahren zur Herstellung von neuartigen Getter-Werkstoffen in Form dünner metallischer und kohlenstoffhaltiger nanostrukturierter Schichten und Verwendung derselben zur Hochvakuumerzeugung und Gasspeicherung | |
DE102005055321B4 (de) | Behälter zur Speicherung von Kraftstoff | |
Pantoja Suárez | Carbon nanotubes grown on stainless steel for supercapacitor applications | |
DE4104198A1 (de) | Verfahren zur herstellung von formteilen mit guten oberflaecheneigenschaften | |
DE4343040C1 (de) | Barrierefolie | |
EP4328016A1 (de) | Laminat und verfahren zur herstellung des laminats | |
DE102004017241B4 (de) | Verbundmaterial und Verfahren zu seiner Herstellung | |
DE102020107562A1 (de) | Druckbehältersystem mit einer Sperrschicht und einer Metallschicht, Kraftfahrzeug und Verfahren zur Herstellung des Druckbehältersystems | |
DE102008038699A1 (de) | Leichtbaupanzerung | |
DE102009002320B4 (de) | Verfahren zur Reduzierung des elektrischen Kontaktwiderstands einer Oberfläche eines metallischen Körpers und Vorrichtung zur Durchführung des Verfahrens | |
JP4395917B2 (ja) | ガスバリア材およびその製造方法 | |
WO2008095515A1 (de) | Behälter zur lagerung von wasserstoffhaltigen zusammensetzungen | |
CN118881920A (zh) | 无内衬碳纤维全缠绕复合材料气瓶及制备方法 | |
Yavuz | Plasma deposition at atmospheric pressure and characterization of nanostructures |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20031117 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
17Q | First examination report despatched |
Effective date: 20091119 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20091103 |