EP1374748B1 - Dairy-based beverage dispenser, method for dispensing hot, dairy-based beverages and disposable container for dairy-based liquids - Google Patents
Dairy-based beverage dispenser, method for dispensing hot, dairy-based beverages and disposable container for dairy-based liquids Download PDFInfo
- Publication number
- EP1374748B1 EP1374748B1 EP03076547A EP03076547A EP1374748B1 EP 1374748 B1 EP1374748 B1 EP 1374748B1 EP 03076547 A EP03076547 A EP 03076547A EP 03076547 A EP03076547 A EP 03076547A EP 1374748 B1 EP1374748 B1 EP 1374748B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- milk
- dairy
- air
- beverage dispenser
- steam
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 235000013361 beverage Nutrition 0.000 title claims abstract description 101
- 235000013365 dairy product Nutrition 0.000 title claims abstract description 46
- 239000007788 liquid Substances 0.000 title claims abstract description 32
- 238000000034 method Methods 0.000 title abstract description 9
- 238000004945 emulsification Methods 0.000 claims abstract description 67
- 230000001804 emulsifying effect Effects 0.000 claims abstract description 18
- 238000003860 storage Methods 0.000 claims abstract description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 60
- 239000003995 emulsifying agent Substances 0.000 claims description 39
- 238000010438 heat treatment Methods 0.000 claims description 19
- 239000012530 fluid Substances 0.000 claims description 16
- 239000000203 mixture Substances 0.000 claims description 15
- 238000002156 mixing Methods 0.000 claims description 7
- 230000007246 mechanism Effects 0.000 claims description 5
- 230000004913 activation Effects 0.000 claims description 4
- 239000008400 supply water Substances 0.000 claims description 2
- 230000008878 coupling Effects 0.000 claims 2
- 238000010168 coupling process Methods 0.000 claims 2
- 238000005859 coupling reaction Methods 0.000 claims 2
- 235000013336 milk Nutrition 0.000 abstract description 163
- 239000008267 milk Substances 0.000 abstract description 163
- 210000004080 milk Anatomy 0.000 abstract description 163
- 238000005057 refrigeration Methods 0.000 abstract description 6
- 238000005187 foaming Methods 0.000 abstract description 3
- 230000001419 dependent effect Effects 0.000 abstract 1
- 239000003570 air Substances 0.000 description 117
- 235000015116 cappuccino Nutrition 0.000 description 17
- 238000004140 cleaning Methods 0.000 description 14
- 235000016213 coffee Nutrition 0.000 description 14
- 235000013353 coffee beverage Nutrition 0.000 description 14
- 238000011010 flushing procedure Methods 0.000 description 14
- 238000002360 preparation method Methods 0.000 description 13
- 238000010926 purge Methods 0.000 description 13
- 235000015115 caffè latte Nutrition 0.000 description 12
- 230000000994 depressogenic effect Effects 0.000 description 12
- 230000005484 gravity Effects 0.000 description 7
- 230000008859 change Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 235000012171 hot beverage Nutrition 0.000 description 6
- 238000004891 communication Methods 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 239000006260 foam Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000012080 ambient air Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 235000020124 milk-based beverage Nutrition 0.000 description 3
- 239000006071 cream Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000003670 easy-to-clean Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 235000020278 hot chocolate Nutrition 0.000 description 2
- 239000011087 paperboard Substances 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 1
- 102000014171 Milk Proteins Human genes 0.000 description 1
- 108010011756 Milk Proteins Proteins 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000000881 depressing effect Effects 0.000 description 1
- 210000003414 extremity Anatomy 0.000 description 1
- 235000019541 flavored milk drink Nutrition 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 210000003141 lower extremity Anatomy 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 235000021239 milk protein Nutrition 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 235000016046 other dairy product Nutrition 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- -1 steam Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07F—COIN-FREED OR LIKE APPARATUS
- G07F13/00—Coin-freed apparatus for controlling dispensing or fluids, semiliquids or granular material from reservoirs
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47J—KITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
- A47J31/00—Apparatus for making beverages
- A47J31/44—Parts or details or accessories of beverage-making apparatus
- A47J31/4485—Nozzles dispensing heated and foamed milk, i.e. milk is sucked from a milk container, heated and foamed inside the device, and subsequently dispensed from the nozzle
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47J—KITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
- A47J31/00—Apparatus for making beverages
- A47J31/44—Parts or details or accessories of beverage-making apparatus
- A47J31/46—Dispensing spouts, pumps, drain valves or like liquid transporting devices
- A47J31/461—Valves, e.g. drain valves
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47J—KITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
- A47J31/00—Apparatus for making beverages
- A47J31/44—Parts or details or accessories of beverage-making apparatus
- A47J31/46—Dispensing spouts, pumps, drain valves or like liquid transporting devices
- A47J31/469—Details of hydraulic circuits
Definitions
- the present invention relates to a beverage dispenser according to the preamble of claim 1.
- the invention has particular applicability in the preparation of hot dairy-based beverages such as hot chocolate, cappuccino, coffee latte, flavoured steamers (heated flavoured milk), and other hot beverages containing dairy-based liquids.
- the invention also relates to a method for emulsifying dairy-based liquids according to the preamble of claim 15 and a disposable container for dairy-based liquids to be used with the beverage dispenser according to the present invention.
- U.S. Patent 4,715,274 describes an emulsifier unit for emulsifying steam, air, and milk to prepare such beverages as cappuccino and coffee latte.
- steam and air are mixed with milk or cream in a venturi-type emulsification chamber and dispensed from this device, such as for mixing with coffee.
- the portions of steam and air that are mixed with the milk vary, depending upon the particular hot beverage desired.
- cappuccino requires an aerated mixture of milk and air.
- this mixture is comprised of about two-thirds milk and about one-third air by volume.
- About half of the milk in a portion suitable for making cappuccino coffee is in a liquid form, while the other half is in the form of foam above the liquid.
- the milk and air is emulsified and heated with steam in the emulsification chamber and preferably dispensed at a temperature between 68°C and 74°C.
- the steam is typically under a pressure above ambient atmospheric pressure (e.g. a pressure of about 1 to 2 Bar above ambient pressure) and is preferably injected into the emulsification chamber at 120°C - 130°C.
- the hot milk is preferably dispensed at a temperature of between 68°C and 74°C.
- a milk dispenser of the venturi-type is disclosed in US 6,289,796.
- the dispenser is used to produce frothed and non-frothed milk.
- the dispenser is equipped with a reservoir which supplies milk under the action of gravity via an adjustable valve to an L-shaped buffering chamber.
- the L-shaped chamber is needed to be able to change from frothed milk to non-frothed milk operation.
- a build up of milk in the non-disposable L-shaped chamber is inevitable and it therefore needs regular cleaning.
- the invention provides for this purpose a beverage dispenser according to claim 1.
- This allows milk to descend from the refrigeration unit at least partially under the force of gravity.
- the amount of milk supplied varies less due to fluctuations in the strength of suction from the venturi orifice. Rather, there is a highly constant flow rate of milk dispensed with great consistency each and every time the unit is actuated.
- a specific container that is also part of the present invention, and will be described later in this text is provided with a hose that is preferably inserted through a pinch valve. Once the tube has been routed through the pinch valve, and the pressure of the pinch valve is relieved, the milk can flow downwardly due to the force of gravity acting on the milk.
- a further unique feature of some embodiments of the invention is the provision of pressurized air for use in making cappuccino from a pressurized air supply. Air is thereby forced under pressure into the emulsification chamber.
- the dispensation unit of the present invention does not necessarily rely upon venturi suction to pull air into the unit. As a consequence, there is far greater consistency in the amount of air in the frothed, heated milk used for the preparation of cappuccino beverages in these embodiments.
- a further feature of the present invention is an automated time and/or dispensing interval related, self-cleaning system for flushing out all components that are exposed to milk flow. This is accomplished by positioning a flush control valve and a three-way valve, acting as a diversion valve, in the air supply line that leads to the air inlet of the emulsification unit. After each dispensation of a quantity of milk through the emulsification unit, the flush control valve and the pump are actuated and the diversion valve is positioned such that it allows a flow of flushing water through the air supply line, and through the emulsification chamber, to rinse out any residual milk that may have seeped into the air supply line, and also to rinse out the emulsification chamber itself.
- the only other connection to the emulsification chamber is from the steam boiler, which discharges steam with each actuation. A small quantity of steam may also be vented through the emulsification chamber following the dispensation of each portion of a dairy-based beverage. Consequently, all the components of the emulsification system that are in contact with the dairy-based liquids can be flushed or purged following each use of the machine for dispensing a dairy-based beverage. By providing this self-cleaning feature, the system of the invention avoids the chore of requiring cleaning of the unit between beverage dispense cycles and throughout the normal daily course of business.
- a further feature of the present invention is the minimization of non-disposable components that are exposed to the flow of milk.
- the emulsification chamber and its milk inlet and nozzle seating inlet cavities are supplied as one disposable unit that is discarded each day following use.
- the nozzles themselves are reusable, but are very easy to clean.
- the beverage dispenser of the present invention to a very large extent eliminates the cleaning requirement that is required with conventional units of this type.
- Still another feature of the invention is the provision of a system that allows for different steam temperatures and velocities on demand. For example, depending on the desired dispensing speed and flow rate in the preparation of a frothed mixture of milk and air for cappuccino, a steam temperature of 125°C may be appropriate. On the other hand, when preparing hot non-foamy milk for a coffee latte, a higher steam temperature of possibly 140°C may be required. This is caused by the fact that the absolute mass of milk relative to the dispensed volume is higher when dispensing hot non-foamy milk versus hot foamy milk.
- a signal indicating that for instance hot non-foamy milk is the desired beverage to be dispensed initiates a software-driven process in which an algorithm programmed into a microchip immediately increases the steam temperature in the steam source, which is typically a boiler, from a programmable, standby base temperature to a programmable higher temperature which is the required temperature for emulsifying milk and steam.
- the software in effect allows for the supply of steam at multiple target temperatures.
- the base or standby temperature of the steam in the unit may, for example, be about 135°C.
- the software also enables the boiler system to maintain these multiple, different, programmable temperatures within a very narrow bandwidth of +2°C or -2°C. This is accomplished by means of an algorithm.
- the software keeps track not only of the actual steam temperature inside the boiler, but also of the rate at which the steam temperature increases or decreases while heating up or cooling down. This allows the software to anticipate when a programmed target temperature will be reached. The quantification of this anticipation is used to turn the heating element(s) inside the steam boiler on or off in advance of reaching the target temperature. The result is steam is supplied at a stable temperature.
- Temperature control in the boiler can be achieved by using a temperature control algorithm which is a simple on/off thermostat style temperature control that turns the heat on when the temperature is more than 1°C below the desired temperature and off when the temperature is more than 1°C over the desired temperature.
- a temperature control algorithm which is a simple on/off thermostat style temperature control that turns the heat on when the temperature is more than 1°C below the desired temperature and off when the temperature is more than 1°C over the desired temperature.
- a temperature control algorithm which is a simple on/off thermostat style temperature control that turns the heat on when the temperature is more than 1°C below the desired temperature and off when the temperature is more than 1°C over the desired temperature.
- a temperature rate of change term, or delta T is constantly calculated.
- the delta T value is compared to a predetermined value. If the heat is on and the delta T is over the value, the heat is turned off regardless of whether the current temperature is above or below the desired temperature. If the heat is off and the - delta T is over the value, the heat is turned on regardless of whether or not the temperature is above the desired value.
- This type of "predictive" temperature control can be equated to applying the brakes in an automobile before arriving at a stop sign.
- a printed circuit board reads the difference between the actual steam temperature inside the boiler and the desired higher temperature and activates a relay that allows a current to flow to the heating element(s) inside the boiler which increases the temperature, and thereby the pressure in the boiler, to the desired target temperature.
- This process is controlled by an algorithm (software, see above) programmed on the microchip of the printed circuit board, which also controls the actual temperature to remain with a certain bandwidth, as described above, of the desired higher temperature.
- the software allows steam to escape from the boiler and thereby lowers the actual steam temperature in the boiler so that it reaches the desired lower target temperature.
- Another method to reach the desired lower temperature is to allow a refill of the boiler with line water (that has a lower temperature than the actual temperature in the boiler) irrespective of the level of the boiler filling.
- This refill process requires only a limited volume of additional water.
- This method of instantly lowering the temperature by adding water to the boiler can also be used to optimise the stationary temperature level of the boiler at a relatively high temperature (above the average temperature of all the requested temperature levels). Additional water filling of the boiler results in reaching a requested lower temperature with a certain delta T faster than heating the boiler with the same delta T.
- the advantage of maintaining the stationary boiler temperature at a higher level than the average of the requested temperatures is that it further diminishes the time required to reach a requested boiler temperature.
- An embodiment of the dairy liquid flow control valve can be used in two positions, 1) the OFF (e.g. no activation of a magnetic coil) position which completely blocks the flow of the dairy-based liquids from the chilled storage container to the venturi-based emulsifier, and 2) the ON position (e.g. activation of a magnetic coil).
- the ON position allows for an uninterrupted gravitational flow of the dairy-based liquids from the chilled storage container to the venturi-based emulsifier.
- this aspect of the invention is particularly useful with "bag in box” milk storage containers, however also other types of milk containers (carton, plastic, metal and or other materials) can be used in combination with the beverage dispenser according to the present invention.
- dairy-based liquid Other fluids that can be added to the dairy-based liquid typically include steam, and for some dairy-based beverages, air as well.
- the beverage dispenser is comprised of a thermostatic sensor and one or more heating elements for selectively mixing steam at alternative temperatures with the dairy-based liquid.
- a particular input such as a push button associated with a particular beverage, for example cappuccino or coffee latte
- This actuating signal causes the temperature controller to increase or decrease current to the boiler heating element, as required, to cause the output steam of the boiler to be at an increased or decreased temperature relative to the standby temperature of steam in the boiler and to maintain it at the increased or decreased temperature as long as demanded by continued activation of the actuating signal.
- An aspect of some embodiments of the invention may be considered to be an improvement in a device for emulsifying dairy-based beverages with selected other fluids, including air, and dispensing an emulsified mixture of selected fluids including a dairy-based beverage from an emulsifier.
- a source of air above atmospheric pressure is connected to the emulsifier.
- the system therefore does not rely solely upon suction created by the venturi effect of the emulsifier to supply air for the beverage mix.
- the use of pressurized air may improve the consistency of the temperature and the proportions of fluids in the beverage mixture as the beverage is discharged from the emulsifying unit.
- the beverage dispenser may be considered to be an apparatus for emulsifying dairy-based liquids with other fluids including an emulsification chamber having a beverage dispensing outlet located downstream from the mixing chamber for dispensing portions of the dairy-based beverage and at least one of the other fluids.
- the improvement of the invention is comprised of a supply of water under pressure coupled to the emulsification chamber.
- a flush control valve and a three-way valve are located between the supply of the water and the emulsification chamber.
- a flush control valve actuator can be programmed to automatically open the flush control valve to dispense a quantity of water from the supply of water through the emulsification chamber following dispensation of each portion of beverage.
- the emulsification chamber can be programmed to provide a smaller quantity of water that travels only up to the emulsification chamber before the dispensation of a beverage if the purpose is to keep out unwanted air and/or to eliminate unwanted expansion space that otherwise would connect to the emulsification chamber.
- One of the other fluids dispensed is air and there is an air line coupled to the emulsification chamber.
- the three-way valve is coupled to the air line and to the supply of water and is operable to alternatively supply water and air through the air line to the emulsification chamber.
- the supply of water is (or can be) coupled to the air line that connects to the emulsification chamber, enabling rinsing of the air line with water.
- FIG 1 illustrates an emulsification and dispensing device 10 that employs a cabinet 12 having an upper portion indicated generally at 14 in figure 2, and a lower portion indicated generally at 16 in that drawing figure.
- the upper portion 14 includes an electrically operated refrigerator 18 having cooling coils that keep the cooling cavity thereof at a temperature of preferably between about 0°C and 5°C (more preferably between about 0,5°C and 4,5°C).
- the cooling cavity of the refrigerator 18 can accommodate a disposable "bag in box" milk container 22, or any other containing device such as a regular/standard one gallon or one-half gallon plastic container or carton that holds a supply of milk 20 in the upper portion 14 of the cabinet 12.
- the container 22 is formed of a corrugated paperboard outer, rectangular box within which a flexible, collapsible plastic bag 24 is located.
- the bag 24 is equipped with a discharge hose 26, best illustrated in figure 3, which is formed of a short length of rubber tubing.
- the hose 26 has a proximal end sealed in flow communication with the bottom of the bag 24, and an opposing, free, distal end that is initially sealed shut at its extremity.
- the door 28 of the refrigerator 18 in the upper portion 14 of the unit 10 is opened and the corrugated paperboard container 22 is positioned therein with the flow discharge hose 26 directed downwardly through a small opening located in the floor of the refrigerator cavity near the front of the unit, just behind the refrigerator door 28.
- the hose 26 is inserted downwardly through the opening in the refrigerator floor and past a pinch door 30 that is hinged for rotation about a vertical axis and latched against the structure of the housing 12.
- the pinch door 30 has a vertical, semi-cylindrical channel 32 defined in its inner surface that resides in face-to-face contact with a corresponding vertical, semi-cylindrical channel 34 defined in a backing structure 36 located behind the pinch door 30.
- the channels 32 and 34 thereby form a vertical, cylindrical passageway down from the opening in the floor of the refrigerator 18. This passageway is in communication with the upwardly directed, hollow, annular milk inlet pipe 42 in an emulsification or foaming head unit 40.
- the milk discharge hose 26 is pressed against a normally closed pinch valve 25 that includes a reciprocally removable valve gate 38 that is mounted at the end of a solenoid actuated armature 39.
- the solenoid actuated armature 39 presses the pinch valve gate 38 forwardly in a horizontal direction perpendicular to the pinch door 30 and perpendicular to the alignment of the refrigerator door 28.
- the pinch valve gate 38 thereby normally pinches the discharge hose 26 shut, as illustrated in figure 3.
- the milk discharge hose 26 is sealed off and will not let milk flow beneath the valve gate 38.
- the lower extremity of the distal tip of the milk discharge hose 26 is then cut off, and the severed distal end is then pushed coaxially onto the vertically oriented milk inlet pipe 42 of the emulsifier unit 40, as illustrated in figure 3.
- a constrictive throttling flow restrictor 44 is preferably inserted into the milk inlet pipe 42.
- the restrictive throttling flow restrictor 44 is an annular structure, having a flanged top that seats upon the transverse, annular upper edge of the dairy-based liquid inlet pipe 42.
- a narrow, central orifice or duct 46 extends the length of the throttling flow restrictor 44 at its axial centre.
- the duct 46 preferably has a diameter ranging from 1,169 mm to 1,397 mm, depending upon the volume of beverages to be dispensed from the emulsifier 40.
- the refrigeration chamber 18 of the emulsifier and dispenser 10 is located above the emulsifier/venturi unit 40. This means that the lowest possible level of milk 20 in the bag 24 is always higher than the level of the emulsifier 40. As a consequence, the force of gravity will always act upon the remaining supply of milk 20 to carry it to the emulsifier 40. Also, no mechanical pump is required to supply the milk 20 to the emulsification unit 40.
- the use of a system partially fed by gravity for the dairy-based liquid has the further advantage of an immediate response to actuation of the system. Because the dairy-based liquid is always located immediately above the pinch valve 25, there is no delay in drawing milk through some supply line from a remote source, and no delay while air is sucked out of the milk supply line before milk can be drawn into it. To the contrary, the milk 20 is always immediately available for dispensation into the emulsifier unit 40.
- the emulsifier 40 is constructed of a moulded, plastic body 48 that defines a hollow, cylindrical emulsifying chamber 50 within its structure. In many respects the emulsifier 40 is constructed to operate like the emulsifier unit described in U.S. Patent No. 4,715,274, which is hereby incorporated herein by reference in its entirety.
- a milk-based beverage discharge duct 52 projects downwardly from the mixing or emulsifying chamber 50.
- the emulsifier housing 48 also defines a pair of laterally oriented cavities 53 and 55, located one above the other to respectively receive a steam nozzle 54 and an air nozzle 56.
- the nozzles 54 and 56 are inserted into the corresponding cavities 53 or 55 in the body 48 and are in flow communication with a venturi chamber 60 oriented at right angles to and intersecting the vertical milk inlet pipe 42.
- O-rings 62 and 64 are respectively located in corresponding annular, channel-shaped recesses in the nozzle cavities 53 and 55 about the nozzles 54 and 56 to ensure fluid-tight seals about the outer perimeters of the nozzles 54 and 56 with the emulsifier unit 40.
- the nozzles 54 and 56 respectively define within their structures central, axial flow channels 66 and 68 which are respectively coupled to a steam supply line 70 and a pressurized air supply line 72, indicated in figure 4.
- the orifice of the steam nozzle 54 as it enters the mixing cavity is preferably 2,2 mm in diameter, but may vary as well.
- the system is operated by an AC/DC electrical power supply 74 indicated in the schematic diagram of figure 4, which provides operating power to a printed circuit control board 76.
- a printed circuit control board 76 In the preferred embodiment of the emulsifying and dispensing device 10 illustrated, there are four actuating buttons indicated at 78, 80, 82, and 84. Of course, depending on the application, the number of actuating buttons may be more or less. These actuating buttons are depressed to produce a flow of a hot, dairy-based beverage indicated at 86 in figure 1.
- a fifth actuating button 85 is provided to allow a user to actuate the system to emit a purging flow of water and steam, as will hereinafter be described.
- each button is programmable and flexible. Any button can be programmed to generate hot foamy milk or hot non-foamy milk. Furthermore, each button can be programmed to function when depressed and held or for an appropriate time. In time controlled applications, the button is actuated by depressing it once and it will stop functioning when it is depressed again or when the programmed time period has expired.
- the button 78 when depressed and held, can be programmed to produce a flow of a mixture of compressed air, steam, and milk that is emulsified in the emulsifier unit 40 and dispensed in a flow 86, as illustrated in figure 1.
- the flow 86 continues for as along as the button 78 is held depressed.
- the button 80 can be utilized to dispense a cappuccino dairy-based beverage mix of frothed milk aerated with compressed air and heated by steam.
- the button 80 provides a signal to the printed circuit board 76 that produces preset specified quantities of fluids in the flow 86 regardless of how long it is pressed. That is, momentary depression of the button 80 produces a predetermined, aliquot portion of flow 86 to the container 87, unless it is interrupted (by momentary depression) before this portion has been dispensed.
- the button 82 may be utilized to initiate a signal to the printed circuit board 76 that produces a flow of hot non-foamy milk for coffee latte, as long as depression of the button 82 continues.
- the flow of milk 86 heated by emulsification with steam to the container 87 continues for as long as the button 82 is depressed.
- the button 84 may be momentarily depressed to produce a flow 86 of a preset aliquot portion of heated milk for coffee latte. That is, even momentary depression of the button 84 produces a flow of a predetermined amount of heated milk to the container 87.
- the emulsifying and dispensing unit 10 contains a steam boiler 90 in its lower section.
- the steam boiler 90 may be one litre in volume and is equipped with a heating element 91, which may be a six kilowatt electrical heating coil.
- a sensor element 93 of a thermostat control is also located within the boiler 90.
- the boiler 90 is connected to the steam nozzle 54 by a steam supply line 70.
- the operation of the steam boiler is controlled through an electrical control line 92 by programmable settings in the printed circuit board 76.
- the emulsifying and dispensing unit 10 also includes an optional air pump 94 that is connected to an air regulator 96, which is a needle valve.
- the air regulator 96 in turn is coupled by an air duct 98 to a three-way valve 100.
- the three-way valve 100 is connected by the air supply line 72 to the air nozzle 56. Operation of the air pump 94 to achieve a desired pressure is under the control of an electrical signal control line 102 from the printed circuit board 76.
- the printed circuit board 76 controls the condition and direction of operation of the three-way valve 100 by signals on line 116.
- the unit 10 also includes a water pump 104 which is also connected by a water conduit 106 to the three-way valve 100. Operation of the water pump 104 is controlled by an electrical control line 108 from the printed circuit board 76. Also, there is a branch tube 107 from the water conduit 106 leading to a refill valve 110, that in turn is connected by a conduit 112 to the steam boiler 90. The refill valve 110 is controlled from the printed circuit board 76 by an electrical control line 114.
- a level sensor 95 in the steam boiler 90 monitors the level of water remaining in the boiler 90. This water level is checked by level monitoring circuitry on the printed circuit board 76. When the level of water in the boiler 90 drops below a minimum level, the circuitry in the printed circuit board 76 opens the refill valve 110 by a signal on line 114. The water pump 104 then pumps water through the lines 106 and 107, and through the refill valve 110 and conduit 112, to replenish the water supply in the steam boiler 90.
- a quantity of milk 20 is stored in the "bag in box” container 22. It is to be understood that any other type of milk container such as a one gallon or a half gallon milk pack could be employed in place of the "bag in box” container 22.
- the container 22 is maintained in a refrigerated state at between about 0°C and 5°C (more preferably at between about 0,5°C and 4,5°C) by the refrigeration unit 18. It should be noted that the milk is stored within the bag 20 in cold storage above the level of the venturi-based emulsifier unit 40.
- the preset programming of the printed circuit board 76 actuates the electrical solenoid 41, indicated in figure 2, to pull the solenoid armature 39 inwardly, and thereby pull the pinch valve gate 38 away from clamping contact against the milk supply hose 26.
- the solenoid 41 will maintain the valve gate 38 in a withdrawn condition either until the button is released, or for a predetermined time interval as determined by the settings of the printed circuit board 76, or otherwise when the button is momentarily depressed before the predetermined time interval has elapsed.
- the circuitry of the programmed printed circuit board 76 Concurrently with the actuation of milk flow to the inlet 42 of the emulsification unit 40, the circuitry of the programmed printed circuit board 76 sends a signal over the control line 92 to actuate the steam boiler 90 to produce steam at a desired temperature.
- the steam boiler 90 is normally maintained in a steady state or standby condition at a temperature ranging from 130°C to 135°C. If the button 78 or 80 is depressed, thereby calling for the preparation and discharge of frothed, heated milk for cappuccino, this temperature is reduced by delaying the heating current to the electrical heating coil 91 located in the steam boiler 90. The response is nearly instantaneous.
- the temperature drops very rapidly to the new target temperature of 125°C, for example, and the steam pressure drops as well to a pressure of about 1,5 Bar above ambient pressure.
- Steam is thereupon immediately discharged from the steam boiler 90 at a temperature of about 125°C and a pressure of between 1,0 and 1,5 Bar above atmospheric pressure.
- the printed circuit board 76 through control signal line 102 operates the air pump 94 to produce air at a pressure of about 0,3 to 0,7 Bar over atmospheric pressure and also operates the three-way valve 100 by control signals on line 116 to the position to couple line 98 to line 72.
- the air regulator 96 is thereupon coupled by line 98 to direct air through the three-way valve 100 and line 72 to the air nozzle 56.
- depression of the appropriate button 78 or 82 conditions the printed circuit board to start the flow of milk to the emulsifier 40 by actuation of the solenoid 41, and the flow of both air and steam to the emulsifier 40 by an actuating signal to the heating element 91 of the steam boiler 90 through line 92, by operation of the three-way valve 100 by signals on the control line 116 to connect lines 72 and 98 together, and by actuation of the optional air pump 94 through a signal on control line 102.
- the three fluids are thereby admitted, all under pressure, to the emulsification chamber 50.
- the pressure on the flow of milk 20 is partially by gravitational force, while the pressure on the air is supplied by either suctional force created by the venturi-based foamer or by the pump 94.
- the steam pressure is supplied by the steam in the steam boiler 90.
- the flow of steam is controlled by steam valve 47 which is located in line 70 and which is operated to either a fully open or fully closed position.
- the beverage 86 that is dispensed into the beverage container 87 for use in cappuccino is therefore about two-thirds milk and about one-third air in volume, depending upon the air regulator setting. However, a significant portion of the milk is entrained in foam that resides atop the beverage in the container 87.
- the beverage 86 is comprised of about fifty percent heated milk and about fifty percent foam formed of bubbles of milk residing in a layer atop the beverage in the receptacle 87, as measured by volume.
- the preferred temperature of the cappuccino beverage mixture 86 as it leaves the emulsification chamber 50 through the outlet 52 ranges between 68°C and 74°C.
- steam pressure i.e., steam temperature
- the button 82 or the button 84 is depressed.
- the printed circuit board 76 is conditioned so that the three-way valve 100 blocks the air supply from the pump 94 entirely.
- the programmed circuitry of the printed circuit board 76 also transmits a signal on line 92 to the steam boiler 90 to actuate the heating coil 91 in the steam boiler 90 to raise the temperature of the steam to a new target of about 140°C, which increases the pressure within the boiler 90.
- the steam pressure in the boiler 90 is at about 1,0 to 3,2 Bar above atmospheric pressure.
- the pinch valve 25 is also actuated concurrently upon depression of the hot non-foamy milk button 82 or 84, so that milk 20 flows past the pinch valve 25 and is mixed with steam injected through the nozzle 54.
- the two fluids are mixed in the emulsification chamber 50 and dispensed through the emulsifier beverage discharge duct 52.
- the fluid that leaves the emulsification chamber 50 in the preparation of hot non-foamy milk is almost entirely milk, since the steam that heats the milk is condensed to a rather small volume of water.
- the temperature of the heated milk in the flow 86 for hot non-foamy milk as it leaves the discharge duct 52 should also range between 68°C and 74°C. Depending on the temperature in the steam boiler, it takes about thirty seconds to dispense a sufficient amount of heated milk 86 for coffee latte into a sixteen ounce beverage container 87.
- a very important aspect of the invention is the feature of self-cleaning. Irrespective of which of the buttons 78, 80, 82, or 84 is depressed, the air nozzle 56 and the line 72 leading to the air nozzle 56 are flushed out following the dispensation of a portion of the heated dairy-based beverage 86.
- This step of self-cleaning occurs in the following manner. Following cessation of milk, steam, and airflow, if any, either by reason of the timing out of the actuating signal initiated by the buttons 78 or 82, or by reason of release of the buttons 80 or 84 by a user, the program of the printed circuit board 76 initiates a cleaning cycle.
- the circuitry on the printed circuit board 76 positions the three-way valve 100 to couple the water conduit 106 to the air supply line 72 and block any flow back through line 98.
- the water pump 104 thereupon supplies a quantity of flushing or purging water that travels from water conduit 106, through the flush control valve 109 and the three-way valve 100, through air supply line 72 to the air nozzle 56, and into the emulsification chamber 50. It requires only a small quantity of water to flush out the lines 106 and 72, the three-way valve 100, and the nozzle 56, since there is a relatively small volume within these components.
- the flushing water is dispensed through the air nozzle 56 for a predetermined, programmable time, perhaps two seconds.
- a signal on control line 92 to the steam boiler 90 initiates the discharge of a small quantity of purging steam to clear the steam supply line 70 and steam nozzle 56 of any milk and water that may remain in those components.
- the system avoids any contamination by milk that may have worked back into the air nozzle 56 or the air line 72, the steam nozzle 74, or the steam line 70.
- the quantity of flushing water, with relatively small traces of milk or possibly other impurities therein, is simply dispensed from the discharge duct 52 into a waste basin.
- the outlet hose 26 there from, the nozzles 54 and 56, and the emulsification unit 40 no part or mechanical component of the dispensation unit 10 comes in direct contact with the milk 20. This allows for daily, extremely cost efficient, and simple cleanup operations. More specifically, the emulsification unit 40 is a very cheap, disposable item that is discarded on a daily basis.
- the "bag in box” container 22 for the milk 20 is a disposable item as well. The milk 20 remains stored in the refrigeration unit 18 until it is used up, or until it is past its expiration date. When this occurs, the "bag in box” container 22, together with the discharge hose 26 emanating there from, are also thrown away.
- the steam and air ejector nozzles 54 and 56 are the only parts of the unit that come into contact with the milk that are not designed for daily throwaway.
- the inside channels of the ejectors 54 and 56 are flushed automatically with water and steam after each programmed quantity of a beverage has been dispensed.
- the timing of the flushing cycle is controlled by the printed circuit board 76, which is programmable and software controlled.
- the nozzles 54 and 56 are very easy to clean, wipe off, and/or brush from the outside.
- the selector button 85 may be utilized to perform a water and steam flushing or purging cycle at any time an operator of the emulsification and dispensing unit desires. Depression of the selector button 85 provides a means for manually initiating the same flushing and purging cycle that is programmed to occur automatically after each beverage portion is dispensed.
- dispensing unit 10 has particular applicability to the "bag in box" container 22, previously described, it may also be utilized in connection with commercially available gallon packs, gallon bottles, or other commercially available dairy product packaging in which the milk dispensing hose is connected through an opening in the top of the container.
- the hose enters the container from the top, but projects downwardly to the bottom of the milk container.
- an initial suction or siphoning force is necessary to draw the milk up from the bottom of the container through the opening in the top, and down through the supply hose that would be inserted through the pinch valve 25 onto the milk inlet pipe 42. Thereafter, however, the siphoning effect created would aid the milk in reaching the emulsification unit 40.
- no siphon break is required, since the entire milk container and its associated hose structure is housed within the refrigeration unit 18.
- the pinch valve 25 is an important component of the dispenser 10. The use of such a pinch valve in a hot dairy dispensation application is unique to the present invention.
- the pinch valve 25 is located directly above the emulsification unit 40.
- the pinch valve 25 allows an automatic purge and rinse cycle of the foamer head unit or emulsification unit 40 since no part of the pinch valve 25 makes contact with the milk 10.
- a further advantage of utilizing a pinch valve 25 is that it prevents milk from flowing back into the cold storage container 22 so that the next beverage dispensing cycle can be started without delay and with the aid of gravity feed, as with the "bag in box" container 22. Since no siphon break is necessary, the supply tubing is always completely filled with milk. As a consequence, no delay is experienced and no inconsistency in dispensation occurs when the dispensing device 10 is actuated to dispense the next beverage. This feature is extremely important for true self-service applications, where dispensation into the container 87 must occur immediately following depression of one of the beverage buttons 78, 80, 82, or 84 by the customer. With even a momentary delay, some customers will replace or remove the container 87, thus risking exposure of the skin of their hand to hot beverages.
- the use of the pinch valve 25 against the tube 26, in combination with a venturi-based foamer head emulsifier unit 40 is also unique in that it prevents direct contact between the milk 20 and the operating components of the pinch valve 25.
- the pinch valve 25 itself does not have to be removed or cleaned on a daily basis.
- the removal and cleaning of a mechanical valve is generally too complicated for the end user or operator of the machine 10. Rather, it would require the aid of a qualified technician.
- removal and/or cleaning of the pinch valve 25 would only become necessary in the case of a valve malfunction, which is an unlikely occurrence.
- the present invention utilizes steam from a single boiler 90, which is injected at different, distinct temperatures, pressures, and velocities as determined by the beverage buttons 78, 80, 82, and 84 that are depressed. While the steam could be injected through two different nozzles, depending upon the beverage selected, it preferably is supplied through the single steam nozzle 54. It is to be understood, however, that separate steam nozzles 54 could be provide to the foamer head 40 if desired. The orifice of each steam nozzle could be different and particularly suited for the beverage for which it is utilized.
- the emulsification and dispensation unit 10 provides totally controlled temperature consistency in the beverage product that is dispensed.
- the steam originates from a single boiler 90 and is injected at different, distinct temperatures, pressures, and/or velocities.
- the path of steam flow is preferably through a single inlet steam injector 54 to a single foamer head 40.
- Temperature control occurs upon demand, that is, upon the depression of a selected one of the buttons 78, 80, 82, or 84.
- Availability upon demand of steam at the selected, button-related temperature is crucial. Unlike conventional systems, the present invention does not involve resetting or recalibrating the boiler 90 to a new base steam temperature for each change in the beverage selected.
- the programmable base (stand by) steam temperature remains the same regardless of the beverage selected.
- the steam in the boiler 90 is rapidly heated or cooled as required due to the relatively powerful heating element 91 and the relatively small volume of the boiler 90.
- the base steam temperature lies between the highest and lowest steam temperatures required for the heated, dairy-based emulsified beverages produced. It is possible to use a relatively small boiler 90 due to the provision of the refill valve 110 to replenish the water supply from the water pump 104, as required and indicated by the level sensor.
- the precision in temperature control achieved with the emulsification and dispensing unit 10 of the present invention is extremely important. If the temperature of the dispensed dairy-based beverage rises above 76°C, the milk protein starts to caramelise, resulting in burnt or scalded milk. The industry standards specify that temperature of the dispensed beverage 87 should not exceed 74°C. The tight temperature control is achieved by switching the power supplied to the heating coil 91 in the steam boiler 90.
- an actively pressurized air source for supplying air under pressure to the air nozzle 56 can also be advantageous.
- the present invention does not necessarily rely solely upon a pressure differential created "passively" through suction in the venturi foamer. Such systems may produce inconsistent beverage mixes due to variations in atmospheric pressure.
- the positive elevated pressure above ambient atmosphere created by the system of the present invention provides a more stable, more consistent and even air flow through the air nozzle 56.
- the optional provision of air under pressure may also improve the consistency of the temperature of the beverage 87 as it is dispensed because the proportion of milk to air is more consistent.
- a drop in air flow due to a lower ambient pressure results in a greater amount of milk in the mixture.
- a rise in ambient air pressure will increase the volume of air in a conventional venturi foaming heat, thus lowering the mass of the milk in the combined mixture. The greater amount of air in the mixture, the less milk there is to be heated.
- the active pre-programmed use of water to fill the air inlet line 72 and the air nozzle 56 to provide a flushing or purging effect is extremely important.
- the ability to purge the air line allows a single emulsification chamber 50 to be utilized for dispensing both foamy and non-foamy milk, without jeopardizing the quantity of milk flow.
- the length of the air supply line 72 between the air nozzle 56 and the three-way valve 100 is very short.
- the presence of water remaining in the line 72 from the purge cycle prevents excess air from being drawn from the line 72 into the emulsification chamber 50.
- the present invention provides a system that not only flushes and purges milk remnants out of the air inlet line and nozzle, but also prevents air from entering the venturi chamber 60 and the emulsifying chamber 50 when the desired product is non-foamy hot milk.
- the air supply line 72 leads to the foamer head. It is connected to the emulsifier 40 by the air nozzle 56.
- the air supply line 72 may be utilized to perform two different functions, depending upon the manner in which the microprocessor 76 has been programmed. Specifically, the air supply line 72 may be used to (1) Allow air to flow to the emulsifier; or (2) to allow water to flow to the emulsifier 40.
- the three-way valve 100 acts as a diversion valve to block flow in one direction or the other, depending upon the need for air or water.
- the three-way valve 100 blocks the air duct 98 and thus opens communication between the water conduit 106 and the air supply line 72. Water will then flow when the water pump 104 and flush valve 109 are actuated.
- the microprocessor 76 changes the position of the three-way valve 100 so that it blocks the water conduit 106 and allows air to flow from the air duct 98 through the three-way valve 100 to the air supply line 72 and on to the emulsifier 40.
- the air supply line 72 may be flooded at different times for two different purposes.
- the microprocessor 76 may be programmed so that the air supply line 72 is flooded after the dispensation of a beverage to flush the emulsifier 40 and remove any milk residue both from the emulsifier 40 and also from the air supply line 72. It is possible for milk residue to enter the air supply line 72 after dispensing a beverage due to a vacuum effect that takes place in the air supply line 72. By flushing the air supply line 72 with water following dispensation of a beverage both the air supply line 72 and the emulsifier 40 are cleaned after dispensation of each beverage.
- the microprocessor 76 may be programmed so that there is a significant delay in the flushing discharge of water following dispensation of a beverage. This might be desirable to prevent accidental scalding if a user inserts his or her hand beneath the beverage discharge duct 52 immediately upon the completion of beverage dispensing. In this situation, and in other situations as well, it may be desirable to fill the air supply line 72 for a different purpose.
- the microprocessor 76 may also be used to flood the air supply line 72 immediately upon depression of either the button and 82 or the button 84 before hot non-foamy milk is dispensed.
- actuation of either the button 82 or the button 84 causes a small amount of water to be injected into the air supply line 72 through the three-way valve 100 just before the solenoid actuated armature 39 is energized.
- the air supply line 72 is thereupon flooded by the time that the valve gate 38 is opened to allow milk to flow from the discharge hose 26. This avoids the aspiration of unwanted air from the air supply line 72 during the dispensation of hot non-foamy milk.
- the use of the emulsification and dispensing unit 10 is not limited to hot, foamy or non-foamy milk. It may also be used in the dispensation of hot chocolate milk, hot milk and hot cream, and other dairy-based beverages at high temperatures.
Landscapes
- Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Apparatus For Making Beverages (AREA)
- Devices For Dispensing Beverages (AREA)
- Food-Manufacturing Devices (AREA)
- Dairy Products (AREA)
- Non-Alcoholic Beverages (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US175578 | 2002-06-18 | ||
US10/175,578 US7021206B2 (en) | 2002-06-18 | 2002-06-18 | Hot dairy-based beverage dispenser |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1374748A2 EP1374748A2 (en) | 2004-01-02 |
EP1374748A3 EP1374748A3 (en) | 2004-08-18 |
EP1374748B1 true EP1374748B1 (en) | 2006-12-13 |
Family
ID=29717833
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03076547A Expired - Lifetime EP1374748B1 (en) | 2002-06-18 | 2003-05-22 | Dairy-based beverage dispenser, method for dispensing hot, dairy-based beverages and disposable container for dairy-based liquids |
Country Status (11)
Country | Link |
---|---|
US (2) | US7021206B2 (ja) |
EP (1) | EP1374748B1 (ja) |
JP (1) | JP4785337B2 (ja) |
KR (1) | KR101011294B1 (ja) |
CN (1) | CN100405961C (ja) |
AT (1) | ATE347839T1 (ja) |
CA (1) | CA2431180C (ja) |
DE (1) | DE60310313T2 (ja) |
DK (1) | DK1374748T3 (ja) |
ES (1) | ES2279924T3 (ja) |
TW (1) | TWI277403B (ja) |
Families Citing this family (136)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102004006095A1 (de) * | 2004-02-06 | 2005-09-01 | Niro-Plan Ag | Vorrichtung zur Erzeugung von Milchschaum |
US20050208192A1 (en) * | 2004-03-17 | 2005-09-22 | Keith Nakakura | Beverage base |
ITMI20040777A1 (it) * | 2004-04-21 | 2004-07-21 | De Longhi Spa | Dispositivo e procedimento per la produzione di una bevanda a base di latte |
DE502005009418D1 (de) * | 2004-05-18 | 2010-05-27 | Nestec Sa | Vorrichtung zum aufschäumen von milch mit externer milchansaugung |
US20060037353A1 (en) * | 2004-08-23 | 2006-02-23 | Nor-Lake, Incorporated | Temperature controlled liquid dispenser |
PL1656863T3 (pl) * | 2004-11-11 | 2011-07-29 | Nestec Sa | Samoczyszcząca głowica mieszająca do przygotowywania mieszaniny na bazie mleka oraz maszyny do przygotowywania napojów zawierające taką głowicę mieszającą |
DE502006002149D1 (de) * | 2005-02-08 | 2009-01-08 | Saeco Ipr Ltd | Anordnung zur Erzeugung von Milchschaum und/oder zum Erhitzen von Milch |
ATE389347T1 (de) * | 2005-02-08 | 2008-04-15 | Saeco Ipr Ltd | Anordnung zur erzeugung von milchschaum und zum erhitzen von milch |
FR2885289B1 (fr) * | 2005-05-04 | 2010-09-10 | Seb Sa | Machine a cafe comportant un dispositif de confection de mousse |
US7507430B2 (en) * | 2005-06-10 | 2009-03-24 | Concordia Coffee Company, Inc. | Method for preparing a heated flavored beverage |
DE502005003006D1 (de) * | 2005-07-29 | 2008-04-10 | Wmf Wuerttemberg Metallwaren | Kaffeemaschine |
CN101277635B (zh) * | 2005-09-30 | 2010-12-08 | 皇家飞利浦电子股份有限公司 | 包括饮料机以及在饮料机中可移除设置套件的用于制备饮料的系统 |
ATE384464T1 (de) * | 2005-11-11 | 2008-02-15 | Gruppo Cimbali Spa | Automatische vorrichtung zum erhitzen und schäumen von milch |
ES2380685T3 (es) * | 2005-11-30 | 2012-05-17 | Koninklijke Philips Electronics N.V. | Máquina de preparación de bebidas, y unidad de bomba y cartucho para su uso en una máquina de preparación de bebidas |
ATE394977T1 (de) * | 2005-12-22 | 2008-05-15 | Wmf Wuerttemberg Metallwaren | Vorrichtung zum erhitzen einer flüssigkeit mit dampf |
ITFI20060244A1 (it) * | 2006-10-04 | 2008-04-05 | Saeco Ipr Ltd | Macchina per la produzione di caffe' o simili e relativo metodo |
US20080102190A1 (en) * | 2006-10-27 | 2008-05-01 | The Quaker Oats Company | Novel cooking method for porridge |
US8820214B2 (en) * | 2007-01-04 | 2014-09-02 | The Coca-Cola Company | System and method for producing foamed milk from powder |
WO2008083941A1 (de) † | 2007-01-09 | 2008-07-17 | Steiner Weggis Ag | Verfahren und vorrichtung zur erzeugung von milchschaum oder milchgetränken |
KR100817200B1 (ko) * | 2007-01-30 | 2008-03-27 | 이후근 | 양압 발생수단을 구비하는 음료제공장치 |
US9167936B2 (en) * | 2007-01-30 | 2015-10-27 | Roasting Plant, Inc. | Fluid mixing apparatus and methods |
DE602008006358D1 (de) * | 2007-02-20 | 2011-06-01 | Koninkl Philips Electronics Nv | Vorrichtung zur herstellung von getränken mit einem leicht zu reinigenden leitungssystem und mindesttränkeinhaltsstoffs |
GB2448934A (en) | 2007-05-04 | 2008-11-05 | Dyson Technology Ltd | Extendable and retractable nozzle |
US8459503B2 (en) | 2007-05-10 | 2013-06-11 | R. Clay Groesbeck | Temperature controlled liquid dispenser, containers therefore, and bag-in-box container construction |
US7975879B2 (en) * | 2007-05-10 | 2011-07-12 | Groesbeck R Clay | Temperature controlled liquid dispenser, containers therefore, and bag-in-box container construction |
EP2025270B1 (de) * | 2007-08-16 | 2017-04-12 | Cafina AG | Vorrichtung zum Aufschäumen und Erhitzen von Milch |
ES2350457T5 (es) | 2007-10-08 | 2013-05-27 | Gruppo Cimbali S.P.A. | Aparato y procedimiento para preparar leche a diversas temperaturas y condiciones de consistencia en una máquina de café para formar diversos tipos de bebidas |
WO2009047772A2 (en) * | 2007-10-10 | 2009-04-16 | David Menashes | Steam mechanism incorporated within kitchenware water heating systems |
EP2050368B1 (en) * | 2007-10-16 | 2010-04-14 | Gruppo Cimbali S.p.A. | Coffee machine with dispenser of a ready prepared chocolate-based beverage |
EP2236063B1 (en) * | 2007-11-19 | 2013-05-29 | Gruppo Cimbali S.p.A. | Method for preparing and dispensing a beverage, in particular a chocolate-based beverage in a coffee machine |
US8875618B2 (en) * | 2008-09-01 | 2014-11-04 | Nestec S.A. | Appliance for fine steam-frothing a milk-based liquid |
WO2010023312A1 (en) * | 2008-09-01 | 2010-03-04 | Nestec S.A. | Appliance for conditioning a milk-based liquid |
KR100987496B1 (ko) * | 2008-09-19 | 2010-10-12 | 주식회사 커라텍 | 전기겸용 고체연료 보일러 |
EP2168466A1 (de) * | 2008-09-26 | 2010-03-31 | Jura Elektroapparate AG | Brühvorrichtung mit einem Drainageventil |
ITFI20080198A1 (it) | 2008-10-15 | 2010-04-16 | Saeco Ipr Ltd | "macchina da caffe'" |
GB2464975A (en) * | 2008-11-01 | 2010-05-05 | Dyson Technology Ltd | Apparatus for foaming milk with temperature control |
US9622615B2 (en) | 2008-11-10 | 2017-04-18 | Automatic Bar Controls, Inc. | Touch screen interface for a beverage dispensing machine |
DE202008016400U1 (de) | 2008-12-12 | 2009-03-05 | Eugster/Frismag Ag | Mehrwegeventilanordnung in einer Getränkezubereitungseinheit |
KR101045581B1 (ko) * | 2009-01-15 | 2011-06-30 | 염동섭 | 난로 겸용 보일러 |
DE202009001491U1 (de) * | 2009-02-06 | 2010-06-24 | Melitta Haushaltsprodukte Gmbh & Co. Kommanditgesellschaft | Vorrichtung zum Fördern von Milch |
EP2220972A1 (de) * | 2009-02-24 | 2010-08-25 | Jura Elektroapparate AG | Abgabevorrichtung für Milch und/oder Milchschaum und eine Kaffeemaschine mit einer derartigen Abgabevorrichtung |
US20100260892A1 (en) * | 2009-04-08 | 2010-10-14 | Nestec S.A. | Mixing nozzle fitments |
DE102009019614A1 (de) * | 2009-04-30 | 2010-11-04 | Wmf Württembergische Metallwarenfabrik Ag | Vorrichtung zur Ausgabe von Milch oder Milchschaum |
EP2272408A1 (de) * | 2009-07-08 | 2011-01-12 | Jura Elektroapparate AG | Getränkebereitungsmaschine und Verfahren zum Reinigen einer Getränkebereitungsmaschine |
US20110005398A1 (en) * | 2009-07-09 | 2011-01-13 | Wal-Mart Stores, Inc. | Method and System to Produce Gourmet Coffee |
DE102009034234B4 (de) * | 2009-07-23 | 2013-06-13 | Wmf Württembergische Metallwarenfabrik Ag | Getränkeautomat |
ITFI20090177A1 (it) * | 2009-08-03 | 2011-02-04 | Saeco Strategic Services Ltd | "un dispositivo di collegamento fra un vano refrigerato ed un erogatore di liquido e macchina per la preparazione di bevande comprendente detto dispositivo" |
US8511221B2 (en) * | 2009-11-05 | 2013-08-20 | Gruppo Cimbali S.P.A. | Apparatus for preparing and dispensing a beverage, in particular a chocolate-based beverage in a coffee machine |
CN101785626B (zh) * | 2009-12-26 | 2011-07-27 | 广东新宝电器股份有限公司 | 咖啡机蒸汽转换阀 |
EP2353474A1 (en) | 2010-02-03 | 2011-08-10 | Nestec S.A. | Beverage dispenser with safe cleaning arrangement |
EP2353473A1 (en) | 2010-02-03 | 2011-08-10 | Nestec S.A. | Beverage dispenser with hygienic cleaning cycle |
DE102010007143B4 (de) * | 2010-02-05 | 2013-08-22 | Eugster/Frismag Ag | Kaffeemaschine mit einer Schäumvorrichtung und Mitteln zum Reinigen der Schäumvorrichtung und einer Milchansaugleitung sowie Verfahren zum Spülen der Milchansaugleitung |
EP2359725A1 (en) * | 2010-02-11 | 2011-08-24 | Koninklijke Philips Electronics N.V. | Device for heating and frothing a liquid |
RU2012141643A (ru) * | 2010-03-01 | 2014-04-10 | Конкордиа Коффи Компани, Инк. | Устройство ускоренного заваривания при низком давлении |
US8616116B2 (en) | 2010-03-01 | 2013-12-31 | Concordia Coffee Company, Inc. | High speed brewing apparatus |
US8623441B2 (en) * | 2010-03-01 | 2014-01-07 | Concordia Coffee Company, Inc. | Method and apparatus for controlling brewed beverage quality |
IT1398746B1 (it) * | 2010-03-12 | 2013-03-18 | Imc Italiana Macchine Caffe Spa | "macchina distributrice di bevande e metodo per il suo funzionamento con risparmio energetico" |
IT1400491B1 (it) * | 2010-06-03 | 2013-06-11 | De Longhi Appliances Srl | Elettrodomestico per il trattamento di un liquido alimentare |
IT1401303B1 (it) * | 2010-07-20 | 2013-07-18 | De Longhi Appliances Srl | Contenitore del latte associabile all'erogatore di vapore e/o acqua di una macchina da caffe', macchina da caffe' che presenta detto contenitore, e metodo di lavaggio di detto contenitore |
US8534497B2 (en) | 2010-09-20 | 2013-09-17 | Prince Castle, LLC | Dispensing method and apparatus utilizing a sensor to determine a time that a dispensing valve is open |
IT1402432B1 (it) * | 2010-10-13 | 2013-09-04 | N&W Global Vending S P A | Metodo e unita' per la produzione di latte emulsionato. |
WO2012112774A1 (en) | 2011-02-16 | 2012-08-23 | Casper Thomas J | Venturi device and method |
DE102011006474B4 (de) * | 2011-03-31 | 2013-09-12 | BSH Bosch und Siemens Hausgeräte GmbH | Milchbehälter |
EP2697569B1 (de) * | 2011-04-15 | 2017-07-12 | BSH Hausgeräte GmbH | Dampfgargerät, insbesondere dampfbackofen |
CN103874439A (zh) * | 2011-05-10 | 2014-06-18 | 布瑞威利私人有限公司 | 用于改进型咖啡制备机的设备和方法 |
US10383474B2 (en) | 2011-05-10 | 2019-08-20 | Breville Pty Limited | Coffee machine with overflow feature |
DE102011077776B4 (de) * | 2011-06-17 | 2013-11-14 | Wmf Württembergische Metallwarenfabrik Ag | Vorrichtung zum Erhitzen und Aufschäumen eines Getränkeprodukts |
US20130019903A1 (en) * | 2011-07-19 | 2013-01-24 | Conair Corporation | Cleaning system and method for beverage appliance |
US8978546B2 (en) | 2011-09-24 | 2015-03-17 | Electrical & Electronics Ltd | Device for preserving and dispensing wine |
CZ2011664A3 (cs) * | 2011-10-17 | 2012-12-12 | Cihák@Petr | Robotický mlécný bar |
DE202011051719U1 (de) | 2011-10-21 | 2012-01-24 | Schaerer Ag | Milchschäumvorrichtung sowie Kaffee- bzw. Espressomaschine mit einer solchen Milchschäumvorrichtung |
USD778667S1 (en) | 2012-02-16 | 2017-02-14 | Thomas J Casper | Venturi device |
US20130248538A1 (en) | 2012-03-23 | 2013-09-26 | Prince Castle, LLC | Holding Tank With Internally Reinforced Sidewalls and Liquid Dispenser Using Same |
FR2990194B1 (fr) * | 2012-05-03 | 2015-01-02 | Saviro | Machine de delivrance de produits liquides, semi-liquides ou visqueux, charges ou non |
ITTO20120418A1 (it) * | 2012-05-09 | 2013-11-10 | Egro Suisse Ag | Dispositivo per misurare il livello del latte e relativo metodo di misura |
CN103315631B (zh) * | 2012-06-18 | 2015-12-23 | 广东新宝电器股份有限公司 | 牛奶发泡装置以及包括该装置的咖啡机 |
DE202012009074U1 (de) * | 2012-09-21 | 2012-11-08 | Eugster/Frismag Ag | Vorrichtung zur Bereitung von wahlweise kaltem oder warmem Milchschaum oder Abgabe wahlweise kalter oder warmer Milch |
DE102012019020A1 (de) * | 2012-09-26 | 2014-03-27 | Labetherm Ltd. | Vorrichtung zum Erzeugen von Milchschaum mit Hilfe von Ultraschall-Strahlung |
CN103767551B (zh) * | 2012-10-23 | 2017-12-15 | 苏州工业园区咖乐美电器有限公司 | 一种用于咖啡机的奶泡器清洗结构 |
DE102012110885A1 (de) * | 2012-11-13 | 2014-05-15 | Eugster/Frismag Ag | Milchaufschäumvorrichtung zum Betreiben mit einer Kaffeemaschine sowie Kaffeemaschine |
CZ304316B6 (cs) * | 2012-12-11 | 2014-02-26 | Fabric Constructions S.R.O. | Robotický mléčný bar |
CN102987922A (zh) * | 2012-12-18 | 2013-03-27 | 宁波美侬咖啡机有限公司 | 一种咖啡机 |
WO2014096181A1 (en) | 2012-12-21 | 2014-06-26 | Nestec S.A. | Device for producing milk foam |
CH707603A1 (de) | 2013-02-12 | 2014-08-15 | Wmf Württembergische Metallwarenfabrik Ag | Verfahren zum Überwachen und/oder Steuern eines Getränkebereiters sowie Getränkebereiter zur Durchführung des Verfahrens. |
US8899444B2 (en) | 2013-03-08 | 2014-12-02 | Pepsico, Inc. | Aseptic tubing connection for a container |
JP6261193B2 (ja) * | 2013-06-04 | 2018-01-17 | 金澤工業株式会社 | ミキサー |
JP6227433B2 (ja) * | 2013-07-12 | 2017-11-08 | サントリーホールディングス株式会社 | 注出装置 |
EP2896332B1 (en) * | 2014-01-15 | 2016-08-17 | De'Longhi Appliances S.r.l. | Device associable with a steam dispensing nozzle of a coffee machine for the production of a milk-based beverage |
US20150223635A1 (en) * | 2014-02-11 | 2015-08-13 | Hamilton Beach Brands, Inc. | Computer Controlled Coffeemaker |
ITMI20141968A1 (it) * | 2014-11-14 | 2016-05-14 | De Longhi Appliances Srl | Dispositivo e metodo di schiumatura del latte |
KR101495776B1 (ko) * | 2014-12-11 | 2015-02-25 | (주)티웰 | 액상 드링크 공급장치 |
CN104492291B (zh) * | 2014-12-18 | 2023-04-25 | 重庆康乐制药有限公司 | 便于更换的乳化反应装置 |
US20160205988A1 (en) * | 2015-01-19 | 2016-07-21 | General Electric Company | Refrigerator appliance and method for use with single serve flavor pods |
JP6460842B2 (ja) * | 2015-03-02 | 2019-01-30 | シャープ株式会社 | 飲料製造装置 |
KR102503530B1 (ko) * | 2015-03-03 | 2023-02-23 | 후지 덴키 가부시키가이샤 | 유음료 공급 장치 |
US20180084940A1 (en) * | 2015-03-30 | 2018-03-29 | Breville Pty Limited | Improved Apparatus and Method for Frothing Milk |
WO2017062282A1 (en) * | 2015-10-05 | 2017-04-13 | Grindmaster Corporation | Beverage brewer with adjustable shelf |
CN108348096B (zh) * | 2015-10-12 | 2021-09-03 | 皇家飞利浦有限公司 | 研磨单元和咖啡机 |
CN105249821A (zh) * | 2015-10-29 | 2016-01-20 | 宁波霍科电器有限公司 | 一种搭配咖啡机的饮料液体保鲜装置 |
DE102015122964A1 (de) | 2015-12-30 | 2017-07-06 | Michael Albert | Vorrichtung zur Portionierung von Lebensmitteln |
TWI757284B (zh) * | 2016-05-03 | 2022-03-11 | 義大利商瑞亞梵朵斯服務公司 | 用於製備和分配飲料的設備和方法 |
CN105902168A (zh) * | 2016-06-28 | 2016-08-31 | 杭州锦业科技有限公司 | 一种浆料型自动咖啡机及其控制系统 |
EP3281570A1 (en) * | 2016-08-11 | 2018-02-14 | Unilever PLC | Apparatus for preparing a beverage |
DE102016215650A1 (de) * | 2016-08-19 | 2018-02-22 | BSH Hausgeräte GmbH | Haushaltsgargerät |
IT201600099780A1 (it) * | 2016-10-05 | 2018-04-05 | De Longhi Appliances Srl | Dispositivo emulsionatore di latte ad effetto venturi |
USD841382S1 (en) * | 2016-12-13 | 2019-02-26 | Pepsico, Inc. | Dispenser |
US10433671B2 (en) | 2017-03-22 | 2019-10-08 | Nicholas James Surface | Beverage dispensing machine |
CN108001802A (zh) * | 2017-03-25 | 2018-05-08 | 聂世林 | 饮料容器载体的使用方法 |
US10934152B2 (en) | 2017-04-07 | 2021-03-02 | Greg Swears | Fluid dispenser |
US11083328B2 (en) | 2017-06-22 | 2021-08-10 | Starbucks Corporation | Apparatus and method for foaming a beverage |
CH713954A1 (de) * | 2017-07-06 | 2019-01-15 | Steiner Ag Weggis | Milchmodul zur Erzeugung von Milchschaum oder Milchgetränken, vorzugsweise zum Einbau in eine Kaffeemaschine. |
AU2018298273B2 (en) * | 2017-07-06 | 2024-01-18 | Steiner Ag Weggis | Milk module for generating milk foam or milk beverages, preferably for installing into a coffee machine |
US10865093B2 (en) * | 2017-08-29 | 2020-12-15 | Lancer Corporation | Method and apparatus for a beverage dispensing system |
CN208228816U (zh) * | 2017-09-06 | 2018-12-14 | 佛山市顺德区本立电器科技有限公司 | 一种花式咖啡机 |
CN208925915U (zh) * | 2017-09-06 | 2019-06-04 | 佛山市顺德区本立电器科技有限公司 | 一种咖啡机奶泡发生装置 |
WO2019077578A1 (en) * | 2017-10-19 | 2019-04-25 | Carimali S.P.A. Con Socio Unico | AUTOMATIC BEVERAGE DISPENSER |
KR101944246B1 (ko) | 2018-02-08 | 2019-01-31 | (주)미스터커피 | 에스프레소 커피머신의 자동 밀크 폼 생성 장치 |
USD873071S1 (en) * | 2018-05-15 | 2020-01-21 | Pepsico., Inc. | Dispenser |
KR102226611B1 (ko) * | 2018-06-15 | 2021-03-11 | (주)쿠첸 | 음료 제조 장치 |
KR102226613B1 (ko) * | 2018-07-17 | 2021-03-11 | (주)쿠첸 | 음료 제조 장치 |
CN109171469B (zh) * | 2018-08-07 | 2021-08-06 | 南通沃特光电科技有限公司 | 一种学生用自助牛奶供给装置 |
USD886522S1 (en) | 2018-08-31 | 2020-06-09 | Pepsico, Inc. | Dispenser |
DE102018121567A1 (de) * | 2018-09-04 | 2020-03-05 | Melitta Professional Coffee Solutions GmbH & Co. KG | Verfahren und Vorrichtung zum Erzeugen von Milch-Luft-Emulsionen |
LV15483A (lv) * | 2018-09-04 | 2020-03-20 | Egons Circens | Kafijas automāts ar piena padeves sistēmu |
US11058250B2 (en) | 2018-09-06 | 2021-07-13 | Starbucks Corporation | Apparatus for foaming a beverage |
DE102018007750A1 (de) * | 2018-10-02 | 2020-04-02 | Spengler Gmbh & Co. Kg | Verfahren zur Ausgabe eines Heißgetränks |
CN109247830A (zh) * | 2018-11-23 | 2019-01-22 | 苏州咖博士咖啡系统科技有限公司 | 一种高温牛奶及奶沫调节分配装置 |
TWI686157B (zh) * | 2019-03-08 | 2020-03-01 | 錢文正 | 濾杯結構 |
CN110403477A (zh) * | 2019-07-23 | 2019-11-05 | 广州迈拓节能电器有限公司 | 一种用于咖啡机的水蒸气的恒温控制方法 |
CN110279298B (zh) * | 2019-07-31 | 2021-02-02 | 宁波卜合电器有限公司 | 咖啡机和对该咖啡机的奶泡制备系统进行清洗的方法 |
CN111067362B (zh) * | 2020-01-06 | 2024-05-31 | 瑞幸咖啡信息技术(厦门)有限公司 | 一种液态奶供应装置及自助咖啡机 |
US11649152B2 (en) | 2020-06-25 | 2023-05-16 | TechFit Inc. | Beverage infusion apparatus and method for infusing gas into a beverage |
IT202000025669A1 (it) * | 2020-10-29 | 2022-04-29 | De Longhi Appliances Srl | Dispositivo valvolare |
CN112919396A (zh) * | 2021-03-31 | 2021-06-08 | 塔罗斯科技股份有限公司 | 打饮料装置 |
CA3225763A1 (en) | 2021-08-17 | 2023-02-23 | Server Products, Inc. | System for dispensing liquid from inverted container |
KR102463991B1 (ko) * | 2022-08-01 | 2022-11-07 | 주식회사 피티지컴퍼니 | 펌프의 압력 조절과 노즐의 배출면적 조절로 사용자의 취사선택에 의해 버블이 생성된 커피를 제공하는 커피 밴딩 머신 |
Family Cites Families (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB487434A (en) * | 1936-02-21 | 1938-06-21 | Otto Ebner | Apparatus for dispensing beverages |
US3012701A (en) * | 1957-07-11 | 1961-12-12 | Automatic Canteen Co | Measuring dispensers |
US3632021A (en) * | 1969-02-13 | 1972-01-04 | John Macmanus | Apparatus for making and dispensing aerated food products |
US3790029A (en) * | 1971-09-01 | 1974-02-05 | W Ward | Apparatus for dispensing and mixing liquids |
US3811294A (en) * | 1973-02-23 | 1974-05-21 | Ebco Mfg Co | Cooler for faucet-equipped beverage containers |
US4645603A (en) * | 1977-11-09 | 1987-02-24 | Frankl Gerald P | Liquid aeration device and method |
IT1177590B (it) | 1984-03-08 | 1987-08-26 | Mario Chiaro | Dispositivo per la preparazione di latte caldo schiumoso |
ES8700918A1 (es) | 1985-01-31 | 1986-11-16 | Spidem Srl | Perfeccionamientos en los dispositivos emulsionadores |
IT206829Z2 (it) | 1986-04-18 | 1987-10-01 | Nuova Faema Spa | Simili, particolarmente per gruppo emulsionatore per macchine per il caffe' espresso da emulsionare aria, vapore e latte bar.per l'ottenimento di cappuccini e |
IT1230290B (it) | 1989-07-05 | 1991-10-18 | Nuova Faema Spa | Macchina automatica per la erogazione di caffe', cappuccino e simili. |
US5207148A (en) | 1990-06-25 | 1993-05-04 | Caffe Acorto, Inc. | Automated milk inclusive coffee apparatus |
AU8404091A (en) | 1990-08-06 | 1992-03-02 | Paul Kateman | Method and apparatus for producing and dispensing aerated products |
US5372061A (en) | 1993-04-14 | 1994-12-13 | Avanti Espresso U.S.A., Inc. | Espresso/cappuccino apparatus and method |
NL9500441A (nl) * | 1995-03-06 | 1996-10-01 | Nutricia Nv | Inrichting voor het bereiden van warme dranken. |
WO1997027793A1 (en) * | 1996-01-31 | 1997-08-07 | C.M.A. S.P.A. | Unit for preparing mixed beverages for machines for preparing coffee or other infused beverages |
NL1002935C2 (nl) * | 1996-04-24 | 1997-10-28 | Sara Lee De Nv | Emulgeerinrichting voor het bereiden van geschuimde melk en warme melk. |
NL1002936C2 (nl) | 1996-04-24 | 1997-10-28 | Sara Lee De Nv | Samenstel voor het bereiden van warme en geschuimde melk. |
EP0820715B1 (de) * | 1996-07-22 | 1998-12-23 | Wmf Württembergische Metallwarenfabrik Ag | Kaffeemaschine |
CN2286592Y (zh) * | 1996-11-06 | 1998-07-29 | 郭君 | 全自动多功能饮料机 |
US5823675A (en) * | 1997-04-25 | 1998-10-20 | Sunbeam Products, Inc. | Stepped helical scraper blade for ice cream maker |
US5938078A (en) | 1997-05-09 | 1999-08-17 | Stevens-Lee Company | Valve for beverage dispenser |
US6006654A (en) * | 1997-06-13 | 1999-12-28 | Tcc Trading Limited | Milk frothing apparatus and method |
US6019032A (en) * | 1998-10-30 | 2000-02-01 | Acorto, Inc. | Automated espresso and milk aeration apparatus and method |
IT1306509B1 (it) * | 1998-11-24 | 2001-06-11 | Alberto Rolla | Macchina da caffe' espresso |
EP1210185A4 (en) * | 1999-08-12 | 2005-07-20 | Lancer Partnership Ltd | ASEPTIC PRODUCT DELIVERY SYSTEM |
DE19940079B4 (de) * | 1999-08-24 | 2005-06-23 | Wmf Württembergische Metallwarenfabrik Ag | Aufschäumvorrichtung |
US6264174B1 (en) * | 2000-01-04 | 2001-07-24 | Tsun Shin Chang | High pressure tank for an emulsifier |
US6192785B1 (en) | 2000-03-27 | 2001-02-27 | Roberto Trida | Automatic dispenser of frothed milk and pre-made liquid coffee |
DE20102048U1 (de) * | 2001-02-06 | 2002-01-10 | Eugster/Frismag Ag, Romanshorn | Sicherheitsvorrichtung eines Dampfschäumgeräts zur Herstellung eines geschäumten Getränks |
US6289796B1 (en) | 2001-02-23 | 2001-09-18 | Simatelex Manufactory Company Limited | Hot milk dispenser |
NL1018248C2 (nl) * | 2001-06-08 | 2002-12-10 | Sara Lee De Nv | Inrichting en werkwijze voor het bereiden van een voor consumptie geschikte, geschuimde drank. |
US6698228B2 (en) * | 2001-11-02 | 2004-03-02 | Moobella, Llc | Method and apparatus for producing and dispensing an aerated and/or blended food product |
-
2002
- 2002-06-18 US US10/175,578 patent/US7021206B2/en not_active Expired - Fee Related
-
2003
- 2003-05-22 AT AT03076547T patent/ATE347839T1/de active
- 2003-05-22 DE DE60310313T patent/DE60310313T2/de not_active Expired - Lifetime
- 2003-05-22 DK DK03076547T patent/DK1374748T3/da active
- 2003-05-22 ES ES03076547T patent/ES2279924T3/es not_active Expired - Lifetime
- 2003-05-22 EP EP03076547A patent/EP1374748B1/en not_active Expired - Lifetime
- 2003-06-05 CA CA2431180A patent/CA2431180C/en not_active Expired - Fee Related
- 2003-06-13 KR KR1020030038099A patent/KR101011294B1/ko not_active IP Right Cessation
- 2003-06-16 TW TW092116233A patent/TWI277403B/zh not_active IP Right Cessation
- 2003-06-17 CN CNB031486681A patent/CN100405961C/zh not_active Expired - Fee Related
- 2003-06-17 JP JP2003172071A patent/JP4785337B2/ja not_active Expired - Fee Related
-
2006
- 2006-02-02 US US11/346,088 patent/US7252034B1/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
ES2279924T3 (es) | 2007-09-01 |
DE60310313T2 (de) | 2007-07-12 |
CA2431180A1 (en) | 2003-12-18 |
US20030232115A1 (en) | 2003-12-18 |
TW200400806A (en) | 2004-01-16 |
EP1374748A3 (en) | 2004-08-18 |
DK1374748T3 (da) | 2007-04-30 |
ATE347839T1 (de) | 2007-01-15 |
DE60310313D1 (de) | 2007-01-25 |
CA2431180C (en) | 2011-01-04 |
TWI277403B (en) | 2007-04-01 |
CN1488310A (zh) | 2004-04-14 |
JP2004099171A (ja) | 2004-04-02 |
CN100405961C (zh) | 2008-07-30 |
US7021206B2 (en) | 2006-04-04 |
US7252034B1 (en) | 2007-08-07 |
KR20040002543A (ko) | 2004-01-07 |
JP4785337B2 (ja) | 2011-10-05 |
KR101011294B1 (ko) | 2011-02-07 |
EP1374748A2 (en) | 2004-01-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1374748B1 (en) | Dairy-based beverage dispenser, method for dispensing hot, dairy-based beverages and disposable container for dairy-based liquids | |
JP4634463B2 (ja) | ミルクベースの混合物を製造するための自浄式ミキシングヘッドおよびそのようなミキシングヘッドを備える飲料製造機 | |
US7757600B2 (en) | Brewed iced tea or non-carbonated drink dispenser | |
JP5889211B2 (ja) | 衛生的な洗浄サイクルを有する飲料分注装置 | |
US6883685B2 (en) | Brewed iced tea or non-carbonated drink dispenser with quiet operation | |
EP3064104B1 (en) | Method and apparatus for dispensing milk | |
JP2012505700A (ja) | コーヒー機械 | |
KR20110031460A (ko) | 우유를 휘젓기 위한 디바이스 및 이러한 디바이스를 세척하는 방법 | |
JP2008542145A (ja) | 飲料メーカーで使用するためのポンプ・ユニットと使い捨てカートリッジ | |
JP4397341B2 (ja) | ミルクフォーマー | |
JP2020049201A (ja) | リンスシステムと一体化した液体、特に、ミルクを準備するための装置、およびリンス方法 | |
EP2613678A1 (en) | A brewing device | |
WO2005074770A1 (en) | Device for preparation and delivering of heated and air foamed liquid, particularly milk for the preparation of cappuccino | |
WO2021055556A1 (en) | Method and apparatus for beverage frothing | |
JPH0725394B2 (ja) | ビ−ルの定量注出装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
17P | Request for examination filed |
Effective date: 20050218 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
17Q | First examination report despatched |
Effective date: 20050411 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061213 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061213 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061213 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061213 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 60310313 Country of ref document: DE Date of ref document: 20070125 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070313 |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: ECKENHAUSEN, ROLAND B. Owner name: ECKENHAUSEN, STEVEN C. |
|
RIN2 | Information on inventor provided after grant (corrected) |
Inventor name: ECKENHAUSEN, ROLAND B. Inventor name: ECKENHAUSEN, STEVEN C. |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: R. A. EGLI & CO. PATENTANWAELTE |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
NLT2 | Nl: modifications (of names), taken from the european patent patent bulletin |
Owner name: ECKENHAUSEN, ROLAND B. EN ECKENHAUSEN, STEVEN C. Effective date: 20070321 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070514 |
|
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2279924 Country of ref document: ES Kind code of ref document: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20070914 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070314 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061213 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061213 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070522 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061213 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070614 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20120502 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 20130528 Year of fee payment: 11 Ref country code: IE Payment date: 20130528 Year of fee payment: 11 Ref country code: SE Payment date: 20130530 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FI Payment date: 20130530 Year of fee payment: 11 Ref country code: IT Payment date: 20130523 Year of fee payment: 11 Ref country code: BE Payment date: 20130530 Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP Effective date: 20140531 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 347839 Country of ref document: AT Kind code of ref document: T Effective date: 20140522 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140522 Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140523 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140522 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140531 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140522 Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140522 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20150526 Year of fee payment: 13 Ref country code: GB Payment date: 20150527 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20150526 Year of fee payment: 13 Ref country code: FR Payment date: 20150519 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20160527 Year of fee payment: 14 Ref country code: DE Payment date: 20160527 Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20160601 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20160522 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160601 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20170131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160522 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140531 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 60310313 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170531 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160523 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20181203 |