EP1368511A2 - Procede et dispositif de production d'oxygene - Google Patents

Procede et dispositif de production d'oxygene

Info

Publication number
EP1368511A2
EP1368511A2 EP02750540A EP02750540A EP1368511A2 EP 1368511 A2 EP1368511 A2 EP 1368511A2 EP 02750540 A EP02750540 A EP 02750540A EP 02750540 A EP02750540 A EP 02750540A EP 1368511 A2 EP1368511 A2 EP 1368511A2
Authority
EP
European Patent Office
Prior art keywords
oxygen
water
hydrogen
electrical energy
splitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02750540A
Other languages
German (de)
English (en)
Inventor
Karl-Heinz Hecker
Stefan Fiedler
Rudolf Schinagl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Karl-Heinz Hecker
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE2001111749 external-priority patent/DE10111749C2/de
Priority claimed from DE20104256U external-priority patent/DE20104256U1/de
Priority claimed from DE20104713U external-priority patent/DE20104713U1/de
Application filed by Karl-Heinz Hecker filed Critical Karl-Heinz Hecker
Publication of EP1368511A2 publication Critical patent/EP1368511A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0656Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by electrochemical means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/1005Preparation of respiratory gases or vapours with O2 features or with parameter measurement
    • A61M16/101Preparation of respiratory gases or vapours with O2 features or with parameter measurement using an oxygen concentrator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • B01D53/326Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00 in electrochemical cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0229Purification or separation processes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/0015Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors
    • A61M2016/0018Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors electrical
    • A61M2016/0021Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors electrical with a proportional output signal, e.g. from a thermistor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/0015Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors
    • A61M2016/0018Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors electrical
    • A61M2016/0024Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors electrical with an on-off output signal, e.g. from a switch
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2202/00Special media to be introduced, removed or treated
    • A61M2202/02Gases
    • A61M2202/0208Oxygen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2202/00Special media to be introduced, removed or treated
    • A61M2202/03Gases in liquid phase, e.g. cryogenic liquids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0043Impurity removed
    • C01B2210/0046Nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/065Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by dissolution of metals or alloys; by dehydriding metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/186Regeneration by electrochemical means by electrolytic decomposition of the electrolytic solution or the formed water product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a method and a device for generating oxygen and their use in different fields.
  • O concentrators So-called oxygen or O concentrators are used, for example.
  • two molecular sieves are controlled alternately by sucking air in through an air filter, compressing it with a compressor and feeding it to the molecular sieves alternately via valves.
  • the molecular sieves are filled with zeolites that absorb gases.
  • the adsorption ratio of oxygen to nitrogen is shifted to nitrogen to a large extent by the pressure generated, so that almost pure oxygen leaves the molecular sieve, of which approximately a third is supplied to the user or patient.
  • O 2 concentrators are generally faulty and susceptible.
  • the compressors are correspondingly noise-intensive and the devices are bulky.
  • the present invention provides two methods for generating oxygen.
  • water is split into hydrogen and oxygen, which is the electrolysis known per se
  • Breathing air is then added.
  • the resulting hydrogen can then are converted back into water together with ambient air via a fuel reaction coupled to it, it being essential to the invention that the electrolysis and the fuel reaction are coupled to one another in such a way that they form a reaction cycle and can run simultaneously and continuously.
  • the electrical energy released in the fuel reaction is then used to reduce the energy requirement for the splitting.
  • the water obtained in the fuel reaction is fed back to the splitting.
  • the electrical energy required to maintain the reaction cycle is generated either by the fuel reaction itself, which is coupled to the electrolysis, or by a second fuel reaction which proceeds separately from the latter, hydrogen being then additionally supplied to both fuel reactions, which is not from the Electrolysis comes from, or supplied by a separate energy source.
  • the additional hydrogen required for this can be provided directly from a store, in particular a metal hybrid store or pressure store, the hydrogen being obtained according to an embodiment of the invention by means of a fuel reforming process of a fuel, for example sodium borohydride.
  • a fuel for example sodium borohydride.
  • the fuel can be methanol, for example.
  • oxygen can also be generated in a second method by interweaving the electrolysis process and the fuel reaction in such a way that the intermediate step of transferring the hydrogen generated during the electrolysis into the fuel reaction is eliminated.
  • water is catalytically split into hydrogen ions and oxygen ions on an anode side of a cell, the hydrogen ions moving through a polymer electrolyte membrane (PEM) onto a cathode side of this cell, in which they are converted catalytically back to water with ambient air , On the anode side, the oxygen ions react to give off electrons to form oxygen, which is then added to the air we breathe.
  • PEM polymer electrolyte membrane
  • the water obtained on the cathode side can be fed back to the splitting on the anode side.
  • the electrical energy required to maintain the reaction cycle can be provided by an additional fuel reaction which takes place separately from the method, by supplying additional hydrogen, which can possibly be reformed from a fuel, to the latter.
  • an electrolyzer is electrically connected to a fuel cell and for the transmission of fluids.
  • the electrolyzer and / or the fuel cell are designed as a so-called PEM cell.
  • a plastic membrane is used as the electrolyte, which carries out the ion transport and only conducts protons.
  • the advantage of polymer membranes over potassium hydroxide solution as an electrolyte is above all the higher power density that can be achieved with them.
  • a PEM cell is insensitive to impurities caused by carbon dioxide, which means that very pure reaction gases can be used and fuel cells can also be operated with air.
  • this fuel cell corresponds to the reverse principle of the corresponding electrolysis cell.
  • the hydrogen gas fed to the anode of this cell is oxidized, whereby it decomposes into protons and electrons due to the catalytic effect of the electrode (2H 2 - 4H + + 4e " ).
  • the H + ions in turn reach the through a proton-conducting PEM membrane
  • the electrons migrate to the cathode when the external circuit is closed and do electrical work in this way.
  • the (impure) oxygen contained in the ambient air is then reduced and water is formed together with the protons (4e " + 4H + + O 2 ⁇ 2H O), so that the overall reaction to 2H 2 + O 2 - »2H 2 O results.
  • the water obtained in this way is fed back to the splitting process on the anode side of the PEM electrolyser.
  • the second-mentioned method can be carried out according to the invention in that an electrolyzer and a fuel cell are combined in one cell, preferably as a PEM cell.
  • the step of generating the gaseous hydrogen from the electrolysis and forwarding it as the starting product for a fuel reaction is omitted, only one polymer membrane being used as the electrolyte.
  • Water supplied is catalytically split into oxygen ions and hydrogen ions (H 2 O - »O 2" + 2H + ).
  • the water ions are passed through the polymer membrane to the cathode side of the cell and there react to water catalytically with oxygen supplied from the ambient air 4H + + O 2 + 4e " -> 2H 2 O.
  • the water thus created can in turn be returned and fed to the anode side of this cell.
  • the oxygen ions then give off the oxygen according to 2O 2 " -» O 2 + 4e " with the release of electrons.
  • the gaseous oxygen can then be removed from this cell and added to the breathing air of a user accordingly.
  • the gaseous pure oxygen in the form of bubbles is formed on the anode side in the supplied water, which is then discharged and, in one embodiment of the invention, fed to a water separator in which the bubbles of the pure oxygen separate from the water and then this can be removed accordingly.
  • the device according to the invention provides an electronic, preferably microprocessor-controlled control unit, also referred to as a so-called demand system, which only makes this part available to the user at the beginning of the inhalation phase, i.e. this specific amount is admixed to the user in the breathing intervals of his breathing air.
  • an electrolyser is already suitable as a generator unit with relatively small dimensions while providing relatively small amounts of water as a starting material for generating oxygen.
  • the resulting hydrogen can, for example, be catalytically discharged to the environment as a vapor via a combustion tube or, in the preferred embodiment in which the electrolyzer is coupled to the fuel cell, is converted back into water together with ambient air via the fuel reaction coupled to it.
  • either a direct power supply connection or an exchangeable battery can serve as the supplier for the electrical energy for carrying out or maintaining the individual reactions.
  • a further fuel cell preferably a direct methanol fuel cell, serves as the electricity supplier, the methanol optionally being provided via a cartridge system.
  • the oxygen is collected in a memory, from which it can then be selectively removed by means of the electronic control unit and supplied to the user.
  • the generator unit, the pressure accumulator, the supply line and the electronic control unit form a unit which is designed in such a way that it is portable as a whole unit, for example, it is suitable for carrying around the patient.
  • the electrical energy required to carry out the oxygen generation is provided by an electrical energy source, preferably a mains connection.
  • this electrical energy source can be stationary. It forms, so to speak, a "docking unit" into which the mobile unit of the device can be plugged in and coupled accordingly, so that the process of O 2 generation can then take place.
  • the mobile unit is in its mobile state, separated from the energy source, for as long as usable how oxygen is in the storage.
  • the pressure accumulator is empty, the mobile unit is reconnected to the electrical energy source to be filled with pure oxygen. The subsequent useful life of the mobile unit depends on the size of the pressure accumulator.
  • the generator unit either has a separate inlet for the necessary water, through which it can be filled, for example from the pressure accumulator, or, in one embodiment of the invention, a connection which has a connection provided on the stationary "docking unit" for supplying water connected is.
  • FIG. 1 is a block diagram showing the method and the device of the invention.
  • FIG. 2 shows a schematic representation of a device according to the invention as a mobile unit.
  • FIG. 1 shows a block diagram of the principle according to the invention for generating oxygen with a generator unit 1.
  • the generator unit 1 consists either of an electrolyser which is coupled to a fuel cell or of a single PEM cell which performs the functions of an electrolyser and a fuel cell.
  • the basic structure of such cells is generally known.
  • the generator unit 1 is fed from a water reservoir 2 with water as the starting material. The corresponding reactions of the electrolysis and the fuel reaction then take place in the generator unit 1.
  • the resulting pure oxygen is produced in the form of bubbles in the water present on the anode side of the generator unit 1. This is discharged together with the oxygen and fed to a water separator 3 in which the pure oxygen separates from the water, so that the water separator 3 serves on the one hand as an oxygen reservoir 4 and on the other hand as the water reservoir 2.
  • ambient air is supplied via a line 5 in order to enable the conversion back into water.
  • the resulting water like the nitrogen produced, is optionally discharged via a common line 6 via a water separator 7. After it has been collected in a water reservoir 8, the water is admixed again by the water reservoir 2 via a return line 9 to the supply water line 10, so that a closed circuit is formed.
  • the pure oxygen from the oxygen reservoir 4 is supplied to the patient's breathing air via a supply line 11.
  • An electronic control system 12 also called a demand system, which is controlled by a CPU 13, regulates the selective removal of the pure oxygen via a valve 14.
  • the CPU 13 in turn controls the supply of water from a water refill system 16 via a valve 15.
  • the CPU 13 or the demand system 12 can be connected to sensors that determine the respective need for pure oxygen depending on the inhalation of the user.
  • the entire system is supplied with the electrical energy necessary for carrying out the control and for carrying out the splitting and conversion processes from an energy source (not shown), which can be designed as a rechargeable battery, power supply connection or as a further fuel cell, a current transformer 17 being used comes.
  • an energy source not shown
  • a current transformer 17 being used comes.
  • Figure 2 shows schematically the device according to the invention, which consists of a mobile unit 18 and a stationary unit 19.
  • the mobile unit 18 consists of an oxygen generator unit 1, a pressure accumulator 20 directly connected to it, in which the pure oxygen generated from the electrolysis is collected.
  • a pressure reducer 22 is provided between the pressure accumulator 20 and a supply line 21 to a patient.
  • the supply line 21 is coupled to an electronic control system 12 via a valve technology known per se, so that pure oxygen is removed from the pressure accumulator 20 only at certain times during the inhalation phase and is supplied to the patient's breathing air and the concentration of oxygen therein selectively elevated.
  • the generator unit 1 of the mobile unit 18 is connected via an electrical line 23 to a power supply unit 24 of the stationary unit 19.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Emergency Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Manufacturing & Machinery (AREA)
  • Hematology (AREA)
  • Sustainable Energy (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Anesthesiology (AREA)
  • Pulmonology (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

La présente invention concerne un procédé et un dispositif permettant la production d'oxygène élémentaire ou l'augmentation de sa concentration dans l'air que respire un utilisateur. Selon le procédé, de l'eau est décomposée en hydrogène et en oxygène élémentaire grâce à de l'énergie électrique (électrolyse), l'oxygène élémentaire est mélangé à l'air respiré et l'hydrogène est mélangé à l'air extérieur pour être à nouveau converti en eau (réaction à combustible). Selon l'invention, la décomposition de l'eau en hydrogène et en oxygène élémentaire et la conversion en eau de l'hydrogène avec l'air extérieur, au cours desquelles se met en place un cycle réactionnel, se déroulent de manière simultanée et continue et sont couplées l'une à l'autre, l'énergie électrique produite lors de la conversion étant utilisée pour limiter les besoins en énergie de la décomposition. A cet effet, un électrolyseur, destiné à la décomposition de l'eau en hydrogène et en oxygène élémentaire, et une pile à combustible servant à la conversion en eau de l'hydrogène avec l'air extérieur, sont reliés électriquement et de manière à permettre l'acheminement de fluides.
EP02750540A 2001-03-12 2002-03-12 Procede et dispositif de production d'oxygene Withdrawn EP1368511A2 (fr)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
DE2001111749 DE10111749C2 (de) 2001-03-12 2001-03-12 Verfahren und Vorrichtung zur Erzeugung von elementarem Sauerstoff
DE20104256U 2001-03-12
DE20104256U DE20104256U1 (de) 2001-03-12 2001-03-12 Vorrichtung zur Erzeugung von Sauerstoff
DE10111749 2001-03-12
DE20104713U 2001-03-19
DE20104713U DE20104713U1 (de) 2001-03-19 2001-03-19 Vorrichtung zur Versorgung mit Sauerstoff
PCT/EP2002/002709 WO2002072919A2 (fr) 2001-03-12 2002-03-12 Procede et dispositif de production d'oxygene

Publications (1)

Publication Number Publication Date
EP1368511A2 true EP1368511A2 (fr) 2003-12-10

Family

ID=27214334

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02750540A Withdrawn EP1368511A2 (fr) 2001-03-12 2002-03-12 Procede et dispositif de production d'oxygene

Country Status (7)

Country Link
US (1) US7504015B2 (fr)
EP (1) EP1368511A2 (fr)
JP (1) JP2004534907A (fr)
KR (1) KR20040069970A (fr)
CA (1) CA2440736A1 (fr)
MX (1) MXPA03007968A (fr)
WO (1) WO2002072919A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109216734A (zh) * 2018-09-30 2019-01-15 河南豫氢动力有限公司 一种有助于燃料电池增湿和低温启动的辅助系统

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10354219B4 (de) * 2003-11-20 2007-08-16 Pauling, Hans Jürgen, Dr. Transportvorrichtung und -verfahren für ein Gas sowie Nachweiseinrichtung für ein Gas
CA2548364A1 (fr) * 2003-12-17 2005-06-30 Invacare Corporation Systeme d'alimentation en oxygene
GB0504445D0 (en) * 2005-03-03 2005-04-06 Univ Cambridge Tech Oxygen generation apparatus and method
CN1854063A (zh) * 2005-04-28 2006-11-01 黄潮 电化学锌-水制氢、储氢方法
US8021525B2 (en) * 2007-05-16 2011-09-20 Commonwealth Scientific And Industrial Research Organisation PEM water electrolysis for oxygen generation method and apparatus
BRPI0722147A2 (pt) * 2007-12-10 2014-04-15 Nokia Corp Dispositivo de fornecimento de oxigênio portátil e método para fornecer oxigênio a um usuário móvel
EP2090335B1 (fr) * 2008-02-12 2016-05-04 Zodiac Aerotechnics Dispositif respiratoire à oxygène
CN203609733U (zh) * 2013-10-10 2014-05-28 林信涌 具有安全系统的保健气体产生器
WO2015067165A1 (fr) 2013-11-05 2015-05-14 大连理工大学 Procédé électrochimique de préparation d'un gaz oxygène pur et d'un gaz pauvre en oxygène au moyen d'un mélange gazeux contenant de l'oxygène
CN108295352B (zh) * 2014-01-07 2019-09-27 上海潓美医疗科技有限公司 保健气体产生系统
NO20150411A1 (en) * 2015-04-09 2016-10-10 Aker Solutions As Method and plant for oxygen generation
CN105232030A (zh) * 2015-10-12 2016-01-13 上海合既得动氢机器有限公司 一种水氢心电图机
CN105362008A (zh) * 2015-10-12 2016-03-02 上海合既得动氢机器有限公司 一种水氢icu电动病床
CN105194779A (zh) * 2015-10-12 2015-12-30 上海合既得动氢机器有限公司 一种水氢呼吸机
CN105207299A (zh) * 2015-10-12 2015-12-30 上海合既得动氢机器有限公司 一种水氢血液分析仪
CN105206853A (zh) * 2015-10-12 2015-12-30 上海合既得动氢机器有限公司 一种水氢医疗设备
TWM536542U (zh) * 2016-07-27 2017-02-11 林信湧 保健氣體產生系統
CN106532087A (zh) * 2016-09-30 2017-03-22 李连博 燃料动力电池发电机及发电方法
US10525224B2 (en) * 2017-09-25 2020-01-07 Philip Hsueh Systems and methods for therapeutic gas delivery for personal medical consumption
TWI797434B (zh) * 2019-03-20 2023-04-01 有琳 薛 用於個人醫療用途之具有安全裝置或功能的治療性氣體傳輸系統及其方法
EP4355929A1 (fr) * 2021-06-16 2024-04-24 Skyre, Inc. Module concentrateur d'oxygène

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2126403A1 (en) * 1970-06-08 1971-12-16 Institut für Technologie der Gesundheitsbauten, χ 1134 Berlin Temporary oxygen prodn system - using electrolytic cell - connected to mains supply
US3992271A (en) 1973-02-21 1976-11-16 General Electric Company Method for gas generation
JPS58206070A (ja) 1982-05-25 1983-12-01 Motoda Electronics Co Ltd 酸素供給装置
JPS59162106A (ja) 1983-03-07 1984-09-13 Japan Storage Battery Co Ltd 酸素発生装置
DE3339934A1 (de) * 1983-11-04 1985-05-15 R & S trade & transport GmbH, 2000 Hamburg Inhalations-anlage
JPS62202805A (ja) 1986-03-02 1987-09-07 Sankuru:Kk 医療用酸素発生装置
JPH04371592A (ja) 1991-06-17 1992-12-24 Permelec Electrode Ltd 高濃度酸素含有ガスの製造方法
JP3327611B2 (ja) 1993-03-01 2002-09-24 三菱重工業株式会社 2次電池を備えた水電解装置付き燃料電池発電システム
US5495848A (en) 1994-11-25 1996-03-05 Nellcar Puritan Bennett Monitoring system for delivery of therapeutic gas
DE19533097A1 (de) * 1995-09-07 1997-03-13 Siemens Ag Brennstoffzellensystem
US5750077A (en) * 1996-07-22 1998-05-12 Schoen; Neil C. Compact man-portable emergency oxygen supply system
DE19639068A1 (de) 1996-09-15 1998-03-19 Matthias Dr Bronold Demonstrationsanlage zur Wasserstoff-Energieerzeugung
DE19707097C2 (de) * 1997-02-22 1999-08-05 Air Be C Medizintech Gmbh Kombiniertes Sauerstofferzeugungs- und Sauerstoffversorgungssystem
ITMI980914A1 (it) 1998-04-29 1999-10-29 De Nora Spa Metodo per l'integrazione di celle a combustibile con impianti elettrochimici
JP3978757B2 (ja) 1998-08-05 2007-09-19 株式会社ジーエス・ユアサコーポレーション 燃料電池用ガス拡散電極−電解質膜接合体およびその製造方法
FR2791659B1 (fr) * 1999-04-02 2002-06-07 Air Liquide Procede et installation de generation d'oxygene de grande purete
JP2001333983A (ja) 2000-05-26 2001-12-04 Shinko Pantec Co Ltd 酸素供給システム
US6569298B2 (en) * 2000-06-05 2003-05-27 Walter Roberto Merida-Donis Apparatus for integrated water deionization, electrolytic hydrogen production, and electrochemical power generation
DE20104256U1 (de) * 2001-03-12 2001-06-28 Hecker Karl Heinz Vorrichtung zur Erzeugung von Sauerstoff
DE20104713U1 (de) * 2001-03-19 2001-05-31 Hecker Karl Heinz Vorrichtung zur Versorgung mit Sauerstoff
US6495025B2 (en) * 2001-04-20 2002-12-17 Aerovironment, Inc. Electrochemical oxygen generator and process

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO02072919A2 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109216734A (zh) * 2018-09-30 2019-01-15 河南豫氢动力有限公司 一种有助于燃料电池增湿和低温启动的辅助系统
CN109216734B (zh) * 2018-09-30 2023-10-31 河南豫氢动力有限公司 一种有助于燃料电池增湿和低温启动的辅助系统

Also Published As

Publication number Publication date
MXPA03007968A (es) 2004-10-15
JP2004534907A (ja) 2004-11-18
WO2002072919A2 (fr) 2002-09-19
US20040146759A1 (en) 2004-07-29
KR20040069970A (ko) 2004-08-06
CA2440736A1 (fr) 2002-09-19
WO2002072919A3 (fr) 2003-03-20
US7504015B2 (en) 2009-03-17

Similar Documents

Publication Publication Date Title
EP1368511A2 (fr) Procede et dispositif de production d'oxygene
DE602005001871T2 (de) Sauerstoffanreicherungsgerät mit zwei Betriebsarten
DE2655070C2 (de) Sauerstoffkonzentrator
EP0068522B1 (fr) Procédé et installation pour la préparation synthétique d'ozone par electrolyse et son application
DE112005000495T5 (de) Verfahren und Vorrichtung zur Erzeugung von Wasserstoff
EP1194971A2 (fr) Systeme de piles a combustible et pile a combustible pour un tel systeme
EP0095997A1 (fr) Procédé pour la production de l'eau oxygénée et son utilisation
DE10111749C2 (de) Verfahren und Vorrichtung zur Erzeugung von elementarem Sauerstoff
EP1334741B1 (fr) Procédé et dispositif pour fournir de l'air respirable
DE4126349C2 (de) Verfahren zur elektrolytischen Herstellung von Methanol und Methan durch Reduktion von Kohlendioxid
DE102020208604B4 (de) Energiewandlungssystem
WO2010054937A1 (fr) Système de piles à combustible avec recyclage des réactifs à forte efficacité énergétique
WO2003017406A1 (fr) Combinaison de piles a combustible
WO2019137827A1 (fr) Fabrication d'un produit gazeux contenant du monoxyde de carbone
DE102020205213A1 (de) System zur Bereitstellung und Abgabe von zumindest nahezu reinem Sauerstoff
DE102019219302A1 (de) Verfahren und Elektrolyseur zur Kohlenstoffdioxidreduktion
WO2020126118A1 (fr) Électrolyseur pour la réduction du dioxyde de carbone
DE102018219373A1 (de) Elektrolyseeinrichtung und Verfahren zum Betreiben einer Elektrolyseeinrichtung
DE2146933A1 (de) Verfahren zum betrieb von brennstoffbatterien mit inertgashaltigen reaktionsgasen
DE102017214456A1 (de) CO2-Elektrolyseur und Anlagenkomplex
US20170175278A1 (en) Oxygen Gas Supply Device and Method
EP1217679A1 (fr) Pile à combustible et procédé de son fonctionnement
EP0312766B1 (fr) Elimination de l'hydrogène et de l'oxygène dans des électrolytes de piles à combustible hydrogène-oxygène fonctionnant en apesanteur
DE102020115789A1 (de) Verfahren zum Betreiben einer Brennstoffzellenvorrichtung, Brennstoffzellenvorrichtung sowie Brennstoffzellenfahrzeug
DE19757319C1 (de) Brennstoffzellendemonstrationsmodell in Form eines Miniaturbootes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030807

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIC1 Information provided on ipc code assigned before grant

Ipc: 7H 01M 8/18 B

Ipc: 7A 61M 16/10 A

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LINDE AG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20131001