EP1325281B1 - Verfahren und vorrichtung zur schusssimulation - Google Patents

Verfahren und vorrichtung zur schusssimulation Download PDF

Info

Publication number
EP1325281B1
EP1325281B1 EP01960586A EP01960586A EP1325281B1 EP 1325281 B1 EP1325281 B1 EP 1325281B1 EP 01960586 A EP01960586 A EP 01960586A EP 01960586 A EP01960586 A EP 01960586A EP 1325281 B1 EP1325281 B1 EP 1325281B1
Authority
EP
European Patent Office
Prior art keywords
laser beam
target
laser
time
trajectory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01960586A
Other languages
English (en)
French (fr)
Other versions
EP1325281A1 (de
Inventor
Karsten Bollweg
Anton Gallhuber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rheinmetall Electronics GmbH
Original Assignee
Rheinmetall Defence Electronics GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rheinmetall Defence Electronics GmbH filed Critical Rheinmetall Defence Electronics GmbH
Priority to SI200130173T priority Critical patent/SI1325281T1/xx
Publication of EP1325281A1 publication Critical patent/EP1325281A1/de
Application granted granted Critical
Publication of EP1325281B1 publication Critical patent/EP1325281B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G3/00Aiming or laying means
    • F41G3/26Teaching or practice apparatus for gun-aiming or gun-laying
    • F41G3/2616Teaching or practice apparatus for gun-aiming or gun-laying using a light emitting device
    • F41G3/2622Teaching or practice apparatus for gun-aiming or gun-laying using a light emitting device for simulating the firing of a gun or the trajectory of a projectile
    • F41G3/2655Teaching or practice apparatus for gun-aiming or gun-laying using a light emitting device for simulating the firing of a gun or the trajectory of a projectile in which the light beam is sent from the weapon to the target
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G3/00Aiming or laying means
    • F41G3/26Teaching or practice apparatus for gun-aiming or gun-laying
    • F41G3/2616Teaching or practice apparatus for gun-aiming or gun-laying using a light emitting device
    • F41G3/2622Teaching or practice apparatus for gun-aiming or gun-laying using a light emitting device for simulating the firing of a gun or the trajectory of a projectile
    • F41G3/2683Teaching or practice apparatus for gun-aiming or gun-laying using a light emitting device for simulating the firing of a gun or the trajectory of a projectile with reflection of the beam on the target back to the weapon

Definitions

  • the invention relates to a method and a device for simulating one of Ballistic projectile firing gun at a target, preferably at a target grounded, moving or standing target, fired shot in the Preamble of claim 1 and claim 10 defined genus.
  • On Angular position calculator also determines the angular deviation between the Tube core axis of the shot tube and the center of gravity of the reflected laser radiation.
  • a flight time calculator determines the theoretical floor flight time and when the Floor flight time, another laser pulse sequence is emitted by the laser transmitter, and the angular position calculator again calculates the angular deviation between the Tube core axis and the focus of the laser radiation.
  • a range calculator calculates the correct setting of the from the target distance and the type of ammunition Gunshot.
  • the target's elevation offset at the beginning and at the end of the projectile flight time, the leveling angle of the gun to the Time of shot and range from a detonator position calculator Altitude of the explosive point or hit point and in an analogous manner with the Lateral filing of the target at the beginning and end of the missile flight time, the Side pivot angle of the gun at the time of the shot and the Firing range calculated the lateral position of the explosive point.
  • the explosive point position calculator is connected to an encoder programmed for weapon and ammunition type, the communicates with the distance calculator.
  • the encoder controls the laser transmitter so that it encoded a second, different from the first laser pulse sequence
  • Laser pulse train sends out the information about the distance to the target related lateral and height deviations of the explosive point and over Includes ammunition and weapon type.
  • This laser pulse sequence hits one at the target Arranged detector on which a hit receiver, a decoder and a Hit data computers are connected.
  • the hit data calculator determines from the transmitted information whether the weapon is effective in relation to the type of ammunition used was and calculated the effect of the detonation by comparing the extent the target in the direction of the shot and the deviation of the explosive point in the side and Height direction.
  • the invention has for its object a method for simulating the shot of the beginning Specify the type mentioned, which if the regulations on eye safety of the used laser allows larger firing distances and also when shooting at a Group of closely spaced targets did not fail. In addition, one is said to this method working device for weft simulation inexpensive to produce his.
  • the method according to the invention has the same as the device according to the invention Advantage that in addition to measuring the target with spatial resolution Distance measurement is dispensed with and therefore no complex, spatially resolving detector or a laser scanner on the barrel weapon is required.
  • the goal is exclusive in terms of its distance from the barrel weapon - and with moderate accuracy - and not additionally measured with regard to the exact target position.
  • the location information is there directly at the point of impact of the second laser beam corrected for the attachment and lead. This does not apply to a target cluster, i.e. a large number of closely adjacent targets problem of target separation occurring with a spatial resolution of the target and with the pure Distance measurement only creates a small measurement uncertainty, which is only too small Second order errors.
  • the second laser beam from encoded laser pulses always hits where the virtual floor hits, so that the target resolution from the target field is done naturally. By eliminating the need for Measuring the location of the target simplifies the device for the shot simulation and is to manufacture significantly cheaper.
  • the device for the shot simulation according to the invention is compatible with 1-way codes and 1-way passive systems with a corresponding detector arrangement, as different from the well-known 2-way simulator does not drop targets from the explosive point to the target must be transferred.
  • the device according to the invention is the only one to date Multi-way simulator for long shot ranges for the internationally widespread MILES code.
  • the achievable range only from the power of the second laser beam coded laser pulses used limited laser for reasons of compatibility existing systems, e.g. MILES, preferably for a wavelength of 905 nm is designed and its performance is limited by the limit for eye safety.
  • the laser generating the first laser beam can be independent of the laser of the second laser beam and are particularly eye-safe Wavelength, e.g. can be selected in a range between 1500 and 1800 nm.
  • the limit for eye safety is about 15,000 times higher than the wavelength around The aforementioned 905 nm, and the power of the laser can be correspondingly high interpret.
  • eye-safe laser can on the attachment of the multitude of otherwise usual reflectors at the target can be dispensed with has a positive effect on the production costs of the shot simulation device.
  • the determination of the Deviations of the trajectory from the current line of sight, the so-called Target direction, at the time of shooting and the derived swivel angle values for the performed first laser beam in the vertical direction Only if with a more refined Flight path calculation also has a spin of the selected ballistic projectile should also be taken into account, the determination of the deviations of the Trajectory carried out from the target direction at the time of the shot in azimuth and out of it Swing angle values for swiveling the first laser beam also in Horizontal direction determined.
  • the laser transmitter when using a Laser transmitter with two separate lasers to generate the two laser beams Beam cross section of the laser designed so that the target from the first laser beam illuminated area is significantly larger than that illuminated by the second laser beam Area. So you only need one retroreflector unit with four, for example Retroreflectors arranged diametrically to each other in pairs, their receiving sectors cover an all-round angle of 360 °. The divergence of the first laser beam for the Distance measurement is minimized to high radiation density at the target To enable ranges.
  • a multiplicity of Retroreflectors arranged belt-like all around, the divergence is chosen so that at a predetermined minimum distance, the first illuminating the target at any point Laser beam hits at least one retroreflector.
  • the need to use Retroreflectors depend on the type of laser used to generate the first laser beam. The power is not with the currently available 1550 nm diode lasers sufficient to enable ranges of 4000 m and more without retroreflectors. In contrast, with powerful Er: glass lasers or Raman shifted Nd: YAG lasers the retroreflectors can be omitted because the diffuse reflection of the target is sufficient, so that high savings potential is achieved by eliminating the expensive retroreflectors becomes.
  • the divergence of the first laser beam is made very small to to get high intensities at the target. Its divergence can be smaller than that of the second laser beam.
  • the low divergence has the advantage that only a few Interfering reflections from objects in the immediate vicinity of the target, such as trees, Shrubs and the like.
  • the one with the launch tube firmly connected, gun side detector on a receiving optics, the Receive divergence is at least as large as that by the deflection device induced deflection area of the laser beams.
  • the detector can be a have adjustable receiving optics, the receiving divergence of the effective Beam cross section of the first laser beam, i.e. the cross section of the illuminated area at the destination, and the receiving optics are coupled to the deflection device, that it is swiveled by the same swivel angle as the first laser beam.
  • the advantage this alternative embodiment is a better S / N ratio because the Receive divergence can be chosen smaller. The bigger one is a disadvantage optomechanical effort.
  • a highly sensitive avalanche photadiode can be used as the detection element in the detector or a PIN diode with bandpass filter can be used. Because of the narrow Reception angle and the large wavelength of the laser can measure distance run very sensitive.
  • the two laser beams are generated with a single laser, its eye-safe Wavelength preferably at 905 nm for reasons of compatibility with other systems lies. Because of the small required for performance and accuracy reasons However, a large number of retroreflectors are required for larger targets. As an alternative to retroreflectors, the laser beam can be scanned in azimuth become.
  • FIG. 1 is a terrain section with a tactical situation during a combat exercise shown, in which the aiming and shooting of a gun 10 on a Goal 11 should be practiced.
  • a battle tank 12 serves as a movable target 11 and as Gun 10 the cannon 13 of a second main battle tank 14 or one Anti-tank weapon 15, which is operated by a shooter 16 lying in cover.
  • a sight 17 (Fig. 2) is used with the Gun barrel 18 of the barrel weapon 10 is rigidly coupled, in such a way that the line of sight 171st of the visor 17 is aligned parallel to the tube core axis 181 of the shot tube 18.
  • Fig. 2 is a schematic section of the shot tube 18 of the anti-tank weapon 15 shown, on which the visor 17 is arranged directly. Line of sight 171 and Tube core axis 181 are indicated by dash-dotted lines.
  • the firing with the barrel weapon 10 is simulated by emitting a laser radiation to the target 11, what with actuating a trigger 19 (Fig. 3) or other Shot trigger member by the gunner in the main battle tank 14 or the gunner 16 is initiated. With correct alignment of the barrel weapon 10, the laser radiation strikes the Goal 11.
  • a shot simulation device is used to generate the simulated shots 20, one component 201 (FIG. 3) attached to the barrel weapon 10 and one at the target 11 attached component 202 (Fig. 4). Since a main battle tank 12 or 14 in Exercise battle both actively shoots and is shot at, it forms simultaneously Gun 10 and target 11, so that he usually with both components 201, 202 of Shot simulation device 20 is equipped.
  • a purely passive target 11 becomes only with the target component 202 and an exclusively active barrel weapon 10 only equipped with the gun component 201.
  • the component 201 of the tubular weapon shown in the block diagram in FIG. 3 Shot simulation device 20 has a shot tube 18 (FIG. 2) connected laser transmitter 21 with two separate lasers 22, 23, of which the first Laser 22, hereinafter referred to as measuring laser 22, has a wavelength in the range between 1500 - 1800 nm and the second laser 23, hereinafter called code laser 23, one Has a wavelength of 905 nm.
  • the measuring laser 22 is a laser pulse composed first laser beam 24 and with the code laser 23 from coded Existing second laser beam 25 is generated by laser pulses.
  • the measuring laser 22 is e.g.
  • the divergence of the first laser 24 is then chosen very low, which has the advantage that the goal is little or no Interfering reflections are generated and retroreflectors can be dispensed with on the target side.
  • the divergence of the measuring laser 22 can be even smaller than that of the code laser 23 second laser beam 25 of the code laser 23 has an approximately circular beam profile, wherein the diameter of the effective beam cross section of the second laser beam 25, that is Diameter of the area illuminated at target 11, approximately 1.5 times the mutual Distance from detectors arranged at the target 11, which will be described in more detail later be, corresponds.
  • the two laser beams 24, 25 always have the same at the time of their emission Direction of transmission, which by means of a deflection device 26 from a basic position in which it runs parallel to the line of sight 171, is pivoted, as dotted in FIG. 3 is indicated.
  • the swiveling of the first laser beam 24 can Direction of transmission of the second laser beam 25 emitted with a delay, synchronously are also pivoted as well as the transmission direction of the second laser beam 25 Transmitting the second laser beam 25 abruptly to the last transmission direction of the first Laser beam 24 are switched on.
  • the deflection device 26 can, for example by means of two swivel mirrors 261, 262 which are coupled to one another and each adjustable in azimuth and elevation by an actuator. One each Laser beam 24 or 25 is guided over a swivel mirror 261, 262. Alternatively, you can also used electro-optical or acousto-optical deflectors for beam deflection become.
  • the gun component 20 of the gun simulation device 20 belongs to the gun furthermore a detector 27 for receiving the first reflected at the target 11 Laser beam 24 of the measuring laser 22.
  • a detector 27 for receiving the first reflected at the target 11 Laser beam 24 of the measuring laser 22.
  • the measuring detector 27 can e.g. a highly sensitive avelanche photodiode or a PIN diode with bandpass filter used become.
  • the measuring detector 27 is firmly connected to the barrel 18 of the barrel weapon 10, so that its optical axis 271 is aligned parallel to the tube core axis 181 (Fig. 2).
  • the receiving divergence of its receiving optics is as large as that by Deflection device 26 maximum deflection of the laser beams 24, 25 in elevation and if necessary in azimuth from its basic position.
  • the receiving optics of the measuring detector 27 are coupled to the deflection device 26 so that their optical axis is pivoted synchronously with the first laser beam 24.
  • the receiving optics have a receiving divergence on the effective beam cross section the first laser beam 24, i.e. the one illuminated by the first laser beam 24 at the target 11 Area.
  • the measuring detector 27 is a transit time meter 28 and a distance calculator 29 downstream, which are usually summarized a Entfemungemeßelektronik.
  • the transit time of the reflected laser pulses of the first is in the transit time meter 28
  • Laser beam 24 determines what the time from sending a laser pulse to measured and halved to receive the same reflected laser pulse.
  • the Transmission frequency of the laser pulses of the measuring laser 22 is chosen so that the time The distance between successively emitted laser pulses is much larger than that Running time of the laser pulses from transmission to reception with maximum range.
  • the distance calculator 29 calculates the time from the reflected laser pulses Target distance r.
  • the gun component 20 of the firing simulation device 20 also includes a trajectory computer 30, which is connected on the input side to the removal computer 29, a self-motion sensor system 31, an ammunition selector 32 and a control unit 33 and on the output side to the deflection device 26 and the control unit 33.
  • the control unit 33 is still connected on the input side to the trigger 19 of the barrel weapon 10 and controls the laser transmitter 21 and the trajectory computer 30 on the output side.
  • the trajectory computer 30 is used to calculate the trajectory of a projectile selected by means of the ammunition selector 32, taking into account the alignment of the shot tube 18 in azimuth and Elevation, ie the position of the shot tube 18 at the moment of the fictitious firing of the ballistic projectile.
  • a trajectory 34 is shown by way of example in FIG.
  • the trajectory computer 30 calculates the deviations ⁇ z of the trajectory 34 from the current orientation of the line of sight 171 of the sight 17 by the shooter, hereinafter referred to as the target direction, at the time of the triggering of the simulated shot by the shooter in elevation, namely as a pivot angle ⁇ z an imaginary straight line drawn through the respective trajectory point from the coordinate origin relative to the target direction at the time of firing, and forms control signals for the deflection device 26 therefrom.
  • the trajectory computer 30 additionally calculates the deviations ⁇ x Trajectory 34 from the target direction at the time of the shot in azimuth, namely as the swivel angle ⁇ x of the imaginary straight line drawn through the second trajectory point from the origin of the coordinator with respect to the target direction at the time of the shot, and likewise forms control signals for the deflection oroplasty.
  • the Shot tube 18 in the time between triggering the simulated shot to the hit of the target 11 with the first laser beam 24, which e.g. by pursuing the moving target 11 'with the visor 17 can be caused by the shooter the self-motion components of the shot tube from a self-motion sensor system 31 18 in elevation and azimuth as deviations of the line of sight 171 from the target direction to Time of shot, e.g. by one or two-axis gyroscope, and in the trajectory computer 30, the control signals generated by this for the deflection device 26 with the Corrected data supplied by the own motion sensor system 31 so that the target direction is kept constant.
  • the target-side component 202 of the simulation device 20 shown in FIG. 4 comprises a plurality of detectors 35 arranged on the surface of the target 11 and for receiving the coded laser pulses from the code laser 23 second laser beam 25 are formed.
  • the detectors 35 surround in the case of Training the target 11 as a battle tank 12, the battle tank 12 belt-like in horizontal Direction, with the detectors 35 being approximately the same distance apart.
  • the Detectors 35 are equipped with evaluation electronics 36 for decoding the code laser 23 transmitted information and for the calculation of hit damage connected in a display unit 37 are displayed.
  • a retroreflector unit 38 is arranged, which consists of several, here four by 90 ° Circumferential angle offset from each other, there are retroreflectors, their receiving sectors cover an all-round angle of 360 °.
  • the firing simulation device 20 described above with its gun side Component 201 and its target component 202 operates as follows Method:
  • the line of sight 171 one estimated by the gunner of the main battle tank 14 or the gunner 16 Lead and attachment (horizontal and vertical placement of line of sight 171 from goal 11) is moved relative to the target point, the trigger 19 is operated by the shooter.
  • the control unit 33 which on the one hand the laser transmitter 21, and here the measuring laser 22, and on the other hand the flight path computer 30 activated.
  • the measuring laser 22 transmits the first laser beam 24 composed of laser pulses.
  • the trajectory 34 of the fired virtual projectile is calculated in the trajectory computer 30 in accordance with the orientation of the sight 17 and thus of the shoe tube 18 at the time of the firing for the selected type of projectile, and the ballistic deviation ⁇ z and possibly the lateral deviation ⁇ x (FIG. 5) of the trajectory are continuously calculated 34 determined from the target direction at the time of shooting.
  • the flight path computer 30 determines - as explained above - these deviations as the swivel angle ⁇ z in elevation and possibly ⁇ x in azimuth and forms control signals therefrom which are applied to the deflection device 26.
  • the first laser beam 24 of the measuring laser 22 is continuously pivoted downwards by the deflection device 26, as is shown in FIG.
  • the laser beam 24 hits the target 11 during the flight time of the virtual projectile, the laser pulses are reflected at the target 11 and received by the measurement detector 27.
  • the transit time of the reflected laser pulses is measured (transit time meter 28) and the target distance r is determined therefrom (distance calculator 29).
  • the theoretical swivel angle values of the first laser beam 24 resulting from the flight path data for the measured target distance r are calculated with respect to the target direction at the time of the shot and are calculated with the actual swivel angle values ⁇ z belonging to the target distance r and possibly ⁇ x of the first laser beam 24 compared to the target direction at the time of the shot, which the laser beam 24 has in real time at the time it strikes the target 11.
  • the flight time of the virtual projectile required for the measured target distance r is calculated in the flight path computer 30 and with the time elapsed since the shot was fired, i.e. the time from the time of the shot, i.e.
  • the control unit 33 activates the code laser 23, which emits the second laser beam 25, in the same transmission direction as the measurement laser 22 shows last.
  • the coding of the second laser beam 25 contains information about the type of projectile and weapon and the identity of the shooter. If the gunner has aimed the gun 10 largely correctly with reference and attachment at the target 11, one of the detectors 35 of the target 11 will be hit by the laser pulses of the second laser beam 25.
  • the evaluation electronics 36 determines the damage caused at the destination 11 from the position of the hit detector 35 on the target 11 and the information transmitted with the laser pulses and decoded in the evaluation electronics 36.
  • the second laser beam 25 is emitted by the code laser 23
  • the thrust simulation is ended, and the control unit 33 switches off the flight path computer 30, the control signals at the deflection device 26 being eliminated and the deflection device 26 returning to its starting position, so that the transmission directions of the lasers 22, 23 are again aligned parallel to the line of sight 171.
  • Retroreflektoriser 38 (Fig. 4) mentioned above can be provided to the To increase the range of the measuring laser 22 or the power of the same range Measuring laser 22 to reduce.
  • the beam cross sections of the two Laser beams 24, 25 designed so that the target 10 at a predetermined Minimum distance from the first laser beam 24 illuminated area is significantly greater than the area illuminated by the second laser beam.
  • the dimensions of the first Laser beam 24 illuminated area then becomes little larger than the horizontal dimension of the largest target 11 and slightly larger than twice the vertical dimension of the target 11 designed at the still permitted minimum distance.
  • a diode laser is used, such a retroreflector unit 38 is absolutely necessary you want to reach ranges of 4000 m and more.
  • the two can be delayed emitted laser beams 24, 25 with a single laser which is made up of Compatibility reasons with other systems of a battlefield training center with an eye-safe wavelength of 905 nm works.
  • the Optoelectrical effort on the transmitter side is lower, but due to the Regulations on eye safety without additional optical effort at the target only relatively short ranges for distance measurement can be realized.
  • a plurality of retroreflectors is also Goal 11 essential. The divergence of the laser beam is then chosen so that at a permitted minimum target distance that illuminates target 11 at any point Laser beam hits at least one retroreflector.
  • the set target height angle using a suitable sensor measured and included in the trajectory calculation.
  • a tilting of the barrel weapon 10 can be detected and in the trajectory calculation be taken into account.

Description

Technisches Gebiet
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum Simulieren eines von einer ballistische Geschosse verschießenden Rohrwaffe auf ein Ziel, vorzugsweise auf ein bodengebundenes, fahrendes oder stehendes Ziel, abgefeuerten Schusses der im Oberbegriff des Anspruchs 1 bzw. des Anspruchs 10 definierten Gattung.
Stand der Technik
Bei einer als sog. Zweiwege-Simulator bezeichneten, bekannten Vorrichtung zur SchuFsimulation (DE 22 62 605 A1), dort als mit Laserimpulsen arbeitende Übungsschießeinrichtung bekannt, ist am Schußrohr oder Geschützlauf der Rohrwaffe ein Laserimpulssender befestigt, dessen ausgesendete Laserimpulsfolge ein Ziel durch von einem Richtschützen durchgeführtes, manuelles Richten der Waffe auf das Ziel erreicht. Sieht der Richtschütze den Richtvorgang als korrekt an, so betätigt er den Abzug der Rohrwaffe. Dadurch wird ein automatischer Vorgang eingeleitet, bei dem eine Sendesteuerung den Lasersender für eine Dauer von wenigen Millisekunden einschaltet. Die Laserimpulse treffen auf am Ziel angeordnete Reflektoren, von wo sie auf einen lageempfindlichen Detektor an der Rohrwaffe reflektiert werden. Aus der Laufzeit der reflektierten Laserimpulse errechnet ein Entfemungsrechner die Zielentfernung. Ein Winkellagerechner bestimmt gleichzeitig die Winkelabweichung zwischen der Rohrseelenachse des Schußrohrs und dem Schwerpunkt der reflektierten Laserstrahlung. Ein Flugzeitrechner ermittelt die theoretische Geschoßflugzeit und bei Ablauf der Geschoßflugzeit, wird eine weitere Laserimpulsfolge von dem Lasersender ausgesendet, und der Winkellagerechner berechnet erneut die Winkelabweichung zwischen der Rohrseelenachse und dem Schwerpunkt der Laserstrahlung. Ein Schußweitenrechner errechnet aus der Zielentfernung und der Munitionsart die richtige Einstellung der Schußweite. Nach dieser korrekten Einstellung wird mit der Höhenwinkelablage des Ziels am Anfang und am Ende der Geschoßflugzeit, dem Höhenrichtwinkel der Rohrwaffe zum Zeitpunkt des Schusses und der Schußweite von einem Sprengpunktlagerechner die Höhenlage des Sprengpunkts oder Trefferpunkts und in analoger Weise mit der Seitenwinkelablage des Ziels am Anfang und am Ende der Geschoßflugzeit, dem Seitenverschwenkungswinkel der Rohrwaffe zum Zeitpunkt des Schusses und der Schußweite die Seitenlage des Sprengpunkts berechnet. Der Sprengpunktlagerechner ist mit einem bezüglich der Waffen- und Munitionsart programmierten Codierer verbunden, der mit dem Entfemungsrechner in Verbindung steht. Der Codierer steuert den Lasersender so, daß dieser eine von der ersten Laserimpulsfolge sich unterscheidende, zweite, codierte Laserimpulsfolge aussendet, die Informationen über die Entfernung, über die auf das Ziel bezogenen seitlichen und höhenmäßigen Abweichungen des Sprengpunktes und über Munitions- und Waffenart enthält. Diese Laserimpulsfolge trifft auf einen am Ziel angeordneten Detektor, an dem ein Trefferempfänger, ein Decoder und ein Trefferdatenrechner angeschlossen sind. Der Trefferdatenrechner bestimmt aus den übertragenen Informationen, ob die Waffe bezüglich der verwendeten Munitionsart wirksam war und berechnet die Wirkung der Detonation durch Vergleich zwischen der Ausdehnung des Ziels in Schußrichtung und der Abweichung des Sprengpunkte in Seiten- und Höhenrichtung.
Darstellung der Erfindung
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Schußsimulation der eingangs genannten Art anzugeben, das bei Einhaltung der Vorschriften über Augensicherheit des verwendeten Lasers größere Schußweiten ermöglicht und auch beim Schießen auf eine Gruppe eng benachbart angeordneter Ziele nicht versagt. Darüber hinaus soll eine nach diesem Verfahren arbeitende Vorrichtung zur Schußsimulation kostengünstig herstellbar sein.
Die Aufgabe ist erfindungsgemäß durch die Merkmale im Anspruch 1 bzw. im Anspruch 10 gelöst.
Das erfindungsgemäße Verfahren hat ebenso wie die erfindungsgemäße Vorrichtung den Vorteil, daß auf ein Vermessen des Ziels mit Ortsauflösung zusätzlich zur Entfemungsmessung verzichtet wird und daher kein aufwendiger, ortsauflösender Detektor oder ein Laserscanner an der Rohrwaffe erforderlich ist. Das Ziel wird ausschließlich bezüglich seiner Entfernung von der Rohrwaffe - und das mit moderater Genauigkeit - und nicht zusätzlich bezüglich der genauen Zielposition vermessen. Die Ortsinformation steckt direkt in dem um Aufsatz und Vorhalt korrigierten Auftreffpunkt des zweiten Laserstrahls. Bei einem Zielhaufen, also einer Vielzahl von eng benachbarten Zielen, entfällt damit das bei einer Ortsauflösung des Ziels auftretende Problem der Zieltrennung und bei der reinen Entfemungsmessung entsteht lediglich eine geringe Meßunsicherheit, die nur zu kleinen Fehlern zweiter Ordnung führt. Der zweite Laserstrahl aus codierten Laserimpulsen trifft immer dort, wo auch das virtuelle Geschoß trifft, so daß die Zielauflösung vom Zielfeld selbst auf natürliche Weise vorgenommen wird. Durch Wegfall der Notwendigkeit der Ortsvermessung des Ziels vereinfacht sich die Vorrichtung zur Schußsimulation und ist deutlich kostengünstiger herzustellen.
Die erfindungsgemäße Vorrichtung zur Schußsimulation ist kompatibel zu 1-Wege-Codes und 1-Wege-Passivsystemen mit entsprechender Detektoranordnung, da anders als bei dem bekannten 2-Wege-Simulator keine Zielablagen des Sprengpunkts an das Ziel übertragen werden müssen. Die erfindungsgemäße Vorrichtung ist der bislang einzige Mehrwege-Simulator für große Schußreichweiten für den international verbreiteten MILES-Code.
Dadurch, daß nur der erste Laserstrahl die doppelte Zielentfernung zurücklegen muß, ist die erzielbare Reichweite nur durch die Leistung des für den zweiten Laserstrahl aus codierten Laserimpulsen verwendeten Lasers begrenzt, der aus Kompatibilitätsgründen zu bestehenden Systemen, z.B. MILES, vorzugsweise für eine Wellenlänge von 905 nm ausgelegt wird und dessen Leistung durch das Limit für die Augensicherheit begrenzt ist. Der den ersten Laserstrahl erzeugende Laser kann dagegen unabhängig von dem Laser des zweiten Laserstrahls ausgelegt werden und dabei eine besonders augensichere Wellenlänge, z.B. in einem Bereich zwischen 1500 und 1800 nm gewählt werden. Das Limit für die Augensicherheit liegt damit etwa 15000 mal höher als bei der Wellenlänge um die vorstehend genannten 905 nm, und entsprechend hoch läßt sich die Leistung des Lasers auslegen. Bei Verwendung eines solchen leistungsstarken, augensicheren Lasers kann auf die Anbringung der Vielzahl von sonst üblichen Reflektoren am Ziel verzichtet werden, was sich positiv auf die Fertigungskosten der Schußsimulations-vorrichtung niederschlägt.
Zweckmäßige Ausführungsformen des erfindungsgemäßen Verfahrens mit vorteilhaften Weiterbildungen und Ausgestaltungen der Erfindung ergeben sich aus den Ansprüchen 2 - 9, zweckmäßige Ausführungsformen der erfindungsgemäßen Vorrichtung mit vorteilhaften Weiterbildungen und Ausgestaltungen der Erfindung aus den Ansprüchen 11 - 20.
Gemäß einer vorteilhaften Ausführungsform der Erfindung wird die Ermittlung der Abweichungen der Flugbahn von der momentanen Visierlinienausrichtung, der sog. Zielrichtung, zum Schußzeitpunkt und der daraus abgeleiteten Schwenkwinkelwerte für den ersten Laserstrahl in Vertikalrichtung durchgeführt. Nur wenn bei einer verfeinerten Flugbahnberechnung noch ein dem ausgewählten ballistischen Geschoß eigener Drall berücksichtigt werden soll, wird zusätzlich auch die Ermittlung der Abweichungen der Flugbahn von der Zielrichtung zum Schußzeitpunkt im Azimut durchgeführt und daraus Schwenkwinkelwerte für die Schwenkung des ersten Laserstrahls auch in Horizontalrichtung bestimmt.
Gemäß einer vorteilhaften Ausführungsform der Erfindung wird bei Verwendung eines Lasersenders mit zwei getrennten Lasern zur Erzeugung der beiden Laserstrahlen der Strahlquerschnitt der Laser so ausgelegt, daß die am Ziel vom ersten Laserstrahl beleuchtet Fläche signifikant größer ist, als die vom zweiten Laserstrahl beleuchtete Fläche. Damit benötigt man zielseitig nur eine Retroreflektoreinheit mit beispielsweise vier paarweise diametral zueinander angeordneten Retroreflektoren, deren Empfangssektoren einen Rundumwinkel von 360° abdecken. Die Divergenz des ersten Laserstrahls für die Entfemungsmessung ist dabei für eine hohe Strahlungsdichte am Ziel minimiert, um hohe Reichweiten zu ermöglichen.
Werden gemäß einer weiteren Ausführungsform der Erfindung am Ziel eine Vielzahl von Retroreflektoren gürtelartig rundum angeordnet, wird die Divergenz so gewählt, daß bei einer vorgegebenen Mindestentfernung der das Ziel an beliebiger Stelle beleuchtende erste Laserstrahl mindestens einen Retroreflektor trifft. Die Notwendigkeit der Verwendung von Retroreflektoren richtet sich nach dem Typ des verwendeten Lasers zur Generierung des ersten Laserstrahls. Bei derzeit verfügbaren 1550 nm -Diodenlasern ist die Leistung nicht ausreichend, um Reichweiten von 4000 m und mehr ohne Retroreflektoren zu ermöglichen. Bei leistungsstarken Er:Glas-Lasern oder Raman verschobenen Nd:YAG-Lasern dagegen können die Retroreflektoren entfallen, da die diffuse Reflexion des Ziels ausreichend ist, so daß durch den Wegfall der teuren Retroreflektoren ein hohes Einsparungspotential erzielt wird. Für diesen Fall wird die Divergenz des ersten Laserstrahls sehr gering gemacht, um hohe Intensitäten am Ziel zu erhalten. Dessen Divergenz kann dabei kleiner sein als die des zweiten Laserstrahls. Die geringe Divergenz hat den Vorteil, daß nur wenige Störreflexe durch in unmittelbarer Nähe des Ziels befindlicher Objekte, wie Bäume, Sträucher u.dgl., hervorgerufen werden.
Gemäß einer vorteilhaften Ausführungsform der Erfindung weist der mit dem Abschußrohr fest verbundene, rohrwaffenseitige Detektor eine Empfangsoptik auf, deren Empfangsdivergenz mindestens so groß ist wie der durch die Ablenkvorrichtung hervorgerufene Ablenkbereich der Laserstrahlen. Alternativ kann der Detektor eine verstellbare Empfangsoptik aufweisen, deren Empfangsdivergenz dem effektiven Strahlquerschnitt des ersten Laserstrahls, d.h. dem Querschnitt der beleuchteten Fläche am Ziel, entspricht, und die Empfangsoptik ist so an die Ablenkvorrichtung angekoppelt, daß sie um gleiche Schwenkwinkel wie der erste Laserstrahl geschwenkt wird. Der Vorteil dieser alternativen Ausführungsform ist ein besseres S/N-Verhältnis, da die Empfangsdivergenz kleiner gewählt werden kann. Nachteilig ist der größere optomechanische Aufwand.
Als Detektionselement kann im Detektor eine hochempfindliche Avalanche-Photadiode oder eine PIN-Diode mit Bandpaßfilter verwendet werden. Durch den engen Empfangswinkel und die große Wellenlänge des Lasers kann die Entfemungsmessung sehr empfindlich ausgeführt werden.
Bei geringen Anforderungen an die Reichweite oder bei erhöhtem Einsatz von Retroreflektoren am Ziel können gemäß einer vorteilhaften Ausführungsform der Erfindung die beiden Laserstrahlen mit einem einzigen Laser erzeugt werden, dessen augensichere Wellenlänge aus Kompatitilitätsgründen mit anderen Systemen vorzugsweise bei 905 nm liegt. Aufgrund des aus Leistungs- und Zielgenauigkeitsgründen erforderlichen geringen Strahldurchmessers sind aber für größere Ziele dann sehr viele Retroreflektoren nötig. Alternativ zu Retroreflektoren kann ein Scannen des Laserstrahls in Azimut durchgeführt werden.
Kurze Beschreibung der Erfindung
Die Erfindung ist anhand eines in der Zeichnung dargestellten Ausführungsbeispiels einer Vorrichtung zur Schußsimulation im folgenden näher beschrieben. Es zeigen:
Fig. 1
ein Lagebild eines Geländeausschnitts mit einer taktischen Situation während einer Gefechtsübung,
Fig. 2
eine ausschnittweise, schematische, perspektivische Darstellung eines Abschußrohrs einer Rohrwaffe mit Visier sowie Lasersender und Detektor einer Vorrichtung zur Schußsimulation,
Fig. 3
ein Biockschaltbild des rohrwaffenseitigen Teils der Schußsimulationsvorrichtung,
Fig. 4
eine Seitenansicht eines als Ziel dienenden Kampfpanzers mit dem als Blockschaltbild dargestellten zielseitigen Teil der Schußsimulationsvorrichtung,
Fig. 5
eine beispielhafte Darstellung einer Schußbahn eines von der Schußsimulationsvorrichtung auf ein Ziel abgefeuerten virtuellen Geschosses.
Wege zur Ausführung der Erfindung
In Fig. 1 ist ein Geländeausschnitt mit einer taktischen Situation während einer Gefechtsübung dargestellt, bei der das Richten und Schießen einer Rohrwaffe 10 auf ein Ziel 11 geübt werden soll. Als bewegliches Ziel 11 dient ein Kampfpanzer 12 und als Rohrwaffe 10 die Panzerkanone 13 eines zweiten Kampfpanzers 14 oder eine Panzerabwehrwaffe 15, die von einem in Deckung liegenden Schützen 16 betätigt wird. Zum Richten der Rohrwaffe 10 auf das Ziel 11 dient ein Visier 17 (Fig. 2) das mit dem Schußrohr 18 der Rohrwaffe 10 starr gekoppelt ist, und zwar derart, daß die Visierlinie 171 des Visiers 17 parallel zur Rohrseelenachse 181 des Schußrohrs 18 ausgerichtet ist. In Fig. 2 ist schematisiert ausschnittweise das Schußrohr 18 der Panzerabwehrwaffe 15 dargestellt, auf dem unmittelbar das Visier 17 angeordnet ist. Visierlinie 171 und Rohrseelenachse 181 sind strichpunktiert angedeutet.
Das Schießen mit der Rohrwaffe 10 erfolgt simuliert durch Aussenden einer Laserstrahlung auf das Ziel 11, was mit Betätigen eines Abzugs 19 (Fig. 3) oder eines sonstigen Schußauslöseglieds durch den Richtschützen im Kampfpanzer 14 oder den Schützen 16 veranlaßt wird. Bei korrekter Ausrichtung der Rohrwaffe 10 trifft die Laserstrahlung auf das Ziel 11. Zur Generierung der simulierten Schüsse dient eine Schußsimulationsvorrichtung 20, die eine an der Rohrwaffe 10 angebrachte Komponente 201 (Fig. 3) und eine am Ziel 11 angebrachte Komponente 202 (Fig. 4) aufweist. Da ein Kampfpanzer 12 bzw. 14 im Übungsgefecht sowohl aktiv schießt als auch beschossen wird, bildet er gleichzeitig Rohrwaffe 10 und Ziel 11, so daß er üblicherweise mit beiden Komponenten 201, 202 der Schußsimulationsvorrichtung 20 ausgestattet ist. Ein rein passives Ziel 11 wird hingegen nur mit der zielseitigen Komponente 202 und eine ausschließlich aktive Rohrwaffe 10 nur mit der rohrwaffenseitigen Komponente 201 ausgerüstet.
Die im Blockschaltbild in Fig. 3 dargestellte, rohrwaffenseitige Komponente 201 der Schußsimulationsvorrichtung 20 weist mit einem dem Schußrohr 18 (Fig. 2) fest verbundenen Lasersender 21 mit zwei separaten Lasern 22, 23 auf, von denen der erste Laser 22, im folgenden kurz Meßlaser 22 genannt, eine Wellenlänge im Bereich zwischen 1500 - 1800 nm und der zweite Laser 23, im folgenden Code-Laser 23 genannt, eine Wellenlänge von 905 nm besitzt. Mit dem Meßlaser 22 wird ein aus Laserimpulsen zusammengesetzter erster Laserstrahl 24 und mit dem Code-Laser 23 ein aus codierten Laserimpulsen bestehender zweiter Laserstrahl 25 erzeugt. Auf die Darstellung der Einzelheiten der Laserimpulserzeugung und deren Codierung im Lasersender 21 ist verzichtet worden. Als Meßlaser 22 wird z.B. ein leistungsstarker Er.Glas-Laser oder ein Raman verschobener Nd:YAG-Laser verwendet. Die Divergenz des ersten Lasers 24 ist dann sehr gering gewählt, was den Vorteil hat, daß am Ziel keine oder nur geringe Störreflexe erzeugt werden und zielseitig auf Retroreflektoren verzichtet werden kann. Die Divergenz des Meßlasers 22 kann dabei noch kleiner sein als die des Codelasers 23. Der zweite Laserstrahl 25 des Codelasers 23 hat ein annähernd kreisrundes Strahlprofil, wobei der Durchmesser des effektiven Strahlquerschnitts des zweiten Laserstrahls 25, also der Durchmesser der am Ziel 11 beleuchteten Fläche, etwa dem 1,5-fachen des gegenseitigen Abstandes von am Ziel 11 angeordneten Detektoren, die noch später genauer beschrieben werden, entspricht.
Die beiden Laserstrahlen 24, 25 weisen zum Zeitpunkt ihres Aussendens immer die gleiche Senderichtung auf, die mittels einer Ablenkvorrichtung 26 aus einer Grundstellung, in der sie parallel zur Visierlinie 171 verläuft, geschwenkt wird, wie dies in Fig. 3 punktiert angedeutet ist. Dabei kann sowohl beim Schwenken des ersten Laserstrahls 24 die Senderichtung des zeitversetzt ausgesendeten zweiten Laserstrahls 25 synchron mitgeschwenkt werden als auch die Senderichtung des zweiten Laserstrahls 25 vor Aussenden des zweiten Laserstrahls 25 schlagartig auf die letzte Senderichtung des ersten Laserstrahls 24 aufgeschaltet werden. Die Ablenkvorrichtung 26 kann beispielsweise mittels zweier Schwenkspiegel 261, 262 realisiert werden, die miteinander gekoppelt sind und jeweils durch einen Stellantrieb in Azimut und Elevation verstellbar sind. Jeweils ein Laserstrahl 24 bzw. 25 ist über einen Schwenkspiegel 261, 262 geführt. Alternativ können auch elektrooptische oder akustooptische Deflektoren für die Strahlablenkung verwendet werden.
Zur rohrwaffenseitigen Komponente 201 der Schußsimulationsvorrichtung 20 gehört weiterhin noch ein Detektor 27 zum Empfangen des am Ziel 11 reflektierten ersten Laserstrahls 24 des Meßlasers 22. Bei dem zur Unterscheidung von den zielseitigen Detektoren im folgenden als Meßdetektor 27 bezeichneten Detektor kann z.B. eine hochempfindliche Avelanche Photodiode oder eine PIN-Diode mit Bandpaßfilter verwendet werden. Der Meßdetektor 27 ist fest mit dem Schußrohr 18 der Rohrwaffe 10 verbunden, so daß seine optische Achse 271 parallel zur Rohrseelenachse 181 ausgerichtet ist (Fig. 2). Die Empfangsdivergenz seiner Empfangsoptik ist so groß bemessen wie die durch die Ablenkvorrichtung 26 maximal bewirkte Auslenkung der Laserstrahlen 24, 25 in Elevation und ggf. in Azimut aus dessen Grundstellung heraus. Alternativ kann die Empfangsoptik des Meßdetektors 27 an die Ablenkvorrichtung 26 so angekoppelt werden, daß deren optische Achse synchron mit dem ersten Laserstrahl 24 verschwenkt wird. In diesem Fall weist die Empfangsoptik eine Empfangsdivergenz auf die dem effektiven Strahlquerschnitt des ersten Laserstrahls 24, d.h. der vom ersten Laserstrahl 24 am Ziel 11 beleuchteten Fläche, entspricht.
Dem Meßdetektor 27 ist ein Laufzeitmesser 28 und ein Entfernungsrechner 29 nachgeschaltet, die üblicherweise einer Entfemungemeßelektronik zusammengefaßt sind. Im Laufzeitmesser 28 wird die Laufzeit der reflektierten Laserimpulse des ersten Laserstrahls 24 bestimmt, wozu die Zeitdauer vom Aussenden eines Laserimpulses bis zum Empfang des reflektierten gleichen Laserimpulses gemessen und halbiert wird. Die Sendefrequenz der Laserimpulse des Meßlasers 22 ist dabei so gewählt, daß der zeitliche Abstand aufeinanderfolgend ausgesendeter Laserimpulse wesentlich größer ist als die Laufzeit der Laserimpulse vom Aussenden bis zum Empfang bei maximaler Reichweite. Aus der Laufzeit der reflektierten Laserimpulse berechnet der Entfernungrechner 29 die Zielentfemung r.
Zur rohrwaffenseitigen Komponente 201 der Schußsimulationsvorrichtung 20 gehört ferner ein Flugbahnrechner 30, der eingangsseitig mit dem Entfemungsrechner 29, einer Eigenbewegungssensorik 31, einem Munitionswähler 32 und einer Steuereinheit 33 und ausgangsseitig mit der Ablenkvorrichtung 26 und der Steuereinheit 33 verbunden ist. Die Steuereinheit 33 ist eingangsseitig noch mit dem Abzug 19 der Rohrwaffe 10 verbunden und steuert ausgangsseitig den Lasersender 21 sowie den Flugbahnrechner 30. Der Flugbahnrechner 30 dient zur Berechnung der Flugbahn eines mittels des Munitionswählers 32 ausgewählten Geschosses unter Berücksichtigung der Ausrichtung des Schußrohres 18 in Azimut und Elevation, also der Stellung des Schußrohrs 18 im Augenblick des fiktiven Abfeuern des ballistischen Geschosses. Eine solche Flugbahn 34 ist beispielhaft in Fig. 5 in einem dreidimensionalen Koordinatensystem x,y,z dargestellt, in dessen Koordinatenursprung die Rohrwaffe 10 angeordnet ist. Des weiteren berechnet der Flugbahnrechner 30 die Abweichungen Δz der Flugbahn 34 von der momentanen Ausrichtung der Visierlinie 171 des Visiers 17 durch den Schützen, im folgenden Zielrichtung genannt, zum Zeitpunkt des Auslösens des simulierten Schusses durch den Schützen in Elevation, und zwar als Schwenkwinkel αz einer durch den jeweiligen Flugbahnpunkt von dem Koordinatenursprung aus gezogenen, gedachten Geraden gegenüber der Zielrichtung zum Schußzeitpunkt, und bildet daraus Steuersignale für die Ablenkvorrichtung 26. Soll noch ein dem realen ballistischen Geschoß eigener Drall berücksichtigt werden, so berechnet der Flugbahnrechner 30 zusätzlich die Abweichungen Δx der Flugbahn 34 von der Zielrichtung zum Schußzeitpunkt im Azimut, und zwar als Schwenkwinkel αx der durch den zweiten Flugbahnpunkt von dem Koordinatorenursprung aus gezogenen, gedachten Geraden gegenüber der Zielrichtung zum Schußzeitpunkt, und bildet daraus ebenfalls Steuersignale für die Ablenkvorrichtung.
Zur Kompensation einer Eigenbewegung der Rohrwaffe 10, genauer gesagt des Schußrohrs 18, in der Zeit zwischen Auslösen des simulierten Schusses bis zum Treffen des Ziels 11 mit dem ersten Laserstrahl 24, die z.B. durch weitere Verfolgung des fahrenden Ziels 11' mit dem Visier 17 durch den Schützen verursacht werden kann, werden von einer Eigenbewegungssensorik 31 die Eigenbewegungskomponenten des Schußrohrs 18 in Elevation und Azimut als Abweichungen der Visierlinie 171 von der Zielrichtung zum Schußzeitpunkt, z.B. durch ein- oder zweiechsige Kreisel, erfaßt, und im Flugbahnrechner 30 werden die von dieser generierten Steuersignale für die Ablenkvorrichtung 26 mit den von der Eigenbewegungssensorik 31 gelieferten Daten korrigiert, so daß die Zielrichtung konstant gehalten wird.
Die in Fig. 4 dargestellte, zielseitige Komponente 202 der Simulationsvorrichtung 20 umfaßt eine Mehrzahl von Detektoren 35, die auf der Oberfläche des Ziels 11 verteilt angeordnet und zum Empfang der codierten Laserimpulse des vom Code-Laser 23 ausgesandten zweiten Laserstrahls 25 ausgebildet sind. Die Detektoren 35 umgeben im Falle der Ausbildung des Ziel 11 als Kampfpanzer 12 den Kampfpanzer 12 gürtelartig in horizontaler Richtung, wobei die Detektoren 35 annähernd gleichen Abstand voneinander haben. Die Detektoren 35 sind mit einer Auswerteelektronik 36 zur Decodierung der vom Code-Laser 23 übertragenen Information und zur Berechnung von Trefferschäden verbunden, die in einer Anzeigeeinheit 37 angezeigt werden. In bestimmten Anwendungsfällen ist am Ziel 11 noch eine Retroreflektoreinheit 38 angeordnet, die aus mehreren, hier vier um 90° Umfangswinkel zueinander versetzten, Retroreflektoren besteht, deren Empfangssektoren einen Rundumwinkel von 360° abdecken.
Die vorstehend beschriebene Schußsimulationsvorrichtung 20 mit ihrer rohrwaffenseitigen Komponente 201 und ihrer zielseitigen Komponente 202 arbeitet nach folgendem Verfahren:
Nach Ausrichten des Visiers 17 der Rohrwaffe 10 auf das Ziel 11, wobei die Visierlinie 171 um einen vom Richtschützen des Kampfpanzers 14 oder vom Schützen 16 geschätzten Vorhalt und Aufsatz (horizontaler und vertikaler Ablage der Visierlinie 171 vom Ziel 11 ) gegenüber dem Zielpunkt verschoben wird, wird vom Schützen der Abzug 19 betätigt. Dieses wird von der Steuereinheit 33 registriert, die einerseits den Lasersender 21, und hier den Meßlaser 22, und andererseits den Flugbahnrechner 30 aktiviert. Der Meßlaser 22 sendet den aus Laserimpulsen zusammengesetzten ersten Laserstrahl 24 aus.
Gleichzeitig wird im Flugbahnrechner 30 die Flugbahn 34 des abgefeuerten virtuellen Geschosses entsprechend der Ausrichtung des Visiers 17 und damit des Schuhrohrs 18 zum Schußzeitpunkt für die gewählte Geschobart berechnet und fortlaufend die ballistischen Abweichung Δz und ggf. die seitliche Abweichung αx (Fig. 5) der Flugbahn 34 von der Zielrichtung zum Schußzeitpunkt ermittelt. Der Flugbahnrechner 30 bestimmt dabei - wie vorstehend ausgeführt - diese Abweichungen als Schwenkwinkel αz in Elevation und ggf. αx in Azimut und bildet daraus Steuersignale, die an die Ablenkvorrichtung 26 gelegt werden. Entsprechend diesen Steuersignalen wird durch die Ablenkvorrichtung 26 der erste Laserstrahl 24 des Meßlasers 22 kontinuierlich nach unten geschwenkt, wie dies in Fig. 5 für verschiedene Zeitpunkte während der Flugzeit des virtuellen Geschosses dargestellt ist. Trifft der Laserstrahl 24 während der Flugzeit des virtuellen Geschosses auf das Ziel 11, so werden die Laserimpulse am Ziel 11 reflektiert und vom Meßdetektor 27 empfangen. Die Laufzeit der reflektierten Laserimpulse wird gemessen (Laufzeitmesser 28) und daraus die Zielentfernung r bestimmt, (Entfemungsrechner 29). Im Flugbahnrechner 30 werden die für die gemessene Zielentfemung r sich aus den Flugbahndaten ergebenden, theoretischen Schwenkwinkelwerte des ersten Laserstrahls 24 gegenüber der Zielrichtung zum Schußzeitpunkt berechnet und mit den zu der Zielentfernung r gehörenden tatsächlichen Schwenkwinkelwerten αz, und ggf. αx des ersten Laserstrahls 24 gegenüber der Zielrichtung zum Schußzeitpunkt, die der Laserstrahl 24 in realiter zum Zeitpunkt seines Auftreffens auf das Ziel 11 aufweist, verglichen. Alternativ wird im Flugbahnrechner 30 die für die gemessene Zielentfemung r erforderliche Flugzeit des virtuellen Geschosses berechnet und mit der seit Schußauslösung vergangenen Zeit, das ist die Zeit vom Schußzeitpunkt, also dem ersten Aussenden der Lasersignale des ersten Laserstrahls 24, bis zum Empfang der erstmals am Ziel 11 reflektierten Laserimpulse des ersten Laserstrahls 24 durch den Meßdetektor 27, verglichen. Bei Übereinstimmung dieser Werte innerhalb eines Toleranzbereichs wird über die Steuereinheit 33 der Code-Laser 23 aktiviert, der den zweiten Laserstrahl 25 aussendet, und zwar in die gleiche Senderichtung, wie sie zuletzt der Meßlaser 22 zeigt. Die Codierung des zweiten Laserstrahls 25 enthält Informationen über die Geschoß- und Waffenart und die Identität des Schützen. Hat der Schütze die Rohrwaffe 10 weitgehend korrekt mit Vorhalt und Aufsatz auf das Ziel 11 gerichtet, so wird einer der Detektoren 35 des Ziels 11 von den Laserimpulsen des zweiten Laserstrahls 25 getroffen. Aus der Lage des getroffenen Detektors 35 am Ziel 11 und den mit den Laserimpulsen übermittelten, in der Auswerteelektronik 36 decodierten Informationen bestimmt die Auswerteelektronik 36 den am Ziel 11 hervorgerufenen Schaden. Mit Aussenden des zweiten Laserstrahls 25 durch den Code-Laser 23 ist die Schubsimulation beendet, und die Steuereinheit 33 schaltet den Flugbahnrechner 30 ab, wobei die Steuersignale an der Ablenkvorrichtung 26 wegfallen und die Ablenkvorrichtung 26 in ihre Ausgangsstellung zurückkehrt, so daß die Senderichtungen der Laser 22, 23 wieder parallel zur Visierlinie 171 ausgerichtet sind.
Die Erfindung ist nicht auf das beschriebene Ausführungsbeispiel der Schußsimulationsvorrichtung beschränkt. So kann am Ziel 11 noch zusätzlich die vorstehend erwähnte Retroreflektoreinheit 38 (Fig. 4) vorgesehen werden, um die Reichweite des Meßlasers 22 zu erhöhen oder bei gleicher Reichweite die Leistung des Meßlasers 22 zu verringern. In diesem Fall werden die Strahlquerschnitte der beiden Laserstrahlen 24, 25 so ausgelegt, daß die am Ziel 10 bei einer vorgegebenen Mindestentfernung vom ersten Laserstrahl 24 beleuchtete Fläche signifikant größer ist als die vom zweiten Laserstrahl beleuchtete Fläche. Die Abmessungen der vom ersten Laserstrahl 24 beleuchteten Fläche wird dann wenig größer als die horizontale Abmessung des größten Ziels 11 und wenig größer als die doppelte vertikale Abmessung des Ziels 11 bei der noch zugelassenen Minimalentfernung ausgelegt. Werden heute verfügbare Diodenlaser verwendet, so ist eine solche Retroreflektoreinheit 38 zwingend erforderlich, will man Reichweiten von 4000 m und mehr erreichen.
Bei geringen Anforderungen an die Reichweite können die beiden zeitversetzt ausgesendeten Laserstrahlen 24, 25 mit einem einzigen Laser, der aus Kompatibilitätsgründen mit anderen Systemen eines Gefechtsfeldübungszentrums mit einer augensicheren Wellenlänge von 905 nm arbeitet, erzeugt werden. Hier ist der optoelektrische Aufwand senderseitig zwar geringer, doch können aufgrund der Vorschriften über die Augensicherheit ohne optischen Zusatzaufwand am Ziel nur relativ geringe Reichweiten für die Entfernungsmessung realisiert werden. Für größere Reichweite ist zusätzlich zu der Retroreflektoreinheit 38 noch eine Mehrzahl von Retroreflektoren am Ziel 11 unerläßlich. Die Divergenz des Laserstrahls wird dann so gewählt, daß bei einer zugelassenen minimalen Zielentfernung der das Ziel 11 an beliebiger Stelle beleuchtende Laserstrahl mindestens einen Retroreflektor trifft.
Zu einer genaueren Berechnung der Flugbahn 34 kann bei großen Zielhöhenwinkeln, d.h. einer großen Erhebung der Rohrseelenachse 181 gegenüber der Horizontalen, z.B. ab einem Zielhöhenwinkel von ca. 20°, der eingestellte Zielhöhenwinkel mittels eines geeigneten Sensors gemessen und in die Flugbahnberechnung mit einbezogen werden. In gleicher Weise kann ein Verkanten der Rohrwaffe 10 erfaßt und bei der Flugbahnberechnung berücksichtigt werden.

Claims (20)

  1. Verfahren zum Simulieren eines von einer ballistische Geschosse verschießenden Rohrwaffe (10) auf eine Ziel (11), vorzugsweise auf ein bodengebundenes, fahrendes oder stehendes Ziel, abgefeuerten Schusses, bei dem nach Ausrichten eines Visiers (17), dessen Visierlinie (171) parallel zur Rohrseelenachse (181) der Rohrwaffe (10) verläuft, auf das Ziel (11) mit Einstellen einer horizontalen Ablage (Vorhalt) und einer vertikalen Ablage (Aufsatz) der Visierlinie (171) vom Ziel (11) zwecks Schußauslösung ein Abzug (19) manuell betätigt wird, durch Betätigen des Abzugs (19) an der Rohrwaffe (10) ein aus Laserimpulsen zusammengesetzter erster Laserstrahl (24) ausgesendet wird, die Flugbahn (34) des abgefeuerten virtuellen Geschosses berechnet wird und fortlaufend die Abweichungen der Flugbahn (34) von der momentanen Visierlinienauarichtung zum Schußzeitpunkt ermittelt werden, der erste Laserstrahl (24) um den Flugbahnabweichungen entsprechende Schwenkwinkelwerte geschwenkt wird, die Laufzeit der vom Ziel (11) reflektierten Laserimpulse gemessen und daraus die Zielenttemung (r) bestimmt wird, entweder die vom Schußzeitpunkt bis zum Empfang der reflektierten Laserimpulse vergangene Zeit mit der für die Zielentfernung (r) berechneten Flugzeit des abgefeuerten virtuellen Geschosses verglichen wird oder die für die Zielentfernung (r) eingestellten, tatsächlichen Schwenkwinkelwerte des ersten Laserstrahls (24) gegenüber der momentanen Visierlinienausrichtung zum Schußzeitpunkt mit den für die Zielentfemung (r) aus den Flugbahndaten errechneten, theoretischen Schwenkwinkelwerten des ersten Laserstrahls (24) gegenüber der momentanen Visierlinienausrichtung zum Schußzeitpunkt verglichen werden und bei Übereinstimmung inrerhalb eines Toleranzbereichs ein aus codierten Laserimpulsen bestehender zweiter Laserstrahl (25) in die vom ersten Laserstrahl (24) zuletzt angenommene Senderichtung ausgesendet wird, dessen Codierung Informationen über Schußdaten der Rohrwaffe (10), wie Munitions- und Waffenart, Identität des Schützen (16), enthält, sowie zielseitig bei Empfang des zweiten Laserstrahls (25) mittels eines von einer Mehrzahl von auf der Oberfläche des Ziels (11) verteilt angeordneten Detektoren (35) aus der Lage des empfangenden Detektors (35) am Ziel (11) und den decodierten Informationen ein Trefferschaden berechnet wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Ermittlung der Abweichungen (Δz) der Flugbahn (34) von der momentanen Visierlinienausrichtung zum Schußzeitpunkt und der daraus abgeleiteten Schwenkwinkelwerte (αz) des ersten Laserstrahls (24) in Elovation durchgeführt wird.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die Ermittlung der Abweichungen (Δx) cer Flugbahn (34) von der momentanen Visierlinenausrichtung zum Schußzeitpunkt und der daraus abgeleiteten Schwenkwinkelwerte (x) des ersten Laserstrahls (24) zusätzlich im Azimut durchgeführt wird.
  4. Verfahren nach einem der Ansprüche 1 - 3, dadurch gekennzeichnet, daß Abweichungen der Visierlinie von der momentanen Visierlinienausrichtung zum Schußzeitpunkt fortlaufend gemessen und zur Korrektur der Schwenkwinkelwerte (αz, αx) des ersten Laserstrahls (24) herangezogen werden.
  5. Verfahren nach einem der Ansprüche 1 - 4, dadurch gekennzeichnet, daß zum zeitlich versetzten Aussenden der beiden Laserstrahlen (24, 25) ein einziger Laser mit einer augensicheren Wellenlänge, vorzugsweise von 905 nm, verwendet und zielseitig eine Vielzahl von Retroreflektoren (38) vorgesehen wird.
  6. Verfahren nach der Ansprüche 1 - 4, dadurch gekennzeichnet, daß zum zeitlich versetzten Aussenden der beiden Laserstrahlen (24, 25) zwei getrennte Laser (22, 23) mit vorzugsweise unterschiedlicher Wellenlänge verwendet werden.
  7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß die beiden Laserstrahlen (24, 25) so gebündelt werden, daß der erste Laserstrahl (24) eine signifikant größere Fläche am Ziel (11) beleuchtet als der zweite Laserstrahl (25) und daß zielseitig eine für Rundumempfang ausgelegte Reflektoreinheit (38) vorgesehen wird.
  8. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß der erste Laserstrahl (24) mit einem leistungsstarken Laser erzeugt wird und daß die Divergenz des ersten Laserstrahls (24) sehr klein gewählt wird.
  9. Verfahren nach einem der Ansprüche 6 - 8, dadurch gekennzeichnet, daß das Strahlungsprofil des zweiten Laserstrahls (25) so dimensioniert wird, daß die Abmessungen der von dem zweiten Laserstrahl (25) am Ziel (11) beleuchteten Fläche etwa dem 1,5-fachen des gegenseitigen Abstandes der Detektoren (35) am Ziel (11) entspricht.
  10. Vorrichtung zum Simulieren eines von einer ballistische Geschosse verschießenden, ein mit seiner Visierlinie (171) parallel zur Rohrseelenachse (181) fest ausgerichtetes Visier (17) und einen Abzug (19) zur Schußauslösung aufweisenden Rohrwaffe (10) auf ein Ziel (11), vorzugsweise auf ein bodengebundenes, fahrendes oder stehendes Ziel (11), abgefeuerten Schusses, die rohrwaffenseitig einen fest mit Rohrwaffe (10) gekoppelten Lasersender (21) zum zeitlich versetzten, richtungsgleichen Aussenden eines aus Laserimpulsen zusammengesetzten ersten Laserstrahls (24) und eines aus codierten Laserimpulsen bestehenden zweiten Laserstrahls (25), eine vom Abzug (19) aktivierbare Steuereinheit (33), die bei Aktivierung den Lasersender (21) zum Aussenden des ersten Laserstrahls veranlaßt, einen fest mit der Rohrwaffe (10) gekoppelten Detektor (27) zum Empfangen der am Ziel (11) reflektierten Laserimpulse des ersten Laserstrahls (24), einen dem Detektor (27) nachgeschalteten Laufzeitmesser (28) zum Messen der Laufzeit der reflektierten Laserimpulse des ersten Laserstrahls (24), einen Entfernungsrechner (29) zum Berechnen der Zielentfernung (r) aus der Laufzeit und einen mit dem Entfemungsrechner (29) verbundenen Flugbahnrechner (30) zur Berechnung von Flugbahndaten des abgefeuerten virtuellen Geschosses sowie zielseitig eine Mehrzahl von über die Zieloberfläche verteilt angeordneten, zum Empfang des zweiten Laserstrahls (25) ausgebildeten Detektoren (35) und eine mit den Detektoren (35) verbundene Auswerteelektronik (35) zur Berechnung von Trefferschäden aufweist, dadurch gekennzeichnet, daß mit dem Flugbahnrechner (30) eine Ablenkvorrichtung (26) zum Schwenken der Senderichtung der Laserstrahlen (24, 25) verbunden ist, daß mit Aussenden des ersten Laserstrahls (24) der Flugbahnrechner (30) fortlaufend die Abweichung der Flugbahn (34) von der momentanen Visierlinienausrichtung zum Schußzeitpunkt berechnet und als Steuersignale an die Ablenkvorrichtung (26) legt, die den ersten Laserstrahl (24) um den Steuersignalen entsprechende Schwenkwinkel (αz, αx) gegenüber der momentanen Visierlinienauarichtung zum Schußzeitpunkt verschwenkt, daß der Flugbahnrechner (30) entweder für die vom Entfemungsrechner (29) berechnete Zielentfemung (r) die Flugzeit des abgefeuerten virtuellen Geschosses berechnet und mit der vom Schußzeitpunkt bis zum Empfang der reflektierten Laserimpulse des ersten Laserstrahls (24) vergangenen Zeit vergleicht oder für die vom Entfemungsrechner (29) berechnete Zielentfernung (r) die theoretischen Schwenkwinkel des ersten Laserstrahls (24) gegenüber der momentanen Visierlinienausrichtung zum Schußzeitpunkt aus den Flugbahndaten berechnet und mit den tatsächlichen Schwenkwinkeln (αz, αx) des ersten Laserstrahls (24) gegenüber der momentanen Visierlinienausrichtung zum Schußzeitpunkt vergleicht und bei Übereinstimmung innerhalb eines Toleranzbereichs ein Aktivierungssignal zum Aussenden des zweiten Laserstrahls (25) in die vom ersten Laserstrahl (24) zuletzt angenommene Senderichtung erzeugt.
  11. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, daß die Berechnung der Flugbahnabweichung (Δz, Δx) von der momentanen Visierlinenausrichtung zum Schußzeitpunkt und der daraus abgeleiteten Schwenkwinkel (αz, αx) des ersten Laserstrahls (24) in Elevation und bei einem Drallverhalten des ausgewählten Geschosses zusätzlich im Azimut erfolgt.
  12. Vorrichtung nach Anspruch 10 oder 11, dadurch gekennzeichnet, daß der Lasersender (21) zur Erzeugung des ersten und zweiten Laserstrahls (24, 25) einen einzigen Laser mit einer augensicheren Wellenlänge, vorzugsweise 905 nm, aufweist, und am Ziel (11) eine Vielzahl von Retroreflektoren über die Zieloberfläche verteilt angeordnet ist.
  13. Vorrichtung nach Anspruch 10 oder 11, dadurch gekennzeichnet, daß der Lasersender (21) zur Erzeugung des ersten Laserstrahls (24) einen Laser (22) mit einer Wellenlänge zwischen 1500 und 1800 nm und zur Erzeugung des zweiten Laserstrahls einen Laser (23) mit einer Wellenlänge von 905 nm aufweist.
  14. Vorrichtung nach Anspruch 13, dadurch gekennzeichnet, daß die am Ziel (11) vom ersten Laserstrahl (24) beleuchtete Fläche signifikant größer ist als die vom zweiten Laserstrahl (25) beleuchtete Fläche und daß am Ziel (11) eine für Rundumempfang ausgelegte Retroreflektoreinheit (38) etwa mittig angeordnet ist.
  15. Vorrichtung nach Anspruch 13, dadurch gekennzeichnet, daß am Ziel (11) eine Vielzahl von Retroreflektoren angeordnet ist und daß die Divergenz des ersten Laserstrahls (24) so gewählt ist, daß bei einer zugelassenen minimalen Zielentfernung (r) der das Ziel an beliebiger Stelle beleuchtende erste Laserstrahl (24) mindestens einen Retroreflektor trifft.
  16. Vorrichtung nach Anspruch 13, dadurch gekennzeichnet, daß der zur Erzeugung des ersten Laserstrahls (24) verwendete Laser (22) leistungsstark ist und der erste Laserstrahl (24) eine sehr kleine Divergenz aufweist.
  17. Vorrichtung nach einem der Ansprüche 13 - 16, dadurch gekennzeichnet, daß der zweite Laserstrahl (25) ein solches Strahlgrofil besitzt, daß die Abmessungen der vom Laserstrahl (25) am Ziel (11) beleuchteten Fläche etwa dem 1,5-fachen des gegenseitigen Abstandes der Detektoren (35) am Ziel (11) entspricht.
  18. Vorrichtung nach einem der Ansprüche 1 - 17, dadurch gekennzeichnet, daß der mit dem Schußrohr (18) der Rohrwaffe (10) fest verbundene Detektor (27) eine Empfangsoptik aufweist, deren Empfangsdivergenz mindestens so groß ist wie der durch die Ablenkvorrichtung (26) hervorgerufene Ablenkbereich der Laserstrahlen (24, 25).
  19. Vorrichtung nach einem der Ansprüche 1 - 17, dadurch gekennzeichnet, daß der mit dem Schußrohr (18) der Rohrwaffe (10) fest verbundene Detektor (27) eine verstellbare Empfangsoptik aufweist, deren Empfangsdivergenz dem effektiven Strahlquerschnitt des ersten Laserstrahls (24) entspricht, und daß die Empfangsoptik so an die Ablenkvorrichtung (26) angekoppelt ist, daß sie um gleiche Schwenkwinkel (αx, αz) wie der erste Laserstrahl (24) verschwenkt wird.
  20. Vorrichtung nach einem der Ansprüche 1 - 19, dadurch gekennzeichnet, daß der Flugbahnrechner (30) mit einer die Eigenbewegung der Rohrwaffe (10) sensierenden Eigenbewegungssensorik (31) verbunden ist und mit den von der Eigenbewegungssensorik (31) gelieferten Daten die Steuersignale für die Ablenkvorrichtung (26) im Sinne einer Kompensation der Eigenbewequng der Rohrwaffe (10) auf die Zielausrichtung korrigiert.
EP01960586A 2000-10-13 2001-07-28 Verfahren und vorrichtung zur schusssimulation Expired - Lifetime EP1325281B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SI200130173T SI1325281T1 (en) 2000-10-13 2001-07-28 Method and device for simulating firing

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10050691 2000-10-13
DE10050691A DE10050691A1 (de) 2000-10-13 2000-10-13 Verfahren und Vorrichtung zur Schussimulation
PCT/EP2001/008775 WO2002031429A1 (de) 2000-10-13 2001-07-28 Verfahren und vorrichtung zur schusssimulation

Publications (2)

Publication Number Publication Date
EP1325281A1 EP1325281A1 (de) 2003-07-09
EP1325281B1 true EP1325281B1 (de) 2004-06-16

Family

ID=7659616

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01960586A Expired - Lifetime EP1325281B1 (de) 2000-10-13 2001-07-28 Verfahren und vorrichtung zur schusssimulation

Country Status (16)

Country Link
US (1) US6549872B2 (de)
EP (1) EP1325281B1 (de)
AT (1) ATE269532T1 (de)
AU (1) AU2001282044A1 (de)
BG (1) BG65142B1 (de)
CA (1) CA2341851A1 (de)
CZ (1) CZ2003872A3 (de)
DE (2) DE10050691A1 (de)
DK (1) DK1325281T3 (de)
ES (1) ES2218440T3 (de)
HU (1) HU225640B1 (de)
PL (1) PL360247A1 (de)
SK (1) SK4002003A3 (de)
TR (1) TR200401817T4 (de)
WO (1) WO2002031429A1 (de)
ZA (1) ZA200302779B (de)

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE520607C2 (sv) * 2001-03-30 2003-07-29 Saab Ab Förfarande och anordning för träffindikering
IL143603A0 (en) * 2001-06-06 2003-06-24 C T S Combat Training Simulati Combat simulation system and method
US20040005531A1 (en) * 2002-07-03 2004-01-08 Deepak Varshneya Precision zeroed small-arms transmitter (ZSAT) with shooter sight-picture compensation capability
US6995660B2 (en) * 2002-09-26 2006-02-07 Bae Systems Information And Electronic Systems Integration Inc. Commander's decision aid for combat ground vehicle integrated defensive aid suites
US7121464B2 (en) * 2003-05-29 2006-10-17 White Thompkins W Automated projectile delivery system
US7147472B1 (en) * 2003-10-23 2006-12-12 The United States Of America As Represented By The Secretary Of The Army Laser aim scoring system
DE602004010880T2 (de) * 2004-03-26 2008-12-11 Saab Ab System und Verfahren zur Waffenwirkung-Simulation
DE102004039336B4 (de) * 2004-08-12 2006-07-06 C.O.E.L. Entwicklungsgesellschaft Mbh Einrichtung zur Leistungssteigerung und Verbesserung der Auswertung in einem Gefechtsübungszentrum
DE102004042144B4 (de) * 2004-08-31 2010-12-30 Ruag Coel Gmbh Verfahren und Vorrichtung zur Schußsimulation von direkt gerichteten Waffen mittels Laserlichts
EP1696198B1 (de) * 2005-02-28 2014-07-16 Saab Ab Verfahren und System zur Feuersimulation
EP1710769B1 (de) * 2005-04-06 2016-03-16 Saab Ab Vorrichtung zur Simulierung
EP1737146B1 (de) * 2005-06-22 2015-09-16 Saab Ab Vorrichtung und Verfahren zur Datenübertragung
US8827707B2 (en) * 2005-08-01 2014-09-09 Cubic Corporation Two beam small arms transmitter
US9316462B2 (en) 2005-08-01 2016-04-19 Cubic Corporation Two beam small arms transmitter
US7599814B2 (en) * 2006-04-27 2009-10-06 Hrl Laboratories, Llc System and method for computing reachable areas
US20080206718A1 (en) * 2006-12-01 2008-08-28 Aai Corporation Apparatus, method and computer program product for weapon flyout modeling and target damage assessment
DE102007014290A1 (de) 2007-03-22 2008-09-25 Jenoptik Laser, Optik, Systeme Gmbh Optisches System und Verfahren zur Geschossbahnnachbildung mittels Laserstrahl
ATE482399T1 (de) * 2007-05-07 2010-10-15 Raytheon Sarcos Llc Digitales system zur detektion von verwundungen
US8191421B2 (en) * 2007-05-07 2012-06-05 Raytheon Company Digital ballistic impact detection system
US8414298B2 (en) * 2008-03-13 2013-04-09 Cubic Corporation Sniper training system
DE102009004179A1 (de) * 2009-01-09 2010-07-15 Rheinmetall Landsysteme Gmbh Vorrichtung zur Simulation der akustischen und/oder optischen Darstellung des Abfeuerns einer an einem Objekt, insbesondere Fahrzeug anordbaren Waffe
US8204094B2 (en) 2009-04-21 2012-06-19 Innova, Inc. Scalable, efficient laser systems
US8275571B2 (en) * 2009-06-18 2012-09-25 Aai Corporation Method and system for correlating weapon firing events with scoring events
US8706440B2 (en) * 2009-06-18 2014-04-22 Aai Corporation Apparatus, system, method, and computer program product for registering the time and location of weapon firings
WO2011037661A2 (en) * 2009-06-18 2011-03-31 Aai Corporation Apparatus, system, method, and computer program product for registering the time and location of weapon firings
US8234070B2 (en) * 2009-06-18 2012-07-31 Aai Corporation Apparatus, system, method, and computer program product for detecting projectiles
US8328557B2 (en) * 2010-01-08 2012-12-11 Lockheed Martin Corporation Simultaneous multi-source scanning for sectorized simulated projectile trajectories
WO2011110265A1 (de) * 2010-03-12 2011-09-15 Rheinmetall Defence Electronics Gmbh Scannermodul zur zielvermessung
WO2012002856A1 (en) 2010-06-30 2012-01-05 Saab Ab Wireless target system
US8512041B2 (en) 2010-10-27 2013-08-20 Lockheed Martin Corporation Combat simulation at close range and long range
RU2478897C2 (ru) * 2011-06-03 2013-04-10 Михаил Витальевич Головань Способ обучения операторов высокоточного оружия
US9121785B2 (en) 2012-04-24 2015-09-01 Sarcos Lc Non-powered impact recorder
US9830408B1 (en) * 2012-11-29 2017-11-28 The United States Of America As Represented By The Secretary Of The Army System and method for evaluating the performance of a weapon system
RU2558407C2 (ru) * 2013-12-26 2015-08-10 Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военная академия войсковой противовоздушной обороны Вооруженных Сил Российской Федерации имени Маршала Советского Союза А.М. Василевского" Министерства Обороны Российской Федерации Способ определения наклонной дальности воздушной цели по ее установленной скорости
CN103808204B (zh) * 2014-02-24 2015-07-08 浙江工业大学之江学院 基于靶上实弹弹孔与枪支姿态检测的射击瞄准轨迹检测方法
US10734943B2 (en) * 2014-09-12 2020-08-04 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Photovoltaics optimized for laser remote power applications at eye-safer wavelengths
US9429397B1 (en) * 2015-02-27 2016-08-30 Kevin W. Hill System, device, and method for detection of projectile target impact
EP3312544A1 (de) * 2016-10-21 2018-04-25 CMI Defence S.A. Montagehalterung für zielvorrichtung
WO2018097775A1 (en) * 2016-11-25 2018-05-31 Saab Ab (Publ) A simulation device and a method for facilitating simulation of a shot from a weapon
CN106840007A (zh) * 2017-04-07 2017-06-13 赵�怡 一种结合可调激光测距探头阵列与智能终端的空间扫描系统及方法
US10835803B2 (en) * 2019-03-18 2020-11-17 Rapsodo Pte. Ltd. Object trajectory simulation
CN110543169B (zh) * 2019-08-16 2022-05-24 深圳优地科技有限公司 机器人避障方法、装置、机器人及存储介质
GB2595213B (en) * 2020-05-12 2024-02-21 Mbda Uk Ltd Safety assembly
CN112711035A (zh) * 2020-12-17 2021-04-27 安徽科创中光科技有限公司 一种可自动修正弹道轨迹的便携式测风激光雷达系统
CN112729011B (zh) * 2020-12-25 2022-03-22 南京理工大学 一种小空间无弹化校枪方法
CN114396917B (zh) * 2022-02-25 2023-11-10 北京华昊水利水电工程有限责任公司 一种橡胶坝安全检测方法及系统
CN115164646B (zh) * 2022-06-28 2023-09-15 中国人民解放军63863部队 复合制导的炮弹的射表基本诸元的计算方法及装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE6900992U (de) * 1969-01-08 1969-10-02 Grundig Emv Magnetbandkassette mit vorrichtung zur verhinderung unbeabsichtigter loeschung bespielter baender
BE793514A (fr) 1971-12-31 1973-04-16 Saab Scania Ab Simulateur a impulsions laser pour entrainement au tir
FR2477695A1 (fr) * 1980-03-07 1981-09-11 Giravions Dorand Procede et appareillage de commande de tir sur cible reelle
DE3114000C2 (de) * 1981-04-07 1983-04-28 Precitronic Gesellschaft für Feinmechanik und Electronic mbH, 2000 Hamburg Schießsimulations- und -übungsverfahren für ballistische Munition und bewegliche Ziele
DE3507007A1 (de) 1985-02-27 1986-08-28 Precitronic Gesellschaft für Feinmechanik und Electronic mbH, 2000 Hamburg Vorrichtung zum ueben des richtens mit einer schusswaffe
DE3543647C2 (de) * 1985-12-11 1994-02-24 Hipp Johann F Einrichtung zur Vermessung von durch Reflektoren markierten Raumpunkten und darauf gerichteter Kommunikation mit Licht
DE3543698C2 (de) * 1985-12-11 1994-04-21 Hipp Johann F Schießsimulations- und Übungsverfahren für direktgerichtete Waffensysteme
GB2220051A (en) * 1988-06-27 1989-12-28 Schlumberger Ind Ltd Weapon training systems
DE19912093A1 (de) 1999-03-18 2000-09-28 Stn Atlas Elektronik Gmbh Verfahren zur Schußsimulation

Also Published As

Publication number Publication date
HU225640B1 (en) 2007-05-02
ES2218440T3 (es) 2004-11-16
TR200401817T4 (tr) 2004-09-21
AU2001282044A1 (en) 2002-04-22
DK1325281T3 (da) 2004-08-02
BG107710A (en) 2003-12-31
BG65142B1 (bg) 2007-03-30
DE10050691A1 (de) 2002-05-02
US20020045999A1 (en) 2002-04-18
ATE269532T1 (de) 2004-07-15
WO2002031429A1 (de) 2002-04-18
US6549872B2 (en) 2003-04-15
ZA200302779B (en) 2003-10-14
HUP0303748A2 (en) 2004-03-01
CZ2003872A3 (cs) 2003-12-17
EP1325281A1 (de) 2003-07-09
CA2341851A1 (en) 2002-04-13
PL360247A1 (en) 2004-09-06
DE50102630D1 (de) 2004-07-22
SK4002003A3 (en) 2003-10-07

Similar Documents

Publication Publication Date Title
EP1325281B1 (de) Verfahren und vorrichtung zur schusssimulation
DE2907590C2 (de) Verfahren und Vorrichtung zum Auswerten von simulierten Schießübungen mit am Ziel reflektierten Laser-Strahlen
DE2336040C3 (de) Abwehrsystem mit mehreren Geschossen
DE2454453C3 (de) Vorrichtung zum Durchführen und Auswerten von Schießübungen mit Flugabwehrgeschützen mit simuliertem Feuer
EP1304539B1 (de) Verfahren und Einrichtung zum Richten eines Waffenrohres und Verwendung der Einrichtung
DE3024247C2 (de)
DE3114000A1 (de) Schiesssimulations- und -uebungsverfahren fuer ballistische munition und bewegliche ziele
DE102005007910A1 (de) Feuerwaffe für langsam fliegende Geschosse
DE602004010880T2 (de) System und Verfahren zur Waffenwirkung-Simulation
EP1688761A1 (de) Verfahren und Vorrichtung zum Entdecken von optischen Systemen in einem Geländebereich
DE3238848A1 (de) Verfahren und vorrichtung zum gesamten korrigieren des schiessvorganges von einem schuss auf den folgenden bei einer waffe mit gestreckter schussbahn
DE3507007A1 (de) Vorrichtung zum ueben des richtens mit einer schusswaffe
DE3028545C2 (de) Verfahren zur Schußsimulation bei beweglichen Zielen mittels Lichtsignalen
DE19638968A1 (de) Verfahren und Vorrichtung zur Bekämpfung anfliegender Flugkörper
DE1951622B2 (de) Anordnung zur simulierten darstellung von schussbahnen
EP0281675A2 (de) Sensor zur Bekämpfung von Hubschraubern
EP1159578B1 (de) Verfahren zur schusssimulation
EP1972881B1 (de) Optisches System und Verfahren zur Geschossbahnnachbildung mittels Laserstrahl
WO2014015983A1 (de) Verfahren zur simulation eines ausgedehnten wirkungsbereiches eines geschosses
DE3229298C2 (de) Schußsimulationsverfahren und Einrichtung zu seiner Durchführung
DE3545831C2 (de)
DE3543698C2 (de) Schießsimulations- und Übungsverfahren für direktgerichtete Waffensysteme
DE2846738A1 (de) Thermographische beobachtungs- und zielvorrichtung fuer mehrschuessige direktschuss-abwehrwaffen
DE3635816C2 (de)
CH681111A5 (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030320

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BOLLWEG, KARSTEN

Inventor name: GALLHUBER, ANTON

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BOLLWEG, KARSTEN

Inventor name: GALLHUBER, ANTON

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: RHEINMETALL DEFENCE ELECTRONICS GMBH

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: LT LV RO SI

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040616

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040616

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040616

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040616

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040616

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040616

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 50102630

Country of ref document: DE

Date of ref document: 20040722

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040728

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040728

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040731

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040731

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20040402490

Country of ref document: GR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2218440

Country of ref document: ES

Kind code of ref document: T3

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20040616

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20040616

REG Reference to a national code

Ref country code: SI

Ref legal event code: IF

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

BERE Be: lapsed

Owner name: RHEINMETALL DEFENCE ELECTRONICS G.M.B.H.

Effective date: 20040731

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050317

EN Fr: translation not filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20070713

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070719

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20070727

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20070705

Year of fee payment: 7

BERE Be: lapsed

Owner name: *RHEINMETALL DEFENCE ELECTRONICS G.M.B.H.

Effective date: 20040731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041116

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070725

Year of fee payment: 7

Ref country code: SE

Payment date: 20070712

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20070730

Year of fee payment: 7

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

EUG Se: european patent has lapsed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090204

REG Reference to a national code

Ref country code: SI

Ref legal event code: KO00

Effective date: 20090324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080728

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20080729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080728