EP1325281B1 - Procede et dispositif de simulation de tir - Google Patents

Procede et dispositif de simulation de tir Download PDF

Info

Publication number
EP1325281B1
EP1325281B1 EP01960586A EP01960586A EP1325281B1 EP 1325281 B1 EP1325281 B1 EP 1325281B1 EP 01960586 A EP01960586 A EP 01960586A EP 01960586 A EP01960586 A EP 01960586A EP 1325281 B1 EP1325281 B1 EP 1325281B1
Authority
EP
European Patent Office
Prior art keywords
laser beam
target
laser
time
trajectory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01960586A
Other languages
German (de)
English (en)
Other versions
EP1325281A1 (fr
Inventor
Karsten Bollweg
Anton Gallhuber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rheinmetall Electronics GmbH
Original Assignee
Rheinmetall Defence Electronics GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rheinmetall Defence Electronics GmbH filed Critical Rheinmetall Defence Electronics GmbH
Priority to SI200130173T priority Critical patent/SI1325281T1/xx
Publication of EP1325281A1 publication Critical patent/EP1325281A1/fr
Application granted granted Critical
Publication of EP1325281B1 publication Critical patent/EP1325281B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G3/00Aiming or laying means
    • F41G3/26Teaching or practice apparatus for gun-aiming or gun-laying
    • F41G3/2616Teaching or practice apparatus for gun-aiming or gun-laying using a light emitting device
    • F41G3/2622Teaching or practice apparatus for gun-aiming or gun-laying using a light emitting device for simulating the firing of a gun or the trajectory of a projectile
    • F41G3/2655Teaching or practice apparatus for gun-aiming or gun-laying using a light emitting device for simulating the firing of a gun or the trajectory of a projectile in which the light beam is sent from the weapon to the target
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G3/00Aiming or laying means
    • F41G3/26Teaching or practice apparatus for gun-aiming or gun-laying
    • F41G3/2616Teaching or practice apparatus for gun-aiming or gun-laying using a light emitting device
    • F41G3/2622Teaching or practice apparatus for gun-aiming or gun-laying using a light emitting device for simulating the firing of a gun or the trajectory of a projectile
    • F41G3/2683Teaching or practice apparatus for gun-aiming or gun-laying using a light emitting device for simulating the firing of a gun or the trajectory of a projectile with reflection of the beam on the target back to the weapon

Definitions

  • the invention relates to a method and a device for simulating one of Ballistic projectile firing gun at a target, preferably at a target grounded, moving or standing target, fired shot in the Preamble of claim 1 and claim 10 defined genus.
  • On Angular position calculator also determines the angular deviation between the Tube core axis of the shot tube and the center of gravity of the reflected laser radiation.
  • a flight time calculator determines the theoretical floor flight time and when the Floor flight time, another laser pulse sequence is emitted by the laser transmitter, and the angular position calculator again calculates the angular deviation between the Tube core axis and the focus of the laser radiation.
  • a range calculator calculates the correct setting of the from the target distance and the type of ammunition Gunshot.
  • the target's elevation offset at the beginning and at the end of the projectile flight time, the leveling angle of the gun to the Time of shot and range from a detonator position calculator Altitude of the explosive point or hit point and in an analogous manner with the Lateral filing of the target at the beginning and end of the missile flight time, the Side pivot angle of the gun at the time of the shot and the Firing range calculated the lateral position of the explosive point.
  • the explosive point position calculator is connected to an encoder programmed for weapon and ammunition type, the communicates with the distance calculator.
  • the encoder controls the laser transmitter so that it encoded a second, different from the first laser pulse sequence
  • Laser pulse train sends out the information about the distance to the target related lateral and height deviations of the explosive point and over Includes ammunition and weapon type.
  • This laser pulse sequence hits one at the target Arranged detector on which a hit receiver, a decoder and a Hit data computers are connected.
  • the hit data calculator determines from the transmitted information whether the weapon is effective in relation to the type of ammunition used was and calculated the effect of the detonation by comparing the extent the target in the direction of the shot and the deviation of the explosive point in the side and Height direction.
  • the invention has for its object a method for simulating the shot of the beginning Specify the type mentioned, which if the regulations on eye safety of the used laser allows larger firing distances and also when shooting at a Group of closely spaced targets did not fail. In addition, one is said to this method working device for weft simulation inexpensive to produce his.
  • the method according to the invention has the same as the device according to the invention Advantage that in addition to measuring the target with spatial resolution Distance measurement is dispensed with and therefore no complex, spatially resolving detector or a laser scanner on the barrel weapon is required.
  • the goal is exclusive in terms of its distance from the barrel weapon - and with moderate accuracy - and not additionally measured with regard to the exact target position.
  • the location information is there directly at the point of impact of the second laser beam corrected for the attachment and lead. This does not apply to a target cluster, i.e. a large number of closely adjacent targets problem of target separation occurring with a spatial resolution of the target and with the pure Distance measurement only creates a small measurement uncertainty, which is only too small Second order errors.
  • the second laser beam from encoded laser pulses always hits where the virtual floor hits, so that the target resolution from the target field is done naturally. By eliminating the need for Measuring the location of the target simplifies the device for the shot simulation and is to manufacture significantly cheaper.
  • the device for the shot simulation according to the invention is compatible with 1-way codes and 1-way passive systems with a corresponding detector arrangement, as different from the well-known 2-way simulator does not drop targets from the explosive point to the target must be transferred.
  • the device according to the invention is the only one to date Multi-way simulator for long shot ranges for the internationally widespread MILES code.
  • the achievable range only from the power of the second laser beam coded laser pulses used limited laser for reasons of compatibility existing systems, e.g. MILES, preferably for a wavelength of 905 nm is designed and its performance is limited by the limit for eye safety.
  • the laser generating the first laser beam can be independent of the laser of the second laser beam and are particularly eye-safe Wavelength, e.g. can be selected in a range between 1500 and 1800 nm.
  • the limit for eye safety is about 15,000 times higher than the wavelength around The aforementioned 905 nm, and the power of the laser can be correspondingly high interpret.
  • eye-safe laser can on the attachment of the multitude of otherwise usual reflectors at the target can be dispensed with has a positive effect on the production costs of the shot simulation device.
  • the determination of the Deviations of the trajectory from the current line of sight, the so-called Target direction, at the time of shooting and the derived swivel angle values for the performed first laser beam in the vertical direction Only if with a more refined Flight path calculation also has a spin of the selected ballistic projectile should also be taken into account, the determination of the deviations of the Trajectory carried out from the target direction at the time of the shot in azimuth and out of it Swing angle values for swiveling the first laser beam also in Horizontal direction determined.
  • the laser transmitter when using a Laser transmitter with two separate lasers to generate the two laser beams Beam cross section of the laser designed so that the target from the first laser beam illuminated area is significantly larger than that illuminated by the second laser beam Area. So you only need one retroreflector unit with four, for example Retroreflectors arranged diametrically to each other in pairs, their receiving sectors cover an all-round angle of 360 °. The divergence of the first laser beam for the Distance measurement is minimized to high radiation density at the target To enable ranges.
  • a multiplicity of Retroreflectors arranged belt-like all around, the divergence is chosen so that at a predetermined minimum distance, the first illuminating the target at any point Laser beam hits at least one retroreflector.
  • the need to use Retroreflectors depend on the type of laser used to generate the first laser beam. The power is not with the currently available 1550 nm diode lasers sufficient to enable ranges of 4000 m and more without retroreflectors. In contrast, with powerful Er: glass lasers or Raman shifted Nd: YAG lasers the retroreflectors can be omitted because the diffuse reflection of the target is sufficient, so that high savings potential is achieved by eliminating the expensive retroreflectors becomes.
  • the divergence of the first laser beam is made very small to to get high intensities at the target. Its divergence can be smaller than that of the second laser beam.
  • the low divergence has the advantage that only a few Interfering reflections from objects in the immediate vicinity of the target, such as trees, Shrubs and the like.
  • the one with the launch tube firmly connected, gun side detector on a receiving optics, the Receive divergence is at least as large as that by the deflection device induced deflection area of the laser beams.
  • the detector can be a have adjustable receiving optics, the receiving divergence of the effective Beam cross section of the first laser beam, i.e. the cross section of the illuminated area at the destination, and the receiving optics are coupled to the deflection device, that it is swiveled by the same swivel angle as the first laser beam.
  • the advantage this alternative embodiment is a better S / N ratio because the Receive divergence can be chosen smaller. The bigger one is a disadvantage optomechanical effort.
  • a highly sensitive avalanche photadiode can be used as the detection element in the detector or a PIN diode with bandpass filter can be used. Because of the narrow Reception angle and the large wavelength of the laser can measure distance run very sensitive.
  • the two laser beams are generated with a single laser, its eye-safe Wavelength preferably at 905 nm for reasons of compatibility with other systems lies. Because of the small required for performance and accuracy reasons However, a large number of retroreflectors are required for larger targets. As an alternative to retroreflectors, the laser beam can be scanned in azimuth become.
  • FIG. 1 is a terrain section with a tactical situation during a combat exercise shown, in which the aiming and shooting of a gun 10 on a Goal 11 should be practiced.
  • a battle tank 12 serves as a movable target 11 and as Gun 10 the cannon 13 of a second main battle tank 14 or one Anti-tank weapon 15, which is operated by a shooter 16 lying in cover.
  • a sight 17 (Fig. 2) is used with the Gun barrel 18 of the barrel weapon 10 is rigidly coupled, in such a way that the line of sight 171st of the visor 17 is aligned parallel to the tube core axis 181 of the shot tube 18.
  • Fig. 2 is a schematic section of the shot tube 18 of the anti-tank weapon 15 shown, on which the visor 17 is arranged directly. Line of sight 171 and Tube core axis 181 are indicated by dash-dotted lines.
  • the firing with the barrel weapon 10 is simulated by emitting a laser radiation to the target 11, what with actuating a trigger 19 (Fig. 3) or other Shot trigger member by the gunner in the main battle tank 14 or the gunner 16 is initiated. With correct alignment of the barrel weapon 10, the laser radiation strikes the Goal 11.
  • a shot simulation device is used to generate the simulated shots 20, one component 201 (FIG. 3) attached to the barrel weapon 10 and one at the target 11 attached component 202 (Fig. 4). Since a main battle tank 12 or 14 in Exercise battle both actively shoots and is shot at, it forms simultaneously Gun 10 and target 11, so that he usually with both components 201, 202 of Shot simulation device 20 is equipped.
  • a purely passive target 11 becomes only with the target component 202 and an exclusively active barrel weapon 10 only equipped with the gun component 201.
  • the component 201 of the tubular weapon shown in the block diagram in FIG. 3 Shot simulation device 20 has a shot tube 18 (FIG. 2) connected laser transmitter 21 with two separate lasers 22, 23, of which the first Laser 22, hereinafter referred to as measuring laser 22, has a wavelength in the range between 1500 - 1800 nm and the second laser 23, hereinafter called code laser 23, one Has a wavelength of 905 nm.
  • the measuring laser 22 is a laser pulse composed first laser beam 24 and with the code laser 23 from coded Existing second laser beam 25 is generated by laser pulses.
  • the measuring laser 22 is e.g.
  • the divergence of the first laser 24 is then chosen very low, which has the advantage that the goal is little or no Interfering reflections are generated and retroreflectors can be dispensed with on the target side.
  • the divergence of the measuring laser 22 can be even smaller than that of the code laser 23 second laser beam 25 of the code laser 23 has an approximately circular beam profile, wherein the diameter of the effective beam cross section of the second laser beam 25, that is Diameter of the area illuminated at target 11, approximately 1.5 times the mutual Distance from detectors arranged at the target 11, which will be described in more detail later be, corresponds.
  • the two laser beams 24, 25 always have the same at the time of their emission Direction of transmission, which by means of a deflection device 26 from a basic position in which it runs parallel to the line of sight 171, is pivoted, as dotted in FIG. 3 is indicated.
  • the swiveling of the first laser beam 24 can Direction of transmission of the second laser beam 25 emitted with a delay, synchronously are also pivoted as well as the transmission direction of the second laser beam 25 Transmitting the second laser beam 25 abruptly to the last transmission direction of the first Laser beam 24 are switched on.
  • the deflection device 26 can, for example by means of two swivel mirrors 261, 262 which are coupled to one another and each adjustable in azimuth and elevation by an actuator. One each Laser beam 24 or 25 is guided over a swivel mirror 261, 262. Alternatively, you can also used electro-optical or acousto-optical deflectors for beam deflection become.
  • the gun component 20 of the gun simulation device 20 belongs to the gun furthermore a detector 27 for receiving the first reflected at the target 11 Laser beam 24 of the measuring laser 22.
  • a detector 27 for receiving the first reflected at the target 11 Laser beam 24 of the measuring laser 22.
  • the measuring detector 27 can e.g. a highly sensitive avelanche photodiode or a PIN diode with bandpass filter used become.
  • the measuring detector 27 is firmly connected to the barrel 18 of the barrel weapon 10, so that its optical axis 271 is aligned parallel to the tube core axis 181 (Fig. 2).
  • the receiving divergence of its receiving optics is as large as that by Deflection device 26 maximum deflection of the laser beams 24, 25 in elevation and if necessary in azimuth from its basic position.
  • the receiving optics of the measuring detector 27 are coupled to the deflection device 26 so that their optical axis is pivoted synchronously with the first laser beam 24.
  • the receiving optics have a receiving divergence on the effective beam cross section the first laser beam 24, i.e. the one illuminated by the first laser beam 24 at the target 11 Area.
  • the measuring detector 27 is a transit time meter 28 and a distance calculator 29 downstream, which are usually summarized a Entfemungemeßelektronik.
  • the transit time of the reflected laser pulses of the first is in the transit time meter 28
  • Laser beam 24 determines what the time from sending a laser pulse to measured and halved to receive the same reflected laser pulse.
  • the Transmission frequency of the laser pulses of the measuring laser 22 is chosen so that the time The distance between successively emitted laser pulses is much larger than that Running time of the laser pulses from transmission to reception with maximum range.
  • the distance calculator 29 calculates the time from the reflected laser pulses Target distance r.
  • the gun component 20 of the firing simulation device 20 also includes a trajectory computer 30, which is connected on the input side to the removal computer 29, a self-motion sensor system 31, an ammunition selector 32 and a control unit 33 and on the output side to the deflection device 26 and the control unit 33.
  • the control unit 33 is still connected on the input side to the trigger 19 of the barrel weapon 10 and controls the laser transmitter 21 and the trajectory computer 30 on the output side.
  • the trajectory computer 30 is used to calculate the trajectory of a projectile selected by means of the ammunition selector 32, taking into account the alignment of the shot tube 18 in azimuth and Elevation, ie the position of the shot tube 18 at the moment of the fictitious firing of the ballistic projectile.
  • a trajectory 34 is shown by way of example in FIG.
  • the trajectory computer 30 calculates the deviations ⁇ z of the trajectory 34 from the current orientation of the line of sight 171 of the sight 17 by the shooter, hereinafter referred to as the target direction, at the time of the triggering of the simulated shot by the shooter in elevation, namely as a pivot angle ⁇ z an imaginary straight line drawn through the respective trajectory point from the coordinate origin relative to the target direction at the time of firing, and forms control signals for the deflection device 26 therefrom.
  • the trajectory computer 30 additionally calculates the deviations ⁇ x Trajectory 34 from the target direction at the time of the shot in azimuth, namely as the swivel angle ⁇ x of the imaginary straight line drawn through the second trajectory point from the origin of the coordinator with respect to the target direction at the time of the shot, and likewise forms control signals for the deflection oroplasty.
  • the Shot tube 18 in the time between triggering the simulated shot to the hit of the target 11 with the first laser beam 24, which e.g. by pursuing the moving target 11 'with the visor 17 can be caused by the shooter the self-motion components of the shot tube from a self-motion sensor system 31 18 in elevation and azimuth as deviations of the line of sight 171 from the target direction to Time of shot, e.g. by one or two-axis gyroscope, and in the trajectory computer 30, the control signals generated by this for the deflection device 26 with the Corrected data supplied by the own motion sensor system 31 so that the target direction is kept constant.
  • the target-side component 202 of the simulation device 20 shown in FIG. 4 comprises a plurality of detectors 35 arranged on the surface of the target 11 and for receiving the coded laser pulses from the code laser 23 second laser beam 25 are formed.
  • the detectors 35 surround in the case of Training the target 11 as a battle tank 12, the battle tank 12 belt-like in horizontal Direction, with the detectors 35 being approximately the same distance apart.
  • the Detectors 35 are equipped with evaluation electronics 36 for decoding the code laser 23 transmitted information and for the calculation of hit damage connected in a display unit 37 are displayed.
  • a retroreflector unit 38 is arranged, which consists of several, here four by 90 ° Circumferential angle offset from each other, there are retroreflectors, their receiving sectors cover an all-round angle of 360 °.
  • the firing simulation device 20 described above with its gun side Component 201 and its target component 202 operates as follows Method:
  • the line of sight 171 one estimated by the gunner of the main battle tank 14 or the gunner 16 Lead and attachment (horizontal and vertical placement of line of sight 171 from goal 11) is moved relative to the target point, the trigger 19 is operated by the shooter.
  • the control unit 33 which on the one hand the laser transmitter 21, and here the measuring laser 22, and on the other hand the flight path computer 30 activated.
  • the measuring laser 22 transmits the first laser beam 24 composed of laser pulses.
  • the trajectory 34 of the fired virtual projectile is calculated in the trajectory computer 30 in accordance with the orientation of the sight 17 and thus of the shoe tube 18 at the time of the firing for the selected type of projectile, and the ballistic deviation ⁇ z and possibly the lateral deviation ⁇ x (FIG. 5) of the trajectory are continuously calculated 34 determined from the target direction at the time of shooting.
  • the flight path computer 30 determines - as explained above - these deviations as the swivel angle ⁇ z in elevation and possibly ⁇ x in azimuth and forms control signals therefrom which are applied to the deflection device 26.
  • the first laser beam 24 of the measuring laser 22 is continuously pivoted downwards by the deflection device 26, as is shown in FIG.
  • the laser beam 24 hits the target 11 during the flight time of the virtual projectile, the laser pulses are reflected at the target 11 and received by the measurement detector 27.
  • the transit time of the reflected laser pulses is measured (transit time meter 28) and the target distance r is determined therefrom (distance calculator 29).
  • the theoretical swivel angle values of the first laser beam 24 resulting from the flight path data for the measured target distance r are calculated with respect to the target direction at the time of the shot and are calculated with the actual swivel angle values ⁇ z belonging to the target distance r and possibly ⁇ x of the first laser beam 24 compared to the target direction at the time of the shot, which the laser beam 24 has in real time at the time it strikes the target 11.
  • the flight time of the virtual projectile required for the measured target distance r is calculated in the flight path computer 30 and with the time elapsed since the shot was fired, i.e. the time from the time of the shot, i.e.
  • the control unit 33 activates the code laser 23, which emits the second laser beam 25, in the same transmission direction as the measurement laser 22 shows last.
  • the coding of the second laser beam 25 contains information about the type of projectile and weapon and the identity of the shooter. If the gunner has aimed the gun 10 largely correctly with reference and attachment at the target 11, one of the detectors 35 of the target 11 will be hit by the laser pulses of the second laser beam 25.
  • the evaluation electronics 36 determines the damage caused at the destination 11 from the position of the hit detector 35 on the target 11 and the information transmitted with the laser pulses and decoded in the evaluation electronics 36.
  • the second laser beam 25 is emitted by the code laser 23
  • the thrust simulation is ended, and the control unit 33 switches off the flight path computer 30, the control signals at the deflection device 26 being eliminated and the deflection device 26 returning to its starting position, so that the transmission directions of the lasers 22, 23 are again aligned parallel to the line of sight 171.
  • Retroreflektoriser 38 (Fig. 4) mentioned above can be provided to the To increase the range of the measuring laser 22 or the power of the same range Measuring laser 22 to reduce.
  • the beam cross sections of the two Laser beams 24, 25 designed so that the target 10 at a predetermined Minimum distance from the first laser beam 24 illuminated area is significantly greater than the area illuminated by the second laser beam.
  • the dimensions of the first Laser beam 24 illuminated area then becomes little larger than the horizontal dimension of the largest target 11 and slightly larger than twice the vertical dimension of the target 11 designed at the still permitted minimum distance.
  • a diode laser is used, such a retroreflector unit 38 is absolutely necessary you want to reach ranges of 4000 m and more.
  • the two can be delayed emitted laser beams 24, 25 with a single laser which is made up of Compatibility reasons with other systems of a battlefield training center with an eye-safe wavelength of 905 nm works.
  • the Optoelectrical effort on the transmitter side is lower, but due to the Regulations on eye safety without additional optical effort at the target only relatively short ranges for distance measurement can be realized.
  • a plurality of retroreflectors is also Goal 11 essential. The divergence of the laser beam is then chosen so that at a permitted minimum target distance that illuminates target 11 at any point Laser beam hits at least one retroreflector.
  • the set target height angle using a suitable sensor measured and included in the trajectory calculation.
  • a tilting of the barrel weapon 10 can be detected and in the trajectory calculation be taken into account.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • General Engineering & Computer Science (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Thermistors And Varistors (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Manipulator (AREA)
  • Glass Compositions (AREA)
  • Ceramic Capacitors (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Claims (20)

  1. Procédé pour simuler un tir effectué par une arme à canon (10) tirant des projectiles balistiques sur une cible (11), de préférence sur une cible terrestre mobile ou fixe, avec lequel, après avoir aligné sur la cible (11) un viseur (17) dont la ligne de mire (171) est parallèle à la ligne de tir du canon (181) de l'arme à canon (10) avec réglage d'une dérive horizontale (déviation) et une dérive verticale (lunette de visée) de la ligne de mire (171) par rapport à la cible (11), une détente (19) est actionnée manuellement en vue de déclencher le tir, un premier rayon laser (24) composé d'impulsions laser est émis en actionnant la détente (19) sur l'arme à canon (10), la trajectoire (34) du projectile virtuel tiré est calculée et les écarts de la trajectoire (34) par rapport à l'alignement momentané de la ligne de mire au moment du tir sont déterminés continuellement, le premier rayon laser (24) est pivoté selon des valeurs d'angle de pivotement correspondant aux écarts de la trajectoire, le temps de propagation de l'impulsion laser réfléchie par la cible (11) est mesuré et la distance de la cible (r) est ensuite déterminée, soit le temps passé entre le moment du tir et la réception de l'impulsion laser réfléchie est comparé avec le temps de vol du projectile virtuel tiré calculé pour la distance de la cible (r), soit les valeurs réelles de l'angle de pivotement du premier rayon laser (24), réglées en fonction de la distance de la cible (r) par rapport à l'alignement momentané de la ligne de mire au moment du tir sont comparées avec les valeurs théoriques de l'angle de pivotement du premier rayon laser (24) calculées à partir des données de la trajectoire par rapport à l'alignement momentané de la ligne de mire au moment du tir et, en cas de concordance au sein d'une plage de tolérances, un deuxième rayon laser (25) composé d'impulsions laser codées est émis dans la dernière direction d'émission adoptée par le premier rayon laser (24), dont le codage contient des informations sur les données du tir de l'arme à canon (10), par exemple le type de munition et d'arme, l'identité du tireur (16), et du côté de la cible, lors de la réception du deuxième rayon laser (25), un dommage de l'impact est calculé au moyen d'une pluralité de détecteurs (35) disposés de manière distribuée sur la surface de la cible (11) à partir de la position du détecteur (35) récepteur sur la cible (11) et des informations décodées.
  2. Procédé selon la revendication 1, caractérisé en ce que la détermination des écarts (Δz) de la trajectoire (34) par rapport à l'alignement momentané de la ligne de mire au moment du tir et les valeurs de l'angle de pivotement (αz) du premier rayon laser (24) qui en sont dérivées est effectuée en élévation.
  3. Procédé selon la revendication 2, caractérisé en ce que la détermination des écarts (Δx) de la trajectoire (34) par rapport à l'alignement momentané de la ligne de mire au moment du tir et les valeurs de l'angle de pivotement (x) du premier rayon laser (24) qui en sont dérivées est en plus effectuée en azimut.
  4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que les écarts de la ligne de mire par rapport à l'alignement momentané de la ligne de mire au moment du tir sont continuellement mesurés et les valeurs de l'angle de pivotement (αz, αX) du premier rayon laser (24) sont utilisés pour la correction.
  5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce qu'un laser unique ayant une longueur d'onde sans danger pour les yeux, de préférence de 905 nm, est utilisé pour l'émission décalée dans le temps des deux rayons laser (24, 25) et une pluralité de réflecteurs (38) est prévue du côté de la cible.
  6. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que deux lasers séparés (22, 23) ayant de préférence des longueurs d'onde différentes sont utilisés pour l'émission décalée dans le temps des deux rayons laser (24, 25).
  7. Procédé selon la revendication 6, caractérisé en ce que les deux rayons laser (24, 25) sont liés de sorte que le premier rayon laser (24) éclaire une surface sur la cible (11) nettement supérieure à celle du deuxième rayon laser (25) et qu'une unité de réflexion (38) conçue pour une réception panoramique est prévue du côté de la cible.
  8. Procédé selon la revendication 6, caractérisé en ce que le premier rayon laser (24) est généré avec un laser plus puissant et que la divergence du premier rayon laser (24) est choisie très petite.
  9. Procédé selon l'une des revendications 6 à 8, caractérisé en ce que le profil de rayon du deuxième rayon laser (25) est dimensionné de sorte que les dimensions de la surface éclairée par le deuxième rayon laser (25) sur la cible (11) correspond approximativement à 1,5 fois la distance entre les détecteurs (35) sur la cible (11).
  10. Dispositif pour simuler un tir effectué par une arme à canon (10), qui présente un viseur (17) à l'alignement fixe avec sa ligne de mire (171) parallèle à la ligne de tir du canon (181) et une détente (19) pour déclencher le tir, tirant des projectiles balistiques sur une cible (11), de préférence sur une cible (11) terrestre mobile ou fixe, qui présente du côté de l'arme à canon un émetteur à laser (21) couplé à demeure avec l'arme à canon (10) pour émettre dans la même direction et avec un décalage dans le temps un premier rayon laser (24) composé d'impulsions laser et un deuxième rayon laser (25) composé d'impulsions laser codées, une unité de commande (33) pouvant être activée par la détente (19) qui, lorsqu'elle est activée, commande à l'émetteur à laser (21) d'émettre le premier rayon laser, un détecteur (27) couplé à demeure avec l'arme à canon (10) pour recevoir les impulsions laser du premier rayon laser (24) réfléchies sur la cible (11), un appareil de mesure du temps de propagation (28) branché à la suite du détecteur (27) pour mesurer le temps de propagation des impulsions laser réfléchies du premier rayon laser (24), un calculateur de distance (29) pour calculer la distance de la cible (r) à partir du temps de propagation et un calculateur de trajectoire (30) relié au calculateur de distance (29) pour calculer les données de trajectoire du projectile virtuel tiré et, du côté de la cible, une pluralité de détecteurs (35) disposés de manière distribuée sur la surface de la cible et configurés pour recevoir le deuxième rayon laser (25) ainsi qu'un circuit électronique d'analyse (35) relié aux détecteurs (35) pour calculer les dommages de l'impact, caractérisé en ce qu'un dispositif de déviation (26) destiné à faire pivoter la direction d'émission des rayons laser (24, 25) est relié au calculateur de trajectoire (30), qu'avec l'émission du premier rayon laser (24) le calculateur de trajectoire (30) calcule continuellement l'écart de la trajectoire (34) par rapport à l'alignement momentané de la ligne de mire au moment du tir et l'applique en tant que signaux de commande au dispositif de déviation (26), lequel fait pivoter le premier rayon laser (24) par rapport à l'alignement momentané de la ligne de mire au moment du tir de l'angle de pivotement (αz, αx) correspondant aux signaux de commande, que le calculateur de trajectoire (30) calcule soit le temps de vol du projectile virtuel tiré pour la distance de la cible (r) calculée par le calculateur de distance (29) et le compare avec le temps passé entre le moment du tir et la réception des impulsions laser réfléchies du premier rayon laser (24), soit calcule l'angle de pivotement théorique du premier rayon laser (24) par rapport à l'alignement momentané de la ligne de mire au moment du tir à partir des données de trajectoire pour la distance de la cible (r) calculée par le calculateur de distance (29) et le compare avec les angles de pivotement réels (αz, αX) du premier rayon laser (24) par rapport à l'alignement momentané de la ligne de mire au moment du tir et, en cas de concordance au sein d'une plage de tolérances, génère un signal d'activation pour émettre le deuxième rayon laser (25) dans la dernière direction d'émission adoptée par le premier rayon laser (24).
  11. Dispositif selon la revendication 10, caractérisé en ce que le calcul de l'écart de la trajectoire (Δz, Δx) par rapport à l'alignement momentané de la ligne de mire au moment du tir et de l'angle de pivotement (αz, αX) du premier rayon laser (24) qui en est déduit est effectué en élévation et en plus en azimut si le projectile sélectionné présente une tendance à la torsion.
  12. Dispositif selon la revendication 10 ou 11, caractérisé en ce que l'émetteur à laser (21) présente un laser unique ayant une longueur d'onde sans danger pour les yeux, de préférence de 905 nm, pour générer le premier et le deuxième rayon laser (24, 25) et une pluralité de rétro-réflecteurs est disposée de manière distribuée sur la surface de la cible (11).
  13. Dispositif selon la revendication 10 ou 11, caractérisé en ce que l'émetteur à laser (21) présente un laser (22) ayant une longueur d'onde comprise entre 1500 et 1800 nm pour générer le premier rayon laser (24) et un laser (23) ayant une longueur d'onde de 905 nm pour générer le deuxième rayon laser.
  14. Dispositif selon la revendication 13, caractérisé en ce que la surface éclairée par le premier rayon laser (24) sur la cible (11) est nettement supérieure à la surface éclairée par le deuxième rayon laser (25) et qu'une unité de rétro-réflexion (38) conçue pour une réception panoramique est disposée approximativement au centre de la cible (11).
  15. Dispositif selon la revendication 13, caractérisé en ce qu'une pluralité de rétro-réflecteurs est disposée sur la cible (11) et que la divergence du premier rayon laser (24) est choisie de sorte qu'avec une distance minimale autorisée de la cible (r), le premier rayon laser (24) qui éclaire la cible en un endroit quelconque vienne frapper au moins un rétro-réflecteur.
  16. Dispositif selon la revendication 13, caractérisé en ce que le laser (22) utilisé pour générer le premier rayon laser (24) est puissant et le premier rayon laser (24) présente une très petite divergence.
  17. Dispositif selon l'une des revendications 13 à 16, caractérisé en ce que le deuxième rayon laser (25) possède un profil de rayon tel que les dimensions de la surface éclairée par le rayon laser (25) sur la cible (11) correspond approximativement à 1,5 fois la distance entre les détecteurs (35) sur la cible (11).
  18. Dispositif selon l'une des revendications 1 à 17, caractérisé en ce que le détecteur (27) relié à demeure avec le canon (18) de l'arme à canon (10) présente une optique de réception dont la divergence de réception est au moins aussi grande que la plage de déviation des rayons laser (24, 25) provoquée par le dispositif de déviation (26).
  19. Dispositif selon l'une des revendications 1 à 17, caractérisé en ce que le détecteur (27) relié à demeure avec le canon (18) de l'arme à canon (10) présente une optique de réception réglable dont la divergence de réception correspond à la section effective du rayon du premier rayon laser (24) et que l'optique de réception est couplée au dispositif de déviation (26) de manière à être pivotée du même angle de pivotement (αz, αX) que le premier rayon laser (24).
  20. Dispositif selon l'une des revendications 1 à 19, caractérisé en ce que le calculateur de trajectoire (30) est relié avec un détecteur de mouvement propre (31) qui détecte le mouvement propre de l'arme à canon (10) et, à l'aide des données délivrées par le détecteur de mouvement propre (31), corrige les signaux de commande du dispositif de déviation (26) dans le sens d'une compensation du mouvement propre de l'arme à canon (10) sur l'alignement de la cible.
EP01960586A 2000-10-13 2001-07-28 Procede et dispositif de simulation de tir Expired - Lifetime EP1325281B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SI200130173T SI1325281T1 (en) 2000-10-13 2001-07-28 Method and device for simulating firing

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10050691A DE10050691A1 (de) 2000-10-13 2000-10-13 Verfahren und Vorrichtung zur Schussimulation
DE10050691 2000-10-13
PCT/EP2001/008775 WO2002031429A1 (fr) 2000-10-13 2001-07-28 Procede et dispositif de simulation de tir

Publications (2)

Publication Number Publication Date
EP1325281A1 EP1325281A1 (fr) 2003-07-09
EP1325281B1 true EP1325281B1 (fr) 2004-06-16

Family

ID=7659616

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01960586A Expired - Lifetime EP1325281B1 (fr) 2000-10-13 2001-07-28 Procede et dispositif de simulation de tir

Country Status (16)

Country Link
US (1) US6549872B2 (fr)
EP (1) EP1325281B1 (fr)
AT (1) ATE269532T1 (fr)
AU (1) AU2001282044A1 (fr)
BG (1) BG65142B1 (fr)
CA (1) CA2341851A1 (fr)
CZ (1) CZ2003872A3 (fr)
DE (2) DE10050691A1 (fr)
DK (1) DK1325281T3 (fr)
ES (1) ES2218440T3 (fr)
HU (1) HU225640B1 (fr)
PL (1) PL360247A1 (fr)
SK (1) SK4002003A3 (fr)
TR (1) TR200401817T4 (fr)
WO (1) WO2002031429A1 (fr)
ZA (1) ZA200302779B (fr)

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE520607C2 (sv) * 2001-03-30 2003-07-29 Saab Ab Förfarande och anordning för träffindikering
IL143603A0 (en) * 2001-06-06 2003-06-24 C T S Combat Training Simulati Combat simulation system and method
US20040005531A1 (en) * 2002-07-03 2004-01-08 Deepak Varshneya Precision zeroed small-arms transmitter (ZSAT) with shooter sight-picture compensation capability
US6995660B2 (en) * 2002-09-26 2006-02-07 Bae Systems Information And Electronic Systems Integration Inc. Commander's decision aid for combat ground vehicle integrated defensive aid suites
US7121464B2 (en) * 2003-05-29 2006-10-17 White Thompkins W Automated projectile delivery system
US7147472B1 (en) * 2003-10-23 2006-12-12 The United States Of America As Represented By The Secretary Of The Army Laser aim scoring system
EP1580517B1 (fr) * 2004-03-26 2007-12-26 Saab Ab Système et procédé pour la simulation d'effet d'arme
DE102004039336B4 (de) * 2004-08-12 2006-07-06 C.O.E.L. Entwicklungsgesellschaft Mbh Einrichtung zur Leistungssteigerung und Verbesserung der Auswertung in einem Gefechtsübungszentrum
DE102004042144B4 (de) * 2004-08-31 2010-12-30 Ruag Coel Gmbh Verfahren und Vorrichtung zur Schußsimulation von direkt gerichteten Waffen mittels Laserlichts
EP1696198B1 (fr) * 2005-02-28 2014-07-16 Saab Ab Procédé et système de simulation de feu
EP1710769B1 (fr) * 2005-04-06 2016-03-16 Saab Ab Appareil de simulation
DK1737146T3 (en) * 2005-06-22 2016-01-18 Saab Ab System and method for transmitting information
US8827707B2 (en) * 2005-08-01 2014-09-09 Cubic Corporation Two beam small arms transmitter
US9316462B2 (en) 2005-08-01 2016-04-19 Cubic Corporation Two beam small arms transmitter
US7599814B2 (en) * 2006-04-27 2009-10-06 Hrl Laboratories, Llc System and method for computing reachable areas
US20080206718A1 (en) * 2006-12-01 2008-08-28 Aai Corporation Apparatus, method and computer program product for weapon flyout modeling and target damage assessment
DE102007014290A1 (de) 2007-03-22 2008-09-25 Jenoptik Laser, Optik, Systeme Gmbh Optisches System und Verfahren zur Geschossbahnnachbildung mittels Laserstrahl
WO2008137934A1 (fr) * 2007-05-07 2008-11-13 Raytheon Sarcos, Llc Système numérique de détection de blessure
US8191421B2 (en) * 2007-05-07 2012-06-05 Raytheon Company Digital ballistic impact detection system
US8414298B2 (en) * 2008-03-13 2013-04-09 Cubic Corporation Sniper training system
DE102009004179A1 (de) * 2009-01-09 2010-07-15 Rheinmetall Landsysteme Gmbh Vorrichtung zur Simulation der akustischen und/oder optischen Darstellung des Abfeuerns einer an einem Objekt, insbesondere Fahrzeug anordbaren Waffe
US8204094B2 (en) * 2009-04-21 2012-06-19 Innova, Inc. Scalable, efficient laser systems
US8234070B2 (en) * 2009-06-18 2012-07-31 Aai Corporation Apparatus, system, method, and computer program product for detecting projectiles
WO2011041001A1 (fr) * 2009-06-18 2011-04-07 Aai Corporation Procédé et système pour corréler des évènements de tir d'arme à des évènements de marquage de points
US8275571B2 (en) * 2009-06-18 2012-09-25 Aai Corporation Method and system for correlating weapon firing events with scoring events
US8706440B2 (en) * 2009-06-18 2014-04-22 Aai Corporation Apparatus, system, method, and computer program product for registering the time and location of weapon firings
US8328557B2 (en) * 2010-01-08 2012-12-11 Lockheed Martin Corporation Simultaneous multi-source scanning for sectorized simulated projectile trajectories
WO2011110265A1 (fr) * 2010-03-12 2011-09-15 Rheinmetall Defence Electronics Gmbh Module de balayage pour mesurer une cible
WO2012002856A1 (fr) * 2010-06-30 2012-01-05 Saab Ab Système de cible sans fil
US8512041B2 (en) 2010-10-27 2013-08-20 Lockheed Martin Corporation Combat simulation at close range and long range
RU2478897C2 (ru) * 2011-06-03 2013-04-10 Михаил Витальевич Головань Способ обучения операторов высокоточного оружия
US9121785B2 (en) 2012-04-24 2015-09-01 Sarcos Lc Non-powered impact recorder
US9830408B1 (en) * 2012-11-29 2017-11-28 The United States Of America As Represented By The Secretary Of The Army System and method for evaluating the performance of a weapon system
RU2558407C2 (ru) * 2013-12-26 2015-08-10 Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военная академия войсковой противовоздушной обороны Вооруженных Сил Российской Федерации имени Маршала Советского Союза А.М. Василевского" Министерства Обороны Российской Федерации Способ определения наклонной дальности воздушной цели по ее установленной скорости
CN103808204B (zh) * 2014-02-24 2015-07-08 浙江工业大学之江学院 基于靶上实弹弹孔与枪支姿态检测的射击瞄准轨迹检测方法
US10734943B2 (en) * 2014-09-12 2020-08-04 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Photovoltaics optimized for laser remote power applications at eye-safer wavelengths
US9429397B1 (en) * 2015-02-27 2016-08-30 Kevin W. Hill System, device, and method for detection of projectile target impact
EP3312544A1 (fr) * 2016-10-21 2018-04-25 CMI Defence S.A. Support d'interface pour un systeme de visée
US11175112B2 (en) 2016-11-25 2021-11-16 Saab Ab Simulation device and a method for facilitating simulation of a shot from a weapon
CN106840007A (zh) * 2017-04-07 2017-06-13 赵�怡 一种结合可调激光测距探头阵列与智能终端的空间扫描系统及方法
US10835803B2 (en) * 2019-03-18 2020-11-17 Rapsodo Pte. Ltd. Object trajectory simulation
CN110543169B (zh) * 2019-08-16 2022-05-24 深圳优地科技有限公司 机器人避障方法、装置、机器人及存储介质
GB2595213B (en) * 2020-05-12 2024-02-21 Mbda Uk Ltd Safety assembly
CN112711035A (zh) * 2020-12-17 2021-04-27 安徽科创中光科技有限公司 一种可自动修正弹道轨迹的便携式测风激光雷达系统
CN112729011B (zh) * 2020-12-25 2022-03-22 南京理工大学 一种小空间无弹化校枪方法
CN114396917B (zh) * 2022-02-25 2023-11-10 北京华昊水利水电工程有限责任公司 一种橡胶坝安全检测方法及系统
CN115164646B (zh) * 2022-06-28 2023-09-15 中国人民解放军63863部队 复合制导的炮弹的射表基本诸元的计算方法及装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE6900992U (de) * 1969-01-08 1969-10-02 Grundig Emv Magnetbandkassette mit vorrichtung zur verhinderung unbeabsichtigter loeschung bespielter baender
BE793514A (fr) 1971-12-31 1973-04-16 Saab Scania Ab Simulateur a impulsions laser pour entrainement au tir
FR2477695A1 (fr) * 1980-03-07 1981-09-11 Giravions Dorand Procede et appareillage de commande de tir sur cible reelle
DE3114000C2 (de) * 1981-04-07 1983-04-28 Precitronic Gesellschaft für Feinmechanik und Electronic mbH, 2000 Hamburg Schießsimulations- und -übungsverfahren für ballistische Munition und bewegliche Ziele
DE3507007A1 (de) 1985-02-27 1986-08-28 Precitronic Gesellschaft für Feinmechanik und Electronic mbH, 2000 Hamburg Vorrichtung zum ueben des richtens mit einer schusswaffe
DE3543698C2 (de) * 1985-12-11 1994-04-21 Hipp Johann F Schießsimulations- und Übungsverfahren für direktgerichtete Waffensysteme
DE3543647C2 (de) * 1985-12-11 1994-02-24 Hipp Johann F Einrichtung zur Vermessung von durch Reflektoren markierten Raumpunkten und darauf gerichteter Kommunikation mit Licht
GB2220051A (en) * 1988-06-27 1989-12-28 Schlumberger Ind Ltd Weapon training systems
DE19912093A1 (de) 1999-03-18 2000-09-28 Stn Atlas Elektronik Gmbh Verfahren zur Schußsimulation

Also Published As

Publication number Publication date
AU2001282044A1 (en) 2002-04-22
ZA200302779B (en) 2003-10-14
ATE269532T1 (de) 2004-07-15
PL360247A1 (en) 2004-09-06
ES2218440T3 (es) 2004-11-16
DK1325281T3 (da) 2004-08-02
BG65142B1 (bg) 2007-03-30
BG107710A (en) 2003-12-31
CZ2003872A3 (cs) 2003-12-17
EP1325281A1 (fr) 2003-07-09
CA2341851A1 (fr) 2002-04-13
WO2002031429A1 (fr) 2002-04-18
HUP0303748A2 (en) 2004-03-01
US20020045999A1 (en) 2002-04-18
HU225640B1 (en) 2007-05-02
DE50102630D1 (de) 2004-07-22
DE10050691A1 (de) 2002-05-02
US6549872B2 (en) 2003-04-15
TR200401817T4 (tr) 2004-09-21
SK4002003A3 (en) 2003-10-07

Similar Documents

Publication Publication Date Title
EP1325281B1 (fr) Procede et dispositif de simulation de tir
DE2907590C2 (de) Verfahren und Vorrichtung zum Auswerten von simulierten Schießübungen mit am Ziel reflektierten Laser-Strahlen
DE2336040C3 (de) Abwehrsystem mit mehreren Geschossen
DE2454453C3 (de) Vorrichtung zum Durchführen und Auswerten von Schießübungen mit Flugabwehrgeschützen mit simuliertem Feuer
EP1304539B1 (fr) Procédé et dispositif pour pointer un tube de cannon et utilisation du dispositif
DE3024247C2 (fr)
DE8790064U1 (de) Feuerleiteinrichtung für Geschütze
DE3114000A1 (de) Schiesssimulations- und -uebungsverfahren fuer ballistische munition und bewegliche ziele
DE102005007910A1 (de) Feuerwaffe für langsam fliegende Geschosse
DE602004010880T2 (de) System und Verfahren zur Waffenwirkung-Simulation
EP1688761A1 (fr) Procédé et dispositif destinés à la découverte de systèmes optiques dans une zone de terrain
DE3238848A1 (de) Verfahren und vorrichtung zum gesamten korrigieren des schiessvorganges von einem schuss auf den folgenden bei einer waffe mit gestreckter schussbahn
DE3507007A1 (de) Vorrichtung zum ueben des richtens mit einer schusswaffe
DE3028545C2 (de) Verfahren zur Schußsimulation bei beweglichen Zielen mittels Lichtsignalen
DE1951622C3 (de) Anordnung zur simulierten Darstellung von Schußbahnen
DE19638968A1 (de) Verfahren und Vorrichtung zur Bekämpfung anfliegender Flugkörper
EP1159578B1 (fr) Procede de simulation de tir
EP1972881B1 (fr) Système optique et procédé de reconstitution de la trajectoire d'un projectile à l'aide d'un rayon laser
WO2014015983A1 (fr) Procédé de simulation d'une zone d'action étendue d'un projectile
DE3229298C2 (de) Schußsimulationsverfahren und Einrichtung zu seiner Durchführung
DE3545831C2 (fr)
DE3543698C2 (de) Schießsimulations- und Übungsverfahren für direktgerichtete Waffensysteme
DE2846738A1 (de) Thermographische beobachtungs- und zielvorrichtung fuer mehrschuessige direktschuss-abwehrwaffen
DE3635816C2 (fr)
CH681111A5 (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030320

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BOLLWEG, KARSTEN

Inventor name: GALLHUBER, ANTON

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BOLLWEG, KARSTEN

Inventor name: GALLHUBER, ANTON

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: RHEINMETALL DEFENCE ELECTRONICS GMBH

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: LT LV RO SI

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040616

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040616

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040616

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040616

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040616

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040616

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 50102630

Country of ref document: DE

Date of ref document: 20040722

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040728

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040728

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040731

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040731

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20040402490

Country of ref document: GR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2218440

Country of ref document: ES

Kind code of ref document: T3

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20040616

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20040616

REG Reference to a national code

Ref country code: SI

Ref legal event code: IF

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

BERE Be: lapsed

Owner name: RHEINMETALL DEFENCE ELECTRONICS G.M.B.H.

Effective date: 20040731

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050317

EN Fr: translation not filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20070713

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070719

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20070727

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20070705

Year of fee payment: 7

BERE Be: lapsed

Owner name: *RHEINMETALL DEFENCE ELECTRONICS G.M.B.H.

Effective date: 20040731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041116

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070725

Year of fee payment: 7

Ref country code: SE

Payment date: 20070712

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20070730

Year of fee payment: 7

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

EUG Se: european patent has lapsed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090204

REG Reference to a national code

Ref country code: SI

Ref legal event code: KO00

Effective date: 20090324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080728

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20080729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080728