EP1319009A1 - Zwischenprodukte bei der cephalosoprinherstellung - Google Patents

Zwischenprodukte bei der cephalosoprinherstellung

Info

Publication number
EP1319009A1
EP1319009A1 EP01967326A EP01967326A EP1319009A1 EP 1319009 A1 EP1319009 A1 EP 1319009A1 EP 01967326 A EP01967326 A EP 01967326A EP 01967326 A EP01967326 A EP 01967326A EP 1319009 A1 EP1319009 A1 EP 1319009A1
Authority
EP
European Patent Office
Prior art keywords
cefuroxime
salt
butylamine
axetil
production
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP01967326A
Other languages
English (en)
French (fr)
Other versions
EP1319009B1 (de
Inventor
Peter Kremminger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sandoz AG
Original Assignee
Biochemie GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Biochemie GmbH filed Critical Biochemie GmbH
Priority to AT01967326T priority Critical patent/ATE412001T1/de
Publication of EP1319009A1 publication Critical patent/EP1319009A1/de
Application granted granted Critical
Publication of EP1319009B1 publication Critical patent/EP1319009B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D501/00Heterocyclic compounds containing 5-thia-1-azabicyclo [4.2.0] octane ring systems, i.e. compounds containing a ring system of the formula:, e.g. cephalosporins; Such ring systems being further condensed, e.g. 2,3-condensed with an oxygen-, nitrogen- or sulfur-containing hetero ring
    • C07D501/02Preparation
    • C07D501/04Preparation from compounds already containing the ring or condensed ring systems, e.g. by dehydrogenation of the ring, by introduction, elimination or modification of substituents
    • C07D501/06Acylation of 7-aminocephalosporanic acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D501/00Heterocyclic compounds containing 5-thia-1-azabicyclo [4.2.0] octane ring systems, i.e. compounds containing a ring system of the formula:, e.g. cephalosporins; Such ring systems being further condensed, e.g. 2,3-condensed with an oxygen-, nitrogen- or sulfur-containing hetero ring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents

Definitions

  • the present invention relates to cephalosporins, such as (6R,7R)-3-carbamoyloxymethyl-7- [(Z)-2-furyl-2-methoxyiminoacetamido]-3-cephem-4-carboxylic acid (cefuroxime) and (6R,7R)-3-carbamoyloxymethy!-7-[(Z)-2-furyl-2-methoxyiminoacetamido]-3-cephem-4- carboxylic acid-1 -acetoxyethylester (cefuroxime axetil), see e.g. Merck Index, 12 th edition, pages 324-325, item 2002, e.g. useful as antimicrobial agent(s).
  • cephalosporins such as (6R,7R)-3-carbamoyloxymethyl-7- [(Z)-2-furyl-2-methoxyiminoacetamido]-3-cephem-4-carboxylic acid (ce
  • compositions which contain cefuroxime as active ingredient such as commercially available compositions
  • the active ingredient exists normally in the form of a sodium salt for parenteral application; and for oral application, it exists in the form of cefuroxime axetil, e.g. in amorphous form.
  • the present invention provides a process for the production of cefuroxime in a form which may be used in pharmaceutical compositions comprising cefuroxime as an active ingredient, said process comprising the following steps: A) acylating 7-amino-3-hydroxymethyl-3-cephem-4-carboxylic acid in the form of a guanidine or amidine salt with a reactive derivative of (Z)-2-furyl-2-methoxyiminoacetic acid to obtain 7-[(Z)-2-furyl-2-methoxyiminoacetamido]-3-hydroxymethyl-3-cephem-4- carboxylic acid;
  • D1 reacting cefuroxime in the form of a salt with n-butylamine, e.g. in a solvent, in the presence of a source of sodium; and isolating cefuroxime in the form of a sodium salt from the reaction mixture; or D2)reacting cefuroxime in the form of a salt with n-butylamine, e.g. in a solvent, with
  • cefuroxime axetil 1-acetoxyethyl bromide in the presence of a base and isolating cefuroxime axetil from the reaction mixture; and optionally, converting cefuroxime axetil in crystalline form into cefuroxime axetil in an amorphous form, or into cefuroxime axetil in the form of a solid solution in a polymer, or cefuroxime axetil in the form of a surface solid (molecular) dispersion on an adsorbent.
  • Step A) may be carried out as appropriate, e.g. according, e.g. analogously, to a method as conventional; and is preferably carried out as follows: 7-amino-3-hydroxymethyl-3-cephem-4-carboxylic acid (HACA) is dissolved in a suitable solvent in the presence of an amidine or guanidine, preferably an amidine.
  • suitable solvents are known and preferably include aprotic solvents, which are capable of forming a second phase in combination with water, e.g.
  • chlorinated hydrocarbons such as dichloromethane
  • nitriles such as acetonitrile
  • ethers such as tetrahydrofuran, dimethoxyethane
  • mixtures of individual solvents e.g. solvents as mentioned above; preferably dichloromethane.
  • At least one, or more, preferably 1.02 to 1.1 equivalents of the amidine or guanidine may be used per equivalent of HACA.
  • Production of the solution may be effected at appropriate temperatures, e.g. at temperatures below room temperature, such as -70°C to -20°C, preferably about -40°C to -60°C.
  • a solution of HACA in the form of an amidine or guanidine salt may be obtained and may be isolated; or the solution obtained may be used as such for further reaction in step A).
  • a solution of HACA in the form of an amidine or guanidine salt is brought into contact with a reactive derivative of (Z)-2-furyl-2-methoxyiminoacetic acid, e.g. mixed with it.
  • Reactive derivatives of (Z)-2-furyl-2-methoxyiminoacetic acid include, for example, mixed anhydrides and acid halides, e.g. the acid chloride of (Z)-2-furyl-2- methoxyiminoacetic acid.
  • Processes for the production of the acid chloride of (Z)-2-furyl-2- methoxyiminoacetic acid are known; preferably, (Z)-2-furyl-2-methoxyiminoacetic acid is reacted with oxalyl chloride at appropriate temperatures, e.g. ca. 0°C, in a suitable solvent, e.g.
  • one of the above-mentioned solvents for the production of a salt of HACA with an amidine or guanidine preferably methylene chloride, e.g. in combination with a small amount of dimethylformamide, e.g. 6 to 15% based on the amount of methylene chloride.
  • methylene chloride e.g. in combination with a small amount of dimethylformamide, e.g. 6 to 15% based on the amount of methylene chloride.
  • at least 1 equivalent or more, e.g. 1.05 to 1.1 equivalents of oxalyl chloride are used per equivalent of (Z)-2-furyl-2-methoxyiminoacetic acid.
  • At least 1 equivalent or more, e.g. 1.02 to 1.1 equivalents of a reactive derivative of (Z)-2-furyl-2-methoxyiminoacetic acid are used per equivalent of HACA.
  • a solution of (Z)-2-furyl-2-methoxyiminoacetic acid in the form of an acid chloride is added to the solution of HACA in the form of a salt.
  • a reactive derivative of (Z)-2-furyl-2-methoxyiminoacetic acid is (Z)-2-furyl-2- methoxyiminoacetic acid in the form of an acid halide
  • a base is added, e.g. a base which is suitable for neutralising the halogen hydrogen compound being released during the reaction, preferably a base which is an amine, e.g. triethylamine.
  • a base which is an amine, e.g. triethylamine.
  • at least 1 equivalent or more, for example 1 to 2.5 equivalents of a base may be added per equivalent of (Z)-2-furyI- 2-methoxyiminoacetic acid in acid halide form.
  • a base may be added prior to the addition of the acid halide to the solution of HACA in the form of a salt with an amidine or guanidine.
  • the addition of the acid halide to the solution of HACA in the form of a salt with an amidine or guanidine may be effected at appropriate temperatures, preferably at temperature below 0°C, e.g. at temperatures of -50°C to -20°C.
  • 7-[(Z)-2-furyl-2- methoxyiminoacetamido]-3-hydroxymethyl-3-cephem-4-carboxyIic acid in the following designated as "7-Furyl-HACA"
  • Step B) may be carried out as appropriate, e.g. according, e.g. analogously, to a method as conventional; and is preferably carried out as follows: 7-Furyl-HACA, dissolved or suspended in a solvent, e.g. in a solvent such as one described in step A), preferably methylene chloride, may be carbamoylated, e.g. reacted with an appropriate carbamoylation reagent, e.g. chlorosulfonyl isocyanate, e.g. in the presence of an acid, e.g. methanesulfonic acid.
  • a solvent e.g. in a solvent such as one described in step A
  • an appropriate carbamoylation reagent e.g. chlorosulfonyl isocyanate
  • Carbamoylation in the context of this invention means a reaction of a compound with an appropriate carbamoylation reagent in order to introduce a carbamoyl-group, e.g. a group of -C(O)NH 2 into molecules of the compound.
  • a carbamoyl-group e.g. a group of -C(O)NH 2
  • At least 1 equivalent or more, e.g. 1.2 to 1.8 equivalents of carbamoylation reagent and ca. 0.4 equivalents and more, e.g. 0.4 to 1.0 equivalents of an acid are used per equivalent of 7- Furyl-HACA; e.g. are added to the solution of 7-Furyl-HACA.
  • the carbamoylation reaction is carried out at appropriate temperatures, e.g.
  • the reaction mixture obtained is treated with water, preferably water in combination with a cosolvent.
  • the cosolvent is preferably a solvent that is readily miscible with water, for example an amide, sulfoxide or urea, such as DMF, dimethylacetamide, dimethylsulfoxide, dimethylethylene urea; an ether such as tetrahydrofuran, dioxane or dimethoxyethane; an alcohol such as methanol, ethanol or isopropanol, most preferably DMF.
  • the carbamoylation reaction mixture is preferably added to water, which optionally contains a cosolvent.
  • Cefuroxime is obtained and may be isolated from the reaction mixture as appropriate, e.g. according, e.g. analogously, to a method as conventional.
  • cefuroxime is transferred from the reaction mixture to a solvent which is suitable for the production of cefuroxime in the form of a salt with n-butylamine, e.g. a solvent such as that described below in the description of the production of cefuroxime in the form of a salt with n- butylamine.
  • This transfer may be effected as appropriate, e.g. according, e.g.
  • the solvent in which the reaction of 7-Furyl-HACA with the carbamoylation reagent has been carried out, is a solvent which is capable of forming a second phase in combination with water
  • the above-described mixing of water with the reaction mixture, optionally in combination with a cosolvent results in the formation of two phases.
  • the solvent, in which the reaction of 7-Furyl-HACA with the carbamoylation reagent has been carried out is not capable of forming a second phase in combination with water, a solvent which is capable of forming a second phase in combination with water in an appropriate amount is added to the reaction mixture, so that two phases are formed on the above described mixing with water.
  • a two phase system is thus preferably obtained.
  • the phases obtained may be separated and the organic phase may be extracted with water, in order to remove salts and inorganic impurities.
  • a solution of cefuroxime in a solvent, which is suitable for the production of cefuroxime in the form of a salt with n-butylamine, is obtained.
  • Step C) may be carried out as appropriate, e.g. according, e.g. analogously, to a method as conventional; and is preferably carried out as follows: n-butylamine is added to a solution or suspension of cefuroxime in a solvent, and cefuroxime in the form of a salt with n-butylamine is isolated from the reaction mixture, e.g. in crystalline form.
  • Cefuroxime in the form of a salt with n-butylamine according to the present invention is referred to hereinafter as "Cefuroxime-but-salt”.
  • Suitable solvents are solvents which are inert under the reaction conditions, e.g. solvents in which cefuroxime is at least partly soluble and in which the Cefuroxime-but-salt is poorly soluble, preferably solvents which are capable of forming a second phase in combination with water, e.g. chlorinated hydrocarbons such as dichloromethane, nitriles such as acetonitrile, ethers such as tetrahydrofuran, dimethoxyethane, or mixtures of individual solvents, e.g. such as mentioned above, most preferably dichloromethane.
  • the amount of n- butylamine which is added to the solution or suspension of cefuroxime is at least 1.0, e.g.
  • 1.0 to 2 such as 1.0 to 1 ,5, e.g. 1.0 to 1.2 equivalents of n-butylamine per equivalent of cefuroxime.
  • the reaction is carried out at appropriate temperatures, e.g. at a temperature of above, below or at room temperature; e.g. and can proceed conveniently at room temperature.
  • the Cefuroxime-but-salt may precipitate from the reaction mixture thus formed; e.g. in solid form. It is an advantage of the present invention that the Cefuroxime-but-salt may precipitate in crystalline form; and normally precipitates in crystalline form under conditions as described above. Seed crystals may be added to the reaction mixture, e.g. in order to initiate crystallisation. Solvents from the reaction mixture may be evaporated, e.g. in order to increase yields.
  • Cefuroxime in the form of a salt with n-butylamine is new.
  • the present invention provides cefuroxime of formula
  • the present invention provides a process for the production of cefuroxime of formula I in the form of a salt with n-butylamine, comprising adding n-butylamine to a solution or suspension of cefuroxime in a solvent, and isolating cefuroxime in the form of a salt with n-butylamine formed, e.g. in crystalline form, from the reaction mixture.
  • Crystallisation of an intermediate in the production of a product may result in a high purification effect.
  • Any process according to the present invention may be used on technical scale.
  • Cefuroxime-but-salt may be used, for example, for the production of the parenteral form of cefuroxime, namely cefuroxime in the form of a sodium salt, or for the production of an orally available form of cefuroxime, such as the 1 -acetoxyethylester of cefuroxime, namely cefuroxime axetil of formula
  • the present invention provides the use of cefuroxime in the form of a salt with n-butylamine for the production of cefuroxime axetil or for the production of the sodium salt of cefuroxime.
  • Step D1) the production of cefuroxime in the form of a sodium salt from the Cefuroxime-but- salt may be carried out as appropriate e.g. according, e.g. analogously, to a method as conventional, and is preferably earned out as follows:
  • the Cefuroxime-but-salt may be reacted in appropriate solvent, e.g. water in combination with a water-miscible solvent, e.g. ethanol and/or acetone, in the presence of an appropriate source of sodium, e.g.
  • cefuroxime in the form of a sodium salt which is isolated from the reaction mixture.
  • a carboxylic acid such as ethyl hexanoic acid, diethylacetic acid, acetic acid; lactic acid
  • cefuroxime in the form of a sodium salt which is isolated from the reaction mixture.
  • the Cefuroxime-but-salt may be dissolved in a solvent and the sodium source may be added to the solution.
  • the reaction may be carried out at temperature as appropriate, e.g. at and above room temperature, preferably 30°C to 50°C.
  • Cefuroxime in the form of a sodium salt may be obtained and may be isolated as appropriate, e.g. cefuroxime in the form of a sodium salt may precipitate from the reaction mixture, e.g.
  • Cefuroxime-but-salt is dissolved in water and the solution obtained is added simultaneously with a Na-lactate solution to a suspension of seed crystals in a Na-lactate solution.
  • Crystalline cefuroxime in the form of a sodium salt may be obtained e.g. in high purity, e.g. in a purity satisfying the requirements of pharmacopoeiae.
  • the present invention provides a process for the preparation of cefuroxime in the form of a sodium salt, comprising reacting cefuroxime in the form of a salt with n- butylamine in the presence of a source of sodium, and isolating cefuroxime in the form of a sodium salt formed from the reaction mixture.
  • Step D2) the preparation of cefuroxime axetil from the Cefuroxime-but-salt, may be carried out as appropriate, e.g. according, e.g. analogously, to a method as conventional, e.g. analogously to known processes in which cefuroxime in the form of a sodium salt is used as a starting material to produce cefuroxime axetil; and is preferably carried out as follows:
  • the Cefuroxime-but-salt may be reacted in a solvent in the presence of a base with
  • 1-acetoxy-ethyI bromide and cefuroxime axetil formed may be isolated from the reaction mixture, preferably in crystalline form.
  • Appropriate solvents comprise solvents that are inert under the reaction conditions, preferably amides, such as dimethyl acetamide. At least 1 equivalent, preferably 1.5 to 3 equivalents, of 1 -acetoxyethyl bromide may be used per equivalent of cefuroxime.
  • Suitable bases include alkaline or alkaline earth carbonates, preferably potassium carbonate, or tertiary amines, e.g. triethylamine. The base may be used in an appropriate amount, e.g. 0.5 to 1.5, preferably 0.9 to 1.2 equivalents of base per equivalent of Cefuroxime-but-salt used.
  • the isolation of cefuroxime axetil formed may be effected according, e.g. analogously to a method as conventional, and is preferably carried out as follows:
  • the reaction mixture comprising cefuroxime axetil may be mixed with a solvent which is capable of forming a second phase in combination with water, preferably an acetic acid ester, e.g. EtAc.
  • the mixture formed may be extracted with an aqueous solution of a base, e.g. in order to remove inorganic impurities and salts, and cefuroxime axetil may be isolated from the organic phase, preferably by crystallisation.
  • Crystallisation of cefuroxime axetil is preferably effected by adding an anti-solvent, e.g. an ether or a hydrocarbon, preferably diisopropyl ether, to a solution of cefuroxime axetil in a solvent, e.g.
  • an ester such as EtAc
  • a solvent mixture e.g. a mixture of EtAc and dimethyl acetamide.
  • An anti-solvent as used herein is understood to be a solvent wherein a compound, e.g. cefuroxime axetil, is less soluble than in another solvent.
  • Cefuroxime axetil which, as is known, may exist in the form of A- and B-diastereomers (A: S-configuration of the axetil group; B: R-configuration of the axetil group) and corresponding A B mixtures, may be isolated according to the present invention in high purity and in an A/B- isomer ratio which is appropriate for usage as a pharmaceutical, e.g. in a purity and diastereomeric ratio according to the requirements of pharmacopoeiae, e.g. the molar ratio of A/(A+B) diastereomers in the isolated cefuroxime axetil may be in the range of 0.48 to 0.55, such as (around) 0.50.
  • the present invention provides a process for the production of cefuroxime axetil, e.g. in crystalline form, e.g. in an isomer ratio A/(A+B) of 0.45 to 0.55, comprising reacting cefuroxime in the form of a salt with n-butylamine in a solvent in the presence of a base with 1 -acetoxy-ethyl bromide and isolating the cefuroxime axetil formed from the reaction mixture; and, optionally, converting cefuroxime axetil in a crystalline form into cefuroxime axetil in an amorphous form, or into cefuroxime axetil in the form of a solid solution in a polymer, or cefuroxime axetil in the form of a surface solid (molecular) dispersion on an adsorbent.
  • a process for the production of cefuroxime axetil e.g. in crystalline form, e.g. in an is
  • cefuroxime e.g. in the form of a sodium salt may show poor bioavailability when administered orally.
  • cefuroxime axetil is preferred for use in oral application forms.
  • cefuroxime axetil in crystalline form also may show poor oral bioavailability.
  • cefuroxime axetil is thus present in amorphous form. If cefuroxime axetil is obtained according to the present invention in crystalline form, the crystalline cefuroxime axetil may be converted into an amorphous form, e.g. showing improved bioavailability over a crystalline form, or into a form which is neither crystalline nor amorphous, e.g.
  • cefuroxime axetil in the form of a solid solution in a polymer or into cefuroxime axetil in the form of a solid dispersion on an adsorbent.
  • Cefuroxime axetil in the form of a solid solution in a polymer, or cefuroxime axetil in the form of a surface solid (molecular) dispersion on an adsorbent may be bioequivalent to amorphous cefuroxime axetil and therefore may have appropriate bioavailability.
  • Cefuroxime axetil in the form of a solid solution in a polymer, or cefuroxime axetil in the form of a surface solid (molecular) dispersion on an adsorbent are e.g. described in WO00/30647 the content of which is introduced herein by reference.
  • (molecular) dispersion on an adsorbent includes a process wherein cefuroxime axetil and a polymer which is able to form a solid solution of cefuroxime axetil together with cefuroxime axetil; or a carrier which is able to form a surface solid dispersion with cefuroxime axetil, are dissolved or suspended in organic solvent and (the) solvent is removed.
  • An appropriate weight ratio of cefuroxime axetikpolymer includes a weight ratio of 1:0.1 to 1:0:8, e.g 1:0.35 to 1.0:45;
  • an appropriate weight ratio of cefuroxime axetil:adsorbent includes a weight ratio of 1:0.1 to 1 :1.5; e.g. 1 :03 to 1:1.3.
  • a polymer includes preferably a polyvinylpyrrolidone, e.g. a homopolymer such as a povidone, cross-linked povidone, e.g. crospovidone, polyplasdone; and a polyvinylpyrrolidone copolymer; polyethylene glycol, polyethylene oxide, cellulose, preferably a polyvinylpyrrolidone copolymer, such as vinylpyrrolidone-vinylacetate copolymer, e.g. consisting of N-vinyl-2-pyrrolidone and vinyl acetate, e.g. in a random 60:40 ratio.
  • adsorbent includes e.g.
  • organic solvent(s) include one single organic solvent or a mixture of organic solvents, e.g. in the presence of water, e.g. a ketone, e.g. acetone, an alcohol, e.g. ethanol; and a halogenated hydrocarbon, e.g. methylene chloride.
  • Preferred organic solvent includes ketones, e.g. in the presence of water, e.g. up to (around) 30% v/v of the organic solvent.
  • steps A), B) and C) are carried out in a one-pot reaction, i.e. without isolating intermediate products.
  • cefuroxime is effected by starting with HACA in a solvent which is capable of forming a second phase in combination with water, preferably dichloromethane, tetrahydrofuran, dimethoxyethane or acetonitrile, optionally in the presence of an organic amide, sulfoxide, ether or alcohol; or individual mixtures of solvents listed above.
  • a solvent which is capable of forming a second phase in combination with water, preferably dichloromethane, tetrahydrofuran, dimethoxyethane or acetonitrile, optionally in the presence of an organic amide, sulfoxide, ether or alcohol; or individual mixtures of solvents listed above.
  • cefuroxime axetil Production of cefuroxime axetil from cefuroxime in the form of a salt with n- butylamine
  • the organic phase obtained is mixed with 11 ml of dimethyl acetamide and 28 ml of H 2 O, and the pH of the mixture obtained is adjusted to ca. 4 by addition of H 2 SO 4 .
  • the two phases formed are separated and the organic phase is mixed with activated carbon, which is filtrated off. From the filtrate obtained solvent is evaporated off and the evaporation residue obtained is mixed with seed crystals.
  • the suspension obtained is mixed with 125 ml of diisopropyl ether and stirred at room temperature. Crystalline cefuroxime axetil is obtained, filtrated off, washed with a mixture of EtAc and diisopropyl ether and dried. Yield: 7.43 g.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Communicable Diseases (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Oncology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Cephalosporin Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
EP01967326A 2000-09-11 2001-09-10 Zwischenprodukte bei der cephalosoprinherstellung Expired - Lifetime EP1319009B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT01967326T ATE412001T1 (de) 2000-09-11 2001-09-10 Zwischenprodukte bei der cephalosoprinherstellung

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AT0153700A AT411996B (de) 2000-09-11 2000-09-11 Verfahren zur herstellung von cefuroxim in der form seines n-butylammoniumsalzes
AT15372000 2000-09-11
PCT/EP2001/010447 WO2002020532A1 (en) 2000-09-11 2001-09-10 Intermediates in cephalosporin production

Publications (2)

Publication Number Publication Date
EP1319009A1 true EP1319009A1 (de) 2003-06-18
EP1319009B1 EP1319009B1 (de) 2008-10-22

Family

ID=3688325

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01967326A Expired - Lifetime EP1319009B1 (de) 2000-09-11 2001-09-10 Zwischenprodukte bei der cephalosoprinherstellung

Country Status (13)

Country Link
US (1) US6894162B2 (de)
EP (1) EP1319009B1 (de)
JP (1) JP2004508378A (de)
KR (1) KR100864405B1 (de)
CN (1) CN1200941C (de)
AT (2) AT411996B (de)
AU (1) AU2001287725A1 (de)
CA (1) CA2419258C (de)
DE (1) DE60136285D1 (de)
DK (1) DK1319009T3 (de)
HK (1) HK1057542A1 (de)
TW (1) TWI282339B (de)
WO (1) WO2002020532A1 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IN190849B (de) * 2000-07-17 2003-08-23 Ranbaxy Lab Ltd
US20040092735A1 (en) * 2002-11-08 2004-05-13 Orchid Chemicals & Pharmaceuticals Limited Process for the preparation of cefuroxime sodium
WO2004050663A2 (en) * 2002-12-05 2004-06-17 Orchid Chemicals & Pharmaceuticals Ltd An improved process for the preparation of cefuroxime sodium
US7662955B2 (en) * 2003-03-20 2010-02-16 Orchid Chemicals And Pharmaceuticals Ltd. Process for the preparation of cefoxitin
WO2006103686A1 (en) * 2005-03-29 2006-10-05 Hetero Drugs Limited An improved process for the preparation of cefixime
ITMI20050871A1 (it) * 2005-05-13 2006-11-14 Acs Dobfar Spa Solvato cristallino di cefuroxima acido
CN104961749B (zh) * 2015-06-15 2016-01-13 海南灵康制药有限公司 一种头孢呋辛钠的新型工业结晶方法及其制剂
CN105440052A (zh) * 2016-01-13 2016-03-30 广东立国制药有限公司 一种头孢呋辛酸的制备方法
CN106554361B (zh) * 2016-09-30 2018-10-09 华北制药河北华民药业有限责任公司 一种头孢呋辛酯口服制剂的制备方法
CN112745338B (zh) * 2020-12-30 2022-08-16 山东金城昆仑药业有限公司 消除头孢呋辛酸中内酯杂质的方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US391589A (en) * 1888-10-23 Variety wood-worker
GB1474519A (de) * 1973-05-14 1977-05-25
US4122259A (en) * 1974-08-23 1978-10-24 Glaxo Laboratories Limited 7β-[2-Aryl-2-(etherified oximino)acetamido]-3-N-substituted carbamoyloxymethylceph-3-em-4-carboxylic acids
CA1094545A (en) * 1976-02-16 1981-01-27 Michael Gregson Cephalosporin antibiotics
GB1575905A (en) * 1976-04-28 1980-10-01 Glaxo Lab Ltd Salt of cefuroxime
GB2018764B (en) * 1978-04-07 1982-09-02 Glaxo Group Ltd Cephalosporin compounds
IT1162665B (it) * 1978-09-21 1987-04-01 Glaxo Group Ltd Procedimento per ppeparare cefalosporine
IT1144037B (it) * 1979-02-15 1986-10-29 Glaxo Group Ltd Procedimento per preparare sodico cefurossima e prodotto ottenuto in forma di solvato
US4258183A (en) * 1979-04-06 1981-03-24 Glaxo Group Limited Process for the preparation of cephalosporin compounds
DK165118C (da) 1980-11-22 1993-03-01 Gema Sa Fremgangsmaade til fremstilling af oploesninger af 7-aminocephalosporansyrer
YU44680B (en) * 1982-07-30 1990-12-31 Glaxo Lab Ltd Process for obtaining very pure amorphous form of cephuroxim axetile
ES8505362A1 (es) 1983-05-26 1985-06-01 Gema Sa "sales de acidos amino-beta-lactamicos, para su aplicacion a la obtencion de n-acil derivados de los mismos, y procedimiento para la obtencion de dichas sales"
GB8320520D0 (en) * 1983-07-29 1983-09-01 Glaxo Group Ltd Chemical process
GB8320521D0 (en) 1983-07-29 1983-09-01 Glaxo Group Ltd Chemical process
IT1214587B (it) * 1986-12-23 1990-01-18 Giovanni Bonfanti Metodo per la produzione diprodotti cristallini puri.
PL151670B1 (pl) * 1987-03-19 1990-09-28 Sposób otrzymywania półsyntetycznych cefalosporyn
JP3121903B2 (ja) * 1992-02-07 2001-01-09 塩野義製薬株式会社 デアセチルセファロスポラン酸のカルバモイル化方法
AT400717B (de) * 1993-07-30 1996-03-25 Biochemie Gmbh Neue guanidin- und amidinsalze von 7-amino-3- hydroxymethyl-3-cephem-4-carbonsäure
AU2820700A (en) 1999-03-09 2000-09-28 Ranbaxy Laboratories Limited Process for the preparation of cefuroxime
IT1313569B1 (it) 1999-07-27 2002-09-09 Antibioticos Spa Processo per la sintesi di derivati beta-lattamici.
IN190849B (de) * 2000-07-17 2003-08-23 Ranbaxy Lab Ltd

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0220532A1 *

Also Published As

Publication number Publication date
JP2004508378A (ja) 2004-03-18
KR100864405B1 (ko) 2008-10-20
US20030171577A1 (en) 2003-09-11
WO2002020532A1 (en) 2002-03-14
TWI282339B (en) 2007-06-11
ATE412001T1 (de) 2008-11-15
KR20030040404A (ko) 2003-05-22
AU2001287725A1 (en) 2002-03-22
CA2419258C (en) 2009-12-29
CN1454212A (zh) 2003-11-05
US6894162B2 (en) 2005-05-17
CN1200941C (zh) 2005-05-11
DE60136285D1 (de) 2008-12-04
ATA15372000A (de) 2004-01-15
HK1057542A1 (en) 2004-04-08
DK1319009T3 (da) 2009-02-16
CA2419258A1 (en) 2002-03-14
AT411996B (de) 2004-08-26
EP1319009B1 (de) 2008-10-22

Similar Documents

Publication Publication Date Title
JP3421354B2 (ja) 結晶性セフジニルアミン塩
US20060149056A1 (en) Stable bioavailable crystalline form of cefdinir and a process for the preparation thereof
US4775751A (en) Process for cephalexin hydrochloride alcoholates
CA2419258C (en) Intermediates in cephalosporin production
US20050080255A1 (en) Crystalline cefdinir potassium dihydrate
ZA200300472B (en) Process for the preparation of highly pure crystalline (R,S)-cefuroxime axetil.
KR20000070275A (ko) 정제 방법
US6825345B2 (en) Process for purification of a cephalosporin derivative
EP0637587A1 (de) Komplexe von bicyclischen beta-Lactamen und Parabenen
US5908929A (en) Process for the manufacture of the antibiotic 7-(D-α-amino-α-phenylacetamido)-3-methyl-3-cephem-4-carboxylic acid (cephalexin) and pharmaceutically acceptable salts thereof
BG61163B1 (bg) Метод за получаване на цефалоспоринов антибиотикпри използване на син-изомер на тиазолилов междинен продукт
CA2519853A1 (en) Process for the preparation of 7-amino (p-hydroxyphenylglycylamido) cephem compounds
EP1590353B1 (de) Verfahren zur herstellung von cefpodoxim-proxetil
EP1196420B1 (de) Verfahren zur synthese von beta-laktamderivaten
KR960011779B1 (ko) 세팔로스포린 결정성 수화물의 신규 제조방법
WO2006010978A1 (en) Cefdinir polymorphic forms, and imidazole salt
EP1678187A1 (de) Verfahren zur herstellung von cephalosporinderivaten
KR960011780B1 (ko) 세팔로스포린 결정성 수화물의 신규 제조방법
KR100576334B1 (ko) 세팔로스포린 유도체의 제조방법
KR100399195B1 (ko) 무정형 세푸록심 악세틸의 제조방법
WO2005042543A1 (en) Processes for the preparation of cephem derivatives
KR20020005424A (ko) 신규 세팔로스포린 화합물 및 그의 제조방법
JPH0794461B2 (ja) クロロセファドロキシル1水化物
JPH0662636B2 (ja) セフロキシムの製造方法
KR19990001375A (ko) 세펨 유도체의 새로운 제조방법

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030411

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KREMMINGER, PETER

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SANDOZ GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SANDOZ GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SANDOZ AG

17Q First examination report despatched

Effective date: 20070117

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60136285

Country of ref document: DE

Date of ref document: 20081204

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM & CO. AG PATENT- UND MARKENANWAELTE VSP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SANDOZ AG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081022

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090202

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: SANDOZ AG

Effective date: 20090218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081022

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090323

REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1057542

Country of ref document: HK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081022

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090723

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090930

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090910

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090123

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20100914

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090910

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20100918

Year of fee payment: 10

Ref country code: FR

Payment date: 20100921

Year of fee payment: 10

Ref country code: SE

Payment date: 20100913

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20100910

Year of fee payment: 10

Ref country code: DK

Payment date: 20100910

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100908

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081022

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081022

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20120401

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

Ref country code: DK

Ref legal event code: EBP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110910

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120531

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60136285

Country of ref document: DE

Effective date: 20120403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120401

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110930

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120403

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110911