EP1312885B1 - Tube d'échangeur de chaleur structuré des deux côtés et son procédé de fabrication - Google Patents

Tube d'échangeur de chaleur structuré des deux côtés et son procédé de fabrication Download PDF

Info

Publication number
EP1312885B1
EP1312885B1 EP02024655A EP02024655A EP1312885B1 EP 1312885 B1 EP1312885 B1 EP 1312885B1 EP 02024655 A EP02024655 A EP 02024655A EP 02024655 A EP02024655 A EP 02024655A EP 1312885 B1 EP1312885 B1 EP 1312885B1
Authority
EP
European Patent Office
Prior art keywords
pipe
heat
ribs
grooves
secondary grooves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02024655A
Other languages
German (de)
English (en)
Other versions
EP1312885A2 (fr
EP1312885A3 (fr
Inventor
Karine Brand
Andreas Knöpfler
Andreas Dr. Beutler
Lutz Ronald
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wieland Werke AG
Original Assignee
Wieland Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7706011&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1312885(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Wieland Werke AG filed Critical Wieland Werke AG
Publication of EP1312885A2 publication Critical patent/EP1312885A2/fr
Publication of EP1312885A3 publication Critical patent/EP1312885A3/fr
Application granted granted Critical
Publication of EP1312885B1 publication Critical patent/EP1312885B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/15Making tubes of special shape; Making tube fittings
    • B21C37/20Making helical or similar guides in or on tubes without removing material, e.g. by drawing same over mandrels, by pushing same through dies ; Making tubes with angled walls, ribbed tubes and tubes with decorated walls
    • B21C37/207Making helical or similar guides in or on tubes without removing material, e.g. by drawing same over mandrels, by pushing same through dies ; Making tubes with angled walls, ribbed tubes and tubes with decorated walls with helical guides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/42Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/42Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
    • F28F1/422Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element with outside means integral with the tubular element and inside means integral with the tubular element
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4935Heat exchanger or boiler making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4935Heat exchanger or boiler making
    • Y10T29/49377Tube with heat transfer means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4935Heat exchanger or boiler making
    • Y10T29/49377Tube with heat transfer means
    • Y10T29/49378Finned tube
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4935Heat exchanger or boiler making
    • Y10T29/49377Tube with heat transfer means
    • Y10T29/49378Finned tube
    • Y10T29/49382Helically finned
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4935Heat exchanger or boiler making
    • Y10T29/49377Tube with heat transfer means
    • Y10T29/49378Finned tube
    • Y10T29/49385Made from unitary workpiece, i.e., no assembly
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4935Heat exchanger or boiler making
    • Y10T29/49391Tube making or reforming

Definitions

  • the invention relates to metallic, double-sided structured heat exchanger tubes, in particular finned tubes, according to the preamble of claim 1.
  • Heat transfer occurs in many areas of refrigeration and air conditioning technology as well as in the Process and energy technology.
  • tube bundle heat exchanger In many applications flows Here on the tube inside a liquid, which depends on the direction of the Heat flow is cooled or heated. The heat gets to the outside of the pipe the medium is discharged or withdrawn. It is booth the technique that in RohrbündeltageSem instead of smooth tubes on both sides structured tubes are used. As a result, the heat transfer on the inside of the pipe and on the outside of the pipe intensified. The transferred heat flux density is increased and the heat exchanger can be made more compact. Alternatively, the heat flow density can be maintained and the driving temperature difference be lowered, resulting in a more energy-efficient heat transfer is possible.
  • Have structured heat exchanger tubes for tube bundle heat exchanger usually at least one structured area and smooth end pieces and possibly smooth spacers. Limit the smooth end or intermediate pieces the structured areas. So that the tube easily into the tube bundle heat exchanger can be installed, the outer diameter of the structured Areas should not be greater than the outer diameter of the smooth end and intermediate pieces.
  • Heat exchanger tubes are known for example from US 3,861,462, the are structured on both sides. The structure is first rolled into strip material, which is then formed into a tube and welded to the butt joint.
  • such are substantially closed Channels by bending or flipping the rib (US 3,696,861, US 5,054,548), by splitting and upsetting the rib (DE 2,758,526, US 4,577,381), and by notching and swaging the rib (US 4,660,630, EP 0,713,072, US 4,216,826).
  • the object of the invention is to provide both sides with structured heat exchanger tubes To produce increased performance internal structure, wherein the weight fraction of the Internal structure of the total weight of the pipe may not be higher than in conventional, helical internal ribs of constant cross section.
  • the dimensions The internal and external structure of the finned tube must be independent of each other be adjustable.
  • the task is solved in a heat exchanger tube of the type mentioned, in each of which adjacent inner ribs are separated by a parallel to the inner ribs extending primary groove, according to the invention, in that the inner ribs are crossed by secondary grooves running at a pitch angle ⁇ , measured against the pipe axis, the secondary grooves extend at an inclination angle ⁇ of 60-85 ° with respect to the inner ribs, that the depth T of the secondary grooves is at least 20% of the rib height H of the inner ribs, and the density of the intersections of inner ribs (20) and secondary grooves (22) is 90 to 250 points of intersection / cm 2 .
  • the inner ribs now have no constant Cross section more. Following the course of the inner ribs, then changes the cross-sectional shape of the inner ribs at the locations of the secondary grooves.
  • the Secondary grooves arise in the pipe side flowing medium additional vortex in close to the wall, which increases the heat transfer coefficient. It is Seeing that by adding secondary grooves the weight fraction of the Internal structure on the total weight of the pipe is not increased.
  • the depth of the secondary grooves becomes radial from the top of the inner fin Direction measured.
  • the depth of the secondary grooves is at least 20% of the Height of the inner ribs. If the depth of the secondary grooves is equal to the height of the Inner ribs, then arise on the inside of the tube spaced apart Structural elements similar to truncated pyramids.
  • Claims 2 to 10 relate to preferred embodiments of the invention Heat exchanger tube.
  • the invention further provides, according to claims 12 to 16, a Process for the preparation of the heat exchanger tube according to the invention.
  • the Tool for forming the outer ribs in at least two spaced apart Rolled disc packages built.
  • the internal structure is different by two profiled roll mandrels shaped.
  • the first mandrel supports the pipe in the first forming area under the first roll disk package and forms first helical circumferential or axially parallel inner ribs, these Inner ribs initially have a constant cross-section.
  • the second rolling mandrel supports the pipe in the second forming area under the second roll disk package larger diameter and shapes the secondary grooves according to the invention in the previously formed helical circumferential or paraxial ribs.
  • the Depth of the secondary grooves is essentially determined by the choice of diameter set two mandrels.
  • the integrally rolled finned tube 1 according to Figures 1 and 2 has on the tube outside helically encircling ribs 3 on.
  • the preparation of the invention Finned tube is carried out by a rolling process (see US Patent Nos. 1,865,575 /3,327,512 and DE 23 03 172) by means of the device shown in Figure 1.
  • the axis of the tool holder 10 is simultaneously the Axle of the two associated rolling tools 11 and 12 and it extends obliquely to Tube axis.
  • the tool holder 10 are each offset by 360 ° / n at the periphery of Finned tube arranged.
  • the tool holder 10 are radially deliverable. you are in turn arranged in a stationary (not shown) rolling head.
  • the rolling head is fixed in the basic framework of the rolling device.
  • the rolling tools 11 and 12 each consist of several juxtaposed rolling disks 13 and 14, whose diameter increases in the direction of the arrow.
  • the rolling disks 14 of the second Rolling tool 12 thus have a larger diameter than the rolling disks 13 of the first rolling tool 11.
  • the mandrels 15 and 16 are attached to the free end of a rod 9 and rotatably mounted to each other.
  • the Rod 9 is attached at its other end to the skeleton of the rolling device.
  • the mandrels 15 and 16 are in the working range of the rolling tools 11 and 12 to position.
  • the rod 9 must be at least as long as the one to be produced Finned tube 1.
  • the smooth tube 2 Prior to machining, the smooth tube 2 is used for undelivered rolling tools 11 and 12 almost completely over the mandrels 15 and 16 on the Pushed rod 9. Only the part of the smooth tube 2, the finished finned tube 1 is to form the first smooth end piece is not on the mandrels 15 and 16 pushed.
  • the tube is arranged on the circumference, rotating Rolling tools 11 and 12 delivered to the smooth tube 2 radially and with the smooth tube 2 engaged.
  • the smooth tube 2 is thereby rotated. Because the Axis of the rolling tools 11 and 12 is inclined to the tube axis, forming the Rolling tools 11 and 12 helically encircling ribs 3 from the Tube wall of the smooth tube 2 and push at the same time the resulting finned tube 1 corresponding to the pitch of the helical circumferential ribs 3 in FIG Arrow direction.
  • the ribs 3 preferably run like a multi-start thread around. The distance between the centers of two adjacent ones measured along the tube axis Ribs are referred to as rib pitch p.
  • the distance between the two Rolling tools 11 and 12 must be adapted so that the rolling disks 14 of the second rolling tool 12 engage in the grooves 4, which between the first Rolling tool 11 are shaped ribs 3a. Ideally, this distance is one integer multiple of the rib pitch p.
  • the second rolling tool 12 then performs the further shaping of the outer ribs 3 away.
  • the axes the two mandrels 15 and 16 are identical to the axis of the tube.
  • the Mandrels 15 and 16 are profiled differently and the outer diameter of the second rolling mandrel 16 is at most as large as the outer diameter of the first Rolling mandrel 15.
  • the outside diameter of the second rolling mandrel is 16 up to 0.8 mm smaller than the outer diameter of the first rolling mandrel 15.
  • Das Profile of the mandrels usually consists of a variety of trapezoidal or nearly trapezoidal grooves parallel to each other on the outer surface of the Walzdorns are arranged. Located between two adjacent grooves Material of the rolling mandrel is referred to as web 19. The webs 19 have an im significant trapezoidal cross-section.
  • the grooves are usually under a helix angle of 0 ° to 70 ° inclined to the axis of the mandrel. At the first rolling mandrel 15, this twist angle is denoted by ⁇ , and in the second rolling mandrel 16 by ⁇ .
  • Twist angle 0 ° corresponds to the case that the grooves are parallel to the axis of the mandrel run. If the helix angle is different from 0 °, the grooves are helical. Helical grooves can be left-handed or right-handed be oriented.
  • FIGS. 1 and 2 show the case that the first one Rolling mandrel 15 right-hand grooves 17 and the second rolling mandrel 16 left-hand grooves 18 has.
  • the helix angles ⁇ and ⁇ can have equal amounts.
  • both mandrels 15 and 16 have grooves 17 and 18 with the same direction.
  • the helix angles ⁇ and ⁇ must differ in terms of their amount.
  • the two mandrels 15 and 16 must be rotatably mounted to each other.
  • the inner ribs 20 are opposite to the Pipe axis by the same angle ⁇ (pitch angle) inclined as the grooves 17 to Axis of the first rolling mandrel 15.
  • the pitch angle of the inner ribs 20 is thus equal to the helix angle ⁇ of the first rolling mandrel 15.
  • the height of the inner ribs 20 is denoted by H and is usually 0.15-0.40 mm.
  • the inner ribs 20 pressed onto the second rolling mandrel 16. Since the grooves 18 of the second rolling mandrel 16 at a different angle to the dome axis and thus at a different angle to the Tube axis run as the grooves 17 of the first rolling mandrel 15, meet the inner ribs 20 in sections on a groove 18 or a web 19 of the second rolling mandrel 16. In the sections where an inner fin 20 meets a groove 18, the Material of the inner rib 20 pressed into the groove. In the sections where one Inner rib 20 meets a web 19, the fin material is deformed and it become parallel to each other secondary grooves 22 in the inner ribs 20th imprinted.
  • the secondary grooves 22 According to the shape of the webs 19 of the second rolling mandrel 16 have the secondary grooves 22 a trapezoidal cross-section. Secondary grooves 22 coming from the the same web 19 are stamped into different inner ribs 20 are to each other arranged in alignment.
  • the pitch angle that the secondary grooves 22 with the Form pipe axis is equal to the helix angle ⁇ , the grooves 18 of the second rolling mandrel 16 with the axis of the second rolling mandrel 16 include.
  • the angle of inclination ⁇ which include the secondary grooves 22 with the inner ribs 20 results in roll mandrels 15 and 16 with the same direction orientation of the grooves 17 and 18 from the difference of the helix angle ⁇ and ⁇ , with roll mandrels 15 and 16 with opposite directions Orientation of the grooves 17 and 18 from the sum of the helix angles ⁇ and ⁇ .
  • Angle ⁇ is between 60 ° and 85 °. Angle ⁇ smaller than 90 ° are manufacturing technology easier to control than angle ⁇ greater than 90 ° and usually cause a smaller pressure drop as angle ⁇ greater than 90 °.
  • the depth T of the secondary grooves 22 is from the top of the inner fin 20 in Measured radial direction.
  • the Depth T of the secondary grooves 22 are varied: the smaller the difference in outer diameter between the first rolling mandrel 15 and the second rolling mandrel 16, the greater the depth T of the secondary grooves 22.
  • a change in the outer diameter from one of the two mandrels 15 or 16 but not only one Changing the depth T of the secondary grooves 22 result, but usually causes also a change in the height of the outer ribs 3. This effect can However, be compensated by the structure of the rolling tools 11 and 12 modified.
  • the largest rolling disks 13 of the first Rolling tool 11 as the smallest rolling disks 14 of the second rolling tool 12th or the smallest rolling disks 14 of the second rolling tool 12 as the largest Rolling discs 13 of the first rolling tool 11 can be used.
  • the depth T of the secondary grooves 22 at least 20% of the height H of the inner ribs 20th be.
  • T is at least 40% of the height H of the inner fins 20. If the depth T of the secondary grooves 22 is smaller than the height H of the inner fins 20, then is the finished shaped finned tube 1, the course of the inner ribs 20 can still be seen. This is shown in FIG. Altered along the course of the inner ribs 20 But now the cross-sectional shape of the inner ribs 20: The height of the inner ribs 20th is reduced at the locations of the secondary grooves 22 by the depth T thereof.
  • the prime intestines 21 are continuous without interruption between the inner ribs 20. Aligned to each other Secondary grooves 22 are spaced by the primary grooves 21.
  • FIG. 4 shows schematically a section through the internal structure of FIG. 3 along the Line X-X of Fig. 3.
  • the height relationships between inner ribs 20, primary grooves 21st and secondary grooves 22 are clearly visible here.
  • the depth T of the secondary grooves 22 is equal to the height H of the inner fins 20, then on the finished molded finned tube 1, the course of the inner fins 20 no longer detect.
  • the inner ribs 21 are in this case by the secondary grooves 22 in individual, spaced apart elements 23 divided. This is shown in FIG. 2. Due to the trapezoidal cross section of the initially formed inner ribs 20 and the secondary grooves 22, the spaced elements 23 have the shape of truncated pyramids.
  • the density of the intersections of inner ribs 20 and secondary grooves 22 is determined.
  • the density of the intersections is between 90 and 250 intersections per cm 2 .
  • the reference surface is the inner tube surface, which results from removing the inner structure completely from the tube.
  • the pressure drop of the Pipe flowing liquid to the same extent as the heat transfer coefficient.
  • the description of the production process according to the invention shows that the multitude of tool parameters that can be selected in this method are the dimensions the outer and inner structure in a wide range of independent can be adjusted. In particular, allows the division of the rolling tool in two spaced rolling tools 11 and 12, the depth T of the secondary grooves 22 to vary without simultaneously changing the height of the outer ribs 3.
  • Double-sided structured finned tubes for refrigeration and air conditioning are often made of copper or copper alloys. Since in these metals the pure price of material accounts for a not inconsiderable share of the total cost of the finned tube, competition requires that the weight of the tube be minimized for a given tube diameter.
  • the proportion by weight of the internal structure in the total weight is in today commercially available finned tubes, depending on the height of the internal structure and thus depending on the performance of 10% to 20%.
  • the proportion by weight of such an internal structure relative to the outer envelope surface of the finned tube is usually between 500 g / m 2 and 1000 g / m 2 , preferably between 600 g / m 2 and 900 g / m 2 .
  • the weight fraction of such an internal structure which relates to the outer envelope surface of the finned tube, is usually between 150 g / m 2 and 300 g / m 2 , preferably between 180 g / m 2 and 270 g / m 2 . If one chooses the width of the primary grooves 21 and the secondary grooves 22 large, then a low weight of the internal structure can be realized.
  • the heat transfer coefficient is plotted against the heat flow density at condensation of refrigerant R-134a on the outside of the pipe and cooling water flow on the pipe inside.
  • the condensation temperature is 36.7 ° C
  • the water velocity 2.4 m / s.
  • the two compared finned tubes have the same structure on their outer side, but differ in the internal structure, as indicated in the diagram.
  • the prior art is represented by the tube, which is provided with a standard internal structure of height 0.35 mm. 2, the height of the truncated pyramids is approximately 0.30 mm, the density of the intersections of inner ribs 20 and secondary grooves 22 is 143 per cm 2 and the angle ⁇ is 96 °.
  • the finned tube with internal structure with truncated pyramids has an advantage in the heat transfer coefficient of 13% to 22%. This advantage is due solely to the internal structure, since the heat transfer coefficient on the tube outside is the same for both tubes.
  • both the radial force for simultaneous Forming the outer and inner structure as well as the axial force for propulsion of the tube through the rolling tool, which is made up of relatively thin discs is provided by itself.
  • the most powerful, commercially available finned tubes are made with rolled discs whose thickness is between 0.40 mm and 0.65 mm is.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Claims (16)

  1. Tube d'échangeur de chaleur (1) sans soudure, avec au choix des extrémités lisses, au moins une zone structurée sur la face extérieure et la face intérieure du tube et au choix des zones intermédiaires lisses, comportant les caractéristiques suivantes :
    a) des ailettes extérieures (3) intégrales s'étendent en hélice sur la face extérieure du tube,
    b) des ailettes intérieures (20) intégrales s'étendent sur la face intérieure du tube, sous forme parallèle à l'axe ou en hélice selon un angle d'inclinaison du pas α = 0 à 70° (mesuré par rapport à l'axe du tube), en formant des rainures primaires (21),
       caractérisé
    c) en ce que les ailettes intérieures (20) sont entrecoupées par des rainures secondaires (22), orientées en formant un angle d'inclinaison du pas β - mesuré par rapport à l'axe du tube -,
    d) en ce que les rainures secondaires (22) s'étendent par rapport aux ailettes intérieures (20) en formant un angle d'inclinaison γ de 60 à 85°,
    e) en ce que la profondeur T des rainures secondaires (22) correspond au moins à 20 % de la hauteur H des ailettes intérieures (20), et
    f) en ce que la densité des points d'intersection entre les ailettes intérieures (20) et les rainures secondaires (22) est de l'ordre de 90 à 250 points d'intersection par cm2.
  2. Tube d'échangeur de chaleur selon la revendication 1, caractérisé en ce que l'angle d'inclinaison y= 30 à 100°.
  3. Tube d'échangeur de chaleur selon la revendication 1 ou 2, caractérisé en ce que, en présence d'ailettes intérieures (20) et de rainures secondaires (22) orientées dans le sens opposé, l'angle d'inclinaison γ résulte de la somme des angles d'inclinaison du pas α et β : γ = α + β.
  4. Tube d'échangeur de chaleur selon la revendication 1 ou 2, caractérisé en ce que, en présence d'ailettes intérieures (20) et de rainures secondaires (22) orientées dans le même sens, l'angle d'inclinaison γ résulte de la différence entre les angles d'inclinaison du pas α et β : γ = α - β.
  5. Tube d'échangeur de chaleur selon l'une quelconque des revendications 1 à 4, caractérisé en ce que la profondeur T des rainures secondaires (22) est au moins égale à 40 % de la hauteur H des ailettes.
  6. Tube d'échangeur de chaleur selon l'une quelconque des revendications 1 à 5, caractérisé en ce que la hauteur H des ailettes est de l'ordre de 0,15 à 0,40 mm.
  7. Tube d'échangeur de chaleur selon l'une quelconque des revendications 1 à 6, caractérisé en ce que la profondeur T des rainures secondaires (22) correspond à la hauteur H des ailettes.
  8. Tube d'échangeur de chaleur selon la revendication 7, caractérisé en ce que la face intérieure du tube comporte une structure avec des aspérités pyramidales (23).
  9. Tube d'échangeur de chaleur selon l'une quelconque des revendications 1 à 8, caractérisé en ce que la part du poids de la structure intérieure par rapport à la surface d'enveloppe extérieure du tube d'échangeur de chaleur (1) est de l'ordre de 500 g/m2 à 1 000 g/m2, de préférence 600 g/m2 à 900 g/m2, et en ce que la densité du matériau utilisé est de l'ordre de 7,5 à 9,5 g/cm2.
  10. Tube d'échangeur de chaleur selon l'une quelconque des revendications 1 à 8, caractérisé en ce que la part du poids de la structure intérieure par rapport à la surface d'enveloppe extérieure du tube d'échangeur de chaleur (1) est de l'ordre de 150 g/m2 à 300 g/m2, de préférence 180 g/m2 et 270 g/m2, et en ce que la densité du matériau utilisé est de l'ordre de 2,5 à 3,0 g/cm2.
  11. Procédé de fabrication d'un tube d'échangeur de chaleur (1) selon l'une quelconque des revendications 1 à 10, comportant des ailettes extérieures (3) intégrales, c'est-à-dire formées dans la paroi du tube, hélicoïdales périphériques sur la face extérieure du tube et des ailettes intérieures (20) intégrales, c'est-à-dire formées dans la paroi du tube, qui sont parallèles à l'axe ou hélicoïdales sur la face intérieure du tube et qui sont entrecoupées par des rainures secondaires (22), dans lequel procédé sont effectuées les étapes suivantes :
    a) sur la face extérieure d'un tube lisse (2) sont formées des ailettes extérieures (3) hélicoïdales dans une première zone de formage, la matière des ailettes étant obtenue par le refoulement de la matière hors de la paroi du tube au moyen d'une première étape de laminage et le tube à ailettes (1) obtenu est entraíné en rotation par les forces de laminage et avance au fur et à mesure de la formation des ailettes (3) hélicoïdales, les ailettes extérieures (3) étant formées avec une hauteur croissante dans le tube lisse (2) non déformé dans les autres zones,
    b) la paroi du tube dans la première zone de formage est supportée par un premier mandrin de laminage (15), rotatif et profilé, posé dans le tube,
    c) au cours d'une deuxième étape de laminage, les ailettes extérieures (3) sont formées avec une hauteur davantage croissante dans une deuxième zone de formage, distante de la première zone de formage, et les ailettes intérieures (20) sont munies de rainures secondaires (22),
    d) la paroi du tube dans la deuxième zone de formage étant supportée par un deuxième mandrin de laminage (16), également rotatif et profilé, posé dans le tube, dont le profilage se différencie cependant du profilage du premier mandrin de laminage (15) par la valeur et l'orientation de l'angle de torsion.
  12. Procédé selon la revendication 11, caractérisé en ce que la distance entre les zones de formage est choisie sensiblement comme un multiple entier de l'écart entre ailettes p.
  13. Procédé selon la revendication 11 ou 12, caractérisé en ce que le diamètre extérieur du deuxième mandrin de laminage (16) est inférieur au diamètre extérieur du premier mandrin de laminage (15).
  14. Procédé selon l'une quelconque des revendications 11 à 13, destiné à la réalisation d'un tube d'échangeur de chaleur (1) selon la revendication 4, caractérisé en ce que l'on utilise des mandrins de laminage (15, 16) avec des rainures (17, 18) orientées en sens opposé.
  15. Procédé selon l'une quelconque des revendications 11 à 13, destiné à la réalisation d'un tube d'échangeur de chaleur (1) selon la revendication 5, caractérisé en ce que l'on utilise des mandrins de laminage (15, 16) avec des rainures (17, 18) orientées dans le même sens.
  16. Procédé selon l'une quelconque des revendications 11 à 15, caractérisé en ce que la profondeur T des rainures secondaires (22) est déterminée par le choix du diamètre des mandrins de laminage (15, 16) et par le choix du diamètre des plus grands disques de laminage de chacun des deux outils de laminage (11, 12).
EP02024655A 2001-11-16 2002-11-05 Tube d'échangeur de chaleur structuré des deux côtés et son procédé de fabrication Expired - Lifetime EP1312885B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10156374 2001-11-16
DE10156374A DE10156374C1 (de) 2001-11-16 2001-11-16 Beidseitig strukturiertes Wärmeaustauscherrohr und Verfahren zu dessen Herstellung

Publications (3)

Publication Number Publication Date
EP1312885A2 EP1312885A2 (fr) 2003-05-21
EP1312885A3 EP1312885A3 (fr) 2004-08-18
EP1312885B1 true EP1312885B1 (fr) 2005-10-19

Family

ID=7706011

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02024655A Expired - Lifetime EP1312885B1 (fr) 2001-11-16 2002-11-05 Tube d'échangeur de chaleur structuré des deux côtés et son procédé de fabrication

Country Status (5)

Country Link
US (2) US20030094272A1 (fr)
EP (1) EP1312885B1 (fr)
JP (1) JP4077296B2 (fr)
CN (1) CN1258668C (fr)
DE (2) DE10156374C1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2339283A2 (fr) 2009-12-22 2011-06-29 Wieland-Werke AG Tuyau de transfert de chaleur et procédé de fabrication d'un tuyau de transfert de chaleur
EP4390292A1 (fr) 2022-12-22 2024-06-26 Wieland-Werke AG Tube d'échangeur de chaleur

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4597475B2 (ja) * 2002-12-12 2010-12-15 住友軽金属工業株式会社 熱交換器用クロスフィンチューブの製造方法及びクロスフィン型熱交換器
US7021106B2 (en) * 2004-04-15 2006-04-04 Mitsui Babcock (Us) Llc Apparatus and method for forming internally ribbed or rifled tubes
DE102005028032A1 (de) * 2005-06-17 2006-12-21 Basf Ag Verfahren und Vorrichtung zur Verdampfung thermisch empfindlicher Stoffe
DE102006008083B4 (de) * 2006-02-22 2012-04-26 Wieland-Werke Ag Strukturiertes Wärmeaustauscherrohr und Verfahren zu dessen Herstellung
JP4554557B2 (ja) * 2006-06-13 2010-09-29 トヨタ自動車株式会社 冷却器
US20080078534A1 (en) * 2006-10-02 2008-04-03 General Electric Company Heat exchanger tube with enhanced heat transfer co-efficient and related method
CN100473937C (zh) * 2006-10-24 2009-04-01 张伟君 一种高科技铝复合材料环保节能暖气系统专用管道
EP1930679B1 (fr) 2006-12-01 2009-07-15 Basf Se Procédé et dispositif de refroidissement de réacteurs à l'aide de liquides en ébullition
CN100442000C (zh) * 2007-02-01 2008-12-10 江苏萃隆铜业有限公司 一种高翅片热交换管的加工方法
DE102009040558A1 (de) * 2009-09-08 2011-03-10 Krones Ag Röhrenwärmetauscher
JP5431210B2 (ja) * 2010-03-05 2014-03-05 株式会社Uacj銅管 伝熱管及び熱交換器
US8613308B2 (en) 2010-12-10 2013-12-24 Uop Llc Process for transferring heat or modifying a tube in a heat exchanger
CN103084813B (zh) * 2011-11-03 2016-11-23 秦彪 太阳花式散热器制造方法及其设备
US20140116668A1 (en) * 2012-10-31 2014-05-01 GM Global Technology Operations LLC Cooler pipe and method of forming
CN102980432A (zh) * 2012-11-12 2013-03-20 沃林/维兰德传热技术有限责任公司 带空心腔体的蒸发传热管
CN102980431A (zh) * 2012-11-12 2013-03-20 沃林/维兰德传热技术有限责任公司 蒸发传热管
CN103191979B (zh) * 2013-03-27 2015-04-01 金龙精密铜管集团股份有限公司 一种加工翅片管的刀具组合
DE102013107603A1 (de) * 2013-07-17 2015-01-22 Rollwalztechnik Abele + Höltich GmbH Vorrichtung zum Bearbeiten eines Werkstücks
CN105014333A (zh) * 2014-04-22 2015-11-04 蒋小明 一种轧制成型复合螺旋翅片管制备装置及制备方法
CN104259282A (zh) * 2014-07-11 2015-01-07 航天海鹰(哈尔滨)钛业有限公司 钛或钛合金翅片管的成形装置
CN104117834A (zh) * 2014-07-11 2014-10-29 航天海鹰(哈尔滨)钛业有限公司 钛或钛合金翅片管的制造方法
US10480872B2 (en) * 2014-09-12 2019-11-19 Trane International Inc. Turbulators in enhanced tubes
EP3191784B1 (fr) * 2014-09-12 2021-08-18 Trane International Inc. Dispositifs de turbulence dans des tubes améliorés
US10551130B2 (en) * 2014-10-06 2020-02-04 Brazeway, Inc. Heat transfer tube with multiple enhancements
DE102016006967B4 (de) 2016-06-01 2018-12-13 Wieland-Werke Ag Wärmeübertragerrohr
DE102016006913B4 (de) 2016-06-01 2019-01-03 Wieland-Werke Ag Wärmeübertragerrohr
CN106391914B (zh) * 2016-11-10 2018-07-20 华南理工大学 一种轧制与犁切-挤压三维内外翅片管制造设备与方法
CN106391913B (zh) 2016-11-10 2018-07-20 华南理工大学 一种基于多刃犁切-挤压的三维内翅片管成型装置及方法
CN106595370A (zh) * 2016-11-17 2017-04-26 浙江耐乐铜业有限公司 一种胀管形变定向诱导型内螺纹传热管
CN108168353B (zh) * 2017-12-28 2019-08-09 无锡市欣明换热新材料科技有限公司 一种冷凝器的冷凝管及其加工装置
CN108871036A (zh) * 2018-06-26 2018-11-23 华南理工大学 一种高比表面积内翅片管及其加工方法
CN114130845A (zh) * 2021-11-11 2022-03-04 江苏萃隆精密铜管股份有限公司 一种翅片管连续加工装置

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1865575A (en) * 1928-11-30 1932-07-05 Wolverine Tube Company Apparatus for manufacturing integral finned tubing
BE669560A (fr) * 1964-12-28
US3696861A (en) * 1970-05-18 1972-10-10 Trane Co Heat transfer surface having a high boiling heat transfer coefficient
US3885622A (en) * 1971-12-30 1975-05-27 Olin Corp Heat exchanger tube
US3861462A (en) * 1971-12-30 1975-01-21 Olin Corp Heat exchange tube
US3768291A (en) * 1972-02-07 1973-10-30 Uop Inc Method of forming spiral ridges on the inside diameter of externally finned tube
DE2808080C2 (de) * 1977-02-25 1982-12-30 Furukawa Metals Co., Ltd., Tokyo Wärmeübertragungs-Rohr für Siedewärmetauscher und Verfahren zu seiner Herstellung
DE2758526C2 (de) * 1977-12-28 1986-03-06 Wieland-Werke Ag, 7900 Ulm Verfahren und Vorrichtung zur Herstellung eines Rippenrohres
JPS5726394A (en) * 1980-07-22 1982-02-12 Hitachi Cable Ltd Heat conduction pipe with grooves in internal surface
US4577381A (en) * 1983-04-01 1986-03-25 Kabushiki Kaisha Kobe Seiko Sho Boiling heat transfer pipes
US4692978A (en) * 1983-08-04 1987-09-15 Wolverine Tube, Inc. Method for making heat exchange tubes
US4660630A (en) * 1985-06-12 1987-04-28 Wolverine Tube, Inc. Heat transfer tube having internal ridges, and method of making same
US4733698A (en) * 1985-09-13 1988-03-29 Kabushiki Kaisha Kobe Seiko Sho Heat transfer pipe
JPS62255794A (ja) 1986-04-25 1987-11-07 Kobe Steel Ltd フイン付伝熱管とその製造方法
JPH01269886A (ja) * 1988-04-20 1989-10-27 Furukawa Electric Co Ltd:The 空冷式吸収器用竪型伝熱管
JPH01317637A (ja) * 1988-06-20 1989-12-22 Furukawa Electric Co Ltd:The 内面溝付伝熱管
US5052476A (en) * 1990-02-13 1991-10-01 501 Mitsubishi Shindoh Co., Ltd. Heat transfer tubes and method for manufacturing
US5054548A (en) * 1990-10-24 1991-10-08 Carrier Corporation High performance heat transfer surface for high pressure refrigerants
US5070937A (en) * 1991-02-21 1991-12-10 American Standard Inc. Internally enhanced heat transfer tube
US5332034A (en) * 1992-12-16 1994-07-26 Carrier Corporation Heat exchanger tube
US5494209A (en) * 1992-12-28 1996-02-27 Olin Corporation Method for the manufacture of an internally enhanced welded tubing
DE4404357C2 (de) * 1994-02-11 1998-05-20 Wieland Werke Ag Wärmeaustauschrohr zum Kondensieren von Dampf
CN1084876C (zh) * 1994-08-08 2002-05-15 运载器有限公司 传热管
DE69525594T2 (de) * 1994-11-17 2002-08-22 Carrier Corp Wärmeaustauschrohr
JP3323682B2 (ja) * 1994-12-28 2002-09-09 株式会社日立製作所 混合冷媒用内面クロス溝付き伝熱管
KR100245383B1 (ko) * 1996-09-13 2000-03-02 정훈보 교차홈 형성 전열관 및 그 제조 방법
JPH1183368A (ja) * 1997-09-17 1999-03-26 Hitachi Cable Ltd 内面溝付伝熱管
DE10041919C1 (de) * 2000-08-25 2001-10-31 Wieland Werke Ag Innenberipptes Wärmeaustauschrohr mit versetzt angeordneten Rippen unterschiedlicher Höhe

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2339283A2 (fr) 2009-12-22 2011-06-29 Wieland-Werke AG Tuyau de transfert de chaleur et procédé de fabrication d'un tuyau de transfert de chaleur
DE102009060395A1 (de) 2009-12-22 2011-06-30 Wieland-Werke AG, 89079 Wärmeübertragerrohr und Verfahren zur Herstellung eines Wämeübertragerrohrs
EP2339283A3 (fr) * 2009-12-22 2014-07-09 Wieland-Werke AG Tuyau de transfert de chaleur et procédé de fabrication d'un tuyau de transfert de chaleur
US9234709B2 (en) 2009-12-22 2016-01-12 Wieland-Werke Ag Heat exchanger tube and methods for producing a heat exchanger tube
US10024607B2 (en) 2009-12-22 2018-07-17 Wieland-Werke Ag Heat exchanger tube and methods for producing a heat exchanger tube
EP4390292A1 (fr) 2022-12-22 2024-06-26 Wieland-Werke AG Tube d'échangeur de chaleur
WO2024132414A1 (fr) 2022-12-22 2024-06-27 Wieland-Werke Ag Tube d'échangeur de chaleur

Also Published As

Publication number Publication date
CN1428211A (zh) 2003-07-09
EP1312885A2 (fr) 2003-05-21
JP4077296B2 (ja) 2008-04-16
DE50204587D1 (de) 2006-03-02
US20030094272A1 (en) 2003-05-22
US7451542B2 (en) 2008-11-18
US20050241150A1 (en) 2005-11-03
JP2003185386A (ja) 2003-07-03
CN1258668C (zh) 2006-06-07
EP1312885A3 (fr) 2004-08-18
DE10156374C1 (de) 2003-02-27

Similar Documents

Publication Publication Date Title
EP1312885B1 (fr) Tube d'échangeur de chaleur structuré des deux côtés et son procédé de fabrication
EP1830151B1 (fr) Tuyau d'échange thermique structuré et son procédé de fabrication
EP1113237B1 (fr) Tube d'échangeur de chaleur structuré des deux cotés et son procédé de fabrication
DE19628280C2 (de) Wärmeübertragungsrohr mit einer gerillten Innenfläche
EP2216615B1 (fr) Tube de transfert de chaleur et procédé destiné à sa fabrication
DE19643137C2 (de) Wärmeübertragungsrohr mit gerillter Innenfläche und Verfahren zum Herstellen desselben
EP1223400B1 (fr) Tube d'échangeur de chaleur et son procédé de fabrication
DE69215988T2 (de) Wärmeaustauschrohre und Verfahren zur Herstellung
EP2339283B1 (fr) Tuyau de transfert de chaleur et procédé de fabrication d'un tuyau de transfert de chaleur
EP0687880B1 (fr) Tube avec plusieurs nervures hécicoidales et son procédé de fabrication
DE19510124A1 (de) Austauscherrohr für einen Wärmeaustauscher
CH636431A5 (de) Rippenrohr sowie verfahren zu dessen herstellung und vorrichtung zur durchfuehrung des verfahrens.
EP0102407B1 (fr) Tube à ailettes avec protubérances internes et procédé et dispositif de fabrication
DE10210016B9 (de) Wärmeaustauschrohr mit berippter Innenoberfläche
DE2803273A1 (de) Rippenrohr sowie verfahren und vorrichtung zu dessen herstellung
DE3873829T2 (de) Verfahren zur herstellung eines metallrohres mit spiralrippen.
DE2717802A1 (de) Waermeuebertragungsrohr und verfahren zu seiner herstellung
CH646511A5 (de) Waermeuebertragungsrohr und verfahren zu dessen herstellung.
DE904488C (de) Zusammengesetztes Rippenrohr und Verfahren zu dessen Herstellung
EP1344707B1 (fr) Arbre de direction de colonne de direction pour un véhicule automobile
CH626986A5 (en) Heat exchange tube for a heat exchanger, and method for producing it
CH432436A (de) Verfahren und Vorrichtung zur Herstellung von für Wärmeaustauscher bzw. Kondensatoren usw. bestimmten Metallrippenrohren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20021105

AK Designated contracting states

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIC1 Information provided on ipc code assigned before grant

Ipc: 7F 28F 1/42 A

Ipc: 7B 21C 37/20 B

17Q First examination report despatched

Effective date: 20041115

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

AKX Designation fees paid

Designated state(s): DE FR GB IT PT

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT PT

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT PT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060120

REF Corresponds to:

Ref document number: 50204587

Country of ref document: DE

Date of ref document: 20060302

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060720

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20210930

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20210922

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20211105

Year of fee payment: 20

Ref country code: DE

Payment date: 20211130

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20211012

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50204587

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20221104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20221116

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20221104