EP1312885B1 - Heat exchange tube structured on both sides and process for making same - Google Patents

Heat exchange tube structured on both sides and process for making same Download PDF

Info

Publication number
EP1312885B1
EP1312885B1 EP02024655A EP02024655A EP1312885B1 EP 1312885 B1 EP1312885 B1 EP 1312885B1 EP 02024655 A EP02024655 A EP 02024655A EP 02024655 A EP02024655 A EP 02024655A EP 1312885 B1 EP1312885 B1 EP 1312885B1
Authority
EP
European Patent Office
Prior art keywords
pipe
heat
ribs
grooves
secondary grooves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02024655A
Other languages
German (de)
French (fr)
Other versions
EP1312885A3 (en
EP1312885A2 (en
Inventor
Karine Brand
Andreas Knöpfler
Andreas Dr. Beutler
Lutz Ronald
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wieland Werke AG
Original Assignee
Wieland Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7706011&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1312885(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Wieland Werke AG filed Critical Wieland Werke AG
Publication of EP1312885A2 publication Critical patent/EP1312885A2/en
Publication of EP1312885A3 publication Critical patent/EP1312885A3/en
Application granted granted Critical
Publication of EP1312885B1 publication Critical patent/EP1312885B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/15Making tubes of special shape; Making tube fittings
    • B21C37/20Making helical or similar guides in or on tubes without removing material, e.g. by drawing same over mandrels, by pushing same through dies ; Making tubes with angled walls, ribbed tubes and tubes with decorated walls
    • B21C37/207Making helical or similar guides in or on tubes without removing material, e.g. by drawing same over mandrels, by pushing same through dies ; Making tubes with angled walls, ribbed tubes and tubes with decorated walls with helical guides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/42Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/42Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
    • F28F1/422Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element with outside means integral with the tubular element and inside means integral with the tubular element
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4935Heat exchanger or boiler making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4935Heat exchanger or boiler making
    • Y10T29/49377Tube with heat transfer means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4935Heat exchanger or boiler making
    • Y10T29/49377Tube with heat transfer means
    • Y10T29/49378Finned tube
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4935Heat exchanger or boiler making
    • Y10T29/49377Tube with heat transfer means
    • Y10T29/49378Finned tube
    • Y10T29/49382Helically finned
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4935Heat exchanger or boiler making
    • Y10T29/49377Tube with heat transfer means
    • Y10T29/49378Finned tube
    • Y10T29/49385Made from unitary workpiece, i.e., no assembly
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4935Heat exchanger or boiler making
    • Y10T29/49391Tube making or reforming

Definitions

  • the invention relates to metallic, double-sided structured heat exchanger tubes, in particular finned tubes, according to the preamble of claim 1.
  • Heat transfer occurs in many areas of refrigeration and air conditioning technology as well as in the Process and energy technology.
  • tube bundle heat exchanger In many applications flows Here on the tube inside a liquid, which depends on the direction of the Heat flow is cooled or heated. The heat gets to the outside of the pipe the medium is discharged or withdrawn. It is booth the technique that in RohrbündeltageSem instead of smooth tubes on both sides structured tubes are used. As a result, the heat transfer on the inside of the pipe and on the outside of the pipe intensified. The transferred heat flux density is increased and the heat exchanger can be made more compact. Alternatively, the heat flow density can be maintained and the driving temperature difference be lowered, resulting in a more energy-efficient heat transfer is possible.
  • Have structured heat exchanger tubes for tube bundle heat exchanger usually at least one structured area and smooth end pieces and possibly smooth spacers. Limit the smooth end or intermediate pieces the structured areas. So that the tube easily into the tube bundle heat exchanger can be installed, the outer diameter of the structured Areas should not be greater than the outer diameter of the smooth end and intermediate pieces.
  • Heat exchanger tubes are known for example from US 3,861,462, the are structured on both sides. The structure is first rolled into strip material, which is then formed into a tube and welded to the butt joint.
  • such are substantially closed Channels by bending or flipping the rib (US 3,696,861, US 5,054,548), by splitting and upsetting the rib (DE 2,758,526, US 4,577,381), and by notching and swaging the rib (US 4,660,630, EP 0,713,072, US 4,216,826).
  • the object of the invention is to provide both sides with structured heat exchanger tubes To produce increased performance internal structure, wherein the weight fraction of the Internal structure of the total weight of the pipe may not be higher than in conventional, helical internal ribs of constant cross section.
  • the dimensions The internal and external structure of the finned tube must be independent of each other be adjustable.
  • the task is solved in a heat exchanger tube of the type mentioned, in each of which adjacent inner ribs are separated by a parallel to the inner ribs extending primary groove, according to the invention, in that the inner ribs are crossed by secondary grooves running at a pitch angle ⁇ , measured against the pipe axis, the secondary grooves extend at an inclination angle ⁇ of 60-85 ° with respect to the inner ribs, that the depth T of the secondary grooves is at least 20% of the rib height H of the inner ribs, and the density of the intersections of inner ribs (20) and secondary grooves (22) is 90 to 250 points of intersection / cm 2 .
  • the inner ribs now have no constant Cross section more. Following the course of the inner ribs, then changes the cross-sectional shape of the inner ribs at the locations of the secondary grooves.
  • the Secondary grooves arise in the pipe side flowing medium additional vortex in close to the wall, which increases the heat transfer coefficient. It is Seeing that by adding secondary grooves the weight fraction of the Internal structure on the total weight of the pipe is not increased.
  • the depth of the secondary grooves becomes radial from the top of the inner fin Direction measured.
  • the depth of the secondary grooves is at least 20% of the Height of the inner ribs. If the depth of the secondary grooves is equal to the height of the Inner ribs, then arise on the inside of the tube spaced apart Structural elements similar to truncated pyramids.
  • Claims 2 to 10 relate to preferred embodiments of the invention Heat exchanger tube.
  • the invention further provides, according to claims 12 to 16, a Process for the preparation of the heat exchanger tube according to the invention.
  • the Tool for forming the outer ribs in at least two spaced apart Rolled disc packages built.
  • the internal structure is different by two profiled roll mandrels shaped.
  • the first mandrel supports the pipe in the first forming area under the first roll disk package and forms first helical circumferential or axially parallel inner ribs, these Inner ribs initially have a constant cross-section.
  • the second rolling mandrel supports the pipe in the second forming area under the second roll disk package larger diameter and shapes the secondary grooves according to the invention in the previously formed helical circumferential or paraxial ribs.
  • the Depth of the secondary grooves is essentially determined by the choice of diameter set two mandrels.
  • the integrally rolled finned tube 1 according to Figures 1 and 2 has on the tube outside helically encircling ribs 3 on.
  • the preparation of the invention Finned tube is carried out by a rolling process (see US Patent Nos. 1,865,575 /3,327,512 and DE 23 03 172) by means of the device shown in Figure 1.
  • the axis of the tool holder 10 is simultaneously the Axle of the two associated rolling tools 11 and 12 and it extends obliquely to Tube axis.
  • the tool holder 10 are each offset by 360 ° / n at the periphery of Finned tube arranged.
  • the tool holder 10 are radially deliverable. you are in turn arranged in a stationary (not shown) rolling head.
  • the rolling head is fixed in the basic framework of the rolling device.
  • the rolling tools 11 and 12 each consist of several juxtaposed rolling disks 13 and 14, whose diameter increases in the direction of the arrow.
  • the rolling disks 14 of the second Rolling tool 12 thus have a larger diameter than the rolling disks 13 of the first rolling tool 11.
  • the mandrels 15 and 16 are attached to the free end of a rod 9 and rotatably mounted to each other.
  • the Rod 9 is attached at its other end to the skeleton of the rolling device.
  • the mandrels 15 and 16 are in the working range of the rolling tools 11 and 12 to position.
  • the rod 9 must be at least as long as the one to be produced Finned tube 1.
  • the smooth tube 2 Prior to machining, the smooth tube 2 is used for undelivered rolling tools 11 and 12 almost completely over the mandrels 15 and 16 on the Pushed rod 9. Only the part of the smooth tube 2, the finished finned tube 1 is to form the first smooth end piece is not on the mandrels 15 and 16 pushed.
  • the tube is arranged on the circumference, rotating Rolling tools 11 and 12 delivered to the smooth tube 2 radially and with the smooth tube 2 engaged.
  • the smooth tube 2 is thereby rotated. Because the Axis of the rolling tools 11 and 12 is inclined to the tube axis, forming the Rolling tools 11 and 12 helically encircling ribs 3 from the Tube wall of the smooth tube 2 and push at the same time the resulting finned tube 1 corresponding to the pitch of the helical circumferential ribs 3 in FIG Arrow direction.
  • the ribs 3 preferably run like a multi-start thread around. The distance between the centers of two adjacent ones measured along the tube axis Ribs are referred to as rib pitch p.
  • the distance between the two Rolling tools 11 and 12 must be adapted so that the rolling disks 14 of the second rolling tool 12 engage in the grooves 4, which between the first Rolling tool 11 are shaped ribs 3a. Ideally, this distance is one integer multiple of the rib pitch p.
  • the second rolling tool 12 then performs the further shaping of the outer ribs 3 away.
  • the axes the two mandrels 15 and 16 are identical to the axis of the tube.
  • the Mandrels 15 and 16 are profiled differently and the outer diameter of the second rolling mandrel 16 is at most as large as the outer diameter of the first Rolling mandrel 15.
  • the outside diameter of the second rolling mandrel is 16 up to 0.8 mm smaller than the outer diameter of the first rolling mandrel 15.
  • Das Profile of the mandrels usually consists of a variety of trapezoidal or nearly trapezoidal grooves parallel to each other on the outer surface of the Walzdorns are arranged. Located between two adjacent grooves Material of the rolling mandrel is referred to as web 19. The webs 19 have an im significant trapezoidal cross-section.
  • the grooves are usually under a helix angle of 0 ° to 70 ° inclined to the axis of the mandrel. At the first rolling mandrel 15, this twist angle is denoted by ⁇ , and in the second rolling mandrel 16 by ⁇ .
  • Twist angle 0 ° corresponds to the case that the grooves are parallel to the axis of the mandrel run. If the helix angle is different from 0 °, the grooves are helical. Helical grooves can be left-handed or right-handed be oriented.
  • FIGS. 1 and 2 show the case that the first one Rolling mandrel 15 right-hand grooves 17 and the second rolling mandrel 16 left-hand grooves 18 has.
  • the helix angles ⁇ and ⁇ can have equal amounts.
  • both mandrels 15 and 16 have grooves 17 and 18 with the same direction.
  • the helix angles ⁇ and ⁇ must differ in terms of their amount.
  • the two mandrels 15 and 16 must be rotatably mounted to each other.
  • the inner ribs 20 are opposite to the Pipe axis by the same angle ⁇ (pitch angle) inclined as the grooves 17 to Axis of the first rolling mandrel 15.
  • the pitch angle of the inner ribs 20 is thus equal to the helix angle ⁇ of the first rolling mandrel 15.
  • the height of the inner ribs 20 is denoted by H and is usually 0.15-0.40 mm.
  • the inner ribs 20 pressed onto the second rolling mandrel 16. Since the grooves 18 of the second rolling mandrel 16 at a different angle to the dome axis and thus at a different angle to the Tube axis run as the grooves 17 of the first rolling mandrel 15, meet the inner ribs 20 in sections on a groove 18 or a web 19 of the second rolling mandrel 16. In the sections where an inner fin 20 meets a groove 18, the Material of the inner rib 20 pressed into the groove. In the sections where one Inner rib 20 meets a web 19, the fin material is deformed and it become parallel to each other secondary grooves 22 in the inner ribs 20th imprinted.
  • the secondary grooves 22 According to the shape of the webs 19 of the second rolling mandrel 16 have the secondary grooves 22 a trapezoidal cross-section. Secondary grooves 22 coming from the the same web 19 are stamped into different inner ribs 20 are to each other arranged in alignment.
  • the pitch angle that the secondary grooves 22 with the Form pipe axis is equal to the helix angle ⁇ , the grooves 18 of the second rolling mandrel 16 with the axis of the second rolling mandrel 16 include.
  • the angle of inclination ⁇ which include the secondary grooves 22 with the inner ribs 20 results in roll mandrels 15 and 16 with the same direction orientation of the grooves 17 and 18 from the difference of the helix angle ⁇ and ⁇ , with roll mandrels 15 and 16 with opposite directions Orientation of the grooves 17 and 18 from the sum of the helix angles ⁇ and ⁇ .
  • Angle ⁇ is between 60 ° and 85 °. Angle ⁇ smaller than 90 ° are manufacturing technology easier to control than angle ⁇ greater than 90 ° and usually cause a smaller pressure drop as angle ⁇ greater than 90 °.
  • the depth T of the secondary grooves 22 is from the top of the inner fin 20 in Measured radial direction.
  • the Depth T of the secondary grooves 22 are varied: the smaller the difference in outer diameter between the first rolling mandrel 15 and the second rolling mandrel 16, the greater the depth T of the secondary grooves 22.
  • a change in the outer diameter from one of the two mandrels 15 or 16 but not only one Changing the depth T of the secondary grooves 22 result, but usually causes also a change in the height of the outer ribs 3. This effect can However, be compensated by the structure of the rolling tools 11 and 12 modified.
  • the largest rolling disks 13 of the first Rolling tool 11 as the smallest rolling disks 14 of the second rolling tool 12th or the smallest rolling disks 14 of the second rolling tool 12 as the largest Rolling discs 13 of the first rolling tool 11 can be used.
  • the depth T of the secondary grooves 22 at least 20% of the height H of the inner ribs 20th be.
  • T is at least 40% of the height H of the inner fins 20. If the depth T of the secondary grooves 22 is smaller than the height H of the inner fins 20, then is the finished shaped finned tube 1, the course of the inner ribs 20 can still be seen. This is shown in FIG. Altered along the course of the inner ribs 20 But now the cross-sectional shape of the inner ribs 20: The height of the inner ribs 20th is reduced at the locations of the secondary grooves 22 by the depth T thereof.
  • the prime intestines 21 are continuous without interruption between the inner ribs 20. Aligned to each other Secondary grooves 22 are spaced by the primary grooves 21.
  • FIG. 4 shows schematically a section through the internal structure of FIG. 3 along the Line X-X of Fig. 3.
  • the height relationships between inner ribs 20, primary grooves 21st and secondary grooves 22 are clearly visible here.
  • the depth T of the secondary grooves 22 is equal to the height H of the inner fins 20, then on the finished molded finned tube 1, the course of the inner fins 20 no longer detect.
  • the inner ribs 21 are in this case by the secondary grooves 22 in individual, spaced apart elements 23 divided. This is shown in FIG. 2. Due to the trapezoidal cross section of the initially formed inner ribs 20 and the secondary grooves 22, the spaced elements 23 have the shape of truncated pyramids.
  • the density of the intersections of inner ribs 20 and secondary grooves 22 is determined.
  • the density of the intersections is between 90 and 250 intersections per cm 2 .
  • the reference surface is the inner tube surface, which results from removing the inner structure completely from the tube.
  • the pressure drop of the Pipe flowing liquid to the same extent as the heat transfer coefficient.
  • the description of the production process according to the invention shows that the multitude of tool parameters that can be selected in this method are the dimensions the outer and inner structure in a wide range of independent can be adjusted. In particular, allows the division of the rolling tool in two spaced rolling tools 11 and 12, the depth T of the secondary grooves 22 to vary without simultaneously changing the height of the outer ribs 3.
  • Double-sided structured finned tubes for refrigeration and air conditioning are often made of copper or copper alloys. Since in these metals the pure price of material accounts for a not inconsiderable share of the total cost of the finned tube, competition requires that the weight of the tube be minimized for a given tube diameter.
  • the proportion by weight of the internal structure in the total weight is in today commercially available finned tubes, depending on the height of the internal structure and thus depending on the performance of 10% to 20%.
  • the proportion by weight of such an internal structure relative to the outer envelope surface of the finned tube is usually between 500 g / m 2 and 1000 g / m 2 , preferably between 600 g / m 2 and 900 g / m 2 .
  • the weight fraction of such an internal structure which relates to the outer envelope surface of the finned tube, is usually between 150 g / m 2 and 300 g / m 2 , preferably between 180 g / m 2 and 270 g / m 2 . If one chooses the width of the primary grooves 21 and the secondary grooves 22 large, then a low weight of the internal structure can be realized.
  • the heat transfer coefficient is plotted against the heat flow density at condensation of refrigerant R-134a on the outside of the pipe and cooling water flow on the pipe inside.
  • the condensation temperature is 36.7 ° C
  • the water velocity 2.4 m / s.
  • the two compared finned tubes have the same structure on their outer side, but differ in the internal structure, as indicated in the diagram.
  • the prior art is represented by the tube, which is provided with a standard internal structure of height 0.35 mm. 2, the height of the truncated pyramids is approximately 0.30 mm, the density of the intersections of inner ribs 20 and secondary grooves 22 is 143 per cm 2 and the angle ⁇ is 96 °.
  • the finned tube with internal structure with truncated pyramids has an advantage in the heat transfer coefficient of 13% to 22%. This advantage is due solely to the internal structure, since the heat transfer coefficient on the tube outside is the same for both tubes.
  • both the radial force for simultaneous Forming the outer and inner structure as well as the axial force for propulsion of the tube through the rolling tool, which is made up of relatively thin discs is provided by itself.
  • the most powerful, commercially available finned tubes are made with rolled discs whose thickness is between 0.40 mm and 0.65 mm is.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

Die Erfindung betrifft metallische, beidseitig strukturierte Wärmeaustauscherrohre, insbesondere Rippenrohre, nach dem Oberbegriff des Anspruchs 1.The invention relates to metallic, double-sided structured heat exchanger tubes, in particular finned tubes, according to the preamble of claim 1.

Stand der TechnikState of the art

Wärmeübertragung tritt in vielen Bereichen der Kälte- und Klimatechnik sowie in der Prozess- und Energietechnik auf. Zur Wärmeübertragung werden in diesen Gebieten häufig Rohrbündelwärmeaustauscher eingesetzt. In vielen Anwendungen strömt hierbei auf der Rohrinnenseite eine Flüssigkeit, die abhängig von der Richtung des Wärmestroms abgekühlt oder erwärmt wird. Die Wärme wird an das auf der Rohraußenseite sich befindende Medium abgegeben bzw. diesem entzogen. Es ist Stand der Technik, dass in Rohrbündelwärmeaustauschem anstelle von Glattrohren beidseitig strukturierte Rohre eingesetzt werden. Hierdurch wird der Wärmeübergang auf der Rohrinnenseite und auf der Rohraußenseite intensiviert. Die übertragene Wärmestromdichte wird erhöht, und der Wärmeaustauscher kann kompakter gebaut werden. Alternativ kann die Wärmestromdichte beibehalten und die treibende Temperaturdifferenz erniedrigt werden, wodurch eine energieeffizientere Wärmeübertragung möglich ist. Heat transfer occurs in many areas of refrigeration and air conditioning technology as well as in the Process and energy technology. For heat transfer in these areas commonly used tube bundle heat exchanger. In many applications flows Here on the tube inside a liquid, which depends on the direction of the Heat flow is cooled or heated. The heat gets to the outside of the pipe the medium is discharged or withdrawn. It is booth the technique that in Rohrbündelwärmeaustauschem instead of smooth tubes on both sides structured tubes are used. As a result, the heat transfer on the inside of the pipe and on the outside of the pipe intensified. The transferred heat flux density is increased and the heat exchanger can be made more compact. Alternatively, the heat flow density can be maintained and the driving temperature difference be lowered, resulting in a more energy-efficient heat transfer is possible.

Strukturierte Wärmeaustauscherrohre für Rohrbündelwärmeaustauscher besitzen üblicherweise mindestens einen strukturierten Bereich sowie glatte Endstücke und eventuell glatte Zwischenstücke. Die glatten End- bzw. Zwischenstücke begrenzen die strukturierten Bereiche. Damit das Rohr problemlos in den Rohrbündelwärmeaustauscher eingebaut werden kann, darf der äußere Durchmesser der strukturierten Bereiche nicht größer sein als der äußere Durchmesser der glatten End- und Zwischenstücke.Have structured heat exchanger tubes for tube bundle heat exchanger usually at least one structured area and smooth end pieces and possibly smooth spacers. Limit the smooth end or intermediate pieces the structured areas. So that the tube easily into the tube bundle heat exchanger can be installed, the outer diameter of the structured Areas should not be greater than the outer diameter of the smooth end and intermediate pieces.

Wärmeaustauscherrohre sind beispielsweise aus der US 3.861.462 bekannt, die beidseitig strukturiert sind. Die Struktur wird zunächst in Bandmaterial eingewalzt, das anschließend zu einem Rohr geformt und an der Stoßfuge geschweißt wird.Heat exchanger tubes are known for example from US 3,861,462, the are structured on both sides. The structure is first rolled into strip material, which is then formed into a tube and welded to the butt joint.

Andere strukturierte Wärmeaustauscherrohre werden häufig als integral gewalzte Rippenrohre verwendet. Unter integral gewalzten Rippenrohren werden berippte Rohre verstanden, bei denen die Rippen aus dem Wandungsmaterial eines Glattrohres geformt wurden und die nahtfrei sind (US 5.992.513, US 4.733.698). Rippenrohre besitzen auf ihrer Außenseite ring- oder schraubenförmig umlaufende Rippen. In vielen Fällen besitzen sie auf der Rohrinnenseite eine Vielzahl von achsparallelen oder schraubenlinienförmig umlaufenden Rippen, die den Wärmeübergangskoeffizient auf der Rohrinnenseite verbessern (US 3.768.291). Diese Innenrippen verlaufen mit konstantem Querschnitt parallel zur Rohrachse oder in Form von Schraubenlinien unter einem bestimmten Winkel zur Rohrachse. Je höher die Innenrippen sind, desto größer ist die Verbesserung des Wärmeübergangskoeffizienten. Die Herstellung derartiger Rohre wird beispielsweise in DE 23 03 172 beschrieben. Hierbei ist von Bedeutung, dass durch die dort offengelegte Verwendung eines profilierten Walzdorns zur Erzeugung der Innenrippen die Abmessungen der Innen- und der Außenstruktur des Rippenrohres voneinander unabhängig eingestellt werden können. Dadurch können beide Strukturen auf die jeweiligen Anforderungen angepasst und so das Rohr optimal gestaltet werden. Other structured heat exchanger tubes are often rolled as integral Used finned tubes. Under integrally rolled finned tubes are finned Understood tubes in which the ribs of the wall material of a Smooth tube were formed and seamless (US 5,992,513, US 4,733,698). Finned tubes have on their outside ring-shaped or helical circumferential Ribs. In many cases, they have on the tube inside a variety of axially parallel or helically encircling ribs, the Improve heat transfer coefficient on the inside of the pipe (US 3,768,291). These internal ribs run with a constant cross section parallel to the tube axis or in the form of helical lines at a certain angle to the tube axis. ever higher the inner fins, the greater the improvement of the heat transfer coefficient. The production of such pipes is described for example in DE 23 03 172 described. It is important that by the disclosed there Use of a profiled rolling mandrel for producing the inner ribs the Dimensions of the inner and the outer structure of the finned tube from each other can be set independently. This allows both structures on the adapted to respective requirements and so the tube can be optimally designed.

In der jüngsten Zeit wurden viele Möglichkeiten entwickelt, je nach Anwendung den Wärmeübergang auf der Außenseite von integral gewalzten Rippenrohren weiter zu steigern, indem die Rippen auf der Rohraußenseite mit weiteren Strukturmerkmalen versehen werden. Beispielsweise wird bei Kondensation von Kältemitteln auf der Rohraußenseite der Wärmeübergangskoeffizient deutlich erhöht, wenn die Rippenflanken mit zusätzlichen konvexen Kanten versehen werden (US 5.775.411). Bei Verdampfung von Kältemitteln auf der Rohraußenseite hat es sich als leistungssteigernd erwiesen, die zwischen den Rippen befindlichen Kanäle teilweise zu verschließen, so dass Hohlräume entstehen, die durch Poren oder Schlitze mit der Umgebung verbunden sind. Insbesondere werden solche im wesentlichen geschlossene Kanäle durch Umbiegen oder Umlegen der Rippe (US 3.696.861, US 5.054.548), durch Spalten und Stauchen der Rippe (DE 2.758.526, US 4.577.381), und durch Kerben und Stauchen der Rippe (US 4.660.630, EP 0.713.072, US 4.216.826) erzeugt.In recent times many possibilities have been developed, depending on the application Heat transfer on the outside of integrally rolled finned tubes continues to increase increase, by the ribs on the tube outside with other structural features be provided. For example, when condensation of refrigerants on the Outside of the pipe, the heat transfer coefficient increases significantly when the rib flanks be provided with additional convex edges (US 5,775,411). at Evaporation of refrigerants on the outside of the pipe has become performance enhancing proved to be partially between the channels located between the ribs Close, so that cavities are created by the pores or slots with the Environment are connected. In particular, such are substantially closed Channels by bending or flipping the rib (US 3,696,861, US 5,054,548), by splitting and upsetting the rib (DE 2,758,526, US 4,577,381), and by notching and swaging the rib (US 4,660,630, EP 0,713,072, US 4,216,826).

Die genannten Leistungsverbesserungen auf der Rohraußenseite haben zur Folge, dass der Hauptanteil des gesamten Wärmedurchgangswiderstands auf die Rohrinnenseite verschoben wird. Dieser Effekt tritt insbesondere bei kleinen Strömungsgeschwindigkeiten auf der Rohrinnenseite - also z.B. beim Teillastbetrieb - auf. Um den gesamten Wärmedurchgangswiderstand signifikant zu reduzieren, ist es also notwendig, den Wärmeübergangskoeffizienten auf der Rohrinnenseite weiter zu erhöhen. Dies wäre durch eine Vergrößerung der Höhe der Innenrippen prinzipiell möglich, was jedoch aufgrund der zunehmenden, starken Verformung des Materials technisch schwierig beherrschbar ist und ferner zu einem hohen Gewicht des strukturierten Rohres führt. Aus Kostengründen ist dies jedoch unerwünscht.The mentioned performance improvements on the outside of the tube have the consequence that the majority of the total heat transfer resistance on the tube inside is moved. This effect occurs especially at low flow rates on the inside of the pipe - ie e.g. at partial load operation - on. Around It is therefore to significantly reduce the overall heat transfer resistance necessary to further increase the heat transfer coefficient on the inside of the pipe increase. This would be by increasing the height of the inner ribs in principle possible, but due to the increasing, strong deformation of the material is technically difficult to control and also to a high weight of the structured Pipe leads. For cost reasons, this is undesirable.

Aufgabenstellung:Task:

Aufgabe der Erfindung ist es, beidseitig strukturierte Wärmeaustauscherrohre mit leistungsgesteigerter Innenstruktur herzustellen, wobei der Gewichtsanteil der Innenstruktur am Gesamtgewicht des Rohres nicht höher sein darf als bei herkömmlichen, schraubenlinienförmigen Innenrippen konstanten Querschnitts. Die Abmessungen der Innen- und der Außenstruktur des Rippenrohres müssen voneinander unabhängig einstellbar sein.The object of the invention is to provide both sides with structured heat exchanger tubes To produce increased performance internal structure, wherein the weight fraction of the Internal structure of the total weight of the pipe may not be higher than in conventional, helical internal ribs of constant cross section. The dimensions The internal and external structure of the finned tube must be independent of each other be adjustable.

Kurze Beschreibung der Erfindung:Brief description of the invention:

Die Aufgabenstellung wird bei einem Wärmeaustauscherrohr der genannten Art, bei dem jeweils benachbarte Innenrippen durch eine parallel zu den Innenrippen verlaufende Primärnut getrennt sind, erfindungsgemäß dadurch gelöst,
dass die Innenrippen von unter einem Steigungswinkel β verlaufenden Sekundärnuten - gemessen gegen die Rohrachse - gekreuzt werden,
dass die Sekundärnuten gegenüber den Innenrippen unter einem Neigungswinkel γ von 60-85° verlaufen,
dass die Tiefe T der Sekundärnuten mindestens 20 % der Rippenhöhe H der Innenrippen beträgt, und
dass die Dichte der Schnittpunkte von Innenrippen (20) und Sekundärnuten (22) 90 bis 250 Schnittpunkte/cm2 beträgt.
The task is solved in a heat exchanger tube of the type mentioned, in each of which adjacent inner ribs are separated by a parallel to the inner ribs extending primary groove, according to the invention,
in that the inner ribs are crossed by secondary grooves running at a pitch angle β, measured against the pipe axis,
the secondary grooves extend at an inclination angle γ of 60-85 ° with respect to the inner ribs,
that the depth T of the secondary grooves is at least 20% of the rib height H of the inner ribs, and
the density of the intersections of inner ribs (20) and secondary grooves (22) is 90 to 250 points of intersection / cm 2 .

Durch das Einbringen der Sekundärnuten besitzen die Innenrippen nun keinen konstanten Querschnitt mehr. Folgt man dem Verlauf der Innenrippen, dann ändert sich die Querschnittsform der Innenrippen an den Stellen der Sekundärnuten. Durch die Sekundärnuten entstehen im rohrseitig strömenden Medium zusätzliche Wirbel im wandnahen Bereich, wodurch der Wärmeübergangskoeffizient gesteigert wird. Es ist einsichtig, dass durch das Hinzufügen von Sekundärnuten der Gewichtsanteil der Innenstruktur am Gesamtgewicht des Rohres nicht erhöht wird. By introducing the secondary grooves, the inner ribs now have no constant Cross section more. Following the course of the inner ribs, then changes the cross-sectional shape of the inner ribs at the locations of the secondary grooves. By the Secondary grooves arise in the pipe side flowing medium additional vortex in close to the wall, which increases the heat transfer coefficient. It is Seeing that by adding secondary grooves the weight fraction of the Internal structure on the total weight of the pipe is not increased.

Die Tiefe der Sekundärnuten wird von der Spitze der Innenrippe aus in radialer Richtung gemessen. Die Tiefe der Sekundärnuten beträgt mindestens 20 % der Höhe der Innenrippen. Wenn die Tiefe der Sekundärnuten gleich der Höhe der Innenrippen ist, dann entstehen auf der Rohrinnenseite voneinander beabstandete Strukturelemente, die Pyramidenstümpfen ähnlich sind.The depth of the secondary grooves becomes radial from the top of the inner fin Direction measured. The depth of the secondary grooves is at least 20% of the Height of the inner ribs. If the depth of the secondary grooves is equal to the height of the Inner ribs, then arise on the inside of the tube spaced apart Structural elements similar to truncated pyramids.

Die Ansprüche 2 bis 10 betreffen bevorzugte Ausführungsformen des erfindungsgemäßen Wärmeaustauscherrohres.Claims 2 to 10 relate to preferred embodiments of the invention Heat exchanger tube.

Gegenstand der Erfindung ist weiterhin, gemäß den Ansprüchen 12 bis 16, ein Verfahren zur Herstellung des erfindungsgemäßen Wärmeaustauscherrohres.The invention further provides, according to claims 12 to 16, a Process for the preparation of the heat exchanger tube according to the invention.

Gemäß der Erfindung wird zur Erzeugung eines beidseitig strukturierten Wärmeaustauscherrohres mit den vorgeschlagenen Sekundärnuten in der Innenstruktur das Werkzeug zur Formung der Außenrippen in mindestens zwei voneinander beabstandeten Walzscheibenpaketen aufgebaut. Die Innenstruktur wird durch zwei unterschiedlich profilierte Walzdorne geformt. Der erste Walzdorn unterstützt das Rohr im ersten Umformbereich unter dem ersten Walzscheibenpaket und formt zunächst schraubenlinienförmig umlaufende oder achsparallele Innenrippen, wobei diese Innenrippen zunächst einen konstanten Querschnitt aufweisen. Der zweite Walzdorn unterstützt das Rohr im zweiten Umformbereich unter dem zweiten Walzscheibenpaket größeren Durchmessers und formt die erfindungsgemäßen Sekundärnuten in die zuvor geformten schraubenförmig umlaufenden bzw. achsparallelen Rippen. Die Tiefe der Sekundärnuten wird im wesentlichen durch die Wahl der Durchmesser der beiden Walzdorne festgelegt. According to the invention, to produce a heat exchanger tube structured on both sides with the proposed secondary grooves in the inner structure the Tool for forming the outer ribs in at least two spaced apart Rolled disc packages built. The internal structure is different by two profiled roll mandrels shaped. The first mandrel supports the pipe in the first forming area under the first roll disk package and forms first helical circumferential or axially parallel inner ribs, these Inner ribs initially have a constant cross-section. The second rolling mandrel supports the pipe in the second forming area under the second roll disk package larger diameter and shapes the secondary grooves according to the invention in the previously formed helical circumferential or paraxial ribs. The Depth of the secondary grooves is essentially determined by the choice of diameter set two mandrels.

Detaillierte Beschreibung:Detailed description:

Die Erfindung wird anhand der folgenden Ausführungsbeispiele näher erläutert:The invention will be explained in more detail with reference to the following exemplary embodiments:

Es zeigt:

Fig.1:
schematisch die Herstellung eines erfindungsgemäßen Wärmeaustauscherrohres mittels zweier Dome mit unterschiedlicher Orientierung der Drallwinkel;
Fig.2:
eine Teilansicht eines erfindungsgemäßen Wärmeaustauscherrohrs, bei dem sich die Sekundärnuten über die gesamte Höhe der Innenrippe ausdehnen, so dass pyramidenstumpfartige Elemente als Innenstruktur erzeugt werden. Die Ansicht ist teilweise als Schnitt dargestellt;
Fig.3:
ein Foto einer Innenstruktur, bei der sich die Sekundärnuten nur über einen Teil der Höhe der Innenrippe erstrecken;
Fig.4:
schematisch einen Schnitt durch die Innenstruktur von Fig. 3 entlang der Linie X-X von Fig. 3;
Fig.5:
ein Diagramm, das den Leistungsvorteil durch die Sekundärnuten der Innenstruktur dokumentiert;
It shows:
Fig.1:
schematically the preparation of a heat exchanger tube according to the invention by means of two domes with different orientation of the helix angle;
Figure 2:
a partial view of a heat exchanger tube according to the invention, in which the secondary grooves extend over the entire height of the inner fin, so that truncated pyramid-like elements are produced as an internal structure. The view is partially shown as a section;
3 shows:
a photograph of an internal structure in which the secondary grooves extend over only a portion of the height of the inner rib;
Figure 4:
schematically a section through the inner structure of Figure 3 along the line XX of Fig. 3.
Figure 5:
a diagram that documents the performance advantage of the secondary grooves of the internal structure;

Das integral gewalzte Rippenrohr 1 nach Figuren 1 und 2 weist auf der Rohraußenseite schraubenlinienförmig umlaufende Rippen 3 auf. Die Herstellung des erfindungsgemäßen Rippenrohres erfolgt durch einen Walzvorgang (vgl. US-PSen 1.865.575 /3.327.512 sowie DE 23 03 172) mittels der in Figur 1 dargestellten Vorrichtung. The integrally rolled finned tube 1 according to Figures 1 and 2 has on the tube outside helically encircling ribs 3 on. The preparation of the invention Finned tube is carried out by a rolling process (see US Patent Nos. 1,865,575 /3,327,512 and DE 23 03 172) by means of the device shown in Figure 1.

Es wird eine Vorrichtung verwendet, die aus n = 3 oder 4 Werkzeughaltern 10 besteht, in die jeweils mindestens zwei von einander beabstandete Walzwerkzeuge 11 und 12 integriert sind. (In Fig. 1 ist aus Gründen der Übersicht nur ein Werkzeughalter 10 dargestellt.) Die Achse des Werkzeughalters 10 ist gleichzeitig die Achse der beiden zugehörigen Walzwerkzeuge 11 und 12 und sie verläuft schräg zur Rohrachse. Die Werkzeughalter 10 sind jeweils um 360°/n versetzt am Umfang des Rippenrohres angeordnet. Die Werkzeughalter 10 sind radial zustellbar. Sie sind ihrerseits in einem ortsfesten (nicht dargestellten) Walzkopf angeordnet. Der Walzkopf ist im Grundgerüst der Walzvorrichtung fixiert. Die Walzwerkzeuge 11 und 12 bestehen jeweils aus mehreren nebeneinander angeordneten Walzscheiben 13 bzw. 14, deren Durchmesser in Pfeilrichtung ansteigt. Die Walzscheiben 14 des zweiten Walzwerkzeugs 12 haben folglich einen größeren Durchmesser als die Walzscheiben 13 des ersten Walzwerkzeugs 11.A device is used which consists of n = 3 or 4 tool holders 10 consists, in each case at least two spaced-apart rolling tools 11 and 12 are integrated. (In Fig. 1, for reasons of clarity, only one tool holder 10). The axis of the tool holder 10 is simultaneously the Axle of the two associated rolling tools 11 and 12 and it extends obliquely to Tube axis. The tool holder 10 are each offset by 360 ° / n at the periphery of Finned tube arranged. The tool holder 10 are radially deliverable. you are in turn arranged in a stationary (not shown) rolling head. The rolling head is fixed in the basic framework of the rolling device. The rolling tools 11 and 12 each consist of several juxtaposed rolling disks 13 and 14, whose diameter increases in the direction of the arrow. The rolling disks 14 of the second Rolling tool 12 thus have a larger diameter than the rolling disks 13 of the first rolling tool 11.

Ebenfalls Bestandteil der Vorrichtung sind zwei profilierte Walzdorne 15 und 16, mit deren Hilfe die Innenstruktur des Rohres erzeugt wird. Die Walzdorne 15 und 16 sind am freien Ende einer Stange 9 angebracht und zueinander drehbar gelagert. Die Stange 9 ist an ihrem anderen Ende am Grundgerüst der Walzvorrichtung befestigt. Die Walzdorne 15 und 16 sind im Arbeitsbereich der Walzwerkzeuge 11 und 12 zu positionieren. Die Stange 9 muss mindestens so lang sein wie das herzustellende Rippenrohr 1. Vor der Bearbeitung wird das Glattrohr 2 bei nicht zugestellten Walzwerkzeugen 11 und 12 nahezu vollständig über die Walzdorne 15 und 16 auf die Stange 9 geschoben. Lediglich der Teil des Glattrohres 2, der beim fertigen Rippenrohr 1 das erste glatte Endstück bilden soll, wird nicht über die Walzdorne 15 und 16 geschoben.Also part of the device are two profiled mandrels 15 and 16, with whose help the internal structure of the pipe is created. The mandrels 15 and 16 are attached to the free end of a rod 9 and rotatably mounted to each other. The Rod 9 is attached at its other end to the skeleton of the rolling device. The mandrels 15 and 16 are in the working range of the rolling tools 11 and 12 to position. The rod 9 must be at least as long as the one to be produced Finned tube 1. Prior to machining, the smooth tube 2 is used for undelivered rolling tools 11 and 12 almost completely over the mandrels 15 and 16 on the Pushed rod 9. Only the part of the smooth tube 2, the finished finned tube 1 is to form the first smooth end piece is not on the mandrels 15 and 16 pushed.

Zur Bearbeitung des Rohres werden die am Umfang angeordneten, rotierenden Walzwerkzeuge 11 und 12 auf das Glattrohr 2 radial zugestellt und mit dem Glattrohr 2 in Eingriff gebracht. Das Glattrohr 2 wird dadurch in Drehung versetzt. Da die Achse der Walzwerkzeuge 11 und 12 zur Rohrachse schräg gestellt ist, formen die Walzwerkzeuge 11 und 12 schraubenlinienförmig umlaufenden Rippen 3 aus der Rohrwandung des Glattrohrs 2 und schieben gleichzeitig das entstehende Rippenrohr 1 entsprechend der Steigung der schraubenlinienförmig umlaufenden Rippen 3 in Pfeilrichtung vor. Die Rippen 3 laufen vorzugsweise wie ein mehrgängiges Gewinde um. Der längs zur Rohrachse gemessene Abstand der Mitten zweier benachbarter Rippen wird als Rippenteilung p bezeichnet. Der Abstand zwischen den beiden Walzwerkzeuge 11 und 12 muß so angepasst sein, dass die Walzscheiben 14 des zweiten Walzwerkzeugs 12 in die Nuten 4 greifen, die zwischen den vom ersten Walzwerkzeug 11 geformten Rippen 3a sind. Idealerweise ist dieser Abstand ein ganzzahliges Vielfaches der Rippenteilung p. Das zweite Walzwerkzeug 12 führt dann die weitere Formung der Außenrippen 3 fort.To edit the tube are arranged on the circumference, rotating Rolling tools 11 and 12 delivered to the smooth tube 2 radially and with the smooth tube 2 engaged. The smooth tube 2 is thereby rotated. Because the Axis of the rolling tools 11 and 12 is inclined to the tube axis, forming the Rolling tools 11 and 12 helically encircling ribs 3 from the Tube wall of the smooth tube 2 and push at the same time the resulting finned tube 1 corresponding to the pitch of the helical circumferential ribs 3 in FIG Arrow direction. The ribs 3 preferably run like a multi-start thread around. The distance between the centers of two adjacent ones measured along the tube axis Ribs are referred to as rib pitch p. The distance between the two Rolling tools 11 and 12 must be adapted so that the rolling disks 14 of the second rolling tool 12 engage in the grooves 4, which between the first Rolling tool 11 are shaped ribs 3a. Ideally, this distance is one integer multiple of the rib pitch p. The second rolling tool 12 then performs the further shaping of the outer ribs 3 away.

In der Umformzone des ersten Walzwerkzeugs 11 (= erster Umformbereich) wird die Rohrwandung durch einen ersten profilierten Walzdorn 15 unterstützt, und in der Umformzone des zweiten Walzwerkzeugs 12 (= zweiter Umformbereich) wird die Rohrwandung durch einen zweiten profilierten Walzdorn 16 unterstützt. Die Achsen der beiden Walzdorne 15 und 16 sind identisch mit der Achse des Rohres. Die Walzdorne 15 und 16 sind unterschiedlich profiliert und der Außendurchmesser des zweiten Walzdorns 16 ist höchstens so groß wie der Außendurchmesser des ersten Walzdorns 15. Typischerweise ist der Außendurchmesser des zweiten Walzdorns 16 um bis zu 0,8 mm kleiner als der Außendurchmesser des ersten Walzdorns 15. Das Profil der Walzdorne besteht üblicherweise aus einer Vielzahl von trapezförmigen oder nahezu trapezförmigen Nuten, die parallel zueinander auf der Außenfläche des Walzdorns angeordnet sind. Das zwischen zwei benachbarten Nuten befindliche Material des Walzdorns wird als Steg 19 bezeichnet. Die Stege 19 besitzen einen im wesentlichen trapezförmigen Querschnitt. Die Nuten verlaufen üblicherweise unter einem Drallwinkel von 0° bis 70° zur Achse des Dorns geneigt. Beim ersten Walzdorn 15 wird dieser Drallwinkel mit α, beim zweiten Walzdorn 16 mit β bezeichnet. In the forming zone of the first rolling tool 11 (= first forming area) is the Supported pipe wall by a first profiled rolling mandrel 15, and in the Forming zone of the second rolling tool 12 (= second forming area) is the Tube wall supported by a second profiled rolling mandrel 16. The axes the two mandrels 15 and 16 are identical to the axis of the tube. The Mandrels 15 and 16 are profiled differently and the outer diameter of the second rolling mandrel 16 is at most as large as the outer diameter of the first Rolling mandrel 15. Typically, the outside diameter of the second rolling mandrel is 16 up to 0.8 mm smaller than the outer diameter of the first rolling mandrel 15. Das Profile of the mandrels usually consists of a variety of trapezoidal or nearly trapezoidal grooves parallel to each other on the outer surface of the Walzdorns are arranged. Located between two adjacent grooves Material of the rolling mandrel is referred to as web 19. The webs 19 have an im significant trapezoidal cross-section. The grooves are usually under a helix angle of 0 ° to 70 ° inclined to the axis of the mandrel. At the first rolling mandrel 15, this twist angle is denoted by α, and in the second rolling mandrel 16 by β.

Drallwinkel 0° entspricht dem Fall, dass die Nuten parallel zur Achse des Dorns verlaufen. Ist der Drallwinkel von 0° verschieden, verlaufen die Nuten schraubenlinienförmig. Schraubenlinienförmig verlaufende Nuten können linksgängig oder rechtsgängig orientiert sein. In den Fig.1 und 2 ist der Fall dargestellt, dass der erste Walzdorn 15 rechtsgängige Nuten 17 und der zweite Walzdorn 16 linksgängige Nuten 18 aufweist. Man spricht in diesem Fall von gegensinnig orientierten Nuten 17 und 18 bzw. von unterschiedlicher Orientierung der beiden Drallwinkel α und β. In diesem Fall können die Drallwinkel α und β gleiche Beträge haben. (Gleiches gilt für den Fall, dass der erste Walzdorn 15 linksgängige Nuten 17 und der zweite Walzdorn 16 rechtsgängige Nuten 18 aufweist.) Es ist jedoch auch möglich, dass beide Walzdorne 15 und 16 Nuten 17 und 18 mit gleichsinniger Orientierung aufweisen. In diesem Fall müssen sich jedoch die Drallwinkel α und β hinsichtlich ihres Betrags unterscheiden. Die beiden Walzdorne 15 und 16 müssen zueinander drehbar gelagert sein.Twist angle 0 ° corresponds to the case that the grooves are parallel to the axis of the mandrel run. If the helix angle is different from 0 °, the grooves are helical. Helical grooves can be left-handed or right-handed be oriented. FIGS. 1 and 2 show the case that the first one Rolling mandrel 15 right-hand grooves 17 and the second rolling mandrel 16 left-hand grooves 18 has. One speaks in this case of oppositely oriented grooves 17 and 18 or of different orientation of the two helix angles α and β. In this case For example, the helix angles α and β can have equal amounts. (Same goes for the case that the first rolling mandrel 15 left-handed grooves 17 and the second rolling mandrel 16th right-hand grooves 18.) However, it is also possible that both mandrels 15 and 16 have grooves 17 and 18 with the same direction. In this case However, the helix angles α and β must differ in terms of their amount. The two mandrels 15 and 16 must be rotatably mounted to each other.

Durch die radialen Kräfte des ersten Walzwerkzeugs 11 wird das Material der Rohrwand in die Nuten 17 des ersten Walzdorn 15 gepresst. Dadurch werden schraubenlinienförmig umlaufenden Innenrippen 20 auf der Innenfläche des Rippenrohres 1 geformt. Zwischen zwei benachbarten Innenrippen 20 verlaufen Primärnuten 21. Entsprechend der Form der Nuten 17 des ersten Walzdorns 15 haben diese Innenrippen 20 einen im wesentlichen trapezförmigen Querschnitt, der zunächst entlang der Innenrippe konstant bleibt. Die Innenrippen 20 sind gegenüber der Rohrachse um den gleichen Winkel α (Steigungswinkel) geneigt wie die Nuten 17 zur Achse des ersten Walzdorns 15. Der Steigungswinkel der Innenrippen 20 ist also gleich dem Drallwinkel α des ersten Walzdorn 15. Die Höhe der Innenrippen 20 wird mit H bezeichnet und beträgt üblicherweise 0,15 - 0,40 mm.Due to the radial forces of the first rolling tool 11, the material of Pipe wall pressed into the grooves 17 of the first rolling mandrel 15. This will be helically encircling internal ribs 20 on the inner surface of the finned tube 1 shaped. Between two adjacent inner ribs 20 extend primary grooves 21. According to the shape of the grooves 17 of the first rolling mandrel 15 have this Inner ribs 20 has a substantially trapezoidal cross section, the first stays constant along the inner rib. The inner ribs 20 are opposite to the Pipe axis by the same angle α (pitch angle) inclined as the grooves 17 to Axis of the first rolling mandrel 15. The pitch angle of the inner ribs 20 is thus equal to the helix angle α of the first rolling mandrel 15. The height of the inner ribs 20 is denoted by H and is usually 0.15-0.40 mm.

Durch die radialen Kräfte des zweiten Walzwerkzeugs 12 werden die Innenrippen 20 auf den zweiten Walzdorn 16 gepresst. Da die Nuten 18 des zweiten Walzdorns 16 unter einem anderen Winkel zur Domachse und damit unter einem anderen Winkel zur Rohrachse verlaufen als die Nuten 17 des ersten Walzdorn 15, treffen die Innenrippen 20 abschnittsweise auf eine Nut 18 oder einen Steg 19 des zweiten Walzdorns 16. In den Abschnitten, in denen eine Innenrippe 20 auf eine Nut 18 trifft, wird das Material der Innenrippe 20 in die Nut gepresst. In den Abschnitten, in denen eine Innenrippe 20 auf einen Steg 19 trifft, wird das Rippenmaterial verformt und es werden parallel zueinander verlaufende Sekundärnuten 22 in die Innenrippen 20 eingeprägt. Entsprechend der Form der Stege 19 des zweiten Walzdorns 16 haben die Sekundärnuten 22 einen trapezförmigen Querschnitt. Sekundärnuten 22, die vom selben Steg 19 in unterschiedliche Innenrippen 20 eingeprägt werden, sind zueinander fluchtend angeordnet. Der Steigungswinkel, den die Sekundärnuten 22 mit der Rohrachse bilden, ist gleich dem Drallwinkel β, den die Nuten 18 des zweiten Walzdornes 16 mit der Achse des zweiten Walzdornes 16 einschließen. Der Neigungswinkel γ, den die Sekundärnuten 22 mit den Innenrippen 20 einschließen, ergibt sich bei Walzdornen 15 und 16 mit gleichsinniger Orientierung der Nuten 17 und 18 aus der Differenz der Drallwinkel α und β, bei Walzdornen 15 und 16 mit gegensinniger Orientierung der Nuten 17 und 18 aus der Summe der Drallwinkel α und β. Der Winkel γ beträgt zwischen 60° und 85°. Winkel γ kleiner 90° sind fertigungstechnisch leichter zu beherrschen als Winkel γ größer 90° und bewirken üblicherweise einen kleineren Druckabfall als Winkel γ größer 90°.Due to the radial forces of the second rolling tool 12, the inner ribs 20 pressed onto the second rolling mandrel 16. Since the grooves 18 of the second rolling mandrel 16 at a different angle to the dome axis and thus at a different angle to the Tube axis run as the grooves 17 of the first rolling mandrel 15, meet the inner ribs 20 in sections on a groove 18 or a web 19 of the second rolling mandrel 16. In the sections where an inner fin 20 meets a groove 18, the Material of the inner rib 20 pressed into the groove. In the sections where one Inner rib 20 meets a web 19, the fin material is deformed and it become parallel to each other secondary grooves 22 in the inner ribs 20th imprinted. According to the shape of the webs 19 of the second rolling mandrel 16 have the secondary grooves 22 a trapezoidal cross-section. Secondary grooves 22 coming from the the same web 19 are stamped into different inner ribs 20 are to each other arranged in alignment. The pitch angle that the secondary grooves 22 with the Form pipe axis is equal to the helix angle β, the grooves 18 of the second rolling mandrel 16 with the axis of the second rolling mandrel 16 include. The angle of inclination γ, which include the secondary grooves 22 with the inner ribs 20 results in roll mandrels 15 and 16 with the same direction orientation of the grooves 17 and 18 from the difference of the helix angle α and β, with roll mandrels 15 and 16 with opposite directions Orientation of the grooves 17 and 18 from the sum of the helix angles α and β. Of the Angle γ is between 60 ° and 85 °. Angle γ smaller than 90 ° are manufacturing technology easier to control than angle γ greater than 90 ° and usually cause a smaller pressure drop as angle γ greater than 90 °.

Die Tiefe T der Sekundärnuten 22 wird von der Spitze der Innenrippe 20 aus in radialer Richtung gemessen. Durch geeignete Wahl der Außendurchmesser der beiden Walzdorne 15 und 16, sowie durch geeignete Wahl der Außendurchmesser der jeweils größten Walzscheiben der beiden Walzwerkzeuge 11 und 12 kann die Tiefe T der Sekundärnuten 22 variiert werden: Je kleiner der Unterschied im Außendurchmesser zwischen dem ersten Walzdorn 15 und dem zweiten Walzdorn 16 ist, desto größer ist die Tiefe T der Sekundärnuten 22. Eine Änderung des Außendurchmessers von einem der beiden Walzdorne 15 oder 16 hat jedoch nicht nur eine Veränderung der Tiefe T der Sekundärnuten 22 zur Folge, sondern bewirkt üblicherweise auch eine Veränderung der Höhe der Außenrippen 3. Dieser Effekt kann jedoch kompensiert werden, indem man den Aufbau der Walzwerkzeuge 11 und 12 modifiziert. Insbesondere können hierzu die größten Walzscheiben 13 des ersten Walzwerkszeugs 11 als kleinste Walzscheiben 14 des zweiten Walzwerkzeugs 12 bzw. die kleinsten Walzscheiben 14 des zweiten Walzwerkzeugs 12 als größte Walzscheiben 13 des ersten Walzwerkszeugs 11 verwendet werden.The depth T of the secondary grooves 22 is from the top of the inner fin 20 in Measured radial direction. By suitable choice of the outside diameter of the both mandrels 15 and 16, and by a suitable choice of the outer diameter The largest rolling disks of the two rolling tools 11 and 12, the Depth T of the secondary grooves 22 are varied: the smaller the difference in outer diameter between the first rolling mandrel 15 and the second rolling mandrel 16, the greater the depth T of the secondary grooves 22. A change in the outer diameter from one of the two mandrels 15 or 16 but not only one Changing the depth T of the secondary grooves 22 result, but usually causes also a change in the height of the outer ribs 3. This effect can However, be compensated by the structure of the rolling tools 11 and 12 modified. In particular, for this purpose, the largest rolling disks 13 of the first Rolling tool 11 as the smallest rolling disks 14 of the second rolling tool 12th or the smallest rolling disks 14 of the second rolling tool 12 as the largest Rolling discs 13 of the first rolling tool 11 can be used.

Um die Strömung der im Rohr fließenden Flüssigkeit deutlich zu beeinflussen, sollte die Tiefe T der Sekundärnuten 22 mindestens 20% der Höhe H der Innenrippen 20 betragen. Vorzugsweise beträgt T mindestens 40% der Höhe H der Innenrippen 20. Ist die Tiefe T der Sekundärnuten 22 kleiner als die Höhe H der Innenrippen 20, dann ist am fertig geformten Rippenrohr 1 der Verlauf der Innenrippen 20 noch zu erkennen. Dies ist in Fig. 3 dargestellt. Entlang des Verlaufs der Innenrippen 20 verändert sich nun aber die Querschnittsform der Innenrippen 20: Die Höhe der Innenrippen 20 ist an den Stellen der Sekundärnuten 22 um deren Tiefe T reduziert. Die Primämuten 21 verlaufen ohne Unterbrechung zwischen den Innenrippen 20. Zueinander fluchtende Sekundärnuten 22 sind durch die Primärnuten 21 beabstandet.In order to influence the flow of the liquid flowing in the tube clearly, should the depth T of the secondary grooves 22 at least 20% of the height H of the inner ribs 20th be. Preferably, T is at least 40% of the height H of the inner fins 20. If the depth T of the secondary grooves 22 is smaller than the height H of the inner fins 20, then is the finished shaped finned tube 1, the course of the inner ribs 20 can still be seen. This is shown in FIG. Altered along the course of the inner ribs 20 But now the cross-sectional shape of the inner ribs 20: The height of the inner ribs 20th is reduced at the locations of the secondary grooves 22 by the depth T thereof. The prime intestines 21 are continuous without interruption between the inner ribs 20. Aligned to each other Secondary grooves 22 are spaced by the primary grooves 21.

Fig. 4 zeigt schematisch einen Schnitt durch die Innenstruktur von Fig. 3 entlang der Linie X-X von Fig. 3. Die Höhenverhältnisse zwischen Innenrippen 20, Primämuten 21 und Sekundärnuten 22 sind hier deutlich zu erkennen.FIG. 4 shows schematically a section through the internal structure of FIG. 3 along the Line X-X of Fig. 3. The height relationships between inner ribs 20, primary grooves 21st and secondary grooves 22 are clearly visible here.

Ist die Tiefe T der Sekundärnuten 22 gleich der Höhe H der Innenrippen 20, dann ist am fertig geformten Rippenrohr 1 der Verlauf der Innenrippen 20 nicht mehr zu erkennen. Die Innenrippen 21 werden in diesem Fall durch die Sekundärnuten 22 in einzelne, von einander beabstandete Elemente 23 zerteilt. Dies ist in Fig. 2 dargestellt. Aufgrund des trapezförmigen Querschnitts der zunächst geformten Innenrippen 20 und der Sekundärnuten 22, haben die beabstandeten Elemente 23 die Form von Pyramidenstümpfen.If the depth T of the secondary grooves 22 is equal to the height H of the inner fins 20, then on the finished molded finned tube 1, the course of the inner fins 20 no longer detect. The inner ribs 21 are in this case by the secondary grooves 22 in individual, spaced apart elements 23 divided. This is shown in FIG. 2. Due to the trapezoidal cross section of the initially formed inner ribs 20 and the secondary grooves 22, the spaced elements 23 have the shape of truncated pyramids.

Durch die Profilierung der beiden Walzdorne 15 und 16 wird die Dichte der Schnittpunkte von Innenrippen 20 und Sekundärnuten 22 bestimmt. Die Dichte der Schnittpunkte liegt zwischen 90 und 250 Schnittpunkte pro cm2. Als Bezugsfläche dient hierbei die innere Rohroberfläche, die sich ergibt, wenn man die Innenstruktur vollständig aus dem Rohr entfernen würde.By profiling the two mandrels 15 and 16, the density of the intersections of inner ribs 20 and secondary grooves 22 is determined. The density of the intersections is between 90 and 250 intersections per cm 2 . The reference surface is the inner tube surface, which results from removing the inner structure completely from the tube.

Durch die Sekundärnuten 22 wird die Innenstruktur des Rippenrohres 1 mit zusätzlichen Kanten versehen. Strömt Flüssigkeit auf der Innenseite des Rohres, dann entstehen an diesen Kanten zusätzliche Wirbel in der Flüssigkeit, die die Wärmeübertragung auf die Rohrwand verbessern. Üblicherweise steigt der Druckabfall der im Rohr strömenden Flüssigkeit im gleichen Maße an wie der Wärmeübergangskoeffizient. Durch geeignete Wahl der Abmessungen der Innenstruktur, insbesondere des Neigungswinkels γ und der Tiefe T der Sekundärnuten 22, kann dieser Anstieg des Druckabfalls jedoch günstig beeinflusst werden.By the secondary grooves 22, the inner structure of the finned tube 1 with additional Edges provided. Fluid flows on the inside of the tube, then arise at these edges additional vortex in the liquid, which is the heat transfer to improve the pipe wall. Usually, the pressure drop of the Pipe flowing liquid to the same extent as the heat transfer coefficient. By suitable choice of the dimensions of the internal structure, in particular of the Tilt angle γ and the depth T of the secondary grooves 22, this increase in the Pressure drop, however, be favorably influenced.

Die Beschreibung des erfindungsgemäßen Herstellungsverfahrens zeigt, dass durch die Vielzahl der bei diesem Verfahren wählbaren Werkzeugparameter die Abmessungen der Außen- und Innenstruktur in weiten Bereichen voneinander unabhängig eingestellt werden können. Insbesondere ermöglicht die Aufteilung des Walzwerkzeugs in zwei beabstandete Walzwerkzeuge 11 und 12 die Tiefe T der Sekundärnuten 22 zu variieren ohne gleichzeitig die Höhe der Außenrippen 3 zu verändern.The description of the production process according to the invention shows that the multitude of tool parameters that can be selected in this method are the dimensions the outer and inner structure in a wide range of independent can be adjusted. In particular, allows the division of the rolling tool in two spaced rolling tools 11 and 12, the depth T of the secondary grooves 22 to vary without simultaneously changing the height of the outer ribs 3.

Beidseitig strukturierte Rippenrohre für die Kälte- und Klimatechnik werden häufig aus Kupfer oder Kupferlegierungen hergestellt. Da bei diesen Metallen der reine Materialpreis einen nicht unerheblichen Anteil an den Gesamtkosten des Rippenrohres bedingt, erfordert es der Wettbewerb, dass bei gegebenem Rohrdurchmesser das Gewicht des Rohres möglichst gering ist. Der Gewichtsanteil der Innenstruktur am Gesamtgewicht beträgt bei heutzutage kommerziell erhältlichen Rippenrohren je nach Höhe der Innenstruktur und damit je nach Leistungsfähigkeit 10% bis 20%. Durch die erfindungsgemäßen Sekundärnuten 22 in den Innenrippen 20 von beidseitig strukturierten Rippenrohren kann die Leistungsfähigkeit derartiger Rohre beträchtlich erhöht werden, ohne dass der Gewichtsanteil der Innenstruktur erhöht wird. Bei Rippenrohren, die aus Werkstoffen mit einer Dichte von 7,5 bis 9,5 g/cm3 bestehen (also z.B. Kupfer, Kupferlegierungen oder Stahl), liegt der auf die äußere Hüllfläche des Rippenrohres bezogene Gewichtsanteil einer derartigen Innenstruktur üblicherweise zwischen 500 g/m2 und 1000 g/m2, vorzugsweise zwischen 600 g/m2 und 900 g/m2. Bei Rippenrohren, die aus Werkstoffen mit einer Dichte von 2,5 bis 3,0 g/cm3 bestehen (also z.B. Aluminium), liegt der auf die äußere Hüllfläche des Rippenrohres bezogene Gewichtsanteil einer derartigen Innenstruktur üblicherweise zwischen 150 g/m2 und 300 g/m2, vorzugsweise zwischen 180 g/m2 und 270 g/m2. Wenn man die Breite der Primärnuten 21 und der Sekundärnuten 22 groß wählt, dann läßt sich ein geringes Gewicht der Innenstruktur realisieren.Double-sided structured finned tubes for refrigeration and air conditioning are often made of copper or copper alloys. Since in these metals the pure price of material accounts for a not inconsiderable share of the total cost of the finned tube, competition requires that the weight of the tube be minimized for a given tube diameter. The proportion by weight of the internal structure in the total weight is in today commercially available finned tubes, depending on the height of the internal structure and thus depending on the performance of 10% to 20%. By means of the secondary grooves 22 according to the invention in the inner ribs 20 of ribbed tubes structured on both sides, the performance of such tubes can be considerably increased without the weight proportion of the inner structure being increased. For finned tubes consisting of materials with a density of 7.5 to 9.5 g / cm 3 (eg copper, copper alloys or steel), the proportion by weight of such an internal structure relative to the outer envelope surface of the finned tube is usually between 500 g / m 2 and 1000 g / m 2 , preferably between 600 g / m 2 and 900 g / m 2 . In finned tubes, which consist of materials with a density of 2.5 to 3.0 g / cm 3 (ie, aluminum), the weight fraction of such an internal structure, which relates to the outer envelope surface of the finned tube, is usually between 150 g / m 2 and 300 g / m 2 , preferably between 180 g / m 2 and 270 g / m 2 . If one chooses the width of the primary grooves 21 and the secondary grooves 22 large, then a low weight of the internal structure can be realized.

Fig. 5 zeigt ein Diagramm, das den Leistungsvorteil der erfindungsgemäßen Innenstruktur dokumentiert. Aufgetragen ist der Wärmedurchgangskoeffizient gegen die Wärmestromdichte bei Kondensation von Kältemittel R-134a auf der Rohraußenseite und Kühlwasserströmung auf der Rohrinnenseite. Die Kondensationstemperatur beträgt 36,7 °C, die Wassergeschwindigkeit 2,4 m/s. Die beiden verglichenen Rippenrohre besitzen die gleiche Struktur auf ihrer Außenseite, unterscheiden sich jedoch in der Innenstruktur, wie im Diagramm bezeichnet. Der Stand der Technik wird hierbei durch das Rohr repräsentiert, das mit einer Standard-Innenstruktur der Höhe 0,35 mm versehen ist. Bei dem erfindungsgemäßen Rippenrohr mit Innenstruktur mit Pyramidenstümpfen ähnlich Fig. 2 beträgt die Höhe der Pyramidenstümpfe ungefähr 0,30 mm, die Dichte der Schnittpunkte von Innenrippen 20 und Sekundärnuten 22 beträgt 143 pro cm2 und der Winkel γ beträgt 96°. Das Rippenrohr mit Innenstruktur mit Pyramidenstümpfen weist einen Vorteil im Wärmedurchgangskoeffizienten von 13% bis 22% auf. Dieser Vorteil ist alleine durch die Innenstruktur bedingt, da der Wärmeübergangskoeffizient auf der Rohraußenseite bei beiden Rohren gleich ist.5 shows a diagram which documents the performance advantage of the internal structure according to the invention. The heat transfer coefficient is plotted against the heat flow density at condensation of refrigerant R-134a on the outside of the pipe and cooling water flow on the pipe inside. The condensation temperature is 36.7 ° C, the water velocity 2.4 m / s. The two compared finned tubes have the same structure on their outer side, but differ in the internal structure, as indicated in the diagram. The prior art is represented by the tube, which is provided with a standard internal structure of height 0.35 mm. 2, the height of the truncated pyramids is approximately 0.30 mm, the density of the intersections of inner ribs 20 and secondary grooves 22 is 143 per cm 2 and the angle γ is 96 °. The finned tube with internal structure with truncated pyramids has an advantage in the heat transfer coefficient of 13% to 22%. This advantage is due solely to the internal structure, since the heat transfer coefficient on the tube outside is the same for both tubes.

Die Verwendung von Innenrippen mit Sekundärnuten zur Verbesserung des Wärmeübergangs auf der Innenseite von Wärmeaustauscherrohren ist von Rohren bekannt, die lediglich eine Innenstruktur besitzen. Bei nahtlosen Rohren werden derartige Innenstrukturen mittels zweier unterschiedlich profilierter Dorne hergestellt (z.B. JP-OS 1-317637). Diese Technik wird bislang nur bei auf der Rohraußenseite glatten Rohren eingesetzt. Die Übertragung dieser Technik auf beidseitig strukturierte, integral gewalzte Rippenrohre ist jedoch aufgrund der deutlich unterschiedlichen Herstellungsverfahren nicht naheliegend: Bei auf der Rohraußenseite glatten Rohren wird die zur Erzeugung der Innenstruktur erforderliche, radiale Krafteinwirkung durch relativ breite, auf der Rohraußenseite angeordnete Walzen, Rollen oder Kugeln aufgebracht. Der Vortrieb des Rohres in Rohrlängsrichtung wird hierbei durch eine separate Ziehvorrichtung bewerkstelligt. Im Gegensatz hierzu wird bei beidseitig strukturierten, integral gewalzten Rippenrohren sowohl die radiale Kraft zur gleichzeitigen Formung der Außen- und Innenstruktur als auch die axiale Kraft zum Vortrieb des Rohres durch das Walzwerkzeug, das aus relativ dünnen Walzscheiben aufgebaut ist, alleine erbracht. Die leistungsfähigsten, kommerziell erhältlichen Rippenrohre werden mit Walzscheiben hergestellt, deren Dicke zwischen 0,40 mm und 0,65 mm beträgt.The use of internal ribs with secondary grooves to improve heat transfer on the inside of heat exchanger tubes is known from pipes, which only have an internal structure. For seamless pipes are such Internal structures produced by means of two differently profiled mandrels (e.g., Japanese Laid-Open Patent Publication No. 1-317637). This technique is so far only on the outside of the tube smooth tubes used. The transfer of this technique to bilaterally structured, However, integrally rolled finned tubes is due to the significantly different Production method not obvious: with tubes on the outside of the tube smooth is the required to generate the internal structure, radial force by relatively wide, arranged on the outside of the tube rollers, rollers or balls applied. The propulsion of the tube in the tube longitudinal direction is characterized by a accomplished separate drawing device. In contrast, with both sides structured, integrally rolled finned tubes both the radial force for simultaneous Forming the outer and inner structure as well as the axial force for propulsion of the tube through the rolling tool, which is made up of relatively thin discs is provided by itself. The most powerful, commercially available finned tubes are made with rolled discs whose thickness is between 0.40 mm and 0.65 mm is.

Claims (16)

  1. Seamless heat-exchange pipe (1) having optionally smooth ends, at least one structured region at the outer side of the pipe and at the inner side of the pipe and optionally smooth intermediate regions, and having the following features:
    a) integral outer ribs (3) extend around the outer side of the pipe in the manner of a helix,
    b) integral inner ribs (20) extend on the inner side of the pipe in an axially parallel manner or in the manner of a helix at an angle of pitch of α = from 0 to 70° (measured relative to the pipe axis), with primary grooves (21) being formed,
    characterised in that
    c) the inner ribs (20) are crossed by secondary grooves (22) which extend at an angle of pitch β (measured relative to the pipe axis),
    d) the secondary grooves (22) extend at an angle of pitch γ of from 60 to 85° relative to the inner ribs (20),
    e) the depth T of the secondary grooves (22) comprises at least 20% of the rib height H of the inner ribs (20), and
    f) the density of the intersections of inner ribs (20) and secondary grooves (22) is from 90 to 250 intersections/cm2.
  2. Heat-exchange pipe according to claim 1, characterised in that the angle of pitch is γ = from 30 to 100°.
  3. Heat-exchange pipe according to claim 1 or 2, characterised in that, when the inner ribs (20) and secondary grooves (22) extend in opposite directions, the angle of pitch γ is produced as the sum of the angles of pitch α and β: γ = α + β.
  4. Heat-exchange pipe according to claim 1 or 2, characterised in that, when the inner ribs (20) and secondary grooves (22) extend in the same direction, the angle of pitch γ is produced as the difference between the angles of pitch α and β: γ = α - β.
  5. Heat-exchange pipe according to any one or more of claims 1 to 4, characterised in that
    the depth T of the secondary grooves (22) is at least 40% of the rib height H.
  6. Heat-exchange pipe according to any one or more of claims 1 to 5,
    characterised in that
    the rib height H = from 0.15 to 0.40mm.
  7. Heat-exchange pipe according to any one or more of claims 1 to 6, characterised in that
    the depth T of the secondary grooves (22) corresponds to the rib height H.
  8. Heat-exchange pipe according to claim 7, characterised in that the inner side of the pipe has a truncated pyramid-like structure (23).
  9. Heat-exchange pipe according to any one or more of claims 1 to 8, characterised in that
    the weight proportion of the inner structure in relation to the outer covering face of the heat-exchange pipe (1) is from 500 to 1000g/m2, preferably from 600 to 900g/m2, and in that the density of the material used is from 7.5 to 9.5g/cm3.
  10. Heat-exchange pipe according to any one or more of claims 1 to 8, characterised in that
    the weight proportion of the inner structure in relation to the outer covering face of the heat-exchange pipe (1) is from 150 to 300g/m2, preferably from 180 to 270g/m2, and in that the density of the material used is from 2.5 to 3.0g/cm3.
  11. Method for producing a heat-exchange pipe (1), according to any one or more of claims 1 to 10, having outer ribs (3) and inner ribs (20) which extend around the outer side of the pipe in the manner of a helix and which extend on the inner side of the pipe in an axially parallel manner or in the manner of a helix and which are integral, that is to say, are formed out of the pipe wall, and which are crossed by secondary grooves (22), wherein the following method steps are carried out:
    a) at the outer side of a smooth pipe (2), outer ribs (3) which extend in the manner of a helix are formed in a first shaping region, with the rib material being obtained by material being pressed out of the pipe wall by means of a first rolling step and the ribbed pipe (1) which is produced being caused to rotate by the rolling forces and being pushed forwards in accordance with the ribs (3) which are produced in the manner of a helix, the outer ribs (3) being shaped with increasing height from the otherwise non-deformed smooth pipe (2),
    b) the pipe wall is supported in the first shaping region by means of a first rotatable and shaped roller mandrel (15) which is located in the pipe,
    c) in a second rolling step, the outer ribs (3) are formed with further increasing height in a second shaping region which is spaced apart from the first shaping region and the inner ribs (20) are provided with secondary grooves (22),
    d) the pipe wall being supported in the second shaping region by means of a second roller mandrel (16) which is located in the pipe and which is also constructed so as to be rotatable and shaped, but whose shaping is different from the shaping of the first roller mandrel (15) with regard to the magnitude or the orientation of the angle of twist.
  12. Method according to claim 11, characterised in that
    the spacing of the shaping regions is substantially selected as an integer multiple of the rib pitch p.
  13. Method according to claim 11 or 12, characterised in that the outer diameter of the second roller mandrel (16) is selected so as to be smaller than the outer diameter of the first roller mandrel (15).
  14. Method according to any one or more of claims 11 to 13 for producing a heat-exchange pipe (1) according to claim 4,
    characterised in that
    roller mandrels (15, 16) are used having grooves (17, 18) which are directed in opposite directions.
  15. Method according to any one or more of claims 11 to 13 for producing a heat-exchange pipe (1) according to claim 5,
    characterised in that
    roller mandrels (15, 16) are used having grooves (17, 18) which are directed in the same direction.
  16. Method according to any one or more of claims 11 to 15,
    characterised in that
    the depth T of the secondary grooves (22) is adjusted by selecting the diameters of the roller mandrels (15, 16) and by selecting the diameters of the largest roller discs of the two roller tools (11, 12) in each case.
EP02024655A 2001-11-16 2002-11-05 Heat exchange tube structured on both sides and process for making same Expired - Lifetime EP1312885B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10156374 2001-11-16
DE10156374A DE10156374C1 (en) 2001-11-16 2001-11-16 Heat exchange tube structured on both sides has inner fins crossed by secondary grooves at specified rise angle

Publications (3)

Publication Number Publication Date
EP1312885A2 EP1312885A2 (en) 2003-05-21
EP1312885A3 EP1312885A3 (en) 2004-08-18
EP1312885B1 true EP1312885B1 (en) 2005-10-19

Family

ID=7706011

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02024655A Expired - Lifetime EP1312885B1 (en) 2001-11-16 2002-11-05 Heat exchange tube structured on both sides and process for making same

Country Status (5)

Country Link
US (2) US20030094272A1 (en)
EP (1) EP1312885B1 (en)
JP (1) JP4077296B2 (en)
CN (1) CN1258668C (en)
DE (2) DE10156374C1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2339283A2 (en) 2009-12-22 2011-06-29 Wieland-Werke AG Heat transfer pipe and method for manufacturing same
EP4390292A1 (en) 2022-12-22 2024-06-26 Wieland-Werke AG Heat exchanger tube

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4597475B2 (en) * 2002-12-12 2010-12-15 住友軽金属工業株式会社 Manufacturing method of cross fin tube for heat exchanger and cross fin type heat exchanger
US7021106B2 (en) * 2004-04-15 2006-04-04 Mitsui Babcock (Us) Llc Apparatus and method for forming internally ribbed or rifled tubes
DE102005028032A1 (en) * 2005-06-17 2006-12-21 Basf Ag Evaporation of thermally sensitive substances entails carrying out evaporation in evaporator with porously structured surface on product side
DE102006008083B4 (en) * 2006-02-22 2012-04-26 Wieland-Werke Ag Structured heat exchanger tube and method for its production
JP4554557B2 (en) * 2006-06-13 2010-09-29 トヨタ自動車株式会社 Cooler
US20080078534A1 (en) * 2006-10-02 2008-04-03 General Electric Company Heat exchanger tube with enhanced heat transfer co-efficient and related method
CN100473937C (en) * 2006-10-24 2009-04-01 张伟君 High-tech aluminium composite pipe special for environment-friendly energy-saving heating system
EP1930679B1 (en) 2006-12-01 2009-07-15 Basf Se Method and device for cooling reactors with boiling liquids
CN100442000C (en) * 2007-02-01 2008-12-10 江苏萃隆铜业有限公司 High finned heat-exchange tube and processing method thereof
DE102009040558A1 (en) * 2009-09-08 2011-03-10 Krones Ag Tubular Heat Exchangers
JP5431210B2 (en) * 2010-03-05 2014-03-05 株式会社Uacj銅管 Heat transfer tube and heat exchanger
US8613308B2 (en) 2010-12-10 2013-12-24 Uop Llc Process for transferring heat or modifying a tube in a heat exchanger
CN103084813B (en) * 2011-11-03 2016-11-23 秦彪 Sun fancy manufacturing method of heat radiator and equipment thereof
US20140116668A1 (en) * 2012-10-31 2014-05-01 GM Global Technology Operations LLC Cooler pipe and method of forming
CN102980431A (en) * 2012-11-12 2013-03-20 沃林/维兰德传热技术有限责任公司 Evaporation heat-transfer pipe
CN102980432A (en) * 2012-11-12 2013-03-20 沃林/维兰德传热技术有限责任公司 Evaporation heat transfer pipe with hollow cavity body
CN103191979B (en) * 2013-03-27 2015-04-01 金龙精密铜管集团股份有限公司 Combined cutting tool for processing finned tube
DE102013107603A1 (en) * 2013-07-17 2015-01-22 Rollwalztechnik Abele + Höltich GmbH Device for processing a workpiece
CN105014333A (en) * 2014-04-22 2015-11-04 蒋小明 Device and method for manufacturing rolling molding composite helical fin tube
CN104259282A (en) * 2014-07-11 2015-01-07 航天海鹰(哈尔滨)钛业有限公司 Forming device of titanium or titanium alloy finned tube
CN104117834A (en) * 2014-07-11 2014-10-29 航天海鹰(哈尔滨)钛业有限公司 Method for manufacturing titanium or titanium alloy finned tube
CN106796090A (en) * 2014-09-12 2017-05-31 特灵国际有限公司 Turbulator in reinforced pipe
US10480872B2 (en) * 2014-09-12 2019-11-19 Trane International Inc. Turbulators in enhanced tubes
US10551130B2 (en) * 2014-10-06 2020-02-04 Brazeway, Inc. Heat transfer tube with multiple enhancements
DE102016006913B4 (en) 2016-06-01 2019-01-03 Wieland-Werke Ag heat exchanger tube
DE102016006967B4 (en) 2016-06-01 2018-12-13 Wieland-Werke Ag heat exchanger tube
CN106391914B (en) * 2016-11-10 2018-07-20 华南理工大学 Three-dimensional internal and external finned tubes manufacturing equipment and method are cut-squeezed to a kind of roll with plough
CN106391913B (en) * 2016-11-10 2018-07-20 华南理工大学 It is a kind of that the three-dimensional internally finned tube molding machine cut-squeezed and method are ploughed based on multiple-cutting-edge
CN106595370A (en) * 2016-11-17 2017-04-26 浙江耐乐铜业有限公司 Tube expanding deformation directional induction type internally-threaded heat transfer tube
CN108168353B (en) * 2017-12-28 2019-08-09 无锡市欣明换热新材料科技有限公司 A kind of condenser pipe and its processing unit (plant) of condenser
CN108871036A (en) * 2018-06-26 2018-11-23 华南理工大学 A kind of high-specific surface area internally finned tube and its processing method
CN114130845A (en) * 2021-11-11 2022-03-04 江苏萃隆精密铜管股份有限公司 Finned tube continuous processing device

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1865575A (en) * 1928-11-30 1932-07-05 Wolverine Tube Company Apparatus for manufacturing integral finned tubing
BE669560A (en) * 1964-12-28
US3696861A (en) * 1970-05-18 1972-10-10 Trane Co Heat transfer surface having a high boiling heat transfer coefficient
US3861462A (en) * 1971-12-30 1975-01-21 Olin Corp Heat exchange tube
US3885622A (en) * 1971-12-30 1975-05-27 Olin Corp Heat exchanger tube
US3768291A (en) * 1972-02-07 1973-10-30 Uop Inc Method of forming spiral ridges on the inside diameter of externally finned tube
DE2808080C2 (en) * 1977-02-25 1982-12-30 Furukawa Metals Co., Ltd., Tokyo Heat transfer tube for boiling heat exchangers and process for its manufacture
DE2758526C2 (en) * 1977-12-28 1986-03-06 Wieland-Werke Ag, 7900 Ulm Method and device for manufacturing a finned tube
JPS5726394A (en) * 1980-07-22 1982-02-12 Hitachi Cable Ltd Heat conduction pipe with grooves in internal surface
US4577381A (en) * 1983-04-01 1986-03-25 Kabushiki Kaisha Kobe Seiko Sho Boiling heat transfer pipes
US4692978A (en) * 1983-08-04 1987-09-15 Wolverine Tube, Inc. Method for making heat exchange tubes
US4660630A (en) * 1985-06-12 1987-04-28 Wolverine Tube, Inc. Heat transfer tube having internal ridges, and method of making same
US4733698A (en) * 1985-09-13 1988-03-29 Kabushiki Kaisha Kobe Seiko Sho Heat transfer pipe
JPS62255794A (en) 1986-04-25 1987-11-07 Kobe Steel Ltd Heat transfer pipe with fin and manufacture thereof
JPH01269886A (en) * 1988-04-20 1989-10-27 Furukawa Electric Co Ltd:The Vertical heat transfer tube for air-cooled absorber
JPH01317637A (en) * 1988-06-20 1989-12-22 Furukawa Electric Co Ltd:The Heat transfer tube with internal surface groove
US5052476A (en) * 1990-02-13 1991-10-01 501 Mitsubishi Shindoh Co., Ltd. Heat transfer tubes and method for manufacturing
US5054548A (en) * 1990-10-24 1991-10-08 Carrier Corporation High performance heat transfer surface for high pressure refrigerants
US5070937A (en) * 1991-02-21 1991-12-10 American Standard Inc. Internally enhanced heat transfer tube
US5332034A (en) * 1992-12-16 1994-07-26 Carrier Corporation Heat exchanger tube
US5494209A (en) * 1992-12-28 1996-02-27 Olin Corporation Method for the manufacture of an internally enhanced welded tubing
DE4404357C2 (en) * 1994-02-11 1998-05-20 Wieland Werke Ag Heat exchange tube for condensing steam
CN1084876C (en) * 1994-08-08 2002-05-15 运载器有限公司 Heat transfer tube
DE69525594T2 (en) * 1994-11-17 2002-08-22 Carrier Corp., Syracuse Heat exchange tube
JP3323682B2 (en) * 1994-12-28 2002-09-09 株式会社日立製作所 Heat transfer tube with internal cross groove for mixed refrigerant
KR100245383B1 (en) * 1996-09-13 2000-03-02 정훈보 Pipe with crossing groove and manufacture thereof
JPH1183368A (en) * 1997-09-17 1999-03-26 Hitachi Cable Ltd Heating tube having grooved inner surface
DE10041919C1 (en) * 2000-08-25 2001-10-31 Wieland Werke Ag Internally finned heat exchange tube has fins in individual zones arranged so that adjacent zones have fins offset at zone transition

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2339283A2 (en) 2009-12-22 2011-06-29 Wieland-Werke AG Heat transfer pipe and method for manufacturing same
DE102009060395A1 (en) 2009-12-22 2011-06-30 Wieland-Werke AG, 89079 Heat exchanger tube and method for producing a heat exchanger tube
EP2339283A3 (en) * 2009-12-22 2014-07-09 Wieland-Werke AG Heat transfer pipe and method for manufacturing same
US9234709B2 (en) 2009-12-22 2016-01-12 Wieland-Werke Ag Heat exchanger tube and methods for producing a heat exchanger tube
US10024607B2 (en) 2009-12-22 2018-07-17 Wieland-Werke Ag Heat exchanger tube and methods for producing a heat exchanger tube
EP4390292A1 (en) 2022-12-22 2024-06-26 Wieland-Werke AG Heat exchanger tube
WO2024132414A1 (en) 2022-12-22 2024-06-27 Wieland-Werke Ag Heat exchanger tube

Also Published As

Publication number Publication date
CN1428211A (en) 2003-07-09
DE10156374C1 (en) 2003-02-27
US7451542B2 (en) 2008-11-18
DE50204587D1 (en) 2006-03-02
CN1258668C (en) 2006-06-07
US20030094272A1 (en) 2003-05-22
EP1312885A3 (en) 2004-08-18
JP4077296B2 (en) 2008-04-16
EP1312885A2 (en) 2003-05-21
JP2003185386A (en) 2003-07-03
US20050241150A1 (en) 2005-11-03

Similar Documents

Publication Publication Date Title
EP1312885B1 (en) Heat exchange tube structured on both sides and process for making same
EP1830151B1 (en) Structured heat exchanger and method for its production
EP1113237B1 (en) Heat exchange tube structured on both sides and process for making same
DE19628280C2 (en) Heat transfer tube with a grooved inner surface
EP2216615B1 (en) Heat transfer tube and method for its production
DE19643137C2 (en) Grooved inner surface heat transfer tube and method of making same
EP2339283B1 (en) Heat transfer pipe and method for manufacturing same
EP1223400B1 (en) Tube for heat exchanger and process for making same
DE69215988T2 (en) Heat exchange tubes and manufacturing processes
EP0687880B1 (en) Tube with a plurality of spiral ribs and method of manufacturing the same
DE69509320T2 (en) Pipe for a heat exchanger
DE19510124A1 (en) Exchanger tube for a heat exchanger
CH636431A5 (en) FIN TUBE AND METHOD FOR THE PRODUCTION THEREOF AND DEVICE FOR IMPLEMENTING THE METHOD.
EP0102407B1 (en) Finned tube with internal projections and method and apparatus for its manufacture
DE10210016B9 (en) Heat exchange tube with a ribbed inner surface
DE2803273A1 (en) FIBER TUBE AND THE METHOD AND DEVICE FOR THE PRODUCTION THEREOF
DE3873829T2 (en) METHOD FOR PRODUCING A METAL TUBE WITH SPIRAL RIBS.
DE2717802A1 (en) HEAT TRANSFER PIPE AND METHOD FOR MANUFACTURING IT
CH646511A5 (en) Waermeuebertragungsrohr and method for producing.
DE904488C (en) Composite finned tube and method for its manufacture
EP1344707B1 (en) Steering shaft of a steering column for a motor vehicle
CH626986A5 (en) Heat exchange tube for a heat exchanger, and method for producing it
CH432436A (en) Method and device for the production of metal finned tubes intended for heat exchangers or condensers etc.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20021105

AK Designated contracting states

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIC1 Information provided on ipc code assigned before grant

Ipc: 7F 28F 1/42 A

Ipc: 7B 21C 37/20 B

17Q First examination report despatched

Effective date: 20041115

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

AKX Designation fees paid

Designated state(s): DE FR GB IT PT

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT PT

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT PT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060120

REF Corresponds to:

Ref document number: 50204587

Country of ref document: DE

Date of ref document: 20060302

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060720

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20210930

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20210922

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20211105

Year of fee payment: 20

Ref country code: DE

Payment date: 20211130

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20211012

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50204587

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20221104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20221116

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20221104