EP1223400B1 - Tube for heat exchanger and process for making same - Google Patents

Tube for heat exchanger and process for making same Download PDF

Info

Publication number
EP1223400B1
EP1223400B1 EP02000425A EP02000425A EP1223400B1 EP 1223400 B1 EP1223400 B1 EP 1223400B1 EP 02000425 A EP02000425 A EP 02000425A EP 02000425 A EP02000425 A EP 02000425A EP 1223400 B1 EP1223400 B1 EP 1223400B1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
exchanger tube
tube according
fins
metal heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02000425A
Other languages
German (de)
French (fr)
Other versions
EP1223400A2 (en
EP1223400A3 (en
Inventor
Andreas Dr. Dipl.-Phys. Beutler
Manfred Dipl.-Ing. Knab
Andreas Dipl.-Ing. Knöpfler
Axel Dipl.-Ing. Kriegsmann (Fh)
Klaus Dipl.-Ing. Menze
Gerhard Dr.-Ing. Schüz
Andreas Dipl.-Ing. Schwitalla
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wieland Werke AG
Original Assignee
Wieland Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wieland Werke AG filed Critical Wieland Werke AG
Publication of EP1223400A2 publication Critical patent/EP1223400A2/en
Publication of EP1223400A3 publication Critical patent/EP1223400A3/en
Application granted granted Critical
Publication of EP1223400B1 publication Critical patent/EP1223400B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/15Making tubes of special shape; Making tube fittings
    • B21C37/20Making helical or similar guides in or on tubes without removing material, e.g. by drawing same over mandrels, by pushing same through dies ; Making tubes with angled walls, ribbed tubes and tubes with decorated walls
    • B21C37/207Making helical or similar guides in or on tubes without removing material, e.g. by drawing same over mandrels, by pushing same through dies ; Making tubes with angled walls, ribbed tubes and tubes with decorated walls with helical guides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/42Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/42Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
    • F28F1/422Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element with outside means integral with the tubular element and inside means integral with the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • F28F13/182Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing especially adapted for evaporator or condenser surfaces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4935Heat exchanger or boiler making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4935Heat exchanger or boiler making
    • Y10T29/49377Tube with heat transfer means
    • Y10T29/49378Finned tube
    • Y10T29/49385Made from unitary workpiece, i.e., no assembly

Definitions

  • the invention relates to a metallic heat exchanger tube, in particular for the evaporation of liquids from pure substances or mixtures on the tube outside, according to the preamble of claim 1.
  • Evaporation occurs in many areas of refrigeration and air conditioning technology as well as in process and energy technology.
  • Tube heat exchangers are frequently used in industry in which liquids of pure substances or mixtures on the outside of the tube evaporate, cooling a brine or water on the inside of the tube.
  • Such apparatuses are referred to as flooded evaporators.
  • the size of the evaporator can be greatly reduced. As a result, the production costs of such apparatuses decrease.
  • the necessary filling quantity of refrigerant which can account for a not inconsiderable share of the total investment costs in today's predominantly used chlorine-free safety refrigerants, is decreasing. In the case of toxic or flammable refrigerants, the danger potential can be reduced by reducing the filling quantity.
  • the standard high performance pipes today are about three times more efficient than smooth pipes of the same diameter.
  • the present invention relates to structured pipes in which the heat transfer coefficient is intensified on the pipe outside.
  • the heat transfer coefficient on the inside usually also needs to be intensified.
  • An increase in the heat transfer on the inside of the pipe usually results in an increase in the pipe-side pressure drop.
  • Heat exchanger tubes for shell and tube heat exchangers usually have at least one structured area and smooth end pieces and possibly smooth spacers.
  • the smooth end or intermediate pieces limit the structured areas. So that the tube can be easily installed in the shell and tube heat exchanger, the outer diameter of the structured areas must not be greater than the outer diameter of the smooth end and intermediate pieces.
  • nucleation sites are usually small gas or steam inclusions. Such nucleation sites can already be produced by roughening the surface. When the growing bubble reaches a certain size, it detaches from the surface. If in the course of bladder detachment the germinal site is flooded by inflowing liquid, the gas or vapor inclusion may be displaced by liquid. In this case, the germinal site is inactivated. This can be avoided by a suitable design of the germinal sites. For this purpose, it is necessary that the opening of the nucleus is smaller than that under the Opening cavity.
  • Integrally rolled finned tubes are understood to mean finned tubes in which the fins have been formed from the wall material of a smooth tube.
  • various methods are known with which the channels located between adjacent ribs are closed in such a way that connections between the channel and the surroundings remain in the form of pores or slots. Since the opening of the pores or slots is smaller than the width of the channels, the channels are suitably shaped cavities that promote formation and stabilization of nucleation sites.
  • substantially closed channels are formed by bending or flipping the rib (US 3,696,861, US 5,054,548), splitting and upsetting the fin (DE 2,758,526, US 4,577,381), and notching and upsetting the rib (US 4,660,630, EP 0,713,072, US 4,216,826).
  • the object is achieved according to the invention in a heat exchanger tube of the type mentioned, in which recesses are arranged in the region of the groove bottom of the helically extending primary grooves between the ribs, that the recesses are formed in the form of undercut secondary grooves.
  • An undercut secondary groove offers significantly better conditions for the formation and stabilization of bubble nuclei than the simple indentations proposed in EP 0.222.100.
  • the location of the undercut secondary grooves in the vicinity of the primary groove bottom is particularly favorable for the evaporation process, since at the groove bottom, the Wandübertemperatur is greatest and therefore there is the highest driving temperature difference for the bubble formation available.
  • Claims 2 to 14 relate to preferred embodiments of the heat exchanger tube according to the invention.
  • the ribs after the ribs have been formed by suitable additional tools, material is displaced from the region of the rib flanks toward the groove bottom, so that incomplete cavities are formed there, which represent the desired undercut secondary grooves.
  • the cavities extend from the primary groove bottom to the fin tip, extending to at most 45% of the fin height H, typically up to 20% of the fin height H.
  • the rib height H is thereby measured from the deepest point of the groove bottom, which was formed by the largest rolling disk, to the fin tip of the completely shaped finned tube.
  • the invention further provides, according to claims 15 to 20, various processes for the production of the heat exchanger tube according to the invention.
  • the integrally rolled finned tube 1 according to FIGS. 2 to 7 has helical circumferential ribs 3 on the tube outside, between which a primary groove 4 is formed.
  • Material of the rib flanks 5 is suitably displaced, so that in the region of the groove bottom 6 not completely closed cavities 7 are formed, which constitute the undercut secondary grooves according to the invention.
  • Material of the rib tips 8 is displaced such that the rib gaps are closed to form channels 9 to pores 26.
  • the production of the finned tube according to the invention takes place by means of a rolling process (cf., US Pat. Nos. 1,865,575 / 3,327,512) by means of the devices shown in FIGS.
  • the tool holder 10 are each arranged offset by 360 ° / n on the circumference of the finned tube.
  • the tool holder 10 are radially deliverable. They are in turn arranged in a stationary (not shown) rolling head.
  • the smooth tube 2 which enters the device in the direction of the arrow, is set in rotation by the driven rolling tools 11 arranged on the circumference, the axes of the rolling tools 11 running obliquely to the tube axis.
  • the rolling tools 11 consist in a conventional manner of several juxtaposed rolling disks 12 whose diameter increases in the direction of the arrow.
  • the centrally arranged rolling tools 11 form the helically extending ribs 3 from the tube wall of the smooth tube 2, wherein in the forming zone, the tube wall is supported by a rolling mandrel 27.
  • the rolling mandrel 27 can be profiled.
  • the distance between the centers of two adjacent ribs measured along the tube axis is referred to as the rib pitch T.
  • the rolling discs are profiled on their outer periphery so that the shaped ribs 3 have a substantially trapezoidal cross-section. Only in the transition region 13 between rib edge 5 and groove bottom 6, the rib deviates from the ideal trapezoidal shape. This transition region 13 is commonly referred to as Rippenfuß. The radius formed there is required to allow an unobstructed flow of material during the rib formation.
  • the undercut secondary grooves 7 are produced in the region of the base 6 of the primary grooves 4.
  • Three different embodiments can be used here:
  • a cylindrical disc 14 is engaged, whose diameter is smaller than the diameter of the largest rolling disc (Fig. 2).
  • the thickness D of this cylindrical disk 14 is slightly larger than the width B of the primary groove 4 formed by the rolling disks 12, in which case the width B of the primary groove 4 is measured at the point at which the rib edge 5 merges into the radius region of the rib foot 13.
  • the thickness D of the cylindrical disc is 50% to 80% of the rib pitch T.
  • the cylindrical disc 14 displaces material from the rib flank 5 towards the groove bottom 6.
  • the displaced material is displaced by the appropriate choice of the tool geometry such that it forms over the groove bottom 6 material projections 15 and thus directly on the groove base 6, a not completely closed cavity 7 is formed (Fig. 3).
  • This cavity 7 extends in the circumferential direction with a nearly constant cross-section.
  • the cavity 7 constitutes an undercut secondary groove according to the invention.
  • the disc 14 may prove expedient to provide the disc 14 on its lateral surface along its circumference with a completely or partially concave profile, so as to favor the displacement of the material of the rib flank 5.
  • This embodiment is an extension of embodiment 1: After the cylindrical disc 14 is in the second embodiment, a gear-like notching disc 16 is engaged, the diameter of which is larger than the diameter of the cylindrical disc 14, but at most as large as the diameter of the largest rolled disc of the rolling tool 11 (Fig. 4).
  • the formed by the cylindrical disc 14, extending in the circumferential direction with constant cross-section cavity is divided by the notch disc 16 by circumferentially regularly arranged indentations 17.
  • circumferential, undercut secondary grooves 7, whose cross-section is varied at regular intervals arise in the circumferential direction (FIG. 5).
  • the notching disc 16 may be straight or obliquely toothed.
  • the thickness D 'of the notching disc 19 is slightly larger than the width B of the primary discs 4 formed by the rolling discs 12, in which case the width B of the primary groove 4 is measured at the point at which the rib edge 5 merges into the radius range of the rib foot 13.
  • the thickness D 'of this notch disc 50% to 80% of the rib pitch T.
  • the notching disc 19 may be straight or obliquely toothed.
  • the notching disc 19 displaces material from the region of the rib flanks 5 and from the radius region at the rib base 13 and leaves there spaced from each other indentations 20.
  • the displaced material is preferably displaced in the unprocessed area between the indentations 20, so that there pronounced dams 21 am Groove base 6 arise, which extend transversely to the primary grooves 4 between the ribs 3.
  • the now following roll plate 22 of constant diameter deforms the upper portions of these dams 21 in the direction of the tube circumference, so that between the deformed upper portions 23 of the dams 21 and the groove bottom 6 small cavities 7 between two adjacent dams 21 are formed (Fig. 7). These cavities 7 represent the undercut secondary grooves according to the invention.
  • the diameter of the roll-over disc 22 must be selected to be smaller than the diameter of the base notch disc 19.
  • the rib tips 8 are notched by means of a gear-type notching disc 24. This is shown in Figures 2/4/6. Subsequently, the upsetting of the notched rib tips by one or more compression rollers 25. The ribs 3 are thus given a substantially T-shaped cross-section, and the grooves 9 between the ribs 3 are closed except for pores 26 (see Figures 3/5/7) ,
  • the fin height H is measured on the finished finned tube 1 from the lowest point of the groove bottom 6 to the fin tip of the fully formed finned tube.
  • the undercut secondary grooves 7 according to the invention at the base 6 of the primary grooves 4 extend from the groove bottom 6 to the rib tip, extending to a maximum of 45% of the rib height H, typically up to 20% of the rib height H.
  • FIG. 8 shows the photograph of an undercut secondary groove 7 according to the invention on the groove bottom 6.
  • the sectional plane is perpendicular to the circumferential direction of the tube.
  • Embodiment 1 an example according to Embodiment 1 is shown.
  • the apparent asymmetry of the structure is due to unavoidable tolerances in tooling and pre-material dimensions.
  • the projections 15 are made of material which has been displaced from the rib flanks 5 to the groove bottom 6.
  • FIG. 9 shows in comparison the performance of two structured tubes on evaporation of the refrigerant R-134a on the outside of the tube, one of the tubes having undercut secondary grooves being made on the groove bottom. Shown is the external heat transfer coefficient over the Schuvinbelastung. The saturation temperature is 14.5 ° C. It can be seen that a performance advantage is achieved by the undercut secondary grooves at the bottom of the groove, which is about 30% for small Bankmatibelastache, with large Bank perennial marlastache about 20%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Making Paper Articles (AREA)

Abstract

A metallic heat exchanger tube, especially for vaporizing liquids comprising pure materials and mixtures on the outside of the tube, comprises integral ribs (3) on the outside of the pipe, which have a foot (13) that extends radially from the pipe wall (18). Grooves between the ribs have cut-outs in the base. The cut-outs are in the form of cut-back secondary grooves (7).

Description

Die Erfindung betrifft ein metallisches Wärmeaustauscherrohr, insbesondere zur Verdampfung von Flüssigkeiten aus Reinstoffen oder Gemischen auf der Rohraußenseite, nach dem Oberbegriff des Anspruchs 1.The invention relates to a metallic heat exchanger tube, in particular for the evaporation of liquids from pure substances or mixtures on the tube outside, according to the preamble of claim 1.

Verdampfung tritt in vielen Bereichen der Kälte- und Klimatechnik sowie in der Prozeß- und Energietechnik auf. In der Technik werden häufig Rohrbündelwärmeaustauscher verwendet, in denen Flüssigkeiten von Reinstoffen oder Mischungen auf der Rohraußenseite verdampfen und dabei auf der Rohrinnenseite eine Sole oder Wasser abkühlen. Solche Apparate werden als überflutete Verdampfer bezeichnet.Evaporation occurs in many areas of refrigeration and air conditioning technology as well as in process and energy technology. Tube heat exchangers are frequently used in industry in which liquids of pure substances or mixtures on the outside of the tube evaporate, cooling a brine or water on the inside of the tube. Such apparatuses are referred to as flooded evaporators.

Durch die Intensivierung des Wärmeübergangs auf der Rohraußen- und der Rohrinnenseite läßt sich die Größe der Verdampfer stark reduzieren. Hierdurch nehmen die Herstellungskosten solcher Apparate ab. Außerdem sinkt die notwendige Füllmenge an Kältemittel, die bei den heute überwiegend verwendeten, chlorfreien Sicherheitskältemitteln einen nicht zu vernachlässigenden Kostenanteil an den gesamten Anlagekosten ausmachen kann. Bei toxischen oder brennbaren Kältemitteln läßt sich durch eine Reduktion der Füllmenge ferner das Gefahrenpotential herabsetzen. Die heute üblichen Hochleistungsrohre sind etwa um den Faktor drei leistungsfähiger als glatte Rohre gleichen Durchmessers.By intensifying the heat transfer on the outside of the pipe and the inside of the pipe, the size of the evaporator can be greatly reduced. As a result, the production costs of such apparatuses decrease. In addition, the necessary filling quantity of refrigerant, which can account for a not inconsiderable share of the total investment costs in today's predominantly used chlorine-free safety refrigerants, is decreasing. In the case of toxic or flammable refrigerants, the danger potential can be reduced by reducing the filling quantity. The standard high performance pipes today are about three times more efficient than smooth pipes of the same diameter.

Stand der TechnikState of the art

Die vorliegende Erfindung bezieht sich auf strukturierte Rohre, bei denen der Wärmeübergangskoeffizient auf der Rohraußenseite intensiviert wird. Da hierdurch der Hauptanteil des Wärmedurchgangswiderstandes häufig auf die Innenseite verlagert wird, muß der Wärmeübergangskoeffizient auf der Innenseite in der Regel ebenfalls intensiviert werden. Eine Erhöhung des Wärmeübergangs auf der Rohrinnenseite hat üblicherweise eine Steigerung des rohrseitigen Druckabfalls zu Folge.The present invention relates to structured pipes in which the heat transfer coefficient is intensified on the pipe outside. As a result, the majority of the heat transfer resistance is often shifted to the inside, the heat transfer coefficient on the inside usually also needs to be intensified. An increase in the heat transfer on the inside of the pipe usually results in an increase in the pipe-side pressure drop.

Wärmeaustauscherrohre für Rohrbündelwärmeaustauscher besitzen üblicherweise mindestens einen strukturierten Bereich sowie glatte Endstücke und eventuell glatte Zwischenstücke. Die glatten End- bzw. Zwischenstücke begrenzen die strukturierten Bereiche. Damit das Rohr problemlos in den Rohrbündelwärmeaustauscher eingebaut werden kann, darf der äußere Durchmesser der strukturierten Bereiche nicht größer sein als der äußere Durchmesser der glatten End- und Zwischenstücke.Heat exchanger tubes for shell and tube heat exchangers usually have at least one structured area and smooth end pieces and possibly smooth spacers. The smooth end or intermediate pieces limit the structured areas. So that the tube can be easily installed in the shell and tube heat exchanger, the outer diameter of the structured areas must not be greater than the outer diameter of the smooth end and intermediate pieces.

Zur Erhöhung des Wärmeüberganges bei der Verdampfung wird der Vorgang des Blasensiedens intensiviert. Es ist bekannt, daß die Bildung von Blasen an Keimstellen beginnt. Diese Keimstellen sind meist kleine Gas- oder Dampfeinschlüsse. Solche Keimstellen lassen sich bereits durch Aufrauhen der Oberfläche erzeugen. Wenn die anwachsende Blase eine bestimmte Größe erreicht hat, löst sie sich von der Oberfläche ab. Wenn im Zuge der Blasenablösung die Keimstelle durch nachströmende Flüssigkeit geflutet wird, wird u.U. der Gas- bzw. Dampfeinschluß durch Flüssigkeit verdrängt. In diesem Fall wird die Keimstelle inaktiviert. Dies läßt sich durch eine geeignete Gestaltung der Keimstellen vermeiden. Hierzu ist es notwendig, daß die Öffnung der Keimstelle kleiner ist als der unter der Öffnung liegende Hohlraum.To increase the heat transfer during evaporation, the process of bubbling is intensified. It is known that the formation of bubbles begins at nucleation sites. These germinal sites are usually small gas or steam inclusions. Such nucleation sites can already be produced by roughening the surface. When the growing bubble reaches a certain size, it detaches from the surface. If in the course of bladder detachment the germinal site is flooded by inflowing liquid, the gas or vapor inclusion may be displaced by liquid. In this case, the germinal site is inactivated. This can be avoided by a suitable design of the germinal sites. For this purpose, it is necessary that the opening of the nucleus is smaller than that under the Opening cavity.

Es ist Stand der Technik, derartige Strukturen auf der Basis von integral gewalzten Rippenrohren herzustellen. Unter integral gewalzten Rippenrohren werden berippte Rohre verstanden, bei denen die Rippen aus dem Wandungsmaterial eines Glattrohres geformt wurden. Es sind hierbei verschiedene Verfahren bekannt, mit denen die zwischen benachbarten Rippen befindlichen Kanäle derart verschlossen werden, daß Verbindungen zwischen Kanal und Umgebung in Form von Poren oder Schlitzen bleiben. Da die Öffnung der Poren oder Schlitze kleiner ist als die Breite der Kanäle, stellen die Kanäle geeignet geformte Hohlräume dar, die Bildung und Stabilisierung von Blasenkeimstellen begünstigen. Insbesondere werden solche im wesentlichen geschlossene Kanäle durch Umbiegen oder Umlegen der Rippe (US 3.696.861, US 5.054.548), durch Spalten und Stauchen der Rippe (DE 2.758.526, US 4.577.381), und durch Kerben und Stauchen der Rippe (US 4.660.630, EP 0.713.072, US 4.216.826) erzeugt.It is state of the art to produce such structures based on integrally rolled finned tubes. Integrally rolled finned tubes are understood to mean finned tubes in which the fins have been formed from the wall material of a smooth tube. In this case, various methods are known with which the channels located between adjacent ribs are closed in such a way that connections between the channel and the surroundings remain in the form of pores or slots. Since the opening of the pores or slots is smaller than the width of the channels, the channels are suitably shaped cavities that promote formation and stabilization of nucleation sites. In particular, such substantially closed channels are formed by bending or flipping the rib (US 3,696,861, US 5,054,548), splitting and upsetting the fin (DE 2,758,526, US 4,577,381), and notching and upsetting the rib (US 4,660,630, EP 0,713,072, US 4,216,826).

Die leistungsstärksten, kommerziell erhältlichen Rippenrohre für überflutete Verdampfer besitzen auf der Rohraußenseite eine Rippenstruktur mit einer Rippendichte von 55 bis 60 Rippen pro 2,54 cm (Zoll) (US 5.669.441, US 5.697.430, DE 197 57 526). Dies entspricht einer Rippenteilung von ca. 0.45 bis 0.40 mm. Prinzipiell ist es möglich, die Leistungsfähigkeit derartiger Rohre durch eine noch höhere Rippendichte bzw. kleinere Rippenteilung zu verbessern, da hierdurch die Blasenkeimstellendichte erhöht wird. Eine kleinere Rippenteilung erfordert zwangsläufig gleichermaßen feinere Werkzeuge. Feinere Werkzeuge sind jedoch einer höheren Bruchgefahr und schnellerem Verschleiß unterworfen. Die derzeit verfügbaren Werkzeuge ermöglichen eine sichere Fertigung von Rippenrohren mit Rippendichten von maximal 60 Rippen pro 2,54 cm (Zoll). Ferner werden mit abnehmender Rippenteilung die Produktionsgeschwindigkeit der Rohre kleiner und folglich die Herstellungskosten höher.The most powerful, commercially available finned tube finned tubes have on the tube exterior a ribbed structure having a rib density of 55 to 60 ribs per inch (US 5,669,441, US 5,697,430, DE 197 57 526). This corresponds to a rib pitch of about 0.45 to 0.40 mm. In principle, it is possible to improve the performance of such pipes by an even higher fin density or smaller fin pitch, as this increases the bubble nuclei density. A smaller rib division inevitably requires equally finer tools. However, finer tools are subject to a higher risk of breakage and faster wear. The currently available tools enable the safe production of finned tubes with rib densities of up to 60 ribs per 2.54 cm (inch). Further, with decreasing rib pitch reduces the production rate of the tubes and consequently the manufacturing cost higher.

Es ist bekannt, daß leistungsgesteigerte Verdampfungsstrukturen bei gleichbleibender Rippendichte auf der Rohraußenseite erzeugt werden können, indem man den Grund der Nut zwischen den Rippen strukturiert. In EP 0.222.100 wird vorgeschlagen, den Grund der Nut mittels einer Kerbscheibe mit Eindrückungen zu versehen. Die Eindrückungen am Nutengrund können V-, trapez- oder halbkreisförmigen Querschnitt besitzen und stellen zusätzliche Blasenkeimstellen dar. Die durch derartige Strukturen insbesondere im Bereich kleiner Heizflächenbelastungen erzielbaren Leistungssteigerungen genügen jedoch nicht mehr den Anforderungen des Marktes. Ferner stellen die Eindrückungen eine Schwächung der Kernwand des Rohres dar und führen zu einer Reduzierung der mechanischen Stabilität des Rohres.It is known that performance enhanced evaporation structures can be created with consistent fin density on the pipe outside by patterning the bottom of the groove between the ribs. In EP 0.222.100 it is proposed to provide the bottom of the groove by means of a notch disc with indentations. The indentations on the groove bottom can have a V-, trapezoidal or semicircular cross section and represent additional bubble nucleation sites. However, the performance increases achievable by such structures, particularly in the area of small heating surface loads, no longer meet the requirements of the market. Furthermore, the indentations represent a weakening of the core wall of the tube and lead to a reduction of the mechanical stability of the tube.

Aufgabenstellung:Task:

Es soll ein leistungsgesteigertes Wärmeaustauscherrohr zur Verdampfung von Flüssigkeiten auf der Rohraußenseite bei gleichem rohrseitigen Wärmeübergang und Druckabfall sowie gleichen Herstellungskosten produziert werden. Die mechanische Stabilität des Rohres soll nicht negativ beeinflußt werden.It is a Leistungsgesteigertes heat exchanger tube for the evaporation of liquids on the outside of the tube with the same tube-side heat transfer and pressure drop and the same production costs are produced. The mechanical stability of the tube should not be adversely affected.

Kurze Beschreibung der ErfindungBrief description of the invention

Die Aufgabe wird bei einem Wärmeaustauscherrohr der genannten Art, bei dem im Bereich des Nutengrunds der zwischen den Rippen schraubenlinienförmig verlaufenden Primärnuten Aussparungen angeordnet sind, erfindungsgemäß dadurch gelöst, daß die Aussparungen in Form hinterschnittener Sekundärnuten ausgebildet sind.The object is achieved according to the invention in a heat exchanger tube of the type mentioned, in which recesses are arranged in the region of the groove bottom of the helically extending primary grooves between the ribs, that the recesses are formed in the form of undercut secondary grooves.

Eine hinterschnittene Nut (siehe Fig. 1) liegt dann vor, wenn

  • in einer Schnittebene ein nicht abgeschlossenes Gebiet X zu finden ist,
  • dieses Gebiet X mittels einer Strecke AB abgeschlossen werden kann,
  • eine Strecke PQ mit P, Q ∈ Rand von X gefunden wird, so daß PQ parallel zu AB und die Länge von PQ größer ist als die Länge von AB.
An undercut groove (see Fig. 1) is present when
  • in a sectional plane an incomplete area X can be found,
  • this area X can be completed by means of a route AB,
  • a distance PQ with P, Q ∈ edge of X is found, so that PQ parallel to AB and the length of PQ is greater than the length of AB.

Eine hinterschnittene Sekundärnut bietet für die Bildung und Stabilisierung von Blasenkeimstellen deutlich günstigere Bedingungen als die in EP 0.222.100 vorgeschlagenen, einfachen Eindrückungen. Die Lage der hinterschnittenen Sekundärnuten in der Nähe des primären Nutengrundes ist für den Verdampfungsprozeß besonders günstig, da am Nutengrund die Wandübertemperatur am größten ist und deshalb dort die höchste treibende Temperaturdifferenz für die Blasenbildung zur Verfügung steht.An undercut secondary groove offers significantly better conditions for the formation and stabilization of bubble nuclei than the simple indentations proposed in EP 0.222.100. The location of the undercut secondary grooves in the vicinity of the primary groove bottom is particularly favorable for the evaporation process, since at the groove bottom, the Wandübertemperatur is greatest and therefore there is the highest driving temperature difference for the bubble formation available.

Die Ansprüche 2 bis 14 betreffen bevorzugte Ausführungsformen des erfindungsgemäßen Wärmeaustauscherrohres.Claims 2 to 14 relate to preferred embodiments of the heat exchanger tube according to the invention.

Gemäß der Erfindung wird nach dem Ausformen der Rippen durch geeignete zusätzliche Werkzeuge Material aus dem Bereich der Rippenflanken zum Nutengrund hin verdrängt, so daß dort nicht ganz abgeschlossene Hohlräume entstehen, die die gewünschten hinterschnittenen Sekundärnuten darstellen. Die Hohlräume erstrecken sich vom primären Nutengrund zur Rippenspitze hin, wobei sie sich maximal bis 45% der Rippenhöhe H, typischerweise bis 20% der Rippenhöhe H ausdehnen. Die Rippenhöhe H wird dabei von der tiefsten Stelle des Nutengrunds, die durch die größte Walzscheibe ausgeformt wurde, bis zur Rippenspitze des vollständig geformten Rippenrohres gemessen.According to the invention, after the ribs have been formed by suitable additional tools, material is displaced from the region of the rib flanks toward the groove bottom, so that incomplete cavities are formed there, which represent the desired undercut secondary grooves. The cavities extend from the primary groove bottom to the fin tip, extending to at most 45% of the fin height H, typically up to 20% of the fin height H. The rib height H is thereby measured from the deepest point of the groove bottom, which was formed by the largest rolling disk, to the fin tip of the completely shaped finned tube.

Gegenstand der Erfindung sind gemäß der Ansprüche 15 bis 20 weiterhin verschiedene Verfahren zur Herstellung des erfindungsgemäßen Wärmeaustauscherrohres.The invention further provides, according to claims 15 to 20, various processes for the production of the heat exchanger tube according to the invention.

Detaillierte Beschreibung:Detailed description:

Die Erfindung wird anhand der folgenden Ausführungsbeispiele näher erläutert:The invention will be explained in more detail with reference to the following exemplary embodiments:

Es zeigt:

Fig.1:
die Prinzipskizze einer hinterschnittenen Nut;
Fig.2:
schematisch die Herstellung eines erfindungsgemäßen Wärmeaustauscherrohres mit hinterschnittenen Sekundärnuten, die auf der Rohraußenseite mit im wesentlichen konstanten Querschnitt schraubenlinienförmig umlaufen;
Fig.3:
eine Teilansicht eines erfindungsgemäßen Wärmeaustauscherrohres mit hinterschnittenen Sekundärnuten, die mit im wesentlichen konstanten Querschnitt schraubenlinienförmig umlaufen;
Fig.4:
schematisch die Herstellung eines erfindungsgemäßen Wärmeaustauscherrohres mit schraubenlinienförmig verlaufenden, hinterschnittenen Sekundärnuten, deren Querschnitt in regelmäßigen Abständen variiert ist;
Fig.5:
eine Teilansicht eines erfindungsgemäßen Wärmeaustauscherrohres mit schraubenlinienförmig verlaufenden, hinterschnittenen Sekundärnuten, deren Querschnitt in regelmäßigen Abständen variiert ist;
Fig.6:
schematisch die Herstellung eines erfindungsgemäßen Wärmeaustauscherrohres mit hinterschnittenen Sekundärnuten, die im wesentlichen quer zur Richtung der Primärnuten verlaufen;
Fig.7:
eine Teilansicht eines erfindungsgemäßen Wärmeaustauscherrohres mit hinterschnittenen Sekundärnuten, die im wesentlichen quer zur Richtung der Primärnuten verlaufen;
Fig.8:
das Foto einer erfindungsgemäßen hinterschnittenen Sekundärnut am Nutengrund, die mit im wesentlichen konstanten Querschnitt schraubenlinienförmig umläuft;
Fig.9:
ein Diagramm, das den Leistungsvorteil durch die hinterschnittenen Sekundärnut am Nutengrund dokumentiert.
It shows:
Fig.1:
the schematic diagram of an undercut groove;
Figure 2:
schematically the production of a heat exchanger tube according to the invention with undercut secondary grooves which rotate on the outside of the tube with a substantially constant cross-section helically;
Figure 3:
a partial view of a heat exchanger tube according to the invention with undercut secondary grooves which rotate helically with a substantially constant cross section;
Figure 4:
schematically the production of a heat exchanger tube according to the invention with helically extending, undercut secondary grooves whose cross section is varied at regular intervals;
Figure 5:
a partial view of a heat exchanger tube according to the invention with helically extending, undercut secondary grooves whose cross section is varied at regular intervals;
Figure 6:
schematically the preparation of a heat exchanger tube according to the invention with undercut secondary grooves which extend substantially transversely to the direction of the primary grooves;
Figure 7:
a partial view of a heat exchanger tube according to the invention with undercut secondary grooves extending substantially transverse to the direction of the primary grooves;
Figure 8:
the photograph of an undercut secondary groove according to the invention on the groove base, which rotates helically with a substantially constant cross section;
Figure 9:
a diagram that documents the performance advantage of the undercut secondary groove at the bottom of the groove.

Das integral gewalzte Rippenrohr 1 nach Figuren 2 bis 7 weist auf der Rohraußenseite schraubenlinienförmig umlaufende Rippen 3 auf, zwischen denen eine Primärnut 4 gebildet ist. Material der Rippenflanken 5 wird geeignet verlagert, so daß im Bereich des Nutengrunds 6 nicht ganz abgeschlossene Hohlräume 7 entstehen, die die erfindungsgemäßen hinterschnittenen Sekundärnuten darstellen. Material der Rippenspitzen 8 ist derart verlagert, daß die Rippenzwischenräume unter Ausbildung von Kanälen 9 bis auf Poren 26 geschlossen werden.The integrally rolled finned tube 1 according to FIGS. 2 to 7 has helical circumferential ribs 3 on the tube outside, between which a primary groove 4 is formed. Material of the rib flanks 5 is suitably displaced, so that in the region of the groove bottom 6 not completely closed cavities 7 are formed, which constitute the undercut secondary grooves according to the invention. Material of the rib tips 8 is displaced such that the rib gaps are closed to form channels 9 to pores 26.

Die Herstellung des erfindungsgemäßen Rippenrohres erfolgt durch einen Walzvorgang (vgl. US-PSen 1.865.575 / 3.327.512) mittels der in Figuren 2/4/6 dargestellten Vorrichtungen.The production of the finned tube according to the invention takes place by means of a rolling process (cf., US Pat. Nos. 1,865,575 / 3,327,512) by means of the devices shown in FIGS.

Es wird eine Vorrichtung verwendet, die aus n = 3 oder 4 Werkzeughaltern 10 besteht, in die jeweils ein Walzwerkzeug 11 integriert ist. Die Werkzeughalter 10 sind jeweils um 360°/n versetzt am Umfang des Rippenrohres angeordnet. Die Werkzeughalter 10 sind radial zustellbar. Sie sind ihrerseits in einem ortsfesten (nicht dargestellten) Walzkopf angeordnet.A device is used which consists of n = 3 or 4 tool holders 10 into each of which a rolling tool 11 is integrated. The tool holder 10 are each arranged offset by 360 ° / n on the circumference of the finned tube. The tool holder 10 are radially deliverable. They are in turn arranged in a stationary (not shown) rolling head.

Das in Pfeilrichtung in die Vorrichtung einlaufende Glattrohr 2 wird durch die am Umfang angeordneten, angetriebenen Walzwerkzeuge 11 in Drehung versetzt, wobei die Achsen der Walzwerkzeuge 11 schräg zur Rohrachse verlaufen. Die Walzwerkzeuge 11 bestehen in an sich bekannter Weise aus mehreren nebeneinander angeordneten Walzscheiben 12, deren Durchmesser in Pfeilrichtung ansteigt. Die zentrisch angeordneten Walzwerkzeuge 11 formen die schraubenlinienförmig umlaufenden Rippen 3 aus der Rohrwandung des Glattrohrs 2, wobei in der Umformzone die Rohrwandung durch einen Walzdorn 27 unterstützt wird. Der Walzdorn 27 kann profiliert sein. Der längs zur Rohrachse gemessene Abstand der Mitten zweier benachbarter Rippen wird als Rippenteilung T bezeichnet. Die Walzscheiben sind an ihrem äußeren Umfang derart profiliert, daß die geformten Rippen 3 im wesentlichen trapezförmigen Querschnitt besitzen. Lediglich im Übergangsbereich 13 zwischen Rippenflanke 5 und Nutengrund 6 weicht die Rippe von der idealen Trapezform ab. Dieser Übergangsbereich 13 wird üblicherweise als Rippenfuß bezeichnet. Der dort gebildete Radius ist erforderlich, um einen ungehinderten Werkstofffluß während der Rippenausformung zu ermöglichen.The smooth tube 2, which enters the device in the direction of the arrow, is set in rotation by the driven rolling tools 11 arranged on the circumference, the axes of the rolling tools 11 running obliquely to the tube axis. The rolling tools 11 consist in a conventional manner of several juxtaposed rolling disks 12 whose diameter increases in the direction of the arrow. The centrally arranged rolling tools 11 form the helically extending ribs 3 from the tube wall of the smooth tube 2, wherein in the forming zone, the tube wall is supported by a rolling mandrel 27. The rolling mandrel 27 can be profiled. The distance between the centers of two adjacent ribs measured along the tube axis is referred to as the rib pitch T. The rolling discs are profiled on their outer periphery so that the shaped ribs 3 have a substantially trapezoidal cross-section. Only in the transition region 13 between rib edge 5 and groove bottom 6, the rib deviates from the ideal trapezoidal shape. This transition region 13 is commonly referred to as Rippenfuß. The radius formed there is required to allow an unobstructed flow of material during the rib formation.

Nach der Ausformung der im wesentlichen trapezförmigen Rippen 3 durch das Walzwerkzeug 11 werden im Bereich des Grunds 6 der Primärnuten 4 die erfindungsgemäßen, hinterschnittenen Sekundärnuten 7 erzeugt. Hierbei können drei verschiedene Ausführungsformen Anwendung finden:After the shaping of the essentially trapezoidal ribs 3 by the rolling tool 11, the undercut secondary grooves 7 according to the invention are produced in the region of the base 6 of the primary grooves 4. Three different embodiments can be used here:

Ausführungsform 1:Embodiment 1:

Nach der letzten Scheibe des Walzwerkzeugs 11 befindet sich eine zylindrische Scheibe 14 im Eingriff, deren Durchmesser kleiner ist als der Durchmesser der größten Walzscheibe (Fig. 2). Die Dicke D dieser zylindrischen Scheibe 14 ist etwas größer als die Breite B der von den Walzscheiben 12 geformten Primärnut 4, wobei hier die Breite B der Primärnut 4 an der Stelle gemessen wird, an der die Rippenflanke 5 in den Radiusbereich des Rippenfußes 13 übergeht. Typischerweise beträgt die Dicke D der zylindrischen Scheibe 50% bis 80% der Rippenteilung T. Die zylindrische Scheibe 14 verdrängt Material von der Rippenflanke 5 zum Nutengrund 6 hin. Das verdrängte Material wird durch die geeignete Wahl der Werkzeuggeometrie derart verlagert, daß es über dem Nutengrund 6 Materialvorsprünge 15 bildet und unmittelbar am Nutengrund 6 somit ein nicht ganz abgeschlossener Hohlraum 7 entsteht (Fig. 3). Dieser Hohlraum 7 verläuft in Umfangsrichtung mit nahezu gleichbleibendem Querschnitt. Der Hohlraum 7 stellt eine erfindungsgemäße, hinterschnittene Sekundärnut dar.After the last disc of the rolling tool 11 is a cylindrical disc 14 is engaged, whose diameter is smaller than the diameter of the largest rolling disc (Fig. 2). The thickness D of this cylindrical disk 14 is slightly larger than the width B of the primary groove 4 formed by the rolling disks 12, in which case the width B of the primary groove 4 is measured at the point at which the rib edge 5 merges into the radius region of the rib foot 13. Typically, the thickness D of the cylindrical disc is 50% to 80% of the rib pitch T. The cylindrical disc 14 displaces material from the rib flank 5 towards the groove bottom 6. The displaced material is displaced by the appropriate choice of the tool geometry such that it forms over the groove bottom 6 material projections 15 and thus directly on the groove base 6, a not completely closed cavity 7 is formed (Fig. 3). This cavity 7 extends in the circumferential direction with a nearly constant cross-section. The cavity 7 constitutes an undercut secondary groove according to the invention.

Es kann sich als zweckmäßig erweisen, die Scheibe 14 auf ihrer Mantelfläche entlang ihres Umfangs mit einem vollständig oder abschnittsweise konkaven Profil zu versehen, um so die Verdrängung des Materials der Rippenflanke 5 zu begünstigen.It may prove expedient to provide the disc 14 on its lateral surface along its circumference with a completely or partially concave profile, so as to favor the displacement of the material of the rib flank 5.

Da der Durchmesser der zylindrischen Scheibe 14 kleiner ist als der Durchmesser der größten Walzscheibe des Walzwerkzeugs 11, wird die tiefste Stelle des primären Nutengrunds 6 durch die zylindrische Scheibe 14 nicht bearbeitet. Die Rohrwandung 18 wird demnach bei der Formung der hinterschnittenen Sekundärnuten 7 nicht geschwächt.Since the diameter of the cylindrical disc 14 is smaller than the diameter of the largest rolling disc of the rolling tool 11, the deepest point of the primary Nutengrunds 6 is not processed by the cylindrical disc 14. The pipe wall 18 is therefore not weakened in the formation of the undercut secondary grooves 7.

Ausführungsform 2:Embodiment 2:

Diese Ausführungsform stellt eine Erweiterung von Ausführungsform 1 dar: Nach der zylindrischen Scheibe 14 befindet sich bei der zweiten Ausführungsform eine zahnradartige Kerbscheibe 16 im Eingriff, deren Durchmesser größer ist als der Durchmesser der zylindrischen Scheibe 14, höchstens jedoch so groß wie der Durchmesser der größten Walzscheibe des Walzwerkzeugs 11 (Fig. 4). Der von der zylindrischen Scheibe 14 geformte, in Umfangsrichtung mit gleichbleibendem Querschnitt verlaufende Hohlraum wird durch die Kerbscheibe 16 durch in Umfangsrichtung regelmäßig angeordnete Eindrückungen 17 unterteilt. Es entstehen somit in Umfangsrichtung umlaufende, hinterschnittene Sekundärnuten 7, deren Querschnitt in regelmäßigen Abständen variiert ist (Fig. 5). Die Kerbscheibe 16 kann gerade oder schräg verzahnt sein.This embodiment is an extension of embodiment 1: After the cylindrical disc 14 is in the second embodiment, a gear-like notching disc 16 is engaged, the diameter of which is larger than the diameter of the cylindrical disc 14, but at most as large as the diameter of the largest rolled disc of the rolling tool 11 (Fig. 4). The formed by the cylindrical disc 14, extending in the circumferential direction with constant cross-section cavity is divided by the notch disc 16 by circumferentially regularly arranged indentations 17. Thus, circumferential, undercut secondary grooves 7, whose cross-section is varied at regular intervals, arise in the circumferential direction (FIG. 5). The notching disc 16 may be straight or obliquely toothed.

Da der Durchmesser der zahnradartigen Kerbscheibe 16 nicht größer ist als der Durchmesser der größten Walzscheibe des Walzwerkzeugs 11, wird die tiefste Stelle des primären Nutengrunds 6 durch die zahnradartige Kerbscheibe 16 nicht weiter vertieft. Die Rohrwandung 18 wird demnach bei der Formung der hinterschnittenen Sekundärnuten 7 gemäß Ausführungsform 2 nicht geschwächt.Since the diameter of the gear-like notching disk 16 is not larger than the diameter of the largest rolling disk of the rolling tool 11, the deepest point of the primary groove bottom 6 is not further deepened by the gear-like notching disk 16. The pipe wall 18 is therefore not weakened in the formation of the undercut secondary grooves 7 according to Embodiment 2.

Ausführungsform 3:Embodiment 3:

Nach der letzten Scheibe des Walzwerkzeugs 11 befindet sich eine zahnradartige Kerbscheibe 19 im Eingriff, wobei der Durchmesser der Kerbscheibe 19 höchstens so groß ist wie der Durchmesser der größten Walzscheibe (Fig. 6). Die Dicke D' der Kerbscheibe 19 ist etwas größer als die Breite B der von den Walzscheiben 12 geformten Primärnut 4, wobei hier die Breite B der Primärnut 4 an der Stelle gemessen wird, an der die Rippenflanke 5 in den Radiusbereich des Rippenfußes 13 übergeht. Typischerweise beträgt die Dicke D' dieser Kerbscheibe 50% bis 80% der Rippenteilung T. Die Kerbscheibe 19 kann gerade oder schräg verzahnt sein. Die Kerbscheibe 19 verdrängt Material aus dem Bereich der Rippenflanken 5 sowie aus dem Radiusbereich am Rippenfuß 13 und hinterläßt dort von einander beabstandete Eindrückungen 20. Das verdrängte Material wird vorzugsweise in die unbearbeiteten Bereich zwischen den einzelnen Eindrückungen 20 verlagert, so daß dort ausgeprägte Dämme 21 am Nutengrund 6 entstehen, die quer zu den primären Nuten 4 zwischen den Rippen 3 verlaufen. Die nun folgende Überwalzscheibe 22 konstanten Durchmessers verformt die oberen Bereiche dieser Dämme 21 in Richtung des Rohrumfangs, so daß zwischen den verformten oberen Bereichen 23 der Dämme 21 und dem Nutengrund 6 kleine Hohlräume 7 zwischen zwei benachbarten Dämmen 21 gebildet werden (Fig. 7). Diese Hohlräume 7 stellen die erfindungsgemäßen, hinterschnittenen Sekundärnuten dar. Der Durchmesser der Überwalzscheibe 22 muß kleiner gewählt werden als der Durchmesser der Grundkerbscheibe 19.After the last disc of the rolling tool 11 is a gear-like notching disc 19 is engaged, wherein the diameter of the notching disc 19 is at most as large as the diameter of the largest rolling disc (Fig. 6). The thickness D 'of the notching disc 19 is slightly larger than the width B of the primary discs 4 formed by the rolling discs 12, in which case the width B of the primary groove 4 is measured at the point at which the rib edge 5 merges into the radius range of the rib foot 13. Typically, the thickness D 'of this notch disc 50% to 80% of the rib pitch T. The notching disc 19 may be straight or obliquely toothed. The notching disc 19 displaces material from the region of the rib flanks 5 and from the radius region at the rib base 13 and leaves there spaced from each other indentations 20. The displaced material is preferably displaced in the unprocessed area between the indentations 20, so that there pronounced dams 21 am Groove base 6 arise, which extend transversely to the primary grooves 4 between the ribs 3. The now following roll plate 22 of constant diameter deforms the upper portions of these dams 21 in the direction of the tube circumference, so that between the deformed upper portions 23 of the dams 21 and the groove bottom 6 small cavities 7 between two adjacent dams 21 are formed (Fig. 7). These cavities 7 represent the undercut secondary grooves according to the invention. The diameter of the roll-over disc 22 must be selected to be smaller than the diameter of the base notch disc 19.

Da der Durchmesser der zahnradartigen Kerbscheibe 19 nicht größer ist als der Durchmesser der größten Walzscheibe des Walzwerkzeugs 11, wird die tiefste Stelle des primären Nutengrunds 6 durch die zahnradartige Kerbscheibe 19 nicht weiter vertieft. Die Rohrwandung 18 wird demnach bei der Formung der hinterschnittenen Sekundärnuten 7 gemäß Ausführungsform 3 nicht geschwächt.Since the diameter of the gear-type notching disc 19 is not larger than the diameter of the largest rolling disk of the rolling tool 11, the deepest point of the primary groove bottom 6 is not further deepened by the gear-like notching disk 19. The pipe wall 18 is therefore not weakened in the formation of the undercut secondary grooves 7 according to Embodiment 3.

Nachdem die hinterschnittenen Sekundärnuten 7 am Nutengrund 6 erzeugt wurden, werden die Rippenspitzen 8 mittels einer zahnradartigen Kerbscheibe 24 gekerbt. Dies ist in den Figuren 2/4/6 dargestellt. Anschließend erfolgt das Stauchen der gekerbten Rippenspitzen durch eine oder mehrere Stauchrollen 25. Die Rippen 3 erhalten so einen im wesentlichen T-förmigen Querschnitt, und die Nuten 9 zwischen den Rippen 3 werden bis auf Poren 26 verschlossen (Siehe Figuren 3/5/7).After the undercut secondary grooves 7 have been produced on the groove bottom 6, the rib tips 8 are notched by means of a gear-type notching disc 24. This is shown in Figures 2/4/6. Subsequently, the upsetting of the notched rib tips by one or more compression rollers 25. The ribs 3 are thus given a substantially T-shaped cross-section, and the grooves 9 between the ribs 3 are closed except for pores 26 (see Figures 3/5/7) ,

Die Rippenhöhe H wird am fertigen Rippenrohr 1 von der tiefsten Stelle des Nutengrunds 6 bis zur Rippenspitze des vollständig geformten Rippenrohres gemessen.The fin height H is measured on the finished finned tube 1 from the lowest point of the groove bottom 6 to the fin tip of the fully formed finned tube.

Die erfindungsgemäßen, hinterschnittenen Sekundärnuten 7 am Grund 6 der Primärnuten 4 erstrecken sich vom Nutengrund 6 zur Rippenspitze hin, wobei sie sich maximal bis 45% der Rippenhöhe H, typischerweise bis 20% der Rippenhöhe H ausdehnen.The undercut secondary grooves 7 according to the invention at the base 6 of the primary grooves 4 extend from the groove bottom 6 to the rib tip, extending to a maximum of 45% of the rib height H, typically up to 20% of the rib height H.

Fig. 8 zeigt das Foto einer erfindungsgemäßen, hinterschnittenen Sekundärnut 7 am Nutengrund 6. Die Schnittebene ist senkrecht zur Umfangsrichtung des Rohres. Es ist hier ein Beispiel nach Ausführungsform 1 dargestellt. Die erkennbare Asymmetrie der Struktur ist durch unvermeidbare Toleranzen bei Werkzeug- und Vormaterialabmessungen bedingt. Die Vorsprünge 15 bestehen aus Material, das von den Rippenflanken 5 zum Nutengrund 6 hin verlagert wurde.8 shows the photograph of an undercut secondary groove 7 according to the invention on the groove bottom 6. The sectional plane is perpendicular to the circumferential direction of the tube. Here, an example according to Embodiment 1 is shown. The apparent asymmetry of the structure is due to unavoidable tolerances in tooling and pre-material dimensions. The projections 15 are made of material which has been displaced from the rib flanks 5 to the groove bottom 6.

Fig. 9 zeigt im Vergleich das Leistungsverhalten zweier strukturierter Rohre bei Verdampfung des Kältemittels R-134a auf der Rohraußenseite, wobei eines der Rohre mit hinterschnittenen Sekundärnuten am Nutengrund ausgeführt wurde. Dargestellt ist der äußere Wärmeübergangskoeffizient über der Heizflächenbelastung. Die Sättigungstemperatur beträgt hierbei 14.5 °C. Man erkennt, daß durch die hinterschnittenen Sekundärnuten am Nutengrund ein Leistungsvorteil erreicht wird, der bei kleinen Heizflächenbelastungen über 30%, bei großen Heizflächenbelastungen ca. 20% beträgt.FIG. 9 shows in comparison the performance of two structured tubes on evaporation of the refrigerant R-134a on the outside of the tube, one of the tubes having undercut secondary grooves being made on the groove bottom. Shown is the external heat transfer coefficient over the Heizflächenbelastung. The saturation temperature is 14.5 ° C. It can be seen that a performance advantage is achieved by the undercut secondary grooves at the bottom of the groove, which is about 30% for small Heizflächenbelastungen, with large Heizflächenbelastungen about 20%.

Strukturen mit hinterschnittenen Sekundärnuten am Nutengrund werden auch in EP 0.522.985 vorgeschlagen. Hierbei befindet sich die Struktur jedoch auf der Innenseite eines Rohres. Um die mechanische Stabilität derartiger Rohre insbesondere beim Aufweiten der Rohre zu gewährleisten, müssen die Sekundärnuten möglichst flach gestaltet sein. Dies wird durch die in EP 0.522.985 beschriebene, spitzwinklige Geometrie der Sekundärnuten erreicht. Bei rohrseitiger Verdampfung von Kältemitteln herrscht im Rohr üblicherweise ein höherer Druck als auf der Rohraußenseite. Unter Innendruckbelastung geht aufgrund der Kerbwirkung von den spitzwinkligen Rändern der Sekundärnuten eine erhöhte mechanische Belastung auf die Wand des Rohres aus. Dies muß durch eine dickere Rohrwandung kompensiert werden. Dieser Sicherheitszuschlag in der Rohrwandung führt jedoch zu einem erhöhten Materialeinsatz und damit zu erhöhten Kosten.Structures with undercut secondary grooves at the bottom of the groove are also proposed in EP 0,522,985. However, the structure is located on the inside of a tube. To the mechanical stability of such pipes, especially during To ensure expansion of the tubes, the secondary grooves must be designed as flat as possible. This is achieved by the acute-angled geometry of the secondary grooves described in EP 0,522,985. In the case of tube-side evaporation of refrigerants, a higher pressure usually prevails in the pipe than on the pipe outside. Under internal pressure loading is due to the notch effect of the acute-angled edges of the secondary grooves increased mechanical stress on the wall of the tube. This must be compensated by a thicker pipe wall. However, this safety margin in the pipe wall leads to an increased use of materials and thus to increased costs.

Bei der hier vorgeschlagenen Gestaltung der hinterschnittenen Sekundärnuten 7 im Bereich des primären Nutengrunds 6 auf der Außenseite von berippten Rohren findet jedoch keine Schwächung der Rohrwandung 18 statt, da zur Bildung der Sekundärnuten 7 ausschließlich Material aus dem Bereich der Rippenflanken 5 und eventuell aus dem Radiusbereich 13 oberhalb des Nutengrunds 6 verwendet wird.In the design of the undercut secondary grooves 7 proposed here in the region of the primary groove bottom 6 on the outside of ribbed tubes, however, no weakening of the tube wall 18 takes place, since exclusively the material from the region of the rib flanks 5 and possibly from the radius region 13 forms the secondary grooves 7 above the groove bottom 6 is used.

Claims (20)

  1. Metal heat exchanger tube, in particular for evaporating liquids from pure substances or mixtures on the outside of the tube, with integral fins (3) which are shaped on the outside of the tube and the base (13) of which projects substantially radially from the tube wall (18), wherein the fins (3) have a substantially T-shaped cross section, and wherein recesses are disposed in the region of the groove bottom (6) of the primary grooves (4) extending between the fins (3), characterised in that the recesses are in the form of undercut secondary grooves (7).
  2. Metal heat exchanger tube according to Claim 1,
    characterised in
    that the fins (3) and the primary grooves (4) extend in a helical manner.
  3. Metal heat exchanger tube according to Claim 1,
    characterised in
    that the fins (3) and the primary grooves (4) extend in an annular manner.
  4. Metal heat exchanger tube according to Claim 1,
    characterised in
    that the fins (3) and the primary grooves (4) extend in the axial direction.
  5. Metal heat exchanger tube according to Claim 2, 3 or 4,
    characterised in
    that the undercut secondary grooves (7) extend with a substantially constant cross section in the direction of the primary grooves (4).
  6. Metal heat exchanger tube according to Claim 2, 3 or 4,
    characterised in
    that the cross section of the undercut secondary grooves (7) extending in the direction of the primary grooves (4) is varied at regular spacings.
  7. Metal heat exchanger tube according to Claim 2, 3 or 4,
    characterised in
    that the undercut secondary grooves (7) extend substantially transversely to the direction of the primary grooves (4).
  8. Metal heat exchanger tube according to one or more of Claims 1 to 7, characterised in
    that the undercut secondary grooves (7) extend over up to 45 % of the fin height H at most.
  9. Metal heat exchanger tube according to Claim 8,
    characterised in
    that the undercut secondary grooves (7) extend over up to 20 % of the fin height H at most.
  10. Metal heat exchanger tube according to one or more of Claims 1 to 9, characterised in
    that the fins (3) are of a uniform height H.
  11. Metal heat exchanger tube according to one or more of Claims 1 to 9, characterised in
    that the fins tips (8) are notched.
  12. Metal heat exchanger tube according to one or more of Claims 1 to 11, characterised in
    that it has plain ends and/or plain intermediate regions.
  13. Metal heat exchanger tube according to one or more of Claims 1 to 12, characterised in
    that it is formed as a seamless tube.
  14. Metal heat exchanger tube according to one or more of Claims 1 to 12, characterised in
    that it is formed as a longitudinally welded tube.
  15. Process for making a heat exchanger tube according to Claim 2, in which the following process steps are carried out:
    a) helically extending fins (3) are rolled out at the outer surface of a bare tube (2) in that the fin material is obtained by displacing material outwards out of the tube wall by means of a rolling operation and the resulting finned tube (1) is rotated and/or advanced according to the resulting fins (3) through the rolling forces, wherein the fins (3) are shaped out of the otherwise unshaped bare tube (2) with an increasing height,
    b) the bare tube (2) is supported by a rolling mandrel (27) lying therein,
    c) after the fins (3) have been shaped out, material is displaced through radial pressure from the fin flanks (5) and/or out of the transition region (13) at the fin base to the groove bottom (6) while forming the undercut secondary grooves (7),
    d) the fin tips (8) are upset through further radial pressure by means of at least one upsetting roll (25) into a substantially T-shaped cross section.
  16. Process according to Claim 15 for making a heat exchanger tube according to Claim 5, characterised in
    that the radial pressure in the process step c) is produced by means of a cylindrical disc (14), the diameter of which is smaller than the diameter of the largest rolling disc (12) and the thickness D of which is at least 50 % and at most 80 % of the fin pitch T.
  17. Process according to Claim 16 for making a heat exchanger tube according to Claim 6, characterised in that the process step c) is followed by the process step (d),
    in which the groove bottom (6) is shaped in places through further radial pressure by means of a gearwheel-like notching disc (16), the diameter of which is larger than the diameter of the cylindrical disc (14), although at most as large as the diameter of the largest rolling disc (12), such
    that regularly spaced indentations (17) result in the circumferential direction.
  18. Process according to Claim 15 for making a heat exchanger tube according to Claim 7, characterised in
    that the radial pressure in the process step c') is produced by means of a gearwheel-like notching disc (19), the diameter of which is smaller than the diameter of the largest rolling disc (12), whereby spaced indentations (17) result, and
    that the process step d') follows,
    in which the undercut secondary grooves (7) are produced through further radial pressure by means of a cylindrical lapping disc (22).
  19. Process according to Claim 17 or 18, characterised in that a straight-toothed or helically toothed notching disc (16, 19) is used in each case.
  20. Process according to any one of Claims 16 to 19 for making a heat exchanger tube according to Claim 11, characterised in that in a further process step e) the fin tips (8) are notched through radial pressure by means of a gearwheel-like notching disc (24).
EP02000425A 2001-01-16 2002-01-08 Tube for heat exchanger and process for making same Expired - Lifetime EP1223400B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10101589A DE10101589C1 (en) 2001-01-16 2001-01-16 Heat exchanger tube and process for its production
DE10101589 2001-01-16

Publications (3)

Publication Number Publication Date
EP1223400A2 EP1223400A2 (en) 2002-07-17
EP1223400A3 EP1223400A3 (en) 2005-11-30
EP1223400B1 true EP1223400B1 (en) 2007-03-14

Family

ID=7670615

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02000425A Expired - Lifetime EP1223400B1 (en) 2001-01-16 2002-01-08 Tube for heat exchanger and process for making same

Country Status (8)

Country Link
US (2) US6913073B2 (en)
EP (1) EP1223400B1 (en)
JP (1) JP3935348B2 (en)
CN (1) CN1313794C (en)
AT (1) ATE356966T1 (en)
DE (2) DE10101589C1 (en)
ES (1) ES2283470T3 (en)
PT (1) PT1223400E (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008013929B3 (en) * 2008-03-12 2009-04-09 Wieland-Werke Ag Metallic heat exchanger pipe i.e. integrally rolled ribbed type pipe, for e.g. air-conditioning and refrigeration application, has pair of material edges extending continuously along primary grooves, where distance is formed between edges
DE102011121733A1 (en) 2011-12-21 2013-06-27 Wieland-Werke Ag Evaporator tube with optimized external structure
DE102014002829A1 (en) 2014-02-27 2015-08-27 Wieland-Werke Ag Metallic heat exchanger tube
DE102016006914A1 (en) 2016-06-01 2017-12-07 Wieland-Werke Ag heat exchanger tube
DE102018004701A1 (en) 2018-06-12 2019-12-12 Wieland-Werke Ag Metallic heat exchanger tube
DE202020005625U1 (en) 2020-10-31 2021-11-10 Wieland-Werke Aktiengesellschaft Metallic heat exchanger tube
DE202020005628U1 (en) 2020-10-31 2021-11-11 Wieland-Werke Aktiengesellschaft Metallic heat exchanger tube
WO2022089773A1 (en) 2020-10-31 2022-05-05 Wieland-Werke Ag Metal heat exchanger tube
WO2022089772A1 (en) 2020-10-31 2022-05-05 Wieland-Werke Ag Metal heat exchanger tube

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10226641B4 (en) * 2002-06-14 2004-11-04 Rohde & Schwarz Ftk Gmbh Heat exchanger element and method for producing a heat exchanger element
US7254964B2 (en) * 2004-10-12 2007-08-14 Wolverine Tube, Inc. Heat transfer tubes, including methods of fabrication and use thereof
US7293602B2 (en) * 2005-06-22 2007-11-13 Holtec International Inc. Fin tube assembly for heat exchanger and method
CN100365369C (en) * 2005-08-09 2008-01-30 江苏萃隆铜业有限公司 Heat exchange tube of evaporator
CN100498187C (en) * 2007-01-15 2009-06-10 高克联管件(上海)有限公司 Evaporation and condensation combined type heat-transfer pipe
CN101338987B (en) * 2007-07-06 2011-05-04 高克联管件(上海)有限公司 Heat transfer pipe for condensation
CN100547339C (en) 2008-03-12 2009-10-07 江苏萃隆精密铜管股份有限公司 A kind of intensify heat transfer pipe and preparation method thereof
US9844807B2 (en) * 2008-04-16 2017-12-19 Wieland-Werke Ag Tube with fins having wings
WO2009128831A1 (en) * 2008-04-18 2009-10-22 Wolverine Tube, Inc. Finned tube for condensation and evaporation
US9038710B2 (en) * 2008-04-18 2015-05-26 Wieland-Werke Ag Finned tube for evaporation and condensation
DE102008001435A1 (en) 2008-04-28 2009-10-29 Basf Se Process for transferring heat to a monomeric acrylic acid, acrylic acid-Michael oligomers and acrylic acid polymer dissolved liquid containing
DE102009007446B4 (en) * 2009-02-04 2012-03-29 Wieland-Werke Ag Heat exchanger tube and method for its production
JP4638951B2 (en) * 2009-06-08 2011-02-23 株式会社神戸製鋼所 Metal plate for heat exchange and method for producing metal plate for heat exchange
GB0911753D0 (en) * 2009-07-07 2009-08-19 Rolls Royce Plc Heat transfer passage
DE102011121436A1 (en) * 2011-12-16 2013-06-20 Wieland-Werke Ag Condenser tubes with additional flank structure
CN102519297A (en) * 2011-12-29 2012-06-27 鄢炳火 Heat exchanger with convection heat transfer ability strengthened by aid of transverse fluid mixing effect
CN102980432A (en) * 2012-11-12 2013-03-20 沃林/维兰德传热技术有限责任公司 Evaporation heat transfer pipe with hollow cavity body
CN102980431A (en) 2012-11-12 2013-03-20 沃林/维兰德传热技术有限责任公司 Evaporation heat-transfer pipe
US9945618B1 (en) * 2017-01-04 2018-04-17 Wieland Copper Products, Llc Heat transfer surface
CN107774849B (en) * 2017-10-27 2024-06-18 华南理工大学 Forming cutter and forming method for evaporation and condensation dual-purpose stepped palace lattice finned tube
CN111707122B (en) * 2020-05-07 2022-03-25 华南理工大学 Outer finned tube with surface mixed wettability and preparation method thereof
CN112222217A (en) * 2020-09-24 2021-01-15 上海宇洋特种金属材料有限公司 Rolling method of T-shaped crossed-tooth steel belt
US20220146214A1 (en) * 2020-11-09 2022-05-12 Carrier Corporation Heat Transfer Tube

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1865575A (en) 1928-11-30 1932-07-05 Wolverine Tube Company Apparatus for manufacturing integral finned tubing
BE669560A (en) 1964-12-28
US3696861A (en) * 1970-05-18 1972-10-10 Trane Co Heat transfer surface having a high boiling heat transfer coefficient
US3906605A (en) * 1973-06-18 1975-09-23 Olin Corp Process for preparing heat exchanger tube
JPS5216048A (en) * 1975-07-30 1977-02-07 Hitachi Cable Ltd Heat transmitting wall
US4313248A (en) * 1977-02-25 1982-02-02 Fukurawa Metals Co., Ltd. Method of producing heat transfer tube for use in boiling type heat exchangers
DE2808080C2 (en) * 1977-02-25 1982-12-30 Furukawa Metals Co., Ltd., Tokyo Heat transfer tube for boiling heat exchangers and process for its manufacture
US4353234A (en) * 1977-07-13 1982-10-12 Carrier Corporation Heat transfer surface and method of manufacture
DE2758526C2 (en) * 1977-12-28 1986-03-06 Wieland-Werke Ag, 7900 Ulm Method and device for manufacturing a finned tube
US4179911A (en) * 1977-08-09 1979-12-25 Wieland-Werke Aktiengesellschaft Y and T-finned tubes and methods and apparatus for their making
SU923661A1 (en) * 1980-10-02 1982-04-30 Feliks P Kirpichnikov Method of producing ribbed tubes
JPS5946490A (en) * 1982-09-08 1984-03-15 Kobe Steel Ltd Heat transmitting tube for heat exchanger of boiling type
JPS5984095A (en) * 1982-11-04 1984-05-15 Hitachi Ltd Heat exchanging wall
US4577381A (en) * 1983-04-01 1986-03-25 Kabushiki Kaisha Kobe Seiko Sho Boiling heat transfer pipes
JPS59199137A (en) * 1983-04-26 1984-11-12 Kobe Steel Ltd Production of boiling heat transfer pipe
JPS6064194A (en) * 1983-09-19 1985-04-12 Sumitomo Light Metal Ind Ltd Heat transfer tube
US4660630A (en) * 1985-06-12 1987-04-28 Wolverine Tube, Inc. Heat transfer tube having internal ridges, and method of making same
JPH0612222B2 (en) * 1985-08-12 1994-02-16 三菱重工業株式会社 Heat transfer tube with cross groove on inner wall
EP0222100B1 (en) * 1985-10-31 1989-08-09 Wieland-Werke Ag Finned tube with a notched groove bottom and method for making it
JPH01102295A (en) * 1987-10-15 1989-04-19 Daikin Ind Ltd Heat transmission pipe externally exchanging heat
JPH0439596A (en) * 1990-06-06 1992-02-10 Furukawa Electric Co Ltd:The Boiling type heat transfer tube
US5054548A (en) * 1990-10-24 1991-10-08 Carrier Corporation High performance heat transfer surface for high pressure refrigerants
JP2788793B2 (en) * 1991-01-14 1998-08-20 古河電気工業株式会社 Heat transfer tube
JP2730824B2 (en) 1991-07-09 1998-03-25 三菱伸銅株式会社 Heat transfer tube with inner groove and method of manufacturing the same
JPH06323778A (en) * 1993-05-12 1994-11-25 Kobe Steel Ltd Heating tube for use in boiling
US5333682A (en) * 1993-09-13 1994-08-02 Carrier Corporation Heat exchanger tube
US5415225A (en) * 1993-12-15 1995-05-16 Olin Corporation Heat exchange tube with embossed enhancement
US5597039A (en) * 1994-03-23 1997-01-28 High Performance Tube, Inc. Evaporator tube
DE69525594T2 (en) * 1994-11-17 2002-08-22 Carrier Corp Heat exchange tube
US5697430A (en) * 1995-04-04 1997-12-16 Wolverine Tube, Inc. Heat transfer tubes and methods of fabrication thereof
DE19757526C1 (en) * 1997-12-23 1999-04-29 Wieland Werke Ag Heat exchanger tube manufacturing method
DE19963353B4 (en) * 1999-12-28 2004-05-27 Wieland-Werke Ag Heat exchanger tube structured on both sides and method for its production

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008013929B3 (en) * 2008-03-12 2009-04-09 Wieland-Werke Ag Metallic heat exchanger pipe i.e. integrally rolled ribbed type pipe, for e.g. air-conditioning and refrigeration application, has pair of material edges extending continuously along primary grooves, where distance is formed between edges
EP2101136A2 (en) 2008-03-12 2009-09-16 Wieland-Werke Ag Vaporiser pipe with optimised undercut on groove base
US8281850B2 (en) 2008-03-12 2012-10-09 Wieland-Werke Ag Evaporator tube with optimized undercuts on the groove base
EP2101136A3 (en) * 2008-03-12 2013-08-07 Wieland-Werke AG Vaporiser pipe with optimised undercut on groove base
DE102011121733A1 (en) 2011-12-21 2013-06-27 Wieland-Werke Ag Evaporator tube with optimized external structure
WO2013091759A1 (en) 2011-12-21 2013-06-27 Wieland-Werke Ag Evaporator tube having an optimised external structure
US11073343B2 (en) 2014-02-27 2021-07-27 Wieland-Werke Ag Metal heat exchanger tube
DE102014002829A1 (en) 2014-02-27 2015-08-27 Wieland-Werke Ag Metallic heat exchanger tube
DE102016006914A1 (en) 2016-06-01 2017-12-07 Wieland-Werke Ag heat exchanger tube
WO2017207089A1 (en) 2016-06-01 2017-12-07 Wieland-Werke Ag Heat exchanger tube
DE102016006914B4 (en) 2016-06-01 2019-01-24 Wieland-Werke Ag heat exchanger tube
US10996005B2 (en) 2016-06-01 2021-05-04 Wieland-Werke Ag Heat exchanger tube
DE102018004701A1 (en) 2018-06-12 2019-12-12 Wieland-Werke Ag Metallic heat exchanger tube
DE202020005625U1 (en) 2020-10-31 2021-11-10 Wieland-Werke Aktiengesellschaft Metallic heat exchanger tube
DE202020005628U1 (en) 2020-10-31 2021-11-11 Wieland-Werke Aktiengesellschaft Metallic heat exchanger tube
WO2022089773A1 (en) 2020-10-31 2022-05-05 Wieland-Werke Ag Metal heat exchanger tube
WO2022089772A1 (en) 2020-10-31 2022-05-05 Wieland-Werke Ag Metal heat exchanger tube

Also Published As

Publication number Publication date
ATE356966T1 (en) 2007-04-15
JP2002277188A (en) 2002-09-25
US20020092644A1 (en) 2002-07-18
US6913073B2 (en) 2005-07-05
JP3935348B2 (en) 2007-06-20
US6786072B2 (en) 2004-09-07
EP1223400A2 (en) 2002-07-17
CN1366170A (en) 2002-08-28
CN1313794C (en) 2007-05-02
ES2283470T3 (en) 2007-11-01
EP1223400A3 (en) 2005-11-30
DE10101589C1 (en) 2002-08-08
DE50209693D1 (en) 2007-04-26
US20030024121A1 (en) 2003-02-06
PT1223400E (en) 2007-05-31

Similar Documents

Publication Publication Date Title
EP1223400B1 (en) Tube for heat exchanger and process for making same
DE4404357C1 (en) Heat exchange core for condensing vapour (steam)
DE19628280C2 (en) Heat transfer tube with a grooved inner surface
DE10156374C1 (en) Heat exchange tube structured on both sides has inner fins crossed by secondary grooves at specified rise angle
EP2216615B1 (en) Heat transfer tube and method for its production
DE69200089T2 (en) Heat transfer tube.
DE69302668T2 (en) Heat exchanger tube
DE60209750T2 (en) IMPROVED HEAT TRANSFER TUBE WITH GROOVED INTERIOR
DE69215988T2 (en) Heat exchange tubes and manufacturing processes
DE102006008083B4 (en) Structured heat exchanger tube and method for its production
EP2339283B1 (en) Heat transfer pipe and method for manufacturing same
EP1113237B1 (en) Heat exchange tube structured on both sides and process for making same
EP0925856B1 (en) Method for manufacturing an evaporation tube
EP2101136B1 (en) Metallic heat exchanger tube
EP0733871A1 (en) Heat transfer tube for a heat exchanger
EP2795233A1 (en) Evaporator tube having an optimised external structure
EP3111153B1 (en) Metal heat exchanger tube
EP0102407B1 (en) Finned tube with internal projections and method and apparatus for its manufacture
EP3465057B1 (en) Heat exchanger tube
DE10210016B9 (en) Heat exchange tube with a ribbed inner surface
EP4237782A1 (en) Metal heat exchanger tube
WO2022089772A1 (en) Metal heat exchanger tube
DE202020005628U1 (en) Metallic heat exchanger tube
DE202020005625U1 (en) Metallic heat exchanger tube
DE2335306C3 (en) Finned tube for heat exchangers and process for its manufacture

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020108

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070314

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070314

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070314

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 50209693

Country of ref document: DE

Date of ref document: 20070426

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20070426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070614

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070530

ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2283470

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070314

26N No opposition filed

Effective date: 20071217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070615

BERE Be: lapsed

Owner name: WIELAND-WERKE A.G.

Effective date: 20080131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080131

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070314

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20201230

Year of fee payment: 20

Ref country code: FR

Payment date: 20201210

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20210107

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210131

Year of fee payment: 20

Ref country code: ES

Payment date: 20210208

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20201211

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50209693

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20220107

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20220107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20220119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20220109