JPH01102295A - Heat transmission pipe externally exchanging heat - Google Patents

Heat transmission pipe externally exchanging heat

Info

Publication number
JPH01102295A
JPH01102295A JP26048587A JP26048587A JPH01102295A JP H01102295 A JPH01102295 A JP H01102295A JP 26048587 A JP26048587 A JP 26048587A JP 26048587 A JP26048587 A JP 26048587A JP H01102295 A JPH01102295 A JP H01102295A
Authority
JP
Japan
Prior art keywords
boiling
fins
groove
heat
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26048587A
Other languages
Japanese (ja)
Inventor
Yuzo Sakon
左近 勇三
Narikazu Miyake
三宅 斉和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP26048587A priority Critical patent/JPH01102295A/en
Publication of JPH01102295A publication Critical patent/JPH01102295A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To provide a heat transmission pipe which excels both in boiling and condensing performances by providing the heat transmission pipe with fins and spiral grooves, and performing the condensing on the fin side and the boiling with the spiral grooves and boiling enhancing nuclei disposed in the bottom of the groove. CONSTITUTION:At the time of condensing, fins 10 which cover most of the outer surface of a heat transmission pipe 5 have much chance of contact with the vaporized heating medium, and promote the nucleated condensation with their tips as nuclei. At the time of boiling, on the other hand, the liquid heating medium is in contact with the entire outer surface of the heat transmission pipe 5, and is most actively boiled in the bottom 13 of spiral grooves 11 where the temperature is higher than the fins 10 because of the closeness to the heat source flowing through the pipe. Since boiling enhancing nuclei 15 are formed in the groove bottom 13 with fine ribs 14, the nucleated boiling of heating medium can be physically enhanced in addition to the temperature condition. Further, as air bubbles generated at the groove bottom 13 rise because of their buoyancy, they contact the surface of the fin 10 adjacent to the spiral groove 11 to disturb the liquid film, improving the heat transmission through the fins 10.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、冷凍機や空気調和機等の熱交換器に適用され
る伝熱管において、管外面に熱媒体を接触させて熱交換
を行う形態のものに関する。
Detailed Description of the Invention (Industrial Application Field) The present invention is a heat transfer tube applied to a heat exchanger such as a refrigerator or an air conditioner, in which heat exchange is performed by bringing a heat medium into contact with the outer surface of the tube. Regarding things of form.

(従来の技術) 従来、この梗の伝熱管において、とくに沸騰性能の向上
を図るために、木管の外面に波形フィンを巻付けたもの
が公知である(実開昭54−170460号公報)。前
記波形フィンは、帯状の金属薄板に微少間隔で多数の切
り目を形成し、さらに板面を波状に変形させて、フィン
の隣接する山部間に沸騰気泡核用の空隙が形成されてい
る。
(Prior Art) Conventionally, in order to particularly improve the boiling performance of this type of heat exchanger tube, one in which corrugated fins are wrapped around the outer surface of the wood tube is known (Japanese Utility Model Publication No. 170460/1983). The corrugated fins are formed by forming a large number of cuts at minute intervals in a strip-shaped thin metal plate, and further deforming the plate surface into a wave shape to form voids for boiling bubble nuclei between adjacent peaks of the fins.

また、管内を熱媒体通路とする伝熱管において、管内壁
に互いに交差する逆向きの2系の螺旋状溝を群状に隣接
形成し、台溝の溝深さを異ならせて、突出高さの異なる
角錐状の突起列を形成したものが公知である(特公昭6
1−32599号公報)。
In addition, in a heat transfer tube in which the inside of the tube is used as a heat medium passage, two systems of spiral grooves in opposite directions that intersect with each other are formed adjacent to each other in a group on the inner wall of the tube, and the groove depths of the trapezoids are varied to increase the protrusion height. It is well known to have a row of pyramidal protrusions with different numbers (Japanese Patent Publication No. 6, 1983).
1-32599).

これは、前記突起群によって、熱媒体と伝熱管との間の
熱伝達率の向上を図ったものである。
This is intended to improve the heat transfer coefficient between the heat medium and the heat transfer tube by the group of protrusions.

(発明が解決しようとする問題点) 上記のように、伝熱管の沸騰性能あるいは凝縮性能を向
上するために、それぞれの現象に合致した伝熱面構造が
従来から多数提案されている。しかし、従来の伝熱管は
沸騰性能あるいは凝縮性能のいずれか一方の性能は優れ
ていても、両性能を同時に満足することができず、同じ
伝熱管を蒸発器に適用する場合と凝縮器に適用する場合
とで熱交換能力に差を生じていた。そのため、例えばヒ
ートポンプ式の空気調和装置の熱交換器に、前述のよう
な従来形態の伝熱管を適用した場合、冷房能力と暖房能
力のいずれかが不足することになり、この能力不足を補
う必要上熱交換器が大形化していた。
(Problems to be Solved by the Invention) As described above, in order to improve the boiling performance or condensing performance of heat transfer tubes, many heat transfer surface structures that match each phenomenon have been proposed. However, even though conventional heat transfer tubes are excellent in either boiling performance or condensing performance, they cannot satisfy both performances at the same time. There was a difference in heat exchange ability depending on the case. Therefore, for example, if the conventional heat transfer tubes described above are applied to the heat exchanger of a heat pump type air conditioner, either the cooling capacity or the heating capacity will be insufficient, and it is necessary to compensate for this lack of capacity. The upper heat exchanger had become larger.

また、伝熱管の大口径化を図って熱交換容量の増大を図
るについて、前記従来例のように比較的小さい口径(8
論ないし30詐)の伝熱管を対象とした伝熱面構造をそ
のまま適用しても、熱伝達率を十分に向上することが困
難であった。例えば、口径が100mmを超える管外熱
交換方式の伝熱管の局面に、前記従来例のように角錐状
の2種の突起列を形成して凝縮を行った場合、凝縮液が
流下 ゛する管の下部になるに従い凝縮液喚が厚くなり
、十分な凝縮性能を得ることができない。これは、沸騰
あるいは凝縮させようとする熱媒体量と、規定された伝
熱面構造の処理容量とに大きな差があることと、たとえ
口径変化に応じて伝熱面構造のスケールアップ等を行っ
たとしも、必ずしも性能を向上できないためであると推
測される。
In addition, when trying to increase the heat exchange capacity by increasing the diameter of the heat exchanger tube, it is possible to increase the heat exchange capacity by increasing the diameter of the heat exchanger tube.
It was difficult to sufficiently improve the heat transfer coefficient even if the heat transfer surface structure intended for heat transfer tubes of 2000 to 30000 was applied as it was. For example, when condensation is performed by forming two types of pyramid-shaped protrusion rows on the surface of an external heat exchange type heat transfer tube with a diameter exceeding 100 mm, as in the conventional example, the condensate flows down the tube. The condensate layer becomes thicker toward the bottom, making it impossible to obtain sufficient condensing performance. This is because there is a large difference between the amount of heat medium to be boiled or condensed and the processing capacity of the specified heat transfer surface structure, and even if the heat transfer surface structure is scaled up in response to a change in diameter. Even if this is the case, it is presumed that this is because performance cannot necessarily be improved.

本発明は上記に鑑み提案されたものであって、管外熱交
換方式の伝熱管において、伝熱面構造を沸騰および凝縮
の両作用に適合できるものとして、沸騰性能と凝縮性能
との両性能に侵れた伝熱管を得ることを目的とする。
The present invention has been proposed in view of the above, and is a heat transfer tube using an extra-tube heat exchange method, which has a heat transfer surface structure that can be adapted to both boiling and condensation functions, thereby achieving both boiling performance and condensation performance. The purpose is to obtain heat exchanger tubes that are corroded by corrosion.

本発明の他の目的は、沸騰、凝縮の両性能に優れた伝熱
管を熱交換器に適用することにより、冷暖兼用の空気調
和装置における熱交換器の小形化を実現することにある
Another object of the present invention is to realize miniaturization of a heat exchanger in an air conditioner for both cooling and heating by applying heat exchanger tubes having excellent boiling and condensing performance to the heat exchanger.

(問題を解決するための手段) 本発明の伝熱管は、沸騰作用と凝縮作用とのそれぞれに
対応して、主として沸騰に有効な伝熱面構造と、主とし
て凝縮に有効な伝熱面構造とを設け、沸騰、凝縮の両性
能を整合良く共に向上する。
(Means for solving the problem) The heat transfer tube of the present invention has a heat transfer surface structure that is mainly effective for boiling and a heat transfer surface structure that is mainly effective for condensation, respectively, corresponding to boiling action and condensation action. This improves both boiling and condensing performance in a well-matched manner.

つまり、沸騰、凝縮の両作用に関して伝熱機能の大まか
な分化を図る。
In other words, we aim to roughly differentiate the heat transfer functions regarding both boiling and condensation actions.

具体的には、第1図に示すように、管本体(5a)の外
周面に形成されるフィン(10)で主として凝縮を行う
ものとし、フィン(10)を周方向多数個所で分断する
一群の螺旋溝(11)の溝底(13)に、沸騰作用に有
効な沸騰促進核(15)を形成する。前記フィン(10
)は管本体(5a)の外周面を周回し、管軸に沿って山
形に−5= 連続するよう管本体(5a)と一体に形成する。
Specifically, as shown in FIG. 1, condensation is mainly performed by fins (10) formed on the outer peripheral surface of the tube body (5a), and the fins (10) are divided into groups at multiple points in the circumferential direction. A boiling accelerating nucleus (15) effective for boiling action is formed at the groove bottom (13) of the spiral groove (11). The fin (10
) is integrally formed with the tube body (5a) so as to surround the outer peripheral surface of the tube body (5a) and continue in a chevron shape along the tube axis.

また、前記螺旋溝(11)はその溝底(13)が、フィ
ン(10)の基底部(10a)どうしを結ぶ仮想円筒面
(12)より径方向内側に位置するように管本体(5a
)外周面に形成する。つまり、隣接するフィン(10)
間に形成されるフィン溝より螺旋溝(11)の満深さを
大きく設定する。
Further, the spiral groove (11) is arranged such that the groove bottom (13) is located radially inside the virtual cylindrical surface (12) connecting the base parts (10a) of the fins (10).
) formed on the outer peripheral surface. That is, adjacent fins (10)
The full depth of the spiral groove (11) is set larger than that of the fin groove formed therebetween.

ここで、前記沸騰促進核(15)は、例えば第1図に示
すように、溝底(13)に多数の微少突条(14)を設
け、隣接する微少突条(14)間に外向きに開口する枝
溝(16)を形成し、この枝溝(16)の断面を逆Ω字
状に形成して開口部が最も幅狭になるように構成する。
Here, the boiling accelerating nucleus (15) is provided with a large number of minute protrusions (14) on the groove bottom (13), and between adjacent minute protrusions (14), as shown in FIG. A branch groove (16) is formed which opens into the groove, and the cross section of the branch groove (16) is formed in an inverted Ω-shape so that the opening is the narrowest.

(作用) このことにより、本発明では、凝縮時、伝熱管(5)の
外表面の殆どを占めるフィン(10)が蒸気状態の熱媒
体と多くの接触機会を持ち、その突端を核として核状凝
縮を促進する。フィン(10)で凝結した液滴は次第に
成長し、フィン(10)の外面に沿って重力の作用する
方向に流下ずる。このとき、フィン(10)は螺旋溝(
11)で周方向に分断されているので、凝縮液はフィン
(10)間のフィン溝を介して速やかに螺旋溝(11)
へと導かれて、その重力の作用方向下端部から落下する
。つまり、フィン(10)またはフィン溝から凝縮液を
速やかに排除して滞溜を防止し、フィン(10)を蒸気
の飽和温度以下に維持し、凝縮液にフィン(10)の冷
熱が奪われるのを防止する。
(Function) Accordingly, in the present invention, during condensation, the fins (10) occupying most of the outer surface of the heat transfer tube (5) have many opportunities to come into contact with the heat medium in the vapor state, and the tip of the fin (10) has many opportunities to come into contact with the heat medium in the vapor state. Promote condensation. The droplets condensed on the fins (10) gradually grow and flow down along the outer surface of the fins (10) in the direction of gravity. At this time, the fin (10) has a spiral groove (
11), the condensate quickly flows through the fin grooves between the fins (10) and into the spiral grooves (11).
It falls from the lower end in the direction of gravity. In other words, the condensate is quickly removed from the fins (10) or fin grooves to prevent accumulation, the fins (10) are maintained below the steam saturation temperature, and the cooling energy of the fins (10) is taken away by the condensate. to prevent

一方、沸騰時、液状の熱媒体は伝熱管(5)の外面全体
で接触しているが、管内を通過する熱源に最も近く、フ
ィン(10)に比べて瀉麿の高い螺旋溝(11)の溝底
(13)で活発に沸騰する。
On the other hand, during boiling, the liquid heat medium is in contact with the entire outer surface of the heat transfer tube (5), but the spiral groove (11) is closest to the heat source passing through the tube and has a higher profile than the fins (10). It boils actively at the bottom of the groove (13).

また、溝底(13)には例えば微少突条(14)からな
る沸!l!!促進核(15)が設けられているので、前
記温度条件に加えて熱媒体の核沸騰を物理的に促進する
ことができる。さらに、溝底(13)で発生した気泡が
その浮力で上昇する際に、螺旋溝(11)に隣接するフ
ィン(10)の表面に当接し、′a膜を撹乱してフィン
(10)での熱伝達を向上できる。
Furthermore, the groove bottom (13) is formed of, for example, minute protrusions (14). l! ! Since the promoting nuclei (15) are provided, in addition to the above-mentioned temperature conditions, nucleate boiling of the heating medium can be physically promoted. Furthermore, when the bubbles generated at the groove bottom (13) rise due to their buoyancy, they come into contact with the surface of the fin (10) adjacent to the spiral groove (11), disturbing the 'a membrane and causing the fin (10) to can improve heat transfer.

(第1実施例) 第1図ないし第5図は、本発明を冷房、暖房兼用のヒー
トポンプ式の空気調和装置における熱交換器に適用した
第1実施例を示している。
(First Embodiment) FIGS. 1 to 5 show a first embodiment in which the present invention is applied to a heat exchanger in a heat pump type air conditioner for both cooling and heating.

第2図において、熱交換器(1)は密閉されたタンク体
(2)の内部左右に入口氷室(3)と出口氷室(4)を
区画し、両氷室(3)、(4)間を多数の伝熱管(5)
で連通して、両氷室(3)。
In Fig. 2, the heat exchanger (1) has an inlet ice chamber (3) and an outlet ice chamber (4) partitioned on the left and right sides of a sealed tank body (2), and the space between the two ice chambers (3) and (4) is divided. Many heat exchanger tubes (5)
Both Himuro (3) are connected.

(4)間に熱交換室(6)を分離区画している。(4) A heat exchange chamber (6) is separated between the two.

該熱交換室(6)の周壁−側には入口(7)が開口され
ており、この入口(7)から送給された熱媒体が伝熱管
(5)と接触しながら熱交換を行い、周壁他側に開口さ
れた出口(8)から送り出される。前記入口氷室(3)
と出口氷室(4)とにもそれぞれ入口(3a)および出
口(4a)が間口され、入口(3a)から出口(4a)
に向って調整された水が供給されるようになっている。
An inlet (7) is opened on the peripheral wall side of the heat exchange chamber (6), and the heat medium supplied from the inlet (7) exchanges heat while contacting the heat transfer tube (5). It is sent out from an outlet (8) opened on the other side of the peripheral wall. Said entrance ice room (3)
An inlet (3a) and an outlet (4a) are also provided to the and outlet ice chamber (4), respectively, and the outlet (4a) is connected from the inlet (3a) to the outlet (4a).
The system provides water that is regulated for

第3図および第4図において、熱交換室(6)に臨む伝
熱管(5)の外周面にはフィン(10)と、螺旋溝(1
1)とからなる伝熱面構造が設けられている。フィン(
10)は管本体(5a)の外周面を周回し、かつ管軸に
沿って山形に連続するよう管本体(5a)と一体に形成
する。具体的には例えば管本体(5a)に切削加工を施
して、連続山形のフィン(10)を形成する。このフィ
ン(10)は管本体(5a)を周回するごとに分離して
いてもよく、1条あるいは多条ねじのように連続してい
てもよい。
In FIGS. 3 and 4, the outer peripheral surface of the heat exchanger tube (5) facing the heat exchange chamber (6) has fins (10) and spiral grooves (1
A heat transfer surface structure consisting of 1) is provided. fin(
10) is integrally formed with the tube body (5a) so as to surround the outer peripheral surface of the tube body (5a) and continue in a chevron shape along the tube axis. Specifically, for example, the tube body (5a) is cut to form continuous chevron-shaped fins (10). The fins (10) may be separated each time they go around the tube body (5a), or may be continuous like a single or multi-thread thread.

前記螺旋溝(11)はフィン(10)と交差しながら管
軸方向にゆるやかに右旋回するよう形成され、この螺旋
溝(11)を周方向の定間隔d3きに形成して、フィン
(10)を周方向多数個所で分断する。つまり、フィン
(10)が管本体(5a)を周回するごとに、フィン(
10)を螺旋溝(11)の条故に等しい数で分断する。
The spiral groove (11) is formed so as to gently turn right in the tube axis direction while intersecting the fin (10). 10) is divided at multiple points in the circumferential direction. In other words, every time the fin (10) goes around the tube body (5a), the fin (
10) is divided into equal numbers due to the spiral groove (11).

第1図に示すように、螺旋溝(11)の溝深さは隣接す
るフィン(10)間のフィン溝の深さより大きく設定す
る。詳しくは、フィン(10)の基底部(10a>どう
しを結ぶ仮想円筒面(12)を基準にして、これより径
方向内側に螺旋溝(11)の溝底(13)が位置するよ
うに溝深さを設定する。
As shown in FIG. 1, the groove depth of the spiral groove (11) is set larger than the depth of the fin groove between adjacent fins (10). Specifically, with reference to the virtual cylindrical surface (12) connecting the bases (10a) of the fins (10), the grooves are formed so that the groove bottom (13) of the spiral groove (11) is located radially inward from this. Set depth.

そして、溝底(13)に多数の微少突条(14)からな
る沸騰促進核(15)を形成する。第5図(b)に示す
ように微少突条(14)は螺旋溝(11)に沿って、一
連に形成されており、それぞれの隣接部間に外向きに開
口する枝溝(16)が形成されている。この枝溝(16
)は断面逆Ω字状に形成され、その開口部幅が他の部位
に比べて最も狭くなるものとする。
Then, a boiling promoting core (15) consisting of a large number of minute protrusions (14) is formed on the groove bottom (13). As shown in FIG. 5(b), the minute protrusions (14) are formed in a series along the spiral groove (11), and a branch groove (16) opening outward is formed between each adjacent portion. It is formed. This branch groove (16
) is formed in an inverted Ω-shape in cross section, and its opening width is the narrowest compared to other parts.

第5図(a)、(b)に沸騰促進核(15)の加工例を
示している。これでは、溝底(13)に連続山形の微少
突条(14)を形成した後、各突条の突端にローラ(1
7)を圧接して頂部を圧潰し、逆Ω字状の枝溝(16)
を形成する。第5図(b)にフィン(10)、螺旋1i
l(’11)および沸騰促進核(15)の主要寸法記号
を示したが、その詳細は次の通りである。
FIGS. 5(a) and 5(b) show an example of processing the boiling accelerating nucleus (15). In this case, after forming continuous mountain-shaped minute protrusions (14) on the groove bottom (13), the roller (14) is attached to the tip of each protrusion.
7) and crush the top to form an inverted Ω-shaped branch groove (16).
form. Figure 5(b) shows the fin (10) and the spiral 1i.
The main dimension symbols of l ('11) and boiling accelerated nucleus (15) are shown, and the details are as follows.

フィン(10)の突出高さ(Fr ) =1.0〜3WIW+ 螺旋溝(11)の幅(W>=2〜4+nyn螺旋溝(1
1)の全深さ(E)=2〜5ynv核溝(16)の全深
さ(G) =0.4〜1.0論 但し、この場合の伝熱管(5)の口径(外直径)は10
0ないし300+nmとする。
Projection height (Fr) of fin (10) = 1.0~3WIW+ Width of spiral groove (11) (W>=2~4+nyn Spiral groove (1
1) Total depth (E) = 2~5ynv Total depth of nuclear groove (16) (G) = 0.4~1.0 However, in this case, the diameter (outer diameter) of the heat exchanger tube (5) is 10
0 to 300+ nm.

以上のように構成した伝熱管(5)によれば、主として
凝縮作用をフィン(1o)の群で行い、主として沸騰作
用を螺旋溝(11)に設けた沸騰促進核(15)で行っ
て、沸騰、凝縮のいずれの場合にも能率良く熱媒体を処
理できる。
According to the heat exchanger tube (5) configured as above, the condensing action is mainly performed by the group of fins (1o), and the boiling action is mainly performed by the boiling accelerating core (15) provided in the spiral groove (11), The heat medium can be efficiently processed in both cases of boiling and condensation.

凝縮時、表面積の最も大さなフィン(1o)が熱媒体蒸
気との接触機会を多く持つこととなり、その突端部にお
いて核状凝縮を生じる。フィン(10)で凝縮した液滴
は徐々に成長して、フィン(10)あるいは隣接するフ
ィン間のフィン溝に沿って重力の作用方向へと流下する
。そして、フィン(10)を分断する螺旋@ (11)
内に流れ込み、この溝(11)に沿って流下し伝熱管(
5)の下面側から落下する。このように、フィン(10
)で凝縮した熱媒体液を、フィン(10)の周回方向の
多数個所で螺旋溝(11)へと速やかに導き、フィン(
10)での凝縮液の滞溜を防ぎ、その外面が凝縮液膜で
覆われるのを阻止してやれば、フィン(10)を熱媒体
蒸気と常に接触させて効率良く凝縮を行うことができる
。また、凝縮液膜が介在することによってフィン(10
)から蒸気への熱伝達率が低下することも解消できる。
During condensation, the fin (1o) with the largest surface area has many opportunities to come into contact with the heat medium vapor, and nuclear condensation occurs at its tip. The droplets condensed on the fins (10) gradually grow and flow down along the fins (10) or along the fin grooves between adjacent fins in the direction of gravity. And the spiral that divides the fin (10) @ (11)
and flows down along this groove (11) into the heat exchanger tube (
5) Fall from the bottom side. In this way, the fin (10
) is quickly guided to the spiral grooves (11) at multiple points in the circumferential direction of the fins (10).
By preventing the condensate from accumulating in the fins (10) and preventing the outer surface from being covered with a condensate film, the fins (10) can be kept in constant contact with the heat medium vapor and condensation can be carried out efficiently. In addition, due to the presence of a condensate film, fins (10
) can also eliminate the decrease in the heat transfer coefficient from the steam to the steam.

熱媒体液を熱交換室(6)へ送給することにより、各伝
熱管(5)において沸騰を生じる。こめとき、伝熱管(
5)の外面での温度分布は、最も管内方に近い螺旋溝(
11)の溝底(13)で高く、フィン(10)の先端に
なるほど低くなり、溝底(13)側の熱流束が大きくな
る。しかも、溝底(13)には沸騰促進核(15)が形
成されており、フィン(10)に比べて気泡の発生条件
が格段に優れている。従って、沸騰作用の殆どが螺旋溝
(11)内で活発に行われることとなり、効率良く沸騰
を行うことができる。また、溝底(13)で発生した気
泡が浮上するとき、気泡の発生部位より上方に位置する
フィン(10)に気泡が接触して、その表面の熱媒体液
を排除しあるいは撹乱する。これにより、フィン(10
)の温度が上昇しあるいはゆらぎを受iプで気泡が発生
しやすくなり、沸騰が一層促進される。
By feeding the heat medium liquid to the heat exchange chamber (6), boiling occurs in each heat transfer tube (5). Heat exchanger tube (
5) The temperature distribution on the outer surface of the spiral groove (
The heat flux is high at the groove bottom (13) of 11) and becomes lower toward the tip of the fin (10), increasing the heat flux on the groove bottom (13) side. Furthermore, boiling promoting nuclei (15) are formed in the groove bottom (13), and the conditions for bubble generation are much better than in the fins (10). Therefore, most of the boiling action is actively carried out within the spiral groove (11), and boiling can be carried out efficiently. Further, when the bubbles generated at the groove bottom (13) float up, the bubbles come into contact with the fins (10) located above the area where the bubbles are generated, and displace or disturb the heat transfer liquid on the surface thereof. This allows the fin (10
) As the temperature rises or fluctuations occur, bubbles are more likely to be generated, further promoting boiling.

従って、上記伝熱管(5)を適用した熱交換器(1)で
は、冷房能力と暖房能力とに差を生じることなく熱交換
を行うことができるので、能力差を補うために付加装置
を設けたり、高能力側の熱交換作用が利用されないまま
、低能力側で性能設定が行われる等の無駄を解消し、熱
交換器(1)の小形化を図ることができる。とくに、熱
交換容量の大きな大口径の伝熱管(5)の場合、沸騰と
凝縮との能力差に基づく熱量値が大きいので、これを補
うには相当な熱量を発揮する付加装置が必要となり、付
加装置の要、不要が熱交換器(1)の大小に影響を及ぼ
す点で有利となる。
Therefore, in the heat exchanger (1) to which the heat transfer tube (5) is applied, heat exchange can be performed without creating a difference between the cooling capacity and the heating capacity, so an additional device is provided to compensate for the difference in capacity. It is also possible to reduce the size of the heat exchanger (1) by eliminating waste such as performance setting being performed on the low capacity side while the heat exchange action on the high capacity side is not utilized. In particular, in the case of a large-diameter heat exchanger tube (5) with a large heat exchange capacity, the amount of heat based on the difference in ability between boiling and condensation is large, so to compensate for this, an additional device that produces a considerable amount of heat is required. This is advantageous in that the necessity of additional equipment affects the size of the heat exchanger (1).

なお、上記実施例の伝熱管(5)と比較例との熱伝達率
に関する性能比較を行ったが、比較例を1とするとき、
実施例の凝縮熱伝達率が約2.5倍、また沸騰熱伝達率
が約2.0倍であった。比較例の伝熱管は、管外面にね
じ状のフィンのみを形成したものである。
In addition, a performance comparison was made regarding the heat transfer coefficient between the heat transfer tube (5) of the above example and the comparative example, but when the comparative example is taken as 1,
The condensing heat transfer coefficient of the example was about 2.5 times, and the boiling heat transfer coefficient was about 2.0 times. The heat exchanger tube of the comparative example has only screw-shaped fins formed on the outer surface of the tube.

(第2実施例) 第6図(a)、(b)ないし第8図は沸騰促進核(15
)の第2実施例を示している。第6図(a)、(b)に
おいては、沸騰促進核(15)は、熱伝導性に優れた銅
などの金属線材で微少突条(14)を形成し、各突条(
14)間に、上下に潰れた逆Ω字状の枝溝(16)を形
成して構成する。この場合、第7図に示すように、金属
素線(14a)を対向するローラ状の回転ダーfス(1
9)、(19)間に通し、その外面に対向状に切溝(2
0)を形成した後、これを溝底(13)に多数本並設固
定して微少突条(14)を形成している。また、前記切
溝(20)に代えて、第8図に示すように、金属素It
(14a)を連続波形に変形して微少突条(14)を形
成してもよい。
(Second Example) Figures 6(a), (b) to 8 show boiling accelerated nuclei (15
) shows a second embodiment. In FIGS. 6(a) and (b), the boiling promoting nuclei (15) are formed by forming minute protrusions (14) with a metal wire material such as copper having excellent thermal conductivity, and each protrusion (
14) A vertically collapsed inverted Ω-shaped branch groove (16) is formed in between. In this case, as shown in FIG.
9) and (19), and cut grooves (2
0) is formed, a large number of these are arranged and fixed in parallel to the groove bottom (13) to form minute protrusions (14). Moreover, instead of the kerf (20), as shown in FIG.
(14a) may be transformed into a continuous waveform to form minute protrusions (14).

なお、金属素線(14a)の線径は0.3ないし0.5
mmとする。
Note that the wire diameter of the metal wire (14a) is 0.3 to 0.5.
Let it be mm.

(第3実施例) 第9図は沸騰促進核(15)の第3実施例を示しており
、これでは溝底(13)にポーラス層(21)を形成し
て沸騰促進核(15)とする。
(Third Embodiment) Figure 9 shows a third embodiment of the boiling accelerating nucleus (15), in which a porous layer (21) is formed at the groove bottom (13) to form the boiling accelerating nucleus (15). do.

このポーラス層(21>は金属粉末を焼結することによ
って、あるいは金属を溶射して形成する。
This porous layer (21>) is formed by sintering metal powder or by spraying metal.

なお、螺旋溝(11)の条数は、熱交換器(1)の使用
条件に応じて、あるいは溝底(13)での熱流束条件等
に応じて必要数を決定すれば良い。
The number of spiral grooves (11) may be determined depending on the usage conditions of the heat exchanger (1) or the heat flux conditions at the groove bottom (13).

(発明の効果) 以上説明したように、本発明の伝熱管では、伝熱面構造
としてフィン(10)と螺旋溝(11)とを設け、フィ
ン(10)側で主として凝縮作用を行わせ、螺旋溝(1
1)およびその溝底(13)に設けた沸騰促進核(15
)によって主として沸騰作用が行われるものとし、沸騰
と凝縮との機能の大まかな分化を行うようにしたので、
伝熱管(5)の沸騰性能および凝縮性能の両性能を同時
に整合良く向上することができることとなった。
(Effects of the Invention) As explained above, in the heat transfer tube of the present invention, the fins (10) and the spiral grooves (11) are provided as the heat transfer surface structure, and the condensation action is mainly performed on the fin (10) side. Spiral groove (1
1) and the boiling accelerating nucleus (15) provided at the groove bottom (13).
), the boiling action is mainly carried out, and the functions of boiling and condensation are roughly differentiated.
Both the boiling performance and condensing performance of the heat exchanger tube (5) can be simultaneously improved with good consistency.

これにより、同じ伝熱管を蒸発器と凝縮器のどちらにで
も適用できるのはもちろん、冷暖兼用の熱交換器に適用
して場合、冷房能力と暖房能力に差が生じるのを解消で
き、能力差を補うための装置を付加する必要がないので
、その分だけ熱交換器を小形化できる点で有利である。
This not only allows the same heat transfer tube to be used in both the evaporator and the condenser, but also eliminates the difference in cooling and heating capacity when used in a heat exchanger for both cooling and heating. Since there is no need to add a device to compensate for this, it is advantageous in that the heat exchanger can be made smaller accordingly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第5図(a)、(b)は本発明の第1実施
例を示し、第1図は伝熱管の部分断面図、第2図は熱交
換器の概略断面図、第3図は伝熱管の斜視図、第4図は
伝熱面構造の斜視図、第5図(a)、(b)はそれぞれ
沸騰促進核の加工手順を示す断面図である。第6図(a
)、(1+)ないし第8図は沸騰促進核の第2実施例を
示し、第6図(a )は沸騰促進核の平面図、第6図(
b)は同断面図、第7図は微少突条の加工例を示す正面
図、第8図は沸騰促進核の変形態様を示す平面図である
。第9図は沸騰促進核の第3実施例を示す断面図である
。 (5a)・・・管本体、(10) ・・・フィン、(1
0a)・・・基底部、(11)・・・螺旋溝、(12)
・・・仮想円筒面、(13)・・・溝底、(14)・・
・微少突条、(15)・・・沸騰促進核、(16)・・
・枝溝、(21)・・・ポーラス層。
1 to 5 (a) and (b) show a first embodiment of the present invention, in which FIG. 1 is a partial sectional view of a heat exchanger tube, FIG. 2 is a schematic sectional view of a heat exchanger, and FIG. FIG. 4 is a perspective view of a heat transfer tube, FIG. 4 is a perspective view of a heat transfer surface structure, and FIGS. 5(a) and 5(b) are cross-sectional views showing the processing procedure for boiling promoting nuclei. Figure 6 (a
), (1+) to FIG. 8 show the second embodiment of the boiling accelerating nucleus, and FIG. 6(a) is a plan view of the boiling accelerating nucleus, and FIG.
b) is a cross-sectional view of the same, FIG. 7 is a front view showing an example of processing of minute protrusions, and FIG. 8 is a plan view showing a deformed form of boiling accelerating nuclei. FIG. 9 is a sectional view showing a third embodiment of the boiling accelerating nucleus. (5a)...Pipe body, (10)...Fin, (1
0a)...Basal part, (11)...Spiral groove, (12)
... Virtual cylindrical surface, (13) ... Groove bottom, (14) ...
・Minute ridges, (15)... Boiling accelerating nuclei, (16)...
- Branch groove, (21)... Porous layer.

Claims (3)

【特許請求の範囲】[Claims] (1)管本体(5a)の外周面を周回し、管軸に沿つて
山形に連続する主として凝縮作用に有効なフィン(10
)を管本体(5a)と一体に形成し、該フィン(10)
と交差してフィン(10)を周方向多数個所で分断する
螺旋溝(11)の群を管本体(5a)の外周面に形成し
、前記フィン(10)の基底部(10a)どうしを結ぶ
仮想円筒面(12)を基準にして、前記螺旋溝(11)
の溝底(13)が該仮想円筒面(12)より径方向内側
に位置するよう螺旋溝(11)の溝深さを設定し、該溝
底(13)に主として沸騰作用に有効な沸騰促進核(1
5)を形成したことを特徴とする管外熱交換式の伝熱管
(1) Fins (10
) is formed integrally with the tube body (5a), and the fins (10)
A group of spiral grooves (11) that intersect with the fins (10) and divide the fins (10) at multiple points in the circumferential direction are formed on the outer circumferential surface of the tube body (5a), and connect the base portions (10a) of the fins (10). With reference to the virtual cylindrical surface (12), the spiral groove (11)
The groove depth of the spiral groove (11) is set so that the groove bottom (13) is located radially inward from the virtual cylindrical surface (12). Nucleus (1
5) An extratubular heat exchange type heat transfer tube characterized by forming the following.
(2)溝底(13)に多数の微少突条(14)を設け、
隣接する微少突条(14)間に外向きに開口する核溝(
16)を形成し、該核溝(16)の断面形を開口部が最
も幅狭となる逆Ω字状に設定して沸騰促進核(15)を
構成した特許請求の範囲第(1)項記載の管外熱交換式
の伝熱管。
(2) A large number of minute protrusions (14) are provided on the groove bottom (13),
A nuclear groove that opens outward between adjacent microridges (14)
16), and the cross-sectional shape of the core groove (16) is set in an inverted Ω shape where the opening is the narrowest, thereby configuring the boiling accelerating core (15). The external heat exchange type heat transfer tube described.
(3)溝底(13)にポーラス層(21)を形成して沸
騰促進核(15)とする特許請求の範囲第(1)項記載
の管外熱交換式の伝熱管。
(3) The external heat exchange type heat transfer tube according to claim (1), wherein a porous layer (21) is formed on the groove bottom (13) to serve as boiling promoting nuclei (15).
JP26048587A 1987-10-15 1987-10-15 Heat transmission pipe externally exchanging heat Pending JPH01102295A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26048587A JPH01102295A (en) 1987-10-15 1987-10-15 Heat transmission pipe externally exchanging heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26048587A JPH01102295A (en) 1987-10-15 1987-10-15 Heat transmission pipe externally exchanging heat

Publications (1)

Publication Number Publication Date
JPH01102295A true JPH01102295A (en) 1989-04-19

Family

ID=17348617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26048587A Pending JPH01102295A (en) 1987-10-15 1987-10-15 Heat transmission pipe externally exchanging heat

Country Status (1)

Country Link
JP (1) JPH01102295A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100395620B1 (en) * 2001-02-20 2003-08-25 위성점 Condenser for air conditioner
KR100396836B1 (en) * 2001-02-20 2003-09-13 위성점 Condenser for air conditioner
US6913073B2 (en) * 2001-01-16 2005-07-05 Wieland-Werke Ag Heat transfer tube and a method of fabrication thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6913073B2 (en) * 2001-01-16 2005-07-05 Wieland-Werke Ag Heat transfer tube and a method of fabrication thereof
EP1223400A3 (en) * 2001-01-16 2005-11-30 Wieland-Werke AG Tube for heat exchanger and process for making same
KR100395620B1 (en) * 2001-02-20 2003-08-25 위성점 Condenser for air conditioner
KR100396836B1 (en) * 2001-02-20 2003-09-13 위성점 Condenser for air conditioner

Similar Documents

Publication Publication Date Title
US3696861A (en) Heat transfer surface having a high boiling heat transfer coefficient
JP2002372390A (en) Heat exchanger tube for falling film evaporator
JP4395378B2 (en) HEAT TRANSFER TUBE, INCLUDING METHOD OF MANUFACTURING AND USING HEAT TRANSFER TUBE
JPS63189793A (en) Heat transfer pipe for evaporation and condensation
KR102066878B1 (en) Evaporation heat transfer tube with a hollow caviity
KR20150084761A (en) Evaporation heat transfer tube
JPH01102295A (en) Heat transmission pipe externally exchanging heat
JP2000121272A (en) Heat exchanger tube with internal groove and heat exchanger
JPH06323778A (en) Heating tube for use in boiling
US3521708A (en) Heat transfer surface which promotes nucleate ebullition
JPH0444192B2 (en)
JPS61114092A (en) Heat exchanger
JPH037877B2 (en)
EP0145867A2 (en) Ultra-low fin heat exchanger with enhanced heat transfer
JPS588995A (en) Heat conducting pipe
CN212362947U (en) Heat exchange tube and air conditioning unit
JP2663776B2 (en) Condenser
CN211400922U (en) Heat exchange tube, heat exchanger and air conditioner
JPS6358098A (en) Plate fin type vaporizer
JP2000077586A (en) Boiling cooler
JP2000304485A (en) Heating tube for down-flow liquid film type heat exchanger
JPS5938596A (en) Heat exchanger
JPS58200995A (en) Condensing heat transfer pipe
JPS61110891A (en) Heat exchanger
JPS58150795A (en) Heat pipe