JP2000304485A - Heating tube for down-flow liquid film type heat exchanger - Google Patents

Heating tube for down-flow liquid film type heat exchanger

Info

Publication number
JP2000304485A
JP2000304485A JP11110495A JP11049599A JP2000304485A JP 2000304485 A JP2000304485 A JP 2000304485A JP 11110495 A JP11110495 A JP 11110495A JP 11049599 A JP11049599 A JP 11049599A JP 2000304485 A JP2000304485 A JP 2000304485A
Authority
JP
Japan
Prior art keywords
tube
heat transfer
transfer tube
grooves
pitch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11110495A
Other languages
Japanese (ja)
Inventor
Takeshi Nakai
剛 中井
Mamoru Hofuku
守 法福
Inao Fujisaki
稲雄 藤崎
Masaru Horiguchi
賢 堀口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP11110495A priority Critical patent/JP2000304485A/en
Publication of JP2000304485A publication Critical patent/JP2000304485A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Abstract

PROBLEM TO BE SOLVED: To obtain a high performance heating tube without increasing the weight per length by providing, on the outer surface thereof, with a plurality of grooves of specified depth, at a specified interval, in the direction of the tube axis and a large number of fins of specified height at a specified pitch and providing, on the inner surface thereof, with a plurality of protrusions extending spirally and intermittently in the direction of the tube axis. SOLUTION: Fins 1 are formed, at a fine pitch, on the outer surface of a copper tube being employed as the heating tube for a down-flow liquid film type heat exchanger and a large number of grooves 2 extending in the longitudinal direction to divide the fins 1 in the circumferential direction are formed, at a constant interval, in the circumferential direction. The grooves 2 are formed larger (deeper) than the height of the fin 1. Spiral protrusions are formed intermittently in the tube by pressing the tube with a protruding die spirally and intermittently from the outside thereby recessing the tube wall inwardly. The groove 2 has a depth of 0.5-2.0 mm and a circumferential interval of 0.3-4.0 mm and the fin 1 between the grooves has a height of 0.3-1.5 mm and a pitch of 0.4-1.5 mm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、吸収冷凍機、吸収
冷温水機、吸収ヒートポンプ等の吸収冷凍サイクルを用
いる流下液膜式熱交換器に用いられる伝熱管に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat transfer tube used for a falling film heat exchanger using an absorption refrigeration cycle such as an absorption refrigerator, an absorption chiller / heater, an absorption heat pump, and the like.

【0002】[0002]

【従来の技術】流下液膜式蒸発器は、密閉容器内に水平
に多数の伝熱管を配置して構成され、この伝熱管内部に
加熱流体を流し、伝熱管の上方から液冷媒を供給し、伝
熱管外面に沿って液冷媒を膜状に流下させつつ蒸発さ
せ、過熱流体をその潜熱によって冷却するようにしたも
のである。従って、満液式蒸発器のように冷媒の静水頭
によって蒸発抑制がないため、冷媒の蒸発圧力が低い低
温熱源用蒸発器に適しており、これまでにも海水淡水化
装置や吸収冷凍機、化学プロセス装置等の蒸発器として
使用され、また最近では海洋温度差等を利用した低温度
差発電プラントや、ヒートポンプ装置の蒸発器としても
広く検討がなされている。
2. Description of the Related Art A falling liquid film type evaporator is constituted by arranging a number of heat transfer tubes horizontally in a closed vessel. A heating fluid flows through the heat transfer tubes, and a liquid refrigerant is supplied from above the heat transfer tubes. The liquid refrigerant evaporates while flowing down in the form of a film along the outer surface of the heat transfer tube, and the superheated fluid is cooled by the latent heat. Therefore, since there is no evaporation suppression due to the hydrostatic head of the refrigerant as in a liquid-filled evaporator, it is suitable for a low-temperature heat source evaporator having a low evaporation pressure of the refrigerant. It has been widely used as an evaporator for a chemical process device or the like, and recently as a low temperature difference power generation plant utilizing an ocean temperature difference or the like, or as an evaporator for a heat pump device.

【0003】最近、この種の伝熱管として、伝熱面積を
増加させる目的で外面にフィンや突起を有した加工管を
使用する試みがなされている。そして、これにより冷媒
液の濡れ性が改善されると共に、実濡れ面積が向上し、
優れた伝熱性能を得ることができるようになった。
Recently, attempts have been made to use a processed tube having fins or projections on its outer surface for the purpose of increasing the heat transfer area as this type of heat transfer tube. And by this, while improving the wettability of the refrigerant liquid, the actual wet area is improved,
Excellent heat transfer performance can now be obtained.

【0004】流下液膜式蒸発では、管外の性能は管内の
性能と同等或いはそれ以上であるので、管内の性能を向
上させることでトータルとしての性能をさらに向上させ
ることができる。そのため、管内面に螺旋状に連続する
突起を設け、管内の性能を向上させる等の方策が採られ
ている。
In the falling liquid film type evaporation, the performance outside the pipe is equal to or higher than the performance inside the pipe. Therefore, by improving the performance inside the pipe, the performance as a whole can be further improved. Therefore, measures such as providing a spiral continuous projection on the inner surface of the pipe to improve the performance in the pipe have been adopted.

【0005】[0005]

【発明が解決しようとする課題】最近のトレンドとし
て、性能向上もさることながら、伝熱管軽量化のニーズ
も増加してきている。そのため、管内面に螺旋状に連続
する突起を設けた場合、それがないものに比べると、単
位長さ当たりの重量が重くなってしまう。
As a recent trend, the need for weight reduction of a heat transfer tube has been increasing as well as performance improvement. Therefore, in the case where a helical continuous projection is provided on the inner surface of the pipe, the weight per unit length becomes heavier than that without the projection.

【0006】本発明の目的は、上記したような実情に鑑
み、単位長さ当たりの重量を増加させることなく、高性
能な流下液膜式熱交換器用の伝熱管を提供しようとする
ものである。
An object of the present invention is to provide a high-performance heat transfer tube for a falling film heat exchanger without increasing the weight per unit length in view of the above-mentioned circumstances. .

【0007】[0007]

【課題を解決するための手段】本発明の要旨は、伝熱管
の外面に微細なピッチの多数のフィンを形成し、該フィ
ン間に長手方向に延びる複数の溝を形成させ、さらに管
外から管壁を変形させることにより管内に断続的な螺旋
状の突起を設けることにより、従来例に比較して軽量で
かつ伝熱性能を飛躍的に向上させたものである。
The gist of the present invention is to form a large number of fine pitch fins on the outer surface of a heat transfer tube, form a plurality of grooves extending in the longitudinal direction between the fins, and By providing intermittent spiral protrusions in the pipe by deforming the pipe wall, the weight is reduced and the heat transfer performance is remarkably improved as compared with the conventional example.

【0008】管内に設けられた断続的な螺旋状の突起
は、管外では窪みとなる。従って、管内の突起による重
量の増加は実質ないことになる。しかし、この突起は、
管内に流れる冷媒を乱流にさせるものであり、これによ
り管内の性能が向上する。
[0008] The intermittent spiral projection provided in the tube becomes a depression outside the tube. Accordingly, there is substantially no increase in weight due to the projections in the tube. However, this projection
This is to make the refrigerant flowing in the pipe into a turbulent flow, thereby improving the performance in the pipe.

【0009】ところで、フィンのピッチは、液の濡れ性
を決めるパラメータであり、これを大きくすると濡れ性
は低下する。一方、これを小さくすると、高いフィンを
形成することが困難となり伝熱面積を確保できなくな
る。従って、このフィンピッチは0.4〜1.5mmが適
当である。
The fin pitch is a parameter that determines the wettability of the liquid. If the fin pitch is increased, the wettability decreases. On the other hand, if the diameter is reduced, it is difficult to form a high fin, and it becomes impossible to secure a heat transfer area. Therefore, the fin pitch is suitably 0.4 to 1.5 mm.

【0010】また、溝深さは、フィン高さより大きくし
なければ管軸方向への液の分散効果は向上しない。さら
に、フィン高さは高ければ高いほど伝熱面積が増加し、
性能を向上させる手段として有効である。しかし、フィ
ン高さを高くすると、管の内径が小さくなるため、管内
に流す流体の圧力損失増加を招くことになる。従って、
このようなことを考慮すると、フィン高さは0.3〜
1.5mm、溝深さは0.5〜2mm程度が適当である。ま
た、溝数は性能に深い関係がある。これが少ないと、管
軸方向への液分散効果は低下するが、多いとフィン部の
面積を減少させることになるので、円周方向の溝の間隔
は1〜4mmが適当である。なお、管軸と溝のなす角度
は、伝熱管が水平に配置して使用されることを考慮する
と、−10°〜+10°程度に留めることが望ましい。
If the groove depth is not larger than the fin height, the effect of dispersing the liquid in the pipe axis direction cannot be improved. Furthermore, the higher the fin height, the larger the heat transfer area,
This is effective as a means for improving performance. However, when the fin height is increased, the inner diameter of the tube becomes smaller, which causes an increase in pressure loss of the fluid flowing through the tube. Therefore,
Considering this, the fin height should be 0.3 ~
1.5 mm and a groove depth of about 0.5 to 2 mm are appropriate. Further, the number of grooves has a deep relationship with the performance. If the amount is small, the effect of liquid dispersion in the tube axis direction is reduced, but if the amount is large, the area of the fin portion is reduced. In addition, it is desirable that the angle between the pipe axis and the groove be limited to about −10 ° to + 10 ° in consideration of the fact that the heat transfer tube is used horizontally.

【0011】突起は、その高さが高いほど性能を向上さ
せる傾向にあるが、圧力損失の増加、潰食の発生等を防
止する目的からも0.05〜0.5mmが適当である。管
軸方向における突起のピッチは、これが狭いほど性能が
向上する傾向にあるが、圧力損失の増加を招く。また、
ピッチが狭いと管外の伝熱面積が減少する。一方、該ピ
ッチが広すぎると、圧力損失は減少し、管外伝熱面積の
減少を抑えることが可能であるが、乱流効果の促進を害
する結果となるため、トータル性能は向上しないので、
該ピッチは20〜100mmが適当である。
The higher the height of the projection, the higher the performance tends to be. However, the thickness is preferably 0.05 to 0.5 mm for the purpose of preventing an increase in pressure loss and erosion. The smaller the pitch of the projections in the tube axis direction, the higher the performance tends to be, but this causes an increase in pressure loss. Also,
When the pitch is small, the heat transfer area outside the tube decreases. On the other hand, if the pitch is too wide, the pressure loss decreases, and it is possible to suppress the decrease in the extra-tube heat transfer area.However, since this impairs the promotion of the turbulent flow effect, the total performance is not improved.
The pitch is suitably from 20 to 100 mm.

【0012】[0012]

【発明の実施の形態】図1は、本発明に係る伝熱管外側
の外観を示す説明図であり、図2は該伝熱管内側の外観
を示す説明図である。同図において、1は例えば銅管の
外面に微細なピッチで形成されたフィン、2は該フィン
1を円周方向に分断するように長手方向に延び、円周方
向に等間隔に多数形成された溝で、この溝2はフィン1
の高さよりも大きく(深く)形成されている。3は管内
に断続的な螺旋状に設けた突起で、この突起3は管外か
ら所定の突型を螺旋状に断続的に押し付けることによっ
て管の壁を内側へ窪ませるて形成したものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is an explanatory view showing the external appearance of a heat transfer tube according to the present invention, and FIG. 2 is an explanatory view showing the external appearance of the inside of the heat transfer tube. In FIG. 1, reference numeral 1 denotes fins formed at a fine pitch on the outer surface of a copper tube, for example, and 2 extend in the longitudinal direction so as to divide the fins 1 in the circumferential direction, and are formed at equal intervals in the circumferential direction. This groove 2 is the fin 1
Is formed to be larger (deeper) than the height. Reference numeral 3 denotes an intermittent spiral projection provided inside the pipe, and the projection 3 is formed by pressing a predetermined projecting die spirally and intermittently from the outside of the pipe so that the wall of the pipe is depressed inward. .

【0013】[0013]

【実施例】具体例として、外径15.20mm、内径1
4.00mmの銅管本体にフィン1をピッチ1.0mm、高
さ0.3mmで軸直角に近い角度で螺旋状に形成する一
方、円周方向に深さ0.05mm、円周方向の間隔1.0
mm、管軸との角度0°の溝2を形成し、さらに、高さ
0.3mm、平面積にして1.85mm2 の円形に近い突起
3を管軸との角度40°、管軸方向のピッチ40mmで形
成した伝熱管を用意した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS As a specific example, an outer diameter of 15.20 mm and an inner diameter of 1
The fins 1 are formed in a copper tube body of 4.00 mm in a spiral shape at a pitch of 1.0 mm, a height of 0.3 mm and an angle close to a right angle to the axis, while a depth of 0.05 mm in a circumferential direction and a circumferential interval. 1.0
A groove 2 having a height of 0.3 mm and a flat area of 1.85 mm 2 having a circular shape with a plane area of 1.85 mm 2 was formed at an angle of 40 ° with respect to the pipe axis in the direction of the pipe axis. A heat transfer tube formed at a pitch of 40 mm was prepared.

【0014】この伝熱管4について、図3に示すような
性能測定装置の蒸発器5に9本を有効長200mmで1列
9段に組み込んで性能測定を行った。測定は液冷媒
(水)を滴下ノズル8により滴下する一方、管4内に1
2℃の冷水(管内流速2m/s)を流し、液冷媒の蒸発
温度が5℃となるように、凝縮器5に流す水の流量及び
温度をコントロールした。なお、図3中、6は冷媒タン
ク、7は散布管を示す。
With respect to the heat transfer tubes 4, nine were installed in an evaporator 5 of a performance measuring device as shown in FIG. In the measurement, while the liquid refrigerant (water) was dropped by the dropping nozzle 8, 1
The flow rate and the temperature of the water flowing through the condenser 5 were controlled such that cold water of 2 ° C. (flow velocity in the pipe was 2 m / s) was flown and the evaporation temperature of the liquid refrigerant was 5 ° C. In addition, in FIG. 3, 6 shows a refrigerant tank and 7 shows a scatter pipe.

【0015】結果を図4に示す。図4において、比較例
は、フィン外径15.88mmのローフィンチューブ(4
0山/インチ)の場合である。なお、横軸の液膜流量は
管の片側を流れる単位長さ当たりの質量流量を示す。
FIG. 4 shows the results. In FIG. 4, the comparative example is a low fin tube (4.
0 peaks / inch). The liquid film flow rate on the horizontal axis indicates the mass flow rate per unit length flowing on one side of the tube.

【0016】図4の結果から明らかなように、本発明に
よる伝熱管は、従来広く利用されてきたローフィンチュ
ーブと比較して1.3〜1.5倍以上と蒸発性能が飛躍
的に向上していることがわかる。
As is apparent from the results shown in FIG. 4, the heat transfer tube according to the present invention has 1.3 to 1.5 times or more the vaporization performance as compared with the low fin tube widely used in the past. You can see that it is doing.

【0017】[0017]

【発明の効果】以上の説明から明らかなように、本発明
による伝熱管によれば、液冷媒の管軸方向の液分散効果
が極めて優れ、下段の伝熱管においてもドライアウトの
発生を抑制することが可能となる。また、管内を流れる
水の乱流効果が促進されるため、これを用いる海水淡水
化装置や、吸収冷凍機、化学プロセス装置等の蒸発器の
性能を向上させることができる。
As is apparent from the above description, according to the heat transfer tube of the present invention, the effect of dispersing the liquid refrigerant in the pipe axis direction is extremely excellent, and the generation of dryout is suppressed even in the lower heat transfer tube. It becomes possible. In addition, since the turbulence effect of water flowing in the pipe is promoted, the performance of an evaporator such as a seawater desalination apparatus, an absorption refrigerator, and a chemical process apparatus using the same can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による伝熱管の管外面を示す説明図。FIG. 1 is an explanatory diagram showing an outer surface of a heat transfer tube according to the present invention.

【図2】本発明による伝熱管の管内面を示す説明図。FIG. 2 is an explanatory view showing an inner surface of a heat transfer tube according to the present invention.

【図3】伝熱管の蒸発性能を測定する装置の模式図。FIG. 3 is a schematic view of an apparatus for measuring the evaporation performance of a heat transfer tube.

【図4】性能の測定結果を示す線図。FIG. 4 is a diagram showing performance measurement results.

【符号の説明】[Explanation of symbols]

1 フィン 2 溝 3 突起 1 Fin 2 Groove 3 Projection

フロントページの続き (72)発明者 堀口 賢 茨城県土浦市木田余町3550番地 日立電線 株式会社システムマテリアル研究所内Continued on the front page (72) Inventor Ken Horiguchi 3550 Kida Yomachi, Tsuchiura-shi, Ibaraki Hitachi Cable, Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】伝熱管の管外に冷媒、吸収液等を滴下又は
散布して前記伝熱管の外表面にその液膜を形成し、その
液膜を通して熱移動を行わせる形式の熱交換器用伝熱管
において、外面に管軸方向に延びる深さが0.5〜2.
0mm、円周方向の間隔が0.3〜4.0mmの複数の溝
と、該溝間に設けられた高さが0.3〜1.5mm、ピッ
チが0.4〜1.5mmの多数のフィンとを有し、内面に
は管軸方向に螺旋状に断続的に延びる複数の突起が設け
られていることを特徴とする流下液膜式熱交換器用伝熱
管。
1. A heat exchanger of the type wherein a liquid film is formed on the outer surface of the heat transfer tube by dropping or spraying a refrigerant, an absorbing liquid or the like outside the heat transfer tube, and performing heat transfer through the liquid film. In the heat transfer tube, the outer surface has a depth extending in the tube axis direction of 0.5 to 2.
A plurality of grooves having a height of 0.3 mm to 1.5 mm and a pitch of 0.4 mm to 1.5 mm provided between the grooves having a diameter of 0.3 mm to 4.0 mm and a gap of 0.3 mm to 4.0 mm in the circumferential direction. And a plurality of projections extending intermittently spirally in the pipe axis direction on the inner surface of the heat transfer tube for a falling liquid film heat exchanger.
【請求項2】断続的な突起が管壁を外面側から変形させ
たものである請求項1に記載の伝熱管。
2. The heat transfer tube according to claim 1, wherein the intermittent projections are formed by deforming a tube wall from an outer surface side.
【請求項3】溝の底がフィンの付根よりも深く形成され
ている請求項1又は請求項2に記載の伝熱管。
3. The heat transfer tube according to claim 1, wherein the bottom of the groove is formed deeper than the root of the fin.
【請求項4】管軸に対する溝の角度が−10°〜+10
°の範囲である請求項1、請求項2又は請求項3に記載
の伝熱管。
4. The angle of the groove with respect to the tube axis is -10 ° to +10.
The heat transfer tube according to claim 1, wherein the heat transfer tube is in a range of degrees.
【請求項5】断続的な突起の高さが0.05〜0.5mm
であり、管軸方向におけるピッチが20〜100mmであ
る請求項1〜4の何れか1つに記載の伝熱管。
5. The height of the intermittent projection is 0.05 to 0.5 mm.
The heat transfer tube according to any one of claims 1 to 4, wherein the pitch in the tube axis direction is 20 to 100 mm.
JP11110495A 1999-04-19 1999-04-19 Heating tube for down-flow liquid film type heat exchanger Pending JP2000304485A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11110495A JP2000304485A (en) 1999-04-19 1999-04-19 Heating tube for down-flow liquid film type heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11110495A JP2000304485A (en) 1999-04-19 1999-04-19 Heating tube for down-flow liquid film type heat exchanger

Publications (1)

Publication Number Publication Date
JP2000304485A true JP2000304485A (en) 2000-11-02

Family

ID=14537214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11110495A Pending JP2000304485A (en) 1999-04-19 1999-04-19 Heating tube for down-flow liquid film type heat exchanger

Country Status (1)

Country Link
JP (1) JP2000304485A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7418978B2 (en) 2004-01-30 2008-09-02 Applied Materials, Inc. Methods and apparatus for providing fluid to a semiconductor device processing apparatus
JPWO2006103788A1 (en) * 2005-03-25 2008-09-04 清華大学 Heat transfer pipe for hot water supply
WO2010016173A1 (en) * 2008-08-08 2010-02-11 株式会社日立製作所 Desalination device and system for re-utilizing oil-contaminated water
ES2492416R1 (en) * 2013-03-08 2014-12-11 Universitat Rovira I Virgili ABSORPTION REFRIGERATION DEVICE AND ABSORPTION COOLING PROCEDURE IN WHICH SUCH DEVICE IS USED

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7418978B2 (en) 2004-01-30 2008-09-02 Applied Materials, Inc. Methods and apparatus for providing fluid to a semiconductor device processing apparatus
JPWO2006103788A1 (en) * 2005-03-25 2008-09-04 清華大学 Heat transfer pipe for hot water supply
US8215380B2 (en) 2005-03-25 2012-07-10 Tsinghua University Hot water heat transfer pipe
WO2010016173A1 (en) * 2008-08-08 2010-02-11 株式会社日立製作所 Desalination device and system for re-utilizing oil-contaminated water
ES2492416R1 (en) * 2013-03-08 2014-12-11 Universitat Rovira I Virgili ABSORPTION REFRIGERATION DEVICE AND ABSORPTION COOLING PROCEDURE IN WHICH SUCH DEVICE IS USED

Similar Documents

Publication Publication Date Title
Bergles The implications and challenges of enhanced heat transfer for the chemical process industries
US9097470B2 (en) Internal liquid separating hood-type condensation heat exchange tube
JP3315785B2 (en) Heat transfer tube for absorber
JP2005523414A (en) HEAT TRANSFER TUBE, INCLUDING METHOD OF MANUFACTURING AND USING HEAT TRANSFER TUBE
US5960870A (en) Heat transfer tube for absorber
JP2008261566A (en) Double-pipe heat exchanger
JPH01134180A (en) Heat transfer tube for absorber
JP3769338B2 (en) Heat exchanger tube for absorber and manufacturing method thereof
JP2000304485A (en) Heating tube for down-flow liquid film type heat exchanger
JP3916114B2 (en) Absorption type refrigerator and heat transfer tube used therefor
JPH0320577A (en) Heat-transfer tube for evaporator
CN110472352A (en) The starting critical pipe diameter design method of pulsating heat pipe under plumbness
JPS624638B2 (en)
JP3587599B2 (en) Heat transfer tube for absorber
JP2960828B2 (en) Heat transfer tube for absorber
JPH10176890A (en) Heat transfer pipe for flowing-down fluid film type evaporator
JP2003287385A (en) Heat transfer pipe for falling film evaporator
JPS62242795A (en) Heat transfer tube
JP2973702B2 (en) Heat transfer tube for absorption type vertical absorber in tube
JPH01102295A (en) Heat transmission pipe externally exchanging heat
JPH11118382A (en) Heat transfer pipe for evaporator and manufacture thereof
JPH0949698A (en) Heat exchanger
JPH11270980A (en) Heat transfer pipe for evaporator
JP2004301459A (en) Heat transfer pipe for absorber
JPH03291495A (en) Heat-transfer pipe for absorber

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030506