JPH10176890A - Heat transfer pipe for flowing-down fluid film type evaporator - Google Patents

Heat transfer pipe for flowing-down fluid film type evaporator

Info

Publication number
JPH10176890A
JPH10176890A JP33365096A JP33365096A JPH10176890A JP H10176890 A JPH10176890 A JP H10176890A JP 33365096 A JP33365096 A JP 33365096A JP 33365096 A JP33365096 A JP 33365096A JP H10176890 A JPH10176890 A JP H10176890A
Authority
JP
Japan
Prior art keywords
heat transfer
tube
fin
transfer tube
liquid film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33365096A
Other languages
Japanese (ja)
Inventor
Takeshi Nakai
剛 中井
Masakazu Tobe
将一 戸部
Osamu Kawamata
治 川又
Takashi Sato
敬 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP33365096A priority Critical patent/JPH10176890A/en
Publication of JPH10176890A publication Critical patent/JPH10176890A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase a substantial heat transfer area and hence improve heat transfer performance by suppressing occurrence of drying-out without increasing the amount of supply of a liquid refrigerant. SOLUTION: The present heat transfer pipe 10 is adapted such that many fins 12 are formed on an outer peripheral surface of a pipe body 11 so as to perpendicularly intersect a pipe axis, and a plurality of grooves 13 are formed in the many fins 12 so as to extend in the direction of the pipe axis. The fin 12 is formed into a fin height H of 0.3 to 1.5mm and a fin pitch Pf of 0.4 to 1.5mm, and the groove 13 is formed into a groove depth D of 0.5 to 2.0mm and a groove interval Pg of 0.3 to 4.0mm. By mounting the many fins 12 on the pipe outer peripheral surface a heat transfer area is increased, and wetting is improved. By providing the plurality of the grooves 13 in the many fins 12 so as to extend in the direction of the pipe axis liquid dispsersion effect in the direction of the pipe axis is increased, and liquid film thickness is made uniform to prevent drying-out from happening and increase the substantial heat transfer area. As a result, heat transfer performance is improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、海水淡水化装置,
吸収冷凍機,化学プロセス装置等の流下液膜式蒸発器に
適用される流下液膜式蒸発器用伝熱管に関する。
The present invention relates to a seawater desalination apparatus,
The present invention relates to a heat transfer tube for a falling film evaporator applied to a falling film evaporator such as an absorption refrigerator or a chemical process device.

【0002】[0002]

【従来の技術】流下液膜式蒸発器は、密閉容器内に水平
に多数の伝熱管を配置して構成され、この伝熱管内部に
加熱流体を流し、伝熱管の上方から液冷媒を供給し、伝
熱管の外周面に沿って液冷媒を膜状に流下させつつ蒸発
させ、加熱流体をその潜熱によって冷却するようにした
ものである。この流下液膜式蒸発器は、満液式蒸発器の
ように液冷媒の静水頭による蒸発抑制がないため、液冷
媒の蒸発圧力が低い低温熱源用蒸発器に適している。従
って、これまでにも海水淡水化装置,吸収冷凍機,化学
プロセス装置等の蒸発器として使用されており、また、
最近では、海洋温度差等を利用した低温度差発電プラン
トやヒートポンプ装置の蒸発器としても広く検討されて
いる。
2. Description of the Related Art A falling liquid film type evaporator is constituted by arranging a number of heat transfer tubes horizontally in a closed vessel. A heating fluid flows through the heat transfer tubes, and a liquid refrigerant is supplied from above the heat transfer tubes. The liquid refrigerant evaporates while flowing down in a film form along the outer peripheral surface of the heat transfer tube, and the heating fluid is cooled by the latent heat. This falling liquid film type evaporator is suitable for a low temperature heat source evaporator having a low evaporation pressure of the liquid refrigerant, because there is no evaporation suppression by the hydrostatic head of the liquid refrigerant unlike the full liquid type evaporator. Therefore, it has been used as an evaporator for seawater desalination equipment, absorption refrigerators, chemical process equipment, etc.
Recently, it has been widely studied as an evaporator for a low temperature difference power generation plant or a heat pump device using an ocean temperature difference or the like.

【0003】このような流下液膜式蒸発器に適用される
従来の流下液膜式蒸発器用伝熱管としては、ローフィン
チューブ等の加工管を使用する試みがなされている。こ
の加工管は、円周方向に多数のフィンを配置したもので
ある。これにより、伝熱面積を増加させ、伝熱性能を向
上させることができる。
As a conventional heat transfer tube for a falling liquid film type evaporator applied to such a falling liquid film type evaporator, an attempt has been made to use a processing tube such as a low fin tube. This processing pipe has a large number of fins arranged in a circumferential direction. Thereby, the heat transfer area can be increased, and the heat transfer performance can be improved.

【0004】図6は従来の流下液膜式蒸発器を示し、蒸
発器内の上部に配置された液分散装置としての滴下管1
と、円周方向に多数のフィン(図示せず)を備えた多段
に配置された伝熱管2を有し、滴下管1から液冷媒3を
管軸方向に均一に滴下させることによりフィンによる伝
熱面積の増加に基づいて伝熱性能を向上させている。
FIG. 6 shows a conventional falling liquid film type evaporator, in which a dropping pipe 1 as a liquid dispersing device disposed at an upper portion in the evaporator is shown.
And a multi-stage heat transfer tube 2 provided with a large number of fins (not shown) in the circumferential direction. The heat transfer performance is improved based on the increase in the heat area.

【0005】[0005]

【発明が解決しようとする課題】しかし、ローフィンチ
ューブ等の加工管を使用した従来の流下液膜式蒸発器用
伝熱管2によると、液冷媒3が円周方向に配置された多
数のフィンにより、管軸方向に沿った流れが妨げられ、
管2の円周方向への流動が支配的となるため、液冷媒3
の管軸方向への液分散効果が極めて悪くなり、伝熱面積
の増加に見合う伝熱性能の向上が得られないという問題
がある。
However, according to the conventional heat transfer tube 2 for a falling liquid film type evaporator using a processing tube such as a low fin tube, the liquid refrigerant 3 is formed by a large number of fins arranged in the circumferential direction. , Obstructs the flow along the pipe axis,
Since the circumferential flow of the pipe 2 becomes dominant, the liquid refrigerant 3
Has a problem that the effect of dispersing the liquid in the direction of the tube axis becomes extremely poor, and the heat transfer performance cannot be improved corresponding to the increase in the heat transfer area.

【0006】すなわち、滴下管1から最上段の伝熱管2
に液冷媒3を管軸方向に均一に振り分けたとしても、下
段へいくに従って液冷媒3の液膜厚さは不均一となり、
いわゆるドライアウト4を生じる。このドライアウト4
の部分は伝熱に寄与せず、実質的な伝熱面積が減少して
しまう。従って、これを補うため伝熱管2の本数を多く
すると、蒸発器が大型化し、また、大量の液冷媒を供給
すれば、ドライアウト4の発生を抑制することは可能で
あるが、蒸発しきれず蒸発器下部に溜まった液冷媒3を
再循環させるのに使用するポンプの所要動力も極めて高
いものとなるため、機器の成績計数を低下させるという
不都合が生じる。また、蒸発器の伝熱性能は、ドライア
ウト4の面積の大小に大きく左右されるため、装置の信
頼性を損なうという不都合がある。
That is, from the dropping tube 1 to the uppermost heat transfer tube 2
Even if the liquid refrigerant 3 is uniformly distributed in the pipe axis direction, the liquid film thickness of the liquid refrigerant 3 becomes non-uniform as going to the lower stage,
A so-called dryout 4 occurs. This dryout 4
Does not contribute to the heat transfer, and the substantial heat transfer area is reduced. Therefore, if the number of heat transfer tubes 2 is increased to compensate for this, the evaporator becomes large, and if a large amount of liquid refrigerant is supplied, it is possible to suppress the occurrence of dryout 4, but it is impossible to evaporate completely. The required power of the pump used to recirculate the liquid refrigerant 3 accumulated in the lower part of the evaporator also becomes extremely high, so that the inconvenience of reducing the performance count of the device occurs. In addition, since the heat transfer performance of the evaporator largely depends on the size of the area of the dryout 4, there is a disadvantage that the reliability of the apparatus is impaired.

【0007】従って、本発明の目的は、液冷媒の供給量
を増加させることなくドライアウトの発生を抑制して実
質的な伝熱面積を増加させ、伝熱性能の向上を図った流
下液膜式蒸発器用伝熱管を提供することにある。
SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to suppress the occurrence of dryout without increasing the supply amount of the liquid refrigerant, thereby increasing the substantial heat transfer area and improving the heat transfer performance. An object of the present invention is to provide a heat transfer tube for an evaporator.

【0008】[0008]

【課題を解決するための手段】本発明は、上記の目的を
達成するため、伝熱管の外周面に液冷媒を流下させて前
記外周面に前記液冷媒の液膜を形成し、前記液膜を通し
て熱移動を行わせる流下液膜式蒸発器に適用される流下
液膜式蒸発器用伝熱管において、前記外周面に管軸と直
交するように形成された多数のフィンと、前記多数のフ
ィンに前記管軸の方向に平行若しくは所定の角度で伸び
るように形成された複数の溝を有し、前記フィンは、フ
ィン高さが0.3〜1.5mm、フィンピッチが0.4
〜1.5mmとなるように形成され、前記複数の溝は、
溝深さが0.5〜2.0mm、溝の円周方向における間
隔が0.3〜4.0mmとなるように形成されたことを
特徴とする流下液膜式蒸発器用伝熱管伝熱管を提供す
る。
According to the present invention, in order to achieve the above object, a liquid refrigerant flows down an outer peripheral surface of a heat transfer tube to form a liquid film of the liquid refrigerant on the outer peripheral surface. In a falling liquid film evaporator heat transfer tube applied to a falling liquid film evaporator that performs heat transfer through, a large number of fins formed on the outer peripheral surface so as to be orthogonal to a tube axis, and the large number of fins. The fin has a plurality of grooves formed so as to extend in parallel with the direction of the tube axis or at a predetermined angle, and the fin has a fin height of 0.3 to 1.5 mm and a fin pitch of 0.4.
~ 1.5mm, the plurality of grooves,
A heat transfer tube for a falling liquid film type evaporator, characterized in that the groove depth is 0.5 to 2.0 mm and the interval in the circumferential direction of the groove is 0.3 to 4.0 mm. provide.

【0009】上記構成によれば、管外周面に多数のフィ
ンを設けることにより、伝熱面積が増加し、濡れ性が向
上する。多数のフィンに管軸方向に伸びる複数の溝を設
けることにより、管軸方向の液分散効果が増大し、液膜
厚さが均一化してドライアウトの発生を抑制でき、実質
的な伝熱面積が増加する。この結果、伝熱性能が向上す
る。
According to the above configuration, by providing a large number of fins on the outer peripheral surface of the tube, the heat transfer area is increased and the wettability is improved. By providing a plurality of grooves extending in the tube axis direction on a large number of fins, the liquid dispersion effect in the tube axis direction increases, the liquid film thickness becomes uniform, and the occurrence of dryout can be suppressed. Increase. As a result, the heat transfer performance is improved.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照して詳細に説明する。図1は本発明の実施の形態
に係る流下液膜式蒸発器用伝熱管(以下単に「伝熱管」
という。)の断面図であり、同図(a) は横断面図、同図
(b) は縦断面図、同図(c) は同図(a) のA部詳細図であ
る。この伝熱管10は、所定の大きさ(例えば、外径d
o =14.50mm、内径di =12.90mm)の例
えば銅からなる管本体11を有し、この管本体11の外
周面に管軸と直交するように多数のフィン12を形成
し、多数のフィン12に管軸方向に平行若しくは所定の
角度で伸びるように複数の溝13を形成したものであ
る。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 shows a heat transfer tube (hereinafter simply referred to as a “heat transfer tube”) for a falling liquid film type evaporator according to an embodiment of the present invention.
That. (A) is a cross-sectional view, and FIG.
(b) is a longitudinal sectional view, and (c) is a detailed view of a portion A in (a) of FIG. The heat transfer tube 10 has a predetermined size (for example, an outer diameter d).
o = 14.50 mm, inner diameter d i = 12.90 mm), for example, a pipe body 11 made of copper, and a large number of fins 12 are formed on the outer peripheral surface of the pipe body 11 so as to be orthogonal to the pipe axis. A plurality of grooves 13 are formed in the fins 12 so as to extend parallel to the tube axis direction or at a predetermined angle.

【0011】フィン12は、フィン高さHが0.3〜
1.5mm、フィンピッチPf が0.4〜1.5mmと
なるように形成されている。溝13は、溝深さ(フィン
12の先端からの深さ)Dが0.5〜2.0mm、溝1
3の円周方向における間隔Pgが0.3〜4.0mmと
なるように形成され、さらに、管軸に対し−10〜+1
0°の角度で形成されている。
The fin 12 has a fin height H of 0.3 to
1.5 mm, the fin pitch P f is formed to be 0.4 to 1.5 mm. The groove 13 has a groove depth (depth from the tip of the fin 12) D of 0.5 to 2.0 mm,
3 is formed so that the interval Pg in the circumferential direction is 0.3 to 4.0 mm, and further, -10 to +1 with respect to the tube axis.
It is formed at an angle of 0 °.

【0012】次に、フィン12および溝13を上記値と
した根拠について説明する。フィンピッチPf は、液の
濡れ性を決めるパラメータであり、フィンピッチPf
大きくすると、濡れ性は低下する。一方、フィンピッチ
f を小さくすると、高いフィン12を形成することが
困難となり、伝熱面積を確保できなくなる。このため、
フィンピッチPf は0.4〜1.5mmが適当である。
溝深さDは、フィン高Hさより大きくしなければ、管軸
方向への液分散効果は向上しない。さらに、フィン高さ
Hは高ければ高いほど、伝熱面積は増加するため、フィ
ン高さHを高くすることは伝熱性能を向上させる手段と
しては有効である。しかし、伝熱管10の外径を一定と
した場合に、フィン高さHを高くすると、管本体11の
内径diが小さくなるため、管10内に流す流体の圧力
損失の増加を招くことになる。従って、このようなこと
を考慮すると、フィン高さHは0.3〜.1.5mm、
溝深さDは0.5〜2mmが適当である。
Next, the grounds for setting the fins 12 and the grooves 13 to the above values will be described. The fin pitch Pf is a parameter that determines the wettability of the liquid. When the fin pitch Pf is increased, the wettability decreases. On the other hand, if the fin pitch Pf is reduced, it becomes difficult to form the high fins 12, and the heat transfer area cannot be secured. For this reason,
Fin pitch P f is suitably 0.4 to 1.5 mm.
Unless the groove depth D is larger than the fin height H, the liquid dispersion effect in the tube axis direction will not be improved. Furthermore, since the heat transfer area increases as the fin height H increases, increasing the fin height H is effective as a means for improving the heat transfer performance. However, when the outer diameter of the heat transfer tube 10 is constant, the higher the fin height H, since the inner diameter d i of the tube body 11 is decreased, to cause an increase in pressure loss of the fluid flowing within the tube 10 Become. Therefore, in consideration of the above, the fin height H is 0.3 to. 1.5mm,
An appropriate groove depth D is 0.5 to 2 mm.

【0013】また、溝数は伝熱性能と深い関係にある。
すなわち、溝数が少ないと管軸方向への液分散効果は低
下するが、多いとフィン12部の面積を減少させること
になる。このため、溝13の円周方向の溝間隔Pg は、
1〜4mmが適当である。また、伝熱管10が水平に配
置されることを考慮すれば、管軸に対する溝13の角度
は、大きいことは好ましくなく、−10〜+10°程度
とすることが望ましい。
The number of grooves is closely related to the heat transfer performance.
That is, if the number of grooves is small, the effect of liquid dispersion in the tube axis direction is reduced, but if the number is large, the area of the fin 12 is reduced. Therefore, the groove pitch P g in the circumferential direction of the groove 13 is
1-4 mm is appropriate. In consideration of the fact that the heat transfer tubes 10 are arranged horizontally, it is not preferable that the angle of the groove 13 with respect to the tube axis is large, and it is preferable that the angle be about -10 to + 10 °.

【0014】上述した本伝熱管10を流下液膜式蒸発器
に適用する場合は、多数の伝熱管10を密閉容器内に水
平に配置し、伝熱管10内に加熱流体を流し、伝熱管1
0の上方から液冷媒を供給し、伝熱管10の外周面に沿
って液冷媒を膜状に流下させつつ蒸発させ、加熱流体は
その潜熱によって冷却される。フィン12部で蒸発でき
なかった液冷媒は、隣接する溝13により、管軸方向へ
流れた後、さらに隣接するフィン12部に流れ落ち、こ
の動作を繰り返す。また、この伝熱管10上で蒸発でき
なかった液冷媒は、下段に配置された伝熱管10へと流
れ落ち、上記した動作を繰り返す。
When the above-described heat transfer tube 10 is applied to a falling liquid film type evaporator, a large number of heat transfer tubes 10 are arranged horizontally in a closed vessel, a heating fluid is flowed into the heat transfer tube 10, and the heat transfer tube 1 is heated.
The liquid refrigerant is supplied from above, and the liquid refrigerant evaporates while flowing down in a film form along the outer peripheral surface of the heat transfer tube 10, and the heating fluid is cooled by the latent heat. The liquid refrigerant that could not evaporate in the fins 12 flows through the adjacent grooves 13 in the tube axis direction, then flows down to the adjacent fins 12 and repeats this operation. The liquid refrigerant that could not evaporate on the heat transfer tube 10 flows down to the heat transfer tube 10 arranged at the lower stage, and repeats the above-described operation.

【0015】図2は蒸発性能測定装置を示す図である。
この蒸発性能測定装置20は、蒸発器21および凝縮器
22を備え、蒸発器21に24本の本発明に係る伝熱管
10を有効長270mmで3列8段に組み込んだもので
ある。測定は、15℃の液冷媒(水)を滴下管23から
滴下し、伝熱管10内に20℃の冷水を管内流速1m/
sで流す一方、液冷媒の蒸発温度が15℃となるよう
に、凝縮器22の凝縮用伝熱管24内に流す冷却水の流
量および温度をコントロールした。
FIG. 2 is a diagram showing an evaporation performance measuring device.
The evaporating performance measuring apparatus 20 includes an evaporator 21 and a condenser 22, and incorporates 24 heat transfer tubes 10 according to the present invention into an evaporator 21 with an effective length of 270 mm in three rows and eight stages. In the measurement, a liquid refrigerant (water) at 15 ° C. was dropped from the dropping tube 23, and cold water at 20 ° C. was flowed into the heat transfer tube 10 at a flow rate of 1 m / tube.
The flow rate and temperature of the cooling water flowing into the condenser heat transfer tube 24 of the condenser 22 were controlled such that the liquid refrigerant evaporated at 15 ° C. while flowing at s.

【0016】図3に蒸発性能測定装置20による測定結
果を示す図であり、本発明に係る伝熱管10と比較例と
してフィン外径15.88mmのローフィンチューブ
(19山/インチ)および外径15.88mmの平滑管
について性能測定を行った結果を示す。なお、横軸の液
膜流量は管の片側を流れる単位長さ当たりの質量流量を
示す。図3から明らかなように、本伝熱管10は、平滑
管の約2倍、従来広く利用されていたローフィンチュー
ブの1.5倍と蒸発性能が飛躍的に向上していることが
分かる。
FIG. 3 is a diagram showing the measurement results obtained by the evaporating performance measuring device 20. As a comparative example, a heat transfer tube 10 according to the present invention and a low fin tube (19 ridges / inch) having a fin outer diameter of 15.88 mm and an outer diameter are shown. The results of performance measurement of a 15.88 mm smooth tube are shown. The liquid film flow rate on the horizontal axis indicates the mass flow rate per unit length flowing on one side of the tube. As is clear from FIG. 3, the heat transfer tube 10 has a significantly improved evaporation performance, approximately twice as large as the smooth tube, and 1.5 times as large as the conventionally used low fin tube.

【0017】図4は吸収性能測定装置を示す図である。
この吸収性能測定装置30は、蒸発器31および吸収器
32を備え、吸収器32に8本の本発明に係る伝熱管1
0を有効長270mmで1列8段に組み込んだものであ
る。測定は、濃度58wt%、温度40℃の吸収液(n
−オクチルアルコール250ppm添加)を滴下管33
から滴下し、伝熱管10内に28℃の冷却水を管内流速
1m/sで流し、蒸発器31の冷却用伝熱管34に液冷
媒(水)を滴下管35から滴下し、蒸発温度が10℃で
一定となるように、蒸発器31の冷却用伝熱管34内に
流す冷水の流量および温度をコントロールした。
FIG. 4 is a diagram showing an absorption performance measuring device.
The absorption performance measuring device 30 includes an evaporator 31 and an absorber 32, and the absorber 32 includes eight heat transfer tubes 1 according to the present invention.
0 is incorporated into eight rows in one row with an effective length of 270 mm. The measurement was performed at a concentration of 58 wt% and a temperature of 40 ° C. of the absorbing solution (n
-Octyl alcohol 250 ppm added)
And cooling water at 28 ° C. is flowed into the heat transfer tube 10 at a flow rate of 1 m / s in the tube, and a liquid refrigerant (water) is dropped from the dropping tube 35 to the cooling heat transfer tube 34 of the evaporator 31 so that the evaporation temperature is 10 ° C. The flow rate and the temperature of the cold water flowing into the cooling heat transfer tube 34 of the evaporator 31 were controlled so as to be constant at ° C.

【0018】図5は吸収性能測定装置30による測定結
果を示す図であり、本発明に係る伝熱管10と比較例と
して外径15.88mmの平滑管について性能測定を行
った結果を示す。なお、横軸の液膜流量は管の片側を流
れる単位長さ当たりの質量流量を示す。図5から明らか
なように、本伝熱管10を吸収器に用いた場合でも、従
来広く利用されていた平滑管に対し1.45倍と吸収性
能が飛躍的に向上していることが分かる。
FIG. 5 is a diagram showing the measurement results obtained by the absorption performance measuring device 30, and shows the results of performance measurements on the heat transfer tube 10 according to the present invention and a smooth tube having an outer diameter of 15.88 mm as a comparative example. The liquid film flow rate on the horizontal axis indicates the mass flow rate per unit length flowing on one side of the tube. As is apparent from FIG. 5, even when the heat transfer tube 10 is used as an absorber, the absorption performance is remarkably improved to 1.45 times that of a smooth tube conventionally widely used.

【0019】上述したように、本伝熱管10によれば、
管外周面に多数のフィン12を設け、多数のフィン12
に管軸方向に伸びる複数の溝13を設けることにより、
液冷媒の管軸方向の液分散効果が極めて優れ、下段の伝
熱管10においてもドライアウトの発生を抑制すること
ができる。従って、本伝熱管10を流下液膜式蒸発器に
適用した場合、管軸方向の液分散効果が優れているた
め、蒸発器内に配置された全ての伝熱管10においてド
ライアウトが発生せず、実質的な伝熱面積は向上し、優
れた伝熱性能を得ることができる。
As described above, according to the heat transfer tube 10,
A large number of fins 12 are provided on the outer peripheral surface of the pipe, and a large number of fins 12 are provided.
By providing a plurality of grooves 13 extending in the pipe axis direction,
The liquid dispersion effect of the liquid refrigerant in the tube axis direction is extremely excellent, and the occurrence of dryout can be suppressed even in the lower heat transfer tube 10. Therefore, when the present heat transfer tube 10 is applied to a falling liquid film type evaporator, a dry-out does not occur in all the heat transfer tubes 10 arranged in the evaporator because the liquid dispersion effect in the tube axis direction is excellent. The substantial heat transfer area is improved, and excellent heat transfer performance can be obtained.

【0020】このため、本伝熱管10を用いる海水淡水
化装置や吸収冷凍機、化学プロセス装置等の流下液膜式
蒸発器の蒸発性能を向上させることができる。また、実
質的な伝熱面積が大きいため、伝熱管10の使用本数を
減らすことが可能となり、蒸発器の小型化が可能とな
る。また、ドライアウトの発生を抑制するために大量の
液冷媒を供給する必要がなくなる。
For this reason, the evaporation performance of a falling film evaporator such as a seawater desalination device, an absorption refrigerator, and a chemical process device using the heat transfer tube 10 can be improved. Further, since the heat transfer area is substantially large, the number of heat transfer tubes 10 used can be reduced, and the evaporator can be downsized. Further, it is not necessary to supply a large amount of liquid refrigerant in order to suppress the occurrence of dryout.

【0021】また、ドライアウトの発生面積が小さいた
め、伝熱性能が安定し、装置の信頼性が向上する。
Further, since the area where dryout occurs is small, the heat transfer performance is stable, and the reliability of the apparatus is improved.

【0022】なお、本発明は、上記実施の形態に限定さ
れず、種々な実施の形態が可能である。例えば、上記実
施の形態では、溝深さDがフィン高さHより大きい場合
について説明したが、フィン高さHより小さくてもよ
い。フィン高さHより大きい場合に比して管軸方向への
液分散効果が低くなるが、従来の平滑管やローフィンチ
ューブより管軸方向への液分散効果が大きくなり、実質
的な伝熱面積の増加により伝熱性能を向上させることが
できる。
Note that the present invention is not limited to the above embodiment, and various embodiments are possible. For example, in the above embodiment, the case where the groove depth D is larger than the fin height H has been described, but may be smaller than the fin height H. Although the liquid dispersion effect in the tube axis direction is lower than that in the case where the fin height is larger than H, the liquid dispersion effect in the tube axis direction is larger than that of a conventional smooth tube or low fin tube, so that substantial heat transfer is achieved. The heat transfer performance can be improved by increasing the area.

【0023】[0023]

【発明の効果】以上説明した通り、本発明によれば、管
本体の外周面に多数のフィンを設けているので、伝熱面
積が増加し、濡れ性が向上する。さらに、多数のフィン
に管軸方向に伸びる複数の溝を設けているので、管軸方
向の液分散効果が増大し、液膜厚さが均一化してドライ
アウトの発生を抑制でき、実質的な伝熱面積が増加す
る。この結果、伝熱性能が向上する。
As described above, according to the present invention, since a large number of fins are provided on the outer peripheral surface of the tube body, the heat transfer area is increased, and the wettability is improved. Furthermore, since a large number of fins are provided with a plurality of grooves extending in the tube axis direction, the effect of liquid dispersion in the tube axis direction is increased, the liquid film thickness is uniformed, the occurrence of dryout can be suppressed, and substantial The heat transfer area increases. As a result, the heat transfer performance is improved.

【0024】従って、液冷媒の供給量を増加させること
なくドライアウトの発生を抑制して実質的な伝熱面積を
増加させ、伝熱性能の向上を図ることができ、ひいて流
下液膜式蒸発器の蒸発性能の向上に寄与することができ
る。
Therefore, it is possible to suppress the occurrence of dryout without increasing the supply amount of the liquid refrigerant, to increase the substantial heat transfer area, and to improve the heat transfer performance. This can contribute to the improvement of the evaporation performance of the evaporator.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る流下液膜式蒸発器用伝熱管を示
し、同図(a) は横断面図、同図(b) は側面図、同図(c)
は同図(a) のA部詳細図
FIG. 1 shows a heat transfer tube for a falling liquid film type evaporator according to the present invention, wherein FIG. 1 (a) is a cross-sectional view, FIG. 1 (b) is a side view, and FIG.
Is a detailed view of part A of the same figure (a)

【図2】蒸発性能測定装置を示す図FIG. 2 is a diagram showing an evaporation performance measuring device.

【図3】図2に示す蒸発性能測定装置による測定結果を
示す図
FIG. 3 is a diagram showing a measurement result obtained by the evaporation performance measuring device shown in FIG. 2;

【図4】吸収性能測定装置を示す図FIG. 4 is a diagram showing an absorption performance measuring device.

【図5】図4に示す吸収性能測定装置による測定結果を
示す図
FIG. 5 is a diagram showing measurement results obtained by the absorption performance measuring device shown in FIG.

【図6】従来の流下液膜式蒸発器用伝熱管の問題点を説
明するための図
FIG. 6 is a view for explaining a problem of a conventional heat transfer tube for a falling film evaporator.

【符号の説明】[Explanation of symbols]

10 流下液膜式蒸発器用伝熱管 11 管本体 12 フィン 13 溝 20 蒸発性能測定装置 21 蒸発器 22 凝縮器 23,33,35 滴下管 24 凝縮用伝熱管 30 吸収性能測定装置 31 蒸発器 32 吸収器 34 冷却用伝熱管 di 内径 do 外径 D 溝深さ H フィン高さ Pf フィンピッチ Pg 溝の円周方向における間隔DESCRIPTION OF SYMBOLS 10 Heat transfer tube for falling liquid film type evaporator 11 Tube main body 12 Fin 13 Groove 20 Evaporation performance measuring device 21 Evaporator 22 Condenser 23, 33, 35 Dropping tube 24 Condensing heat transfer tube 30 Absorption performance measuring device 31 Evaporator 32 Absorber 34 intervals in the circumferential direction of the cooling heat transfer pipe d i the inner diameter d o outer diameter D depth H fin height P f fin pitch P g groove

フロントページの続き (72)発明者 佐藤 敬 茨城県土浦市木田余町3550番地 日立電線 株式会社土浦工場内Continued on the front page (72) Inventor Takashi Sato 3550 Kida Yomachi, Tsuchiura City, Ibaraki Prefecture Hitachi Cable Tsuchiura Plant

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】伝熱管の外周面に液冷媒を流下させて前記
外周面に前記液冷媒の液膜を形成し、前記液膜を通して
熱移動を行わせる流下液膜式蒸発器に適用される流下液
膜式蒸発器用伝熱管において、 前記外周面に管軸と直交するように形成された多数のフ
ィンと、 前記多数のフィンに前記管軸の方向に平行若しくは所定
の角度で伸びるように形成された複数の溝を有し、 前記フィンは、フィン高さが0.3〜1.5mm、フィ
ンピッチが0.4〜1.5mmとなるように形成され、 前記複数の溝は、溝深さが0.5〜2.0mm、溝の円
周方向における間隔が0.3〜4.0mmとなるように
形成されたことを特徴とする流下液膜式蒸発器用伝熱
管。
The present invention is applied to a falling liquid film type evaporator in which a liquid refrigerant flows down on an outer peripheral surface of a heat transfer tube to form a liquid film of the liquid refrigerant on the outer peripheral surface, and performs heat transfer through the liquid film. In the heat transfer tube for a falling liquid film type evaporator, a plurality of fins formed on the outer peripheral surface so as to be orthogonal to a tube axis, and formed on the plurality of fins so as to extend in parallel with a direction of the tube axis or at a predetermined angle. Wherein the fins are formed such that the fin height is 0.3 to 1.5 mm and the fin pitch is 0.4 to 1.5 mm; A heat transfer tube for a falling liquid film type evaporator, wherein the heat transfer tube is formed so as to have a diameter of 0.5 to 2.0 mm and an interval in a circumferential direction of the groove of 0.3 to 4.0 mm.
【請求項2】前記複数の溝は、前記フィン高さより深く
なるように形成された請求項1記載の流下液膜式蒸発器
用伝熱管。
2. A heat transfer tube for a falling liquid film type evaporator according to claim 1, wherein said plurality of grooves are formed so as to be deeper than said fin height.
【請求項3】前記複数の溝は、前記所定の角度として−
10〜+10°の角度で形成された請求項1記載の流下
液膜式蒸発器用伝熱管。
3. The method according to claim 2, wherein the plurality of grooves have a predetermined angle of-
2. The heat transfer tube for a falling liquid film type evaporator according to claim 1, wherein the heat transfer tube is formed at an angle of 10 to +10 [deg.].
JP33365096A 1996-12-13 1996-12-13 Heat transfer pipe for flowing-down fluid film type evaporator Pending JPH10176890A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33365096A JPH10176890A (en) 1996-12-13 1996-12-13 Heat transfer pipe for flowing-down fluid film type evaporator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33365096A JPH10176890A (en) 1996-12-13 1996-12-13 Heat transfer pipe for flowing-down fluid film type evaporator

Publications (1)

Publication Number Publication Date
JPH10176890A true JPH10176890A (en) 1998-06-30

Family

ID=18268439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33365096A Pending JPH10176890A (en) 1996-12-13 1996-12-13 Heat transfer pipe for flowing-down fluid film type evaporator

Country Status (1)

Country Link
JP (1) JPH10176890A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114543395A (en) * 2020-11-26 2022-05-27 青岛海尔空调电子有限公司 Falling film evaporator for refrigerating system and refrigerating system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114543395A (en) * 2020-11-26 2022-05-27 青岛海尔空调电子有限公司 Falling film evaporator for refrigerating system and refrigerating system
CN114543395B (en) * 2020-11-26 2024-02-23 青岛海尔空调电子有限公司 Falling film evaporator for refrigeration system and refrigeration system

Similar Documents

Publication Publication Date Title
KR0134557B1 (en) Heat exchanger tube for falling film evaporator
US6655451B2 (en) Heat transfer tube for falling film type evaporator
JPH07167530A (en) Heat transfer tube for absorber
JPH07111287B2 (en) Heat transfer tube for absorber
JP3801771B2 (en) Heat transfer tube for falling film evaporator
JP2000193345A (en) Absorption type refrigerating machine and heat exchanger tube used therefor
JPH11148747A (en) Heat exchanger tube for evaporator of absorption refrigerating machine
JP2686145B2 (en) Heat transfer tube for evaporator
JPH10176890A (en) Heat transfer pipe for flowing-down fluid film type evaporator
JP3480514B2 (en) Heat transfer tube for falling film evaporator
JPH10318691A (en) Heat transfer tube for falling liquid film evaporator
JP2000304485A (en) Heating tube for down-flow liquid film type heat exchanger
JP3992833B2 (en) Absorption heat exchanger heat exchanger tube
JPH10238982A (en) Heat transfer tube for evaporator
JPH0245727Y2 (en)
JPS636364A (en) Heat transfer tube for absorber
JPH11270980A (en) Heat transfer pipe for evaporator
JP2004301440A (en) Heat transfer pipe for falling liquid film type evaporator
JP2004301459A (en) Heat transfer pipe for absorber
JPH10213387A (en) Heat transfer tube
JPH0723818B2 (en) Heat transfer tube for absorber
JPH08136178A (en) Heat transfer tube for heat exchanger and manufacture thereof
JPH0723819B2 (en) Heat transfer tube for absorber
JPH0949698A (en) Heat exchanger
JP2006046721A (en) Heat exchanger tube for falling film evaporator