JPH07111287B2 - Heat transfer tube for absorber - Google Patents

Heat transfer tube for absorber

Info

Publication number
JPH07111287B2
JPH07111287B2 JP62291268A JP29126887A JPH07111287B2 JP H07111287 B2 JPH07111287 B2 JP H07111287B2 JP 62291268 A JP62291268 A JP 62291268A JP 29126887 A JP29126887 A JP 29126887A JP H07111287 B2 JPH07111287 B2 JP H07111287B2
Authority
JP
Japan
Prior art keywords
heat transfer
tube
transfer tube
performance
absorber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62291268A
Other languages
Japanese (ja)
Other versions
JPH01134180A (en
Inventor
治 川又
忠男 大谷
徳雄 宮内
清 大泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Tokyo Gas Co Ltd
Original Assignee
Hitachi Cable Ltd
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd, Tokyo Gas Co Ltd filed Critical Hitachi Cable Ltd
Priority to JP62291268A priority Critical patent/JPH07111287B2/en
Publication of JPH01134180A publication Critical patent/JPH01134180A/en
Publication of JPH07111287B2 publication Critical patent/JPH07111287B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は吸収式冷凍機、吸収式ヒートポンプ等の吸収器
に使用される伝熱管の改良に関するものである。
TECHNICAL FIELD The present invention relates to an improvement of a heat transfer tube used for an absorber such as an absorption refrigerator and an absorption heat pump.

[従来の技術と問題点] 吸収式冷凍機、吸収式ヒートポンプ等において使用され
る吸収器は、密閉容器内に、水平あるいは垂直に多数の
伝熱管を配置して構成される。この場合、伝熱管の外側
には吸収液、例えばLiBr水溶液(濃度約60質量%)が滴
下散布され、蒸発器で発生した冷媒の水蒸気を吸収させ
ると同時に、吸収時の潜熱を管内を流れる冷却水により
取去るように動作させるものである。
[Prior Art and Problems] An absorber used in an absorption refrigerator, an absorption heat pump, or the like is configured by arranging a large number of heat transfer tubes horizontally or vertically in a closed container. In this case, an absorbing liquid, for example, a LiBr aqueous solution (concentration of about 60% by mass) is dropped and sprinkled on the outside of the heat transfer tube to absorb the vapor of the refrigerant generated in the evaporator, and at the same time, the latent heat at the time of absorption is cooled in the tube. It is operated so as to be removed by water.

吸収は蒸発器での蒸発圧力と、伝熱管の表面に滴下され
た吸収液の飽和蒸気圧との圧力差によって生じ、この圧
力差が大きければ能力は向上する。また、吸収液は温度
が低いほど、あるいは濃度が高いほど飽和蒸気圧が低
く、圧力差が大きくなって吸収能力の向上に寄与する。
Absorption is caused by the pressure difference between the evaporation pressure in the evaporator and the saturated vapor pressure of the absorbing liquid dropped on the surface of the heat transfer tube. If this pressure difference is large, the capacity is improved. Further, the lower the temperature or the higher the concentration of the absorbing liquid, the lower the saturated vapor pressure and the larger the pressure difference, which contributes to the improvement of the absorbing capacity.

一方、伝熱管の外表面における挙動をみると、吸収液内
へ凝縮した水が拡散する物質移動と、熱の発生ならびに
これの除去のための熱移動とが混在し、きわめて複雑な
様相を呈しており、その現象については未だ十分な解明
に到っていないのが現状であって、これに使用される伝
熱管についても、平滑管がこれまでの主流を占めてき
た。
On the other hand, looking at the behavior on the outer surface of the heat transfer tube, a mass transfer in which the condensed water diffuses into the absorption liquid and a heat transfer for the generation and removal of heat coexist, showing a very complicated aspect. However, the current situation is that the phenomenon has not been fully clarified, and the smooth tubes have dominated the heat transfer tubes used therefor.

伝熱管の性能を向上せしめるには、上記物質移動と熱移
動の両面での向上が要求されるが、吸収能力の上からす
れば、熱移動の向上もさることながら物質移動の性能向
上が大切なことは理の当然である。
In order to improve the performance of the heat transfer tube, it is necessary to improve both of the above mass transfer and heat transfer, but from the viewpoint of absorption capacity, it is important to improve the mass transfer performance as well as the heat transfer. That's natural.

今日の吸収器内での伝熱管の配置は水平配置が主流をな
し、水平管群に上方から吸収液を滴下散布する方式がと
られている。この際、管表面を流れる吸収液は薄膜状と
なり、さらに伝熱抵抗を減少させ機器の効率向上を図ろ
うとする知見から、より一層薄膜化しようという方向に
進みつつある。しかし、現状の薄膜流下方式において
も、前述の通り伝熱を促進させることよりも物質移動の
促進を図らなければ吸収性能の飛躍的向上は望めない。
そのため、最近、伝熱面積を増加させると同時に吸収液
の薄膜化を図る目的で、ローフィンチューブ等のフィン
付き管を使用する試みがなされているが、それによる伝
熱面積の増加に見合うまでの吸収能力の向上には至って
いない。
The arrangement of the heat transfer tubes in the absorber today is mainly horizontal, and a method of dripping and spraying the absorbing liquid from above to the horizontal tube group is adopted. At this time, the absorbing liquid flowing on the surface of the tube becomes a thin film, and further knowledge of reducing the heat transfer resistance to improve the efficiency of the device is moving toward a further thin film. However, even in the current thin-film flow-through system, a dramatic improvement in absorption performance cannot be expected unless the mass transfer is promoted rather than the heat transfer is promoted as described above.
For this reason, recently, attempts have been made to use finned tubes such as low fin tubes for the purpose of increasing the heat transfer area and at the same time making the absorption liquid into a thin film. Has not yet improved its absorption capacity.

また、実機においては吸収液にn−オクチルアルコール
やジエチルヘキサノール等の界面活性剤が微量添加され
ており、これにより吸収時に溶液中においていわゆるマ
ランゴニ効果に基く激しい界面攪乱を生じさせ、吸収能
力を飛躍的に向上せしめようとする方法がとられてい
る。
In addition, in the actual machine, a small amount of surfactants such as n-octyl alcohol and diethylhexanol are added to the absorption liquid, which causes severe interface disturbance based on the so-called Marangoni effect in the solution at the time of absorption, and the absorption capacity jumps. A method is being used to improve it.

吸収器は、機器の性能を左右する重要なコンポーネント
であるため、今後機器の小形化、高性能化を図る上で吸
収器を高性能化することは大きな課題である。
Since the absorber is an important component that influences the performance of the equipment, it is a major issue to improve the performance of the absorber in order to miniaturize and improve the performance of the equipment in the future.

従って、そのための伝熱管の高性能化が重要なポイント
であり、特に吸収過程における物質移動の促進を図り得
る伝熱管の案出ならびにそれに対しての前記界面活性剤
の果す顕著な役割の解明およびそれに基く管形状の選定
が望まれる。
Therefore, the improvement of the performance of the heat transfer tube is an important point, and in particular, the invention of a heat transfer tube capable of promoting the mass transfer in the absorption process and the elucidation of the outstanding role of the above-mentioned surfactant against it It is desirable to select the tube shape based on it.

[発明の目的] 本発明は、上記のような実情にかんがみてなされたもの
であり。とくに界面活性剤を添加したことにともなう伝
熱管表面での挙動に対し最適条件となり得る表面形状を
有する新規な吸収器用伝熱管を提供しようとするもので
ある。
[Object of the Invention] The present invention has been made in view of the above-mentioned circumstances. In particular, it is intended to provide a novel heat transfer tube for an absorber having a surface shape that can be an optimum condition for the behavior on the surface of the heat transfer tube due to the addition of a surfactant.

[発明の概要] すなわち、本発明の要旨とするところは、伝熱管の外面
に長手方向に延びる複数の溝と、該溝間に微細なピッチ
の多数のフィンを形成し、かつこれら溝およびフィンの
構成に最適条件を規定したものであり、それにより吸収
器における吸収効果を従来例に比較して飛躍的に向上せ
しめ得る伝熱管を市場に供給し得るものである。
[Summary of the Invention] That is, the gist of the present invention is to provide a plurality of grooves extending in the longitudinal direction on the outer surface of a heat transfer tube and a large number of fins with a fine pitch between the grooves, and these grooves and fins. The optimum conditions are defined in the configuration of (1) above, whereby a heat transfer tube capable of dramatically improving the absorption effect in the absorber compared to the conventional example can be supplied to the market.

[実施例] 以下に、本発明について実施例に基いて説明する。[Examples] The present invention will be described below based on Examples.

発明者等は、伝熱性能と共に物質移動性能について詳細
な研究実験を重ねた。その結果、伝熱管表面上の吸収液
膜内で対流が発生すると、熱と共にとくに物質移動が大
巾に促進されることがわかった。伝熱管表面上の溶液は
冷媒蒸気と接する面では冷媒蒸気を吸収して低濃度とな
るが、液膜の深さ方向への移動は拡散だけではあまり進
展しない。そこでこの溶液中に対流を発生せしめれば液
膜内での攪拌が発生し、冷媒は深さ方向へ進展し、溶液
表面だけが低濃度化して吸収を抑止することがなくな
り、物質移動性能が大巾に向上する。
The inventors have conducted detailed research experiments on heat transfer performance and mass transfer performance. As a result, it was found that when convection occurs in the absorbing liquid film on the surface of the heat transfer tube, mass transfer is greatly promoted along with heat. The solution on the surface of the heat transfer tube absorbs the refrigerant vapor on the surface in contact with the refrigerant vapor to have a low concentration, but the movement of the liquid film in the depth direction does not progress much only by diffusion. Therefore, if convection is generated in this solution, agitation occurs in the liquid film, the refrigerant progresses in the depth direction, only the solution surface does not lower the concentration and suppress absorption, and the mass transfer performance is improved. Greatly improves.

一方、冷媒−吸収剤として水−LiBr系等を用いる場合に
は吸収溶液中に界面活性剤を添加するが、この添加によ
り水蒸気が吸収された場合に溶液表面の界面張力に変化
が生じ、激しいマランゴニ対流が発生する。それによっ
て、界面活性剤を添加しない場合に比べ、吸収能力が大
巾に向上する。
On the other hand, when a water-LiBr system or the like is used as the refrigerant-absorbent, a surfactant is added to the absorbing solution, but when this addition absorbs water vapor, the interfacial tension of the solution surface changes, which is severe. Marangoni convection occurs. As a result, the absorption capacity is greatly improved as compared with the case where no surfactant is added.

本発明は、この界面活性剤による対流現象に着目し、こ
の対流が生じた際に溶液をより一層強制攪拌し得る伝熱
管の表面形状の最適構成を見出したものである。
The present invention focuses on the convection phenomenon caused by the surfactant, and has found the optimum configuration of the surface shape of the heat transfer tube that can further forcibly stir the solution when this convection occurs.

本発明に係る伝熱管によれば、管表面上の長手方向に深
さの大きい複数の平行溝を設けたが、これにより滴下さ
れた溶液が活発に攪拌されると同時に管軸方向への流れ
を発生させ溶液の広がりを生じさせることがわかった。
さらに、平行溝間に多数のフィンを設けたが、これによ
り伝熱面積を増加させると共に、フィン寸法の最適化に
より表面での溶液の濡れ性を向上させ有効伝熱面が大巾
に増加することがわかった。また、さらに、界面活性剤
により発生するマランゴニ対流に対しても、平行溝によ
り溶液が管軸方向に自由に移動でき、対流がより活発に
作用することも判明した。しかして、上記溝ならびにフ
ィンの効果をより確実なものとするには、それなりの最
適形状ないし寸法のあることも、幾多の実験により明ら
かとなった。
According to the heat transfer tube of the present invention, a plurality of parallel grooves having a large depth are provided in the longitudinal direction on the surface of the tube, whereby the dripped solution is actively stirred and simultaneously flows in the tube axial direction. Was generated to cause the solution to spread.
Further, a large number of fins are provided between the parallel grooves, which increases the heat transfer area and improves the wettability of the solution on the surface by optimizing the fin size, greatly increasing the effective heat transfer surface. I understood it. Furthermore, it was also found that the solution can freely move in the tube axis direction by the parallel grooves even with respect to the Marangoni convection generated by the surfactant, and the convection acts more actively. It has been clarified by a number of experiments that a certain optimum shape or size is required to make the effect of the groove and the fin more reliable.

第1図は、本発明に係る伝導管1の具体例を示す横断面
図であり、第2図はその説明正面図である。図示例は、
常用サイズ(外径19mm)の伝熱管用銅管を用い、その表
面に円周上等分に溝数N、溝深さVなる平行溝2,2を形
成し、さらに溝2,2間にフィン高さhf、フィンピッチpf
なる微細なフィン3,3を形成したものであるが、これの
吸収性能に及ぼす効果を調べるために、溝数N、溝深さ
V、フィン高さhf、フィンピッチpfをさまざまに変えた
供試材を準備し、性能測定を行なった。
FIG. 1 is a cross-sectional view showing a specific example of the conduction tube 1 according to the present invention, and FIG. 2 is an explanatory front view thereof. The example shown is
A regular size (outer diameter 19 mm) copper tube for heat transfer tube is used, parallel grooves 2 and 2 with the number of grooves N and groove depth V are formed on the surface evenly on the circumference, and between the grooves 2 and 2. Fin height hf, fin pitch pf
In order to investigate the effect of this on the absorption performance, various fins N, groove depth V, fin height hf, and fin pitch pf were variously changed. A test material was prepared and the performance was measured.

この性能測定は、第3図に示すような吸収器を模した性
能測定装置4に24本の供試伝熱管を有効長300mmで3列
8段に組込んで行なった。
This performance measurement was carried out by incorporating 24 test heat transfer tubes into a performance measuring device 4 imitating an absorber as shown in FIG. 3 in 3 rows and 8 stages with an effective length of 300 mm.

実験は、濃度58質量%、温度40℃のLiBr水溶液よりなる
吸収溶液6を滴下管7,7のノズル7a,7aから滴下し、吸収
器用伝熱管1,1内に28℃、流速1m/secの冷却水8を流す
一方、蒸発器部10内の冷却用伝熱管11,11に水(冷媒)1
2を滴下管15,15のノズル15a,15aより滴下し、蒸発温度
が10℃で一定となるよう蒸発器部10の伝熱管11,11内へ
流す水13の流量をコントロールした。なお、第3図中9
は冷媒蒸気を吸収した低濃度の吸収液である。
In the experiment, the absorption solution 6 consisting of LiBr aqueous solution having a concentration of 58% by mass and a temperature of 40 ° C. was dropped from the nozzles 7a, 7a of the dropping pipes 7, 7, and 28 ° C. in the absorber heat transfer tubes 1, 1 at a flow rate of 1 m / sec. While the cooling water 8 is supplied, water (refrigerant) 1 is supplied to the cooling heat transfer tubes 11 and 11 in the evaporator section 10.
2 was dropped from the nozzles 15a, 15a of the dropping pipes 15, 15 and the flow rate of water 13 flowing into the heat transfer pipes 11, 11 of the evaporator section 10 was controlled so that the evaporation temperature was constant at 10 ° C. In addition, 9 in FIG.
Is a low-concentration absorbing liquid that has absorbed the refrigerant vapor.

この実験方法では、吸収器部5の伝熱性能、物質移動性
能が良ければ、水蒸気14の吸収量が多くなり、蒸発器部
10での水13の冷却能力が向上する。また、はじめの実験
では、管形状の効果のみを調べるために界面活性剤の添
加は行なわず測定した。
In this experimental method, if the heat transfer performance and mass transfer performance of the absorber section 5 are good, the amount of water vapor 14 absorbed will increase and the evaporator section will
The cooling capacity of water 13 at 10 is improved. In addition, in the first experiment, in order to investigate only the effect of the tube shape, the measurement was performed without adding a surfactant.

第4図にフィンピッチと冷凍能力との関係を、第5図に
フィン高さ、平行溝深さと冷凍能力との関係を、さらに
第6図に平行溝数と冷凍能力の関係をそれぞれ示す。
尚、各値ともLiBr水溶液液膜流量(管片側を流れる単位
長さ当りの質量流量Γ)が0.016kg/mS一定の場合におけ
る数値を示すものである。
FIG. 4 shows the relationship between fin pitch and refrigerating capacity, FIG. 5 shows the relationship between fin height, parallel groove depth and refrigerating capacity, and FIG. 6 shows the relationship between parallel groove number and refrigerating capacity.
Each value is a numerical value when the liquid film flow rate of the LiBr aqueous solution (mass flow rate per unit length flowing on the tube side) is 0.016 kg / mS.

上記において、溝そのものの巾は他の因子ほど大きな影
響を示さないが、ここでは約1.5〜2mmの溝巾とした。
In the above, the width of the groove itself does not show a great influence as much as other factors, but here, the groove width is about 1.5 to 2 mm.

第4図からわかるように、フィンピッチは1.5mm以上に
なると性能低下がはっきりとする。これは溶液の濡れ性
を決めるパラメータであり、0.4〜1.5mmの範囲が良好で
あることがわかる。
As can be seen from Fig. 4, when the fin pitch is 1.5 mm or more, the performance deterioration becomes clear. This is a parameter that determines the wettability of the solution, and it can be seen that the range of 0.4 to 1.5 mm is good.

また、第5図からフィン高さと溝深さの間には一種の相
対関係があることがわかる。すなわち、溝深さはフィン
高さと同じかあるいは大きくしなければ溶液の攪拌があ
まり作用せず性能低下をまねく。さらにフィン高さは低
いと伝熱面積の減少、高いと濡れ性の低下となり性能が
低下する。したがって、両者の関係を考慮すると、フィ
ン高さは0.5〜1.5mm、溝深さは0.5〜2mmが適当であるこ
とがわかる。
Further, it can be seen from FIG. 5 that there is a kind of relative relationship between the fin height and the groove depth. That is, unless the groove depth is made equal to or larger than the fin height, the stirring of the solution does not act so much and the performance is deteriorated. Further, if the fin height is low, the heat transfer area is reduced, and if it is high, the wettability is lowered and the performance is lowered. Therefore, considering the relationship between the two, it is clear that the fin height is 0.5 to 1.5 mm and the groove depth is 0.5 to 2 mm.

そしてまた、溝数も性能に深い関係があり、溝数は少な
いと溶液の攪拌効果が小さく、多いと伝熱面積の低下と
なり性能が低下する。第6図から10条〜20条が良好であ
ることがわかり、このことから円周方向の溝間隔は3〜
6mmが適当であることがわかる。
Further, the number of grooves is also closely related to the performance. If the number of grooves is small, the stirring effect of the solution is small, and if the number of grooves is large, the heat transfer area is reduced and the performance is degraded. It can be seen from Fig. 6 that 10 to 20 articles are good, which indicates that the circumferential groove spacing is 3 to
It turns out that 6 mm is suitable.

さらにまた、本発明に係る伝熱管が水平配置されること
を考慮すれば、管軸と溝のなす角度が大きいことは好ま
しくなく、管軸に対する溝の角度は−10°〜+10°程度
にとどめることが望ましい。
Furthermore, considering that the heat transfer tube according to the present invention is horizontally arranged, it is not preferable that the angle formed by the tube axis and the groove is large, and the angle of the groove with respect to the tube axis is limited to about −10 ° to + 10 °. Is desirable.

第7図は、以上の検討結果から得た最適条件に基いて加
工した本発明伝熱管と、比較例としてのローフィンチュ
ーブおよび平滑管について性能測定を行なった結果を示
す線図である。図には、界面活性剤としてn−オクチア
ルコールを重量比で250ppm添加した場合(黒塗り)と添
加しない場合の測定結果を対比データとして示した。
FIG. 7 is a diagram showing the results of performance measurement of the heat transfer tube of the present invention processed based on the optimum conditions obtained from the above examination results, and the low fin tube and the smooth tube as comparative examples. In the figure, the measurement results with and without addition of 250 ppm by weight of n-octyl alcohol as a surfactant (black coating) are shown as comparison data.

第7図から明らかなように、界面活性剤を添加しない場
合において、本発明伝熱管は従来の平滑管に比べ冷凍能
力で約1.7倍という大巾な向上を示し、さらに同様な加
工形態よりなるローフィンチューブに比べても約1.45倍
の向上を示しており、本発明に規定する管形状による効
果が有効に作用していることがよくわかる。また、界面
活性剤を添加した場合では、冷凍能力は平滑管に対し、
約1.4倍、ローフィンチューブに対し、約1.22倍とな
り、マランゴニ対流の効果も有効に作用されることがわ
かる。これは界面活性剤添加時の管表面での溶液の可視
化によっても確認された。すなわち、本発明伝熱管は、
吸収時、平行溝に沿った激しい溶液の動きを観察でき
た。なお、界面活性剤を添加した場合、添加無しの場合
に比べ実質的な向上率において低下しているが、これは
本発明伝熱管の場合、実験条件から与えらえる最大冷凍
能力の理論値にかなり近い値になっているためであり、
外周構造のみでなく管内面構造について溝や突起の付い
た加工面とすれば、冷凍能力をより一層向上せしめ得る
ことも、別な実験により確かめられている。
As is clear from FIG. 7, in the case where no surfactant is added, the heat transfer tube of the present invention shows a significant improvement in refrigerating capacity of about 1.7 times as compared with the conventional smooth tube, and further has the same processing form. The improvement is about 1.45 times that of the low fin tube, which clearly shows that the effect of the tube shape defined in the present invention is effectively exerted. Also, when a surfactant is added, the refrigerating capacity is
About 1.4 times, about 1.22 times that of the low fin tube, it can be seen that the effect of Marangoni convection is effectively exerted. This was also confirmed by visualization of the solution on the tube surface when the surfactant was added. That is, the heat transfer tube of the present invention,
Upon absorption, vigorous solution movement could be observed along the parallel grooves. In addition, when the surfactant is added, the substantial improvement rate is lower than that in the case where the surfactant is not added, but in the case of the heat transfer tube of the present invention, this is the theoretical value of the maximum refrigerating capacity given from the experimental conditions. Because the values are quite close,
It has been confirmed by another experiment that the refrigerating capacity can be further improved by using a machined surface with grooves and protrusions not only for the outer peripheral structure but also for the pipe inner surface structure.

[発明の効果] 以上詳記の通り、本発明に係る伝熱管は、管形状による
溶液の攪拌、伝熱面積の増加等の効果と共に、界面活性
剤によるマランゴニ対流の促進効果をも発揮し、熱・物
質両面の伝達を大巾に向上させ得るものであり、これを
用いる吸収冷凍機、吸収ヒートポンプ等の吸収器の性能
を向上させ、機器のコンパクト化、高能率化に資するな
ど、その意義は高く評価さるべきものがある。
[Effects of the Invention] As described above in detail, the heat transfer tube according to the present invention exhibits the effect of promoting the Marangoni convection by the surfactant as well as the effect of stirring the solution due to the tube shape, the increase of the heat transfer area, and the like. It is possible to greatly improve the transfer of heat and both sides of the material, and improve the performance of absorbers such as absorption chillers and absorption heat pumps that use it, which contributes to downsizing of equipment and higher efficiency. Has something to admire.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係る伝熱管の実施例を示す横断面図、
第2図はその説明正面図、第3図は性能測定装置の概要
を示す説明図、第4から7図は性能測定結果を示す線図
である。 1:伝熱管、2:溝、3:フィン。
FIG. 1 is a cross-sectional view showing an embodiment of a heat transfer tube according to the present invention,
FIG. 2 is an explanatory front view thereof, FIG. 3 is an explanatory view showing an outline of a performance measuring device, and FIGS. 4 to 7 are diagrams showing performance measurement results. 1: Heat transfer tube, 2: Groove, 3: Fin.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宮内 徳雄 茨城県土浦市木田余町3550番地 日立電線 株式会社土浦工場内 (72)発明者 大泉 清 茨城県土浦市木田余町3550番地 日立電線 株式会社土浦工場内 (56)参考文献 特開 昭62−206356(JP,A) 特開 昭63−306370(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tokio Miyauchi 3550 Kidayo-cho, Tsuchiura-shi, Ibaraki Hitachi Cable Co., Ltd. Tsuchiura factory (72) Inventor Kiyoshi Oizumi 3550 Kida-yocho, Tsuchiura-shi, Ibaraki Hitachi Cable Co., Ltd. Tsuchiura Factory (56) Reference JP 62-206356 (JP, A) JP 63-306370 (JP, A)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】外側に吸収液が滴下され、内側に冷却水が
流される吸収器用の伝熱管であり、外面には長手方向に
延びる複数の溝と、該溝間に設けられた微細なピッチの
多数のフィンとを有し、フィンの高さが0.5〜1.5mm、フ
ィンのピッチが0.4〜1.5mm、溝の深さが0.5〜2mm、溝の
円周方向における間隔が3〜6mmとなるようにそれぞれ
構成されてなる吸収器用伝熱管。
1. A heat transfer tube for an absorber in which an absorbing liquid is dripped on the outside and cooling water is allowed to flow on the inside, a plurality of grooves extending in the longitudinal direction on the outer surface, and a fine pitch provided between the grooves. The fin height is 0.5 to 1.5 mm, the fin pitch is 0.4 to 1.5 mm, the groove depth is 0.5 to 2 mm, and the groove spacing is 3 to 6 mm in the circumferential direction. Heat transfer tubes for absorbers each configured as follows.
【請求項2】溝の底面がフィン底とほぼ等しいか、それ
よりも深く形成されてなる特許請求の範囲第1項記載の
伝熱管。
2. The heat transfer tube according to claim 1, wherein the bottom surface of the groove is formed to be substantially equal to or deeper than the fin bottom.
【請求項3】管軸に対する溝の角度が−10°〜+10°の
範囲内である特許請求の範囲第1または2項記載の伝熱
3. The heat transfer tube according to claim 1 or 2, wherein the angle of the groove with respect to the tube axis is within the range of -10 ° to + 10 °.
JP62291268A 1987-11-18 1987-11-18 Heat transfer tube for absorber Expired - Lifetime JPH07111287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62291268A JPH07111287B2 (en) 1987-11-18 1987-11-18 Heat transfer tube for absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62291268A JPH07111287B2 (en) 1987-11-18 1987-11-18 Heat transfer tube for absorber

Publications (2)

Publication Number Publication Date
JPH01134180A JPH01134180A (en) 1989-05-26
JPH07111287B2 true JPH07111287B2 (en) 1995-11-29

Family

ID=17766673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62291268A Expired - Lifetime JPH07111287B2 (en) 1987-11-18 1987-11-18 Heat transfer tube for absorber

Country Status (1)

Country Link
JP (1) JPH07111287B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0132015B1 (en) * 1993-02-24 1998-04-20 가나이 쯔도무 Heat transfer wall
JP5255241B2 (en) * 2007-07-30 2013-08-07 古河電気工業株式会社 Heat transfer tube
EP2087930A1 (en) * 2008-02-05 2009-08-12 Evonik Degussa GmbH Method for the absorption of volatile material in a fluid absorption agent
DE102009047564A1 (en) 2009-12-07 2011-06-09 Evonik Degussa Gmbh Working medium for an absorption chiller
DE102011077377A1 (en) 2010-11-12 2012-05-16 Evonik Degussa Gmbh Process for the absorption of acid gases from gas mixtures
WO2013072147A1 (en) 2011-11-14 2013-05-23 Evonik Degussa Gmbh Method and device for the separation of acidic gases from a gas mixture
DE102012200907A1 (en) 2012-01-23 2013-07-25 Evonik Industries Ag Method and absorption medium for absorbing CO2 from a gas mixture
DE102012207509A1 (en) 2012-05-07 2013-11-07 Evonik Degussa Gmbh Method for absorbing CO2 from a gas mixture
DE102015212749A1 (en) 2015-07-08 2017-01-12 Evonik Degussa Gmbh Method for dehumidifying moist gas mixtures
DE102016210484A1 (en) 2016-06-14 2017-12-14 Evonik Degussa Gmbh Method for dehumidifying moist gas mixtures
EP3257568B1 (en) 2016-06-14 2019-09-18 Evonik Degussa GmbH Method for the removal of moisture from moist gas mixtures by use of ionic liquids
EP3257843A1 (en) 2016-06-14 2017-12-20 Evonik Degussa GmbH Method of preparing a high purity imidazolium salt
DE102016210478A1 (en) 2016-06-14 2017-12-14 Evonik Degussa Gmbh Method for dehumidifying moist gas mixtures
DE102016210481B3 (en) 2016-06-14 2017-06-08 Evonik Degussa Gmbh Process for purifying an ionic liquid
DE102016210483A1 (en) 2016-06-14 2017-12-14 Evonik Degussa Gmbh Process and absorbent for dehumidifying moist gas mixtures
CN107057777B (en) * 2017-03-01 2023-11-28 海口图腾新能源应用研发有限公司 Experimental device for inducing marangoni condensation by adopting interface fluctuation

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS477185U (en) * 1971-02-16 1972-09-26
JPS62206356A (en) * 1986-03-05 1987-09-10 東京瓦斯株式会社 Heat transfer tube for dispersing droplet

Also Published As

Publication number Publication date
JPH01134180A (en) 1989-05-26

Similar Documents

Publication Publication Date Title
JPH07111287B2 (en) Heat transfer tube for absorber
JPH07167530A (en) Heat transfer tube for absorber
JP3916114B2 (en) Absorption type refrigerator and heat transfer tube used therefor
JP2686145B2 (en) Heat transfer tube for evaporator
JPH09152289A (en) Absorption refrigerating machine
JP3391170B2 (en) Heat transfer tube and absorber for absorber
JPH0745994B2 (en) Heat transfer tube for absorber
JPS63306370A (en) Heat transfer tube for absorber
JPH0723819B2 (en) Heat transfer tube for absorber
KR200150457Y1 (en) Heat pipe
JPH0621744B2 (en) Heat transfer tube for absorber
JPH0972628A (en) Heat transfer pipe for absorbing device and method for manufacturing heat transfer pipe
EP4269906A1 (en) Absorber for absorption chiller, heat exchange unit for absorption chiller, and absorption chiller
JPH06159860A (en) Heat transfer pipe for absorber
JPH10213387A (en) Heat transfer tube
JP2000304485A (en) Heating tube for down-flow liquid film type heat exchanger
JPH0723820B2 (en) Heat transfer tube for absorber
JPH09113164A (en) Heat transfer pipe for absorber
JPS62186179A (en) Heat transfer tube for dispersing dripping liquid
KR100205977B1 (en) Heaa pipe
JP2973702B2 (en) Heat transfer tube for absorption type vertical absorber in tube
JPH0961082A (en) Heat transfer pipe for air-cooled absorbing device
JP2934160B2 (en) Heat transfer tubes for absorbers and regenerators
JPH0827100B2 (en) Heat transfer tube for absorber
JPH01291074A (en) Heat transfer pipe for vertical absorbing device

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term