JPH074884A - Heat transfer pipe with inner surface groove and its manufacturing method - Google Patents

Heat transfer pipe with inner surface groove and its manufacturing method

Info

Publication number
JPH074884A
JPH074884A JP20203691A JP20203691A JPH074884A JP H074884 A JPH074884 A JP H074884A JP 20203691 A JP20203691 A JP 20203691A JP 20203691 A JP20203691 A JP 20203691A JP H074884 A JPH074884 A JP H074884A
Authority
JP
Japan
Prior art keywords
ridges
heat transfer
ridge
groove
small
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP20203691A
Other languages
Japanese (ja)
Inventor
Seizou Masukawa
清慥 桝川
俊▲緑▼ ▲すくも▼田
Toshitsuka Sukumoda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Shindoh Co Ltd
Original Assignee
Mitsubishi Shindoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Shindoh Co Ltd filed Critical Mitsubishi Shindoh Co Ltd
Priority to JP20203691A priority Critical patent/JPH074884A/en
Publication of JPH074884A publication Critical patent/JPH074884A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To improve both an evaporation efficiency and a condensing efficiency by a method wherein some large projections are formed at an inner surface of a metallic pipe with a specified spacing therebetween and a pair of small projections are formed between the large projections and inclined toward the large projections. CONSTITUTION:Tubular grooves 16 with their opening width W2 being less than a bottom width W1 are formed between adjoining large projections 12 and small projections 14. In the case where they are used as evaporating tubes, air bubbles are easily formed inside the tubular grooves 16, these air bubbles act as evaporation cores so as to promote evaporation of thermal medium liquid. Accordingly, it is possible to increase the gasification efficiency as compared with that of the heat transfer pipe in which uniform simple grooves are formed in the same pitch. In addition, the extremity ends of the large projections 12 are projected from the inner circumferential surface of a metallic pipe 10 rather than from the small projections 14 and the tubular grooves 16, so that in the case where they are used as a condensing pipe, separation of thermal medium liquid from the extremity ends of the large projections 12 is well performed and a liquid film is hardly formed on this part. Accordingly, there the ratio of exposure of a metallic surface at the extremity ends of the large projections 12 is high, no prohibition of heat exchanging operation between the metal and the thermal medium gas through the liquid film, resulting in that a high condensing efficiency can be attained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、内面溝付伝熱管および
その製造方法に係わり、特に伝熱性能を向上するための
改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat transfer tube with an inner groove and a method for manufacturing the same, and more particularly to improvements for improving heat transfer performance.

【0002】[0002]

【従来の技術】この種の内面溝付伝熱管は、空調装置や
冷蔵庫等の熱交換器において、蒸発管または凝縮管とし
て主に使用されるもので、最近では内面に螺旋状の溝を
転造した伝熱管が広く市販されている。
2. Description of the Related Art This kind of heat transfer tube with an inner groove is mainly used as an evaporation tube or a condensation tube in a heat exchanger such as an air conditioner or a refrigerator. Recently, a spiral groove is rolled on the inner surface. The manufactured heat transfer tubes are widely commercially available.

【0003】このように内面溝を形成した伝熱管では、
溝なしの伝熱管に比して次のような利点を有する。
In the heat transfer tube having the inner groove thus formed,
It has the following advantages over the heat transfer tube without grooves.

【0004】 伝熱管を凝縮管として使用した場合に
は、凝縮管内を流れる熱媒気体を溝の間の突条部により
乱流にし、さらに突条部を凝縮核として熱媒気体の凝縮
効果を高め、液化を促進する。また、凝縮した熱媒液体
を、溝内における表面張力によって効率的に伝熱管の長
手方向に流し、還流効果を増す。
When the heat transfer tube is used as a condensing tube, the heat medium gas flowing in the condensing tube is made into a turbulent flow by the ridges between the grooves, and the ridges serve as condensation nuclei to condense the heat medium gas. Enhances and promotes liquefaction. Further, the condensed heat medium liquid is caused to efficiently flow in the longitudinal direction of the heat transfer tube by the surface tension in the groove, and the reflux effect is increased.

【0005】 蒸発管として使用した場合には、内面
溝のエッジが気泡を発するための蒸発核となり、沸騰を
促進して熱媒液体の気化効率が向上する。また、溝内に
おける表面張力によって、熱媒液体が伝熱管の長手方向
に流れ、伝熱管の内面に均一に分散される。
When used as an evaporation tube, the edge of the inner surface groove serves as an evaporation nucleus for generating bubbles, promotes boiling and improves the vaporization efficiency of the heat medium liquid. Further, due to the surface tension in the groove, the heat transfer liquid flows in the longitudinal direction of the heat transfer tube and is uniformly dispersed on the inner surface of the heat transfer tube.

【0006】ところで、この種の内面溝付伝熱管の伝熱
性能をさらに高める手段として、溝の開口幅を底幅より
も狭くし、溝の内部での気泡発生を促進して、蒸発効率
を高める方法が提案されている。
By the way, as a means for further enhancing the heat transfer performance of this kind of inner surface grooved heat transfer tube, the opening width of the groove is made narrower than the bottom width to promote the generation of bubbles inside the groove to improve the evaporation efficiency. A way to raise it is proposed.

【0007】その一例として、図14は米国特許4,0
04,441号に記載された伝熱管を示す。これは、金
属管1の内面に螺旋状をなす多数の平行溝2を転造した
後、さらに各溝2間の突条3の先端を転造工具によって
潰すことにより、各溝2の開口幅をその底幅より狭めた
ものである。
As one example, FIG. 14 shows US Pat.
The heat transfer tube described in No. 04,441 is shown. This is because after rolling a large number of spiral parallel grooves 2 on the inner surface of the metal tube 1, and further crushing the tips of the protrusions 3 between the grooves 2 with a rolling tool, the opening width of each groove 2 is increased. Is narrower than its bottom width.

【0008】[0008]

【発明が解決しようとする課題】ところで、図14の伝
熱管において高い蒸発促進効果を得るには、溝2および
突条3のピッチを狭めることが必須であるが、そうする
と前記2度目の転造加工の際に各突条3が十分に潰れな
いまま周方向に倒れてしまい、溝2の開口幅が底幅より
狭まらず、図示のような理想形状の溝が形成できない問
題があった。したがって、単純溝付き伝熱管と同程度に
溝ピッチを小さくすることはできず、単純溝付き伝熱管
に対しての性能上の有利さに乏しく、製造に要するコス
トを考慮すると実用的とはいいがたかった。
By the way, in order to obtain a high evaporation promoting effect in the heat transfer tube of FIG. 14, it is essential to narrow the pitch of the grooves 2 and the ridges 3. Then, the second rolling is performed. At the time of processing, each ridge 3 fell in the circumferential direction without being sufficiently crushed, the opening width of the groove 2 did not become narrower than the bottom width, and there was a problem that a groove having an ideal shape as shown could not be formed. . Therefore, it is not possible to make the groove pitch as small as that of the simple grooved heat transfer tube, and there is little performance advantage over the simple grooved heat transfer tube, and it is considered to be practical considering the manufacturing cost. I wanted

【0009】また、この伝熱管を凝縮管として使用して
も、通常の単純溝付き伝熱管に比して凝縮性能上の利点
はあまりなかった。
Further, even if this heat transfer tube is used as a condensation tube, there is not much advantage in terms of the condensation performance as compared with a normal simple grooved heat transfer tube.

【0010】[0010]

【課題を解決するための手段】本発明は上記課題を解決
するためになされたもので、まず本発明の内面溝付伝熱
管は、金属管の内面に、互いに一定間隔を空けて平行に
多数の大突条が形成されるとともに、各大突条の間には
大突条と平行に各一対の小突条が形成され、これら小突
条がそれぞれ隣接した大突条に向けて傾斜されているこ
とにより、隣接する大突条と小突条の間にはその開口幅
が底幅以下の管状溝が形成されていることを特徴とす
る。
DISCLOSURE OF THE INVENTION The present invention has been made to solve the above-mentioned problems. First, a heat transfer tube with an inner surface groove of the present invention is arranged in parallel on the inner surface of a metal tube at regular intervals. The large ridges are formed, and a pair of small ridges are formed between the large ridges in parallel with the large ridges, and these small ridges are inclined toward the adjacent large ridges. Therefore, a tubular groove having an opening width equal to or smaller than the bottom width is formed between the adjacent large ridges and small ridges.

【0011】一方、本発明の内面溝付伝熱管の製造方法
は、互いに平行な大突条形成溝および被分割突条形成溝
が交互に形成された第1のプラグを金属管に通し、この
金属管の内面に、互いに平行に延びる多数の大突条およ
び被分割突条を交互に形成した後、さらに前記金属管
に、前記各大突条に嵌合する位置決め溝、および前記各
被分割突条を幅方向に2分割する分割突条が互いに平行
かつ交互に形成された第2のプラグを通し、大突条に沿
って位置決め溝を摺動させつつ、分割突条によって被分
割突条を幅方向に2分割し、隣接した大突条に向けて傾
斜する小突条を形成するとともに、隣接する大突条と小
突条の間に、その開口幅が底幅以下の管状溝を形成する
ことを特徴としている。
On the other hand, according to the method of manufacturing the heat transfer tube with the inner groove of the present invention, the first plug in which the large ridge forming groove and the divided ridge forming groove which are parallel to each other are alternately formed is passed through the metal tube, and A large number of large ridges and divided ridges extending in parallel to each other are alternately formed on the inner surface of the metal pipe, and then the metal pipe is further provided with positioning grooves fitted to the large ridges and the divided ridges. The split ridges that divide the ridge into two in the width direction are passed through the second plug in which the split ridges that are parallel to each other and are formed alternately and through the positioning ridges along the large ridges Is divided into two in the width direction to form small ridges inclined toward the adjacent large ridges, and between the adjacent large ridges and small ridges, a tubular groove whose opening width is equal to or smaller than the bottom width is formed. It is characterized by forming.

【0012】[0012]

【作用】本発明の内面溝付伝熱管によれば、隣接する大
突条と小突条の間に、その開口幅が底幅以下の管状溝が
形成されているので、これを蒸発管として使用した場合
には、管状溝の内部に気泡が発生しやすく、これら気泡
が蒸発核として作用し、熱媒液体の蒸発を促進する。し
たがって、同一ピッチで単純溝を形成した伝熱管に比し
て、気化効率が高められる。
According to the inner grooved heat transfer tube of the present invention, a tubular groove having an opening width equal to or smaller than the bottom width is formed between the adjacent large ridges and small ridges. When used, bubbles are likely to be generated inside the tubular groove, and these bubbles act as evaporation nuclei to promote evaporation of the heat medium liquid. Therefore, as compared with the heat transfer tube in which the simple grooves are formed at the same pitch, the vaporization efficiency is improved.

【0013】また、大突条の先端は、小突起および管状
溝よりも金属管の内週面から突出しているため、この伝
熱管を凝縮管として使用した場合には、大突条の先端部
での熱媒液体の液切れがよく、この部分に液膜が生じに
くい。したがって、同一ピッチで単純溝を形成した場合
に比して、大突条の先端部で金属面が露出する率が高
く、液膜により金属と熱媒気体との熱交換が阻害されな
いため、熱媒気体の凝縮効率も高められる。
Further, since the tip of the large ridge protrudes from the inner surface of the metal tube rather than the small protrusion and the tubular groove, when the heat transfer tube is used as a condenser tube, the tip of the large ridge is formed. The heat medium liquid runs out easily in this case, and a liquid film does not easily form in this part. Therefore, as compared with the case where the simple grooves are formed at the same pitch, the metal surface is more exposed at the tip of the large ridge, and the liquid film does not hinder the heat exchange between the metal and the heating medium gas. The condensation efficiency of the medium gas is also increased.

【0014】一方、本発明の製造方法は、上記のように
優れた伝熱管が比較的容易に製造できるうえ、第2のプ
ラグの位置決め溝を大突条に沿って摺動させることによ
り、この第2のプラグを正確に位置決めしつつ、各分割
突条により被分割突条を2分割して傾斜させ、小突条お
よび管状溝を形成するから、単純溝付き伝熱管と同程度
まで突条のピッチや幅を狭めることが可能で、高い伝熱
性能が得られる。
On the other hand, according to the manufacturing method of the present invention, the excellent heat transfer tube can be manufactured relatively easily as described above, and the positioning groove of the second plug is slid along the large ridge so that While accurately positioning the second plug, the divided ridges are divided into two and inclined by each divided ridge to form the small ridge and the tubular groove, so that the ridge has the same extent as a simple grooved heat transfer tube. It is possible to narrow the pitch and width of, and obtain high heat transfer performance.

【0015】[0015]

【実施例】図1は、本発明に係わる内面溝付伝熱管の一
実施例を示す断面図である。この伝熱管は、金属管10
の内面に、互いに一定間隔を空けて平行に多数の大突条
12が形成されるとともに、各大突条12の間には、大
突条12と平行に各一対づつの小突条14が形成された
ものである。この例では、大突条12の断面形状はほぼ
半円状、小突条14の断面形状は鈍角三角形状とされて
いる。
1 is a sectional view showing an embodiment of a heat transfer tube with an inner groove according to the present invention. This heat transfer tube is a metal tube 10.
A large number of large ridges 12 are formed in parallel with each other on the inner surface of the large ridges 12, and between each large ridge 12, a pair of small ridges 14 parallel to the large ridges 12 are formed. It was formed. In this example, the cross section of the large ridge 12 is substantially semicircular, and the cross section of the small ridge 14 is obtuse triangular.

【0016】図2に示すように、各小突条14はそれぞ
れ隣接した大突条12に向けて傾斜されており、隣接す
る大突条12と小突条14の間には、その開口幅W2が
底幅W1以下の管状溝16が形成されている。また、小
突条14同士の間には、断面V字状のV溝18が形成さ
れている。
As shown in FIG. 2, each small ridge 14 is inclined toward the adjacent large ridge 12, and the opening width is provided between the adjacent large ridges 12 and small ridges 14. A tubular groove 16 having a width W2 of not more than the bottom width W1 is formed. Further, a V groove 18 having a V-shaped cross section is formed between the small protrusions 14.

【0017】金属管10の材質としては、従来の伝熱管
に使用されていたいかなる材質を使用してもよく、一般
にはCu,Alやこれらの合金等が使用される。また、
金属管10の外径,肉厚,全長は限定されない。
As the material of the metal tube 10, any material used in conventional heat transfer tubes may be used, and generally Cu, Al or alloys thereof are used. Also,
The outer diameter, wall thickness, and total length of the metal tube 10 are not limited.

【0018】大突条12および小突条14は、金属管1
0の軸線に対して傾斜した螺旋状であってもよいし、あ
るいは軸線と平行に延びる直線状としてもよい。螺旋状
の場合、管軸線に対する角度は30゜以下であることが
望ましい。30゜を越えると流液抵抗が増して好ましく
ない。
The large ridges 12 and the small ridges 14 are metal tubes 1
It may have a spiral shape inclined with respect to the axis of 0, or may have a straight shape extending parallel to the axis. In the case of a spiral shape, the angle with respect to the tube axis is preferably 30 ° or less. If it exceeds 30 °, the flow resistance increases, which is not preferable.

【0019】小突条14の高さT2は、大突条12の高
さT1の20〜50%であることが望ましい。20%未
満では管状溝16の深さを十分に確保できず、50%よ
り大では管状溝16が閉じてしまうおそれがあり、いず
れも蒸発促進効果が低下する。より具体的な数値として
は、例えば外径9.52mm、底肉厚0.3mm程度の
一般的な伝熱管の場合、T1は0.15〜0.3mm程
度、T2は0.03〜0.15mm程度が好適である。
The height T2 of the small ridge 14 is preferably 20 to 50% of the height T1 of the large ridge 12. If it is less than 20%, the depth of the tubular groove 16 cannot be sufficiently secured, and if it is more than 50%, the tubular groove 16 may be closed, and in any case, the effect of promoting evaporation is reduced. As more specific numerical values, for example, in the case of a general heat transfer tube having an outer diameter of 9.52 mm and a bottom wall thickness of about 0.3 mm, T1 is about 0.15 to 0.3 mm and T2 is 0.03 to 0. About 15 mm is suitable.

【0020】大突条12の形成ピッチPは、要求される
性能に応じて任意に変更してよいが、前記の一般伝熱管
の場合、0.4〜0.6mm程度が好適である。
The formation pitch P of the large ridges 12 may be arbitrarily changed according to the required performance, but in the case of the above general heat transfer tube, it is preferably about 0.4 to 0.6 mm.

【0021】管状溝16の開口幅W2は、その底幅W1
の50〜100%とされることが望ましい。50%未満
では気泡の放出が悪くなる一方、100%より大では気
泡の発生率が低下し、いずれも蒸発効率が低下する。具
体的には、前記の一般伝熱管の場合、W1は0.04〜
0.1mm程度、W2は0.02〜0.1mm程度が好
適である。
The opening width W2 of the tubular groove 16 is the bottom width W1 thereof.
It is desirable to be 50 to 100%. If it is less than 50%, the release of bubbles will be poor, while if it is more than 100%, the generation rate of bubbles will decrease, and in both cases, the evaporation efficiency will decrease. Specifically, in the case of the above general heat transfer tube, W1 is 0.04 to
About 0.1 mm, and W2 is preferably about 0.02 to 0.1 mm.

【0022】上記構成からなる内面溝付伝熱管によれ
ば、隣接する大突条12と小突条14の間に、その開口
幅W2が底幅W1以下の管状溝16が形成されているの
で、これを蒸発管として使用した場合には、図3に示す
ように管状溝16の内部に気泡が発生しやすく、これら
気泡が蒸発核として作用し、熱媒液体の蒸発を促進す
る。したがって、同一ピッチで均等な単純溝を形成した
伝熱管に比して、気化効率が高められる。
According to the heat transfer tube with internal groove having the above structure, the tubular groove 16 having the opening width W2 of not more than the bottom width W1 is formed between the adjacent large ridges 12 and small ridges 14. When this is used as an evaporation tube, bubbles tend to be generated inside the tubular groove 16 as shown in FIG. 3, and these bubbles act as evaporation nuclei to promote evaporation of the heat medium liquid. Therefore, the vaporization efficiency can be improved as compared with the heat transfer tube in which uniform simple grooves are formed at the same pitch.

【0023】また、大突条12の先端は、小突起14お
よび管状溝16よりも金属管10の内週面から突出して
いるため、この伝熱管を図4に示すように凝縮管として
使用した場合には、大突条12の先端部での熱媒液体の
液切れがよく、この部分に液膜が生じにくい。したがっ
て、同一ピッチで単純溝を形成した場合に比して、大突
条12の先端部で金属面が露出する率が高く、液膜によ
り金属と熱媒気体との熱交換が阻害されないため、熱媒
気体の凝縮効率も高められる。
Since the tip of the large ridge 12 projects from the inner surface of the metal tube 10 beyond the small projection 14 and the tubular groove 16, this heat transfer tube was used as a condenser tube as shown in FIG. In this case, the heat medium liquid is easily drained at the tip of the large ridge 12, and a liquid film is unlikely to occur at this portion. Therefore, as compared with the case where the simple grooves are formed at the same pitch, the metal surface is more exposed at the tip of the large protrusion 12, and the liquid film does not hinder the heat exchange between the metal and the heat medium gas. The condensation efficiency of the heat transfer gas can also be increased.

【0024】すなわち、本発明の内面溝付伝熱管は、同
一ピッチの単純溝付き伝熱管に比して蒸発効率および凝
縮効率をともに向上することができ、総合的な伝熱効率
が高められる。
That is, the inner grooved heat transfer tube of the present invention can improve both the evaporation efficiency and the condensation efficiency as compared with the simple grooved heat transfer tube having the same pitch, and the overall heat transfer efficiency is enhanced.

【0025】次に、図5および図6を参照して、上記伝
熱管の製造方法の一実施例を説明する。
Next, with reference to FIGS. 5 and 6, an embodiment of a method of manufacturing the heat transfer tube will be described.

【0026】この方法ではまず、図5に示すように、金
属管10の内部に第1のプラグP1を通し、金属管10
の内周面に、互いに平行に延びる多数の大突条12およ
び被分割突条14Aを交互に転造する。第1のプラグP
1の外周面には、それぞれ断面半円状をなす互いに平行
な大突条形成溝20および被分割突条形成溝22が、螺
旋状あるいはプラグ軸線と平行に交互に形成されてお
り、これにより大突条12および被分割突条14Aはそ
れぞれ断面半円状かつ螺旋状または直線状に形成され
る。
In this method, first, as shown in FIG. 5, the first plug P1 is passed through the inside of the metal tube 10 to form the metal tube 10.
A large number of large ridges 12 and divided ridges 14A extending in parallel with each other are alternately rolled on the inner peripheral surface of. First plug P
On the outer peripheral surface of 1, there are formed large ridge-forming grooves 20 and divided ridge-forming grooves 22 parallel to each other and each having a semicircular cross section, which are spirally formed or alternately arranged parallel to the plug axis. The large ridge 12 and the divided ridge 14A are each formed in a semicircular cross section and in a spiral or linear shape.

【0027】次に、図6に示すように、各大突条12に
嵌合する位置決め溝24、および各被分割突条14Aを
幅方向に2分割する分割突条26が、互いに平行かつ交
互に形成された第2のプラグP2を、大突条12に位置
決め溝24を嵌合させた状態で金属管10に通す。する
と、大突条12に沿って位置決め溝24が摺動しつつ、
分割突条26によって被分割突条14Aが幅方向に2分
割され、これら分割された部分が隣接した大突条12に
向けて傾斜して、小突条14となる。これにより、隣接
する大突条12と小突条14の間には、その開口幅が底
幅以下の管状溝16が形成される。
Next, as shown in FIG. 6, the positioning groove 24 fitted into each large ridge 12 and the dividing ridge 26 dividing each divided ridge 14A into two in the width direction are parallel to each other and alternate. The second plug P2 formed in (1) is passed through the metal tube 10 with the positioning groove 24 fitted to the large ridge 12. Then, while the positioning groove 24 slides along the large protrusion 12,
The divided ridges 26 divide the divided ridges 14A into two in the width direction, and the divided portions are inclined toward the adjacent large ridges 12 to form the small ridges 14. As a result, a tubular groove 16 having an opening width equal to or smaller than the bottom width is formed between the adjacent large ridges 12 and small ridges 14.

【0028】なお、第1プラグP1と、第2プラグP2
は、そのプラグ軸線に対する溝20,22,24,およ
び分割突条26の角度およびピッチが完全に等しい。
The first plug P1 and the second plug P2
Of the grooves 20, 22, 24 and the split ridges 26 with respect to the plug axis are completely equal in angle and pitch.

【0029】第1プラグP1と、第2プラグP2は、そ
れぞれ別個に金属管10内に通してもよいが、これらを
同一のフローティングプラグに連結し、同時に転造加工
してもよい。その場合には生産効率が高く、より好まし
い。
The first plug P1 and the second plug P2 may be separately passed through the metal tube 10, but they may be connected to the same floating plug and rolled at the same time. In that case, the production efficiency is high, which is more preferable.

【0030】上記製造方法によれば、上記のように優れ
た伝熱管が比較的容易に製造できるうえ、第2のプラグ
P2の位置決め溝24を大突条12に沿って摺動させる
ことにより、この第2のプラグP2を正確に位置決めし
つつ、各分割突条26により被分割突条14Aを2分割
して傾斜させ、小突条14および管状溝16を形成する
から、単純溝付き伝熱管と同程度まで突条のピッチや幅
を狭めることが可能で、高い伝熱性能が得られる。
According to the above manufacturing method, the excellent heat transfer tube can be manufactured relatively easily as described above, and the positioning groove 24 of the second plug P2 is slid along the large ridge 12, While accurately positioning the second plug P2, the split projecting ridges 26 divide the split projecting ridges 14A into two parts to incline and form the small projecting ridges 14 and the tubular grooves 16. Therefore, the simple grooved heat transfer tube It is possible to narrow the pitch and width of the ridges to the same extent as, and obtain high heat transfer performance.

【0031】なお、本発明の伝熱管は、上記製造方法の
みによって製造されるものではなく、例えば電縫管方式
によって製造してもよい。また、突条12,14の断面
形状も必要に応じて変更してよい。
The heat transfer tube of the present invention is not manufactured by the above manufacturing method alone, but may be manufactured by, for example, an electric resistance welded pipe method. Moreover, the cross-sectional shape of the protrusions 12 and 14 may be changed as necessary.

【0032】[0032]

【実験例】次に、実験例を挙げて本発明の効果を実証す
る。 (実験例1)開口幅0.4mm、深さ0.15mmの断
面半楕円形をなす大突条形成溝、および開口幅0.11
mmかつ深さ0.04mmの断面半楕円形をなす小突条
形成溝が、平行かつ交互にそれぞれピッチ0.49mm
でリード角18゜方向に形成された第1の圧延ロールを
使用して、厚さ10mmの銅板を圧延し、その表面に、
図7に示すように前記各溝と相補的な断面形状の大突条
および小突条を形成した。
[Experimental Example] Next, the effect of the present invention will be demonstrated with reference to an experimental example. (Experimental Example 1) Large ridge forming groove having a semi-elliptical cross section with an opening width of 0.4 mm and a depth of 0.15 mm, and an opening width of 0.11
mm and depth of 0.04 mm, semi-elliptical cross-section, small ridge forming grooves are 0.49 mm in parallel and alternately.
Using a first rolling roll formed in the direction of the lead angle of 18 °, a copper plate having a thickness of 10 mm is rolled and the surface thereof is
As shown in FIG. 7, a large ridge and a small ridge having a cross-sectional shape complementary to each groove were formed.

【0033】次に、この突条形成面に、図8に示す断面
形状および寸法の第2の圧延ロールを使用し、前記大突
条をそれぞれ図示の溝に収めた状態で圧延した。図9
は、得られた銅板の断面拡大写真を模写した断面拡大図
であり、良好な形状の管状溝が形成されていることがわ
かる。なお、各部の寸法は、前記実施例での寸法表示に
したがうと、W1=0.08mm、W2=0.08mm
であった。
Then, a second rolling roll having a cross-sectional shape and dimensions shown in FIG. 8 was used on the ridge forming surface, and the large ridges were rolled in the grooves shown in the drawing. Figure 9
[Fig. 3] is an enlarged cross-sectional view of an enlarged cross-sectional photograph of the obtained copper plate, and it can be seen that a tubular groove having a good shape is formed. The dimensions of each part are W1 = 0.08 mm and W2 = 0.08 mm according to the dimension display in the above embodiment.
Met.

【0034】(実験例2)実験例1と同じ第1および第
2の圧延ロールを使用し、厚さ10mmの銅製の板材を
前記同様に圧延した。圧延後の断面形状は実験例1と同
じである。
(Experimental Example 2) Using the same first and second rolling rolls as in Experimental Example 1, a copper plate material having a thickness of 10 mm was rolled in the same manner as above. The cross-sectional shape after rolling is the same as in Experimental Example 1.

【0035】得られた板材を、図10および図11に示
すように測定装置にセットし、蒸発試験および凝縮試験
を行った。この装置は、サンプルである板材の両面を箱
型の容器30,32で液密に覆い、容器30の内部には
サンプルの溝無し面に沿って温水(または冷水)を一定
流量で長手方向に流すとともに、容器32の内部にはサ
ンプルの溝形成面に沿って冷媒(フレオンR−11)を
長手方向に流すものである。サンプルの寸法は、厚さ1
0mm×板幅22mm×長さ50mm、容器30,32
の寸法は厚さ5mm×幅22mm×長さ50mmとし
た。
The obtained plate material was set in a measuring device as shown in FIGS. 10 and 11, and an evaporation test and a condensation test were conducted. This device liquid-tightly covers both sides of a plate material as a sample with box-shaped containers 30 and 32, and inside the container 30 warm water (or cold water) is flowed along a non-grooved surface of the sample at a constant flow rate in the longitudinal direction. In addition to flowing, the refrigerant (Freon R-11) flows in the longitudinal direction inside the container 32 along the groove forming surface of the sample. Sample size is thickness 1
0 mm x plate width 22 mm x length 50 mm, containers 30, 32
The dimensions were 5 mm in thickness x 22 mm in width x 50 mm in length.

【0036】そして、温冷水の流量、温冷水の出口・入
口温度、冷媒の流量、冷媒の出口・入口温度、冷媒の出
口・入口圧力をそれぞれ測定した。実験条件は以下の通
りである。
Then, the flow rate of the hot / cold water, the outlet / inlet temperature of the hot / cold water, the flow rate of the refrigerant, the outlet / inlet temperature of the refrigerant, and the outlet / inlet pressure of the refrigerant were measured. The experimental conditions are as follows.

【0037】蒸発試験 冷媒側蒸発温度:35℃(0.
405kg/cm2G) 温水側入口温度:50℃ 凝縮試験 冷媒側凝縮温度:70℃(3.098kg/
cm2G) 冷水側入口温度:50℃
Evaporation test Refrigerant side evaporation temperature: 35 ° C. (0.
405 kg / cm 2 G) Hot water inlet temperature: 50 ° C Condensation test Refrigerant condensation temperature: 70 ° C (3.098 kg /
cm 2 G) Cold water inlet temperature: 50 ° C

【0038】一方、比較例として、開口幅0.4mm、
深さ0.15mmの断面半楕円形をなす溝がピッチ0.
49mmでリード角18゜方向に形成された圧延ロール
を使用し、前記と同じ銅板を圧延し、比較例を作成し
た。この比較例を前記試験装置にセットし、前記と同じ
条件でそれぞれ蒸発および凝縮効率を調べた。
On the other hand, as a comparative example, an opening width of 0.4 mm,
Grooves having a semi-elliptical cross section with a depth of 0.15 mm have a pitch of 0.
A comparative roll was prepared by rolling the same copper plate as described above using a rolling roll having a lead angle of 18 ° at 49 mm. This comparative example was set in the test device, and the evaporation and condensation efficiencies were examined under the same conditions as above.

【0039】このようにして得られた実験例での熱交換
効率を、比較例での熱交換効率に対する比率で表わした
結果を、図12および図13のグラフに示す。これらの
グラフから明らかなように、実験例の板材では良好な熱
交換効率が得られた。また、これらの性能は管状に成形
した後も変化しないから、本発明の伝熱管によれば高い
熱交換効率が得られることが推測できる。
The results of the heat exchange efficiency in the experimental example thus obtained expressed as a ratio to the heat exchange efficiency in the comparative example are shown in the graphs of FIGS. 12 and 13. As is clear from these graphs, good heat exchange efficiency was obtained with the plate material of the experimental example. Further, since these performances do not change even after being formed into a tubular shape, it can be inferred that the heat transfer tube of the present invention can obtain high heat exchange efficiency.

【0040】[0040]

【発明の効果】以上説明したように、本発明の内面溝付
伝熱管によれば、隣接する大突条と小突条の間に、その
開口幅が底幅以下の管状溝が形成されているので、これ
を蒸発管として使用した場合には、管状溝の内部に気泡
が発生しやすく、これら気泡が蒸発核として作用し、熱
媒液体の蒸発を促進する。したがって、同一ピッチで単
純溝を形成した伝熱管に比して、気化効率が高められ
る。
As described above, according to the heat transfer tube with inner groove of the present invention, the tubular groove whose opening width is equal to or less than the bottom width is formed between the adjacent large ridges and small ridges. Therefore, when this is used as an evaporation tube, bubbles are likely to be generated inside the tubular groove, and these bubbles act as evaporation nuclei to promote evaporation of the heat transfer medium liquid. Therefore, as compared with the heat transfer tube in which the simple grooves are formed at the same pitch, the vaporization efficiency is improved.

【0041】また、大突条の先端は、小突起および管状
溝よりも金属管の内週面から突出しているため、この伝
熱管を凝縮管として使用した場合には、大突条の先端部
での熱媒液体の液切れがよく、この部分に液膜が生じに
くい。したがって、同一ピッチで単純溝を形成した場合
に比して、大突条の先端部で金属面が露出する率が高
く、液膜により金属と熱媒気体との熱交換が阻害されな
いため、熱媒気体の凝縮効率も高められる。
Further, since the tip of the large ridge protrudes from the inner surface of the metal tube rather than the small protrusion and the tubular groove, when this heat transfer tube is used as a condenser tube, the tip of the large ridge is formed. The heat medium liquid runs out easily in this case, and a liquid film does not easily form in this part. Therefore, as compared with the case where the simple grooves are formed at the same pitch, the metal surface is more exposed at the tip of the large ridge, and the liquid film does not hinder the heat exchange between the metal and the heating medium gas. The condensation efficiency of the medium gas is also increased.

【0042】一方、本発明の製造方法は、上記のように
優れた伝熱管が比較的容易に製造できるうえ、第2のプ
ラグの位置決め溝を大突条に沿って摺動させることによ
り、この第2のプラグを正確に位置決めしつつ、各分割
突条により被分割突条を2分割して傾斜させ、小突条お
よび管状溝を形成するから、単純溝付き伝熱管と同程度
まで突条のピッチや幅を狭めることが可能で、伝熱管の
伝熱性能が向上できる。
On the other hand, according to the manufacturing method of the present invention, the excellent heat transfer tube can be manufactured relatively easily as described above, and the positioning groove of the second plug is slid along the large ridge so that While accurately positioning the second plug, the divided ridges are divided into two and inclined by each divided ridge to form the small ridge and the tubular groove, so that the ridge has the same extent as a simple grooved heat transfer tube. The pitch and width of the heat transfer tube can be narrowed, and the heat transfer performance of the heat transfer tube can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わる内面溝付伝熱管の一実施例の断
面図である。
FIG. 1 is a cross-sectional view of an embodiment of a heat transfer tube with an inner groove according to the present invention.

【図2】同伝熱管の断面拡大図である。FIG. 2 is an enlarged cross-sectional view of the heat transfer tube.

【図3】蒸発管として使用した場合の管状溝の作用を示
す説明図である。
FIG. 3 is an explanatory view showing the action of a tubular groove when used as an evaporation pipe.

【図4】凝縮管として使用した場合の大突条の作用を示
す説明図である。
FIG. 4 is an explanatory view showing the action of a large ridge when used as a condenser tube.

【図5】本発明の製造方法の一実施例において第1のプ
ラグによる転造過程を示す断面拡大図である。
FIG. 5 is an enlarged cross-sectional view showing a rolling process using the first plug in the embodiment of the manufacturing method of the present invention.

【図6】同実施例において第2のプラグによる転造過程
を示す断面拡大図である。
FIG. 6 is an enlarged cross-sectional view showing a rolling process using a second plug in the example.

【図7】本発明の実験例1,2において第1の圧延後の
板材の断面拡大図である。
FIG. 7 is an enlarged cross-sectional view of the plate material after the first rolling in Experimental Examples 1 and 2 of the present invention.

【図8】本発明の実験例1,2で使用した第2の圧延ロ
ールの断面拡大図である。
FIG. 8 is an enlarged cross-sectional view of a second rolling roll used in Experimental Examples 1 and 2 of the present invention.

【図9】本発明の実験例1で得られた板材の断面拡大図
である。
FIG. 9 is an enlarged cross-sectional view of a plate material obtained in Experimental Example 1 of the present invention.

【図10】本発明の実験例2の熱交換効率測定装置の要
部を示す断面図である。
FIG. 10 is a cross-sectional view showing the main parts of a heat exchange efficiency measurement device of Experimental Example 2 of the present invention.

【図11】同熱交換効率測定装置の要部を示す平面図で
ある。
FIG. 11 is a plan view showing a main part of the heat exchange efficiency measurement device.

【図12】実験例2で得られた板材の蒸発試験結果を示
すグラフである。
FIG. 12 is a graph showing the results of an evaporation test of the plate material obtained in Experimental Example 2.

【図13】実験例2で得られた板材の凝縮試験結果を示
すグラフである。
FIG. 13 is a graph showing the results of a condensation test of the plate material obtained in Experimental Example 2.

【図14】従来の内面溝付伝熱管の一例を示す断面図で
ある。
FIG. 14 is a cross-sectional view showing an example of a conventional heat transfer tube with an inner groove.

【符号の説明】[Explanation of symbols]

10 金属管 12 大突条 14 小突条 14A 被分割突条 16 管状溝 18 V溝 P1 第1のプラグ P2 第2のプラグ 20 大突条形成溝 22 被分割突条形成溝 24 位置決め溝 26 分割突条 W1 管状溝の底幅 W2 管状溝の開口幅 P 大突条のピッチ 10 metal tube 12 large ridge 14 small ridge 14A split ridge 16 tubular groove 18 V groove P1 first plug P2 second plug 20 large ridge forming groove 22 split ridge forming groove 24 positioning groove 26 split Ridge W1 Bottom width of tubular groove W2 Opening width of tubular groove P Large ridge pitch

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 金属管の内面に、互いに一定間隔を空け
て平行に多数の大突条が形成されるとともに、各大突条
の間には大突条と平行に各一対の小突条が形成され、こ
れら小突条がそれぞれ隣接した大突条に向けて傾斜され
ていることにより、隣接する大突条と小突条の間にはそ
の開口幅が底幅以下の管状溝が形成されていることを特
徴とする内面溝付伝熱管。
1. A large number of large ridges are formed on an inner surface of a metal pipe in parallel at regular intervals, and a pair of small ridges are formed between the large ridges in parallel with the large ridges. Is formed and these small ridges are respectively inclined toward the adjacent large ridges, a tubular groove whose opening width is equal to or smaller than the bottom width is formed between the adjacent large ridges and small ridges. Heat transfer tube with internal groove, characterized in that
【請求項2】 互いに平行な大突条形成溝および被分割
突条形成溝が交互に形成された第1のプラグを金属管に
通し、この金属管の内面に、互いに平行に延びる多数の
大突条および被分割突条を交互に形成した後、さらに前
記金属管に、前記各大突条に嵌合する位置決め溝、およ
び前記各被分割突条を幅方向に2分割する分割突条が互
いに平行かつ交互に形成された第2のプラグを通し、大
突条に沿って位置決め溝を摺動させつつ、分割突条によ
って被分割突条を幅方向に2分割し、隣接した大突条に
向けて傾斜する小突条を形成するとともに、隣接する大
突条と小突条の間に、その開口幅が底幅以下の管状溝を
形成することを特徴とする内面溝付伝熱管の製造方法。
2. A first plug, in which large ridge forming grooves and divided ridge forming grooves which are parallel to each other are alternately formed, is inserted into a metal pipe, and a large number of large ridges extending parallel to each other are formed on an inner surface of the metal pipe. After alternately forming the protruding ridges and the divided ridges, a positioning groove that fits into each of the large ridges and a dividing ridge that divides each of the divided ridges into two in the width direction are further formed on the metal pipe. While passing the second plugs formed in parallel and alternately with each other and sliding the positioning groove along the large ridge, the divided ridge divides the divided ridge into two in the width direction and the adjacent large ridges are formed. Of the inner surface grooved heat transfer tube characterized in that a tubular groove having an opening width equal to or less than the bottom width is formed between the adjacent large ridges and small ridges while forming a small ridge inclined toward Production method.
JP20203691A 1991-08-12 1991-08-12 Heat transfer pipe with inner surface groove and its manufacturing method Withdrawn JPH074884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20203691A JPH074884A (en) 1991-08-12 1991-08-12 Heat transfer pipe with inner surface groove and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20203691A JPH074884A (en) 1991-08-12 1991-08-12 Heat transfer pipe with inner surface groove and its manufacturing method

Publications (1)

Publication Number Publication Date
JPH074884A true JPH074884A (en) 1995-01-10

Family

ID=16450874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20203691A Withdrawn JPH074884A (en) 1991-08-12 1991-08-12 Heat transfer pipe with inner surface groove and its manufacturing method

Country Status (1)

Country Link
JP (1) JPH074884A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070055270A (en) * 2005-11-25 2007-05-30 현대자동차주식회사 Structure of cooling water passage for engine
JP2009068773A (en) * 2007-09-13 2009-04-02 Furukawa Electric Co Ltd:The Heat transfer tube
US8091615B2 (en) 2005-10-25 2012-01-10 Hitachi Cable, Ltd. Heat transfer pipe with grooved inner surface
US11433623B2 (en) 2018-06-11 2022-09-06 The Yokohama Rubber Co., Ltd. Rubber sheet member joining device and method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8091615B2 (en) 2005-10-25 2012-01-10 Hitachi Cable, Ltd. Heat transfer pipe with grooved inner surface
KR20070055270A (en) * 2005-11-25 2007-05-30 현대자동차주식회사 Structure of cooling water passage for engine
JP2009068773A (en) * 2007-09-13 2009-04-02 Furukawa Electric Co Ltd:The Heat transfer tube
US11433623B2 (en) 2018-06-11 2022-09-06 The Yokohama Rubber Co., Ltd. Rubber sheet member joining device and method

Similar Documents

Publication Publication Date Title
JP2730824B2 (en) Heat transfer tube with inner groove and method of manufacturing the same
KR102068488B1 (en) Evaporation heat transfer tube
US7267166B2 (en) Grooved tubes for heat exchangers that use a single-phase fluid
EP1502067A1 (en) Heat transfer tubes, including methods of fabrication and use thereof
US7418848B2 (en) High-performance and high-efficiency rolled fin tube and forming disk therefor
JP2010256000A (en) Internally-grooved pipe for heat pipe, and heat pipe
JP2005195192A (en) Heat transfer pipe with grooved inner face
JPS60216190A (en) Heat transfer pipe and manufacture thereof
JPH074884A (en) Heat transfer pipe with inner surface groove and its manufacturing method
JP2842810B2 (en) Heat transfer tube with internal groove
JPS61265499A (en) Heat transfer tube
JPH09101093A (en) Heat transfer pipe with inner surface groove
JPH085278A (en) Heat transfer tube with inner surface grooves
JPS6029594A (en) Heat-transmitting pipe and manufacture thereof
JPH05106991A (en) Heat transfer tube with inner surface groove and manufacture thereof
JP2785851B2 (en) Heat exchanger tubes for heat exchangers
JP2701956B2 (en) ERW pipe for heat transfer
JP2912826B2 (en) Heat transfer tube with internal groove
JP2003287392A (en) Boiling type heat transfer pipe
JP5243831B2 (en) Inner grooved tube for heat pipe and heat pipe
JP3145277B2 (en) Heat transfer tube with internal groove
JP2010133581A (en) Inner helically grooved tube for heat pipe and the heat pipe
JP3130964B2 (en) Heat transfer tube with inner groove and method of manufacturing the same
JPS5938596A (en) Heat exchanger
JP2922824B2 (en) Heat transfer tube with internal groove

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981112