JPS61265499A - Heat transfer tube - Google Patents

Heat transfer tube

Info

Publication number
JPS61265499A
JPS61265499A JP10559885A JP10559885A JPS61265499A JP S61265499 A JPS61265499 A JP S61265499A JP 10559885 A JP10559885 A JP 10559885A JP 10559885 A JP10559885 A JP 10559885A JP S61265499 A JPS61265499 A JP S61265499A
Authority
JP
Japan
Prior art keywords
tube
heat transfer
pitch
heat
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10559885A
Other languages
Japanese (ja)
Inventor
Toru Arimoto
有本 徹
Kazuo Tanaka
和雄 田中
Tatsuo Yoshisue
吉末 龍夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP10559885A priority Critical patent/JPS61265499A/en
Publication of JPS61265499A publication Critical patent/JPS61265499A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve overall heat-transfer coefficient without increasing pressure loss in the tube by a method wherein the heat transfer tube is provided with a multitude of spiral recessed grooves on the inner surface there of and continuous or discontinuous wedge shape protuberances on the outer surface thereof with predetermined heights and pitches respectively. CONSTITUTION:The tube 1 is provided with a multitude of spiral protuberances 2 continuously or discontinuously on the outer surface thereof and a multitude of spiral grooves 3 on the inner surface thereof continuously. The protuberance 2 is formed so as to have the wedge shape section, the height (h0) of 0.1-8mm and the pitch P0 of 0.5-8mm. The groove 3 is formed so as to have a truncated triangular section, the depth of groove (h1) of 0.05-1.0mm and the pitch P1 of 0.2-10mm. According to this constitution, the overall heat-transfer coefficient between the inside and outside of the tube may be increased without increasing the pressure loss of heat medium in the tube, whereby the heat transfer characteristic of the heat exchanger may be improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は伝熱管の改良に関し、特に管内の冷媒圧力損失
を高めることなく、管内の冷媒と管外の流体間の熱通過
率を向上せしめたものである。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to improvements in heat exchanger tubes, and in particular to improvements in the heat transfer rate between the refrigerant inside the tubes and the fluid outside the tubes without increasing the refrigerant pressure loss inside the tubes. It is.

従来の技術 管内でフレオン等の冷媒を沸騰又は凝縮させて、管外の
液体との間で熱交換させる伝熱管としては、第5図に示
すように平滑管(4)内に星型押出し材(5)ヲ嵌大し
たインナーフィンチューブや、第6図に示すコルゲート
チューブ(6)が知うれている。
Conventional technology A heat exchanger tube that boils or condenses a refrigerant such as Freon inside the tube and exchanges heat with a liquid outside the tube is made of a star-shaped extruded material inside a smooth tube (4) as shown in Figure 5. (5) An enlarged inner fin tube and a corrugated tube (6) shown in FIG. 6 are well known.

発明が解決しようとする問題5点 上記伝熱管は平滑管と比べて熱通過率を高めると管内の
冷媒流通抵抗が増大して圧力損失が高くなり、管内の冷
媒流通抵抗を低くすると熱通過率があまり向上しない欠
点があつ友。
5 Problems to be Solved by the Invention In the above heat transfer tubes, when the heat transfer rate is increased compared to a smooth tube, the refrigerant flow resistance inside the tube increases and the pressure loss increases, and when the refrigerant flow resistance inside the tube is lowered, the heat transfer rate increases. A friend with flaws who doesn't improve much.

問題点を解決するための手段 本発明はこれに鑑み種々検討の結果、管内の冷媒圧力損
失をそれほど高めることなく、熱通過率を向上すること
ができる伝熱管を開発したもので、管外面に多数の螺旋
状突起と管内面に多数の螺旋状凹溝を一体に設け、該管
内で冷媒を沸騰又は凝縮させて管外の流体との間で熱交
換させる伝熱管において、管内面の溝深さを0.05〜
1.0+m++、溝ピッチを0.2〜1.0mmとし、
管外面の突起を連続又は不連続として突起の断面をくさ
び状とし、突起の高さヲ0.1〜8m、突起ピッチ’i
o、5〜8mとしたことを特徴とするものである。
Means for Solving the Problems In view of this, the present invention has developed a heat transfer tube that can improve the heat transfer rate without significantly increasing the refrigerant pressure loss inside the tube. In a heat transfer tube in which a large number of spiral protrusions and a large number of spiral grooves are integrally provided on the inner surface of the tube, and the refrigerant is boiled or condensed within the tube to exchange heat with the fluid outside the tube, the depth of the groove on the inner surface of the tube is Sao 0.05~
1.0+m++, groove pitch 0.2-1.0mm,
The protrusions on the outer surface of the tube are continuous or discontinuous, and the cross section of the protrusions is wedge-shaped, the height of the protrusions is 0.1 to 8 m, and the protrusion pitch is 'i'.
o, 5 to 8 m.

即ち本発明は第1図に示すように管(1)の外面に多数
の螺旋状突起(2)を連続又は不連続に形成れており、
突起(2)は第2図に示すように突起(2)の断面をく
さび状とし、その高さくh0〕を0.1〜Bmsピッチ
(po)を0.5〜8瓢とする。ま念溝(3)は第3図
0)(ロ)(ハ)に示すように断面形状を三角形状や台
形状とし、その溝深さくb+)’i−0,05〜1.0
msピッチ(pi)を0.2〜1.0mとしたものであ
る。
That is, in the present invention, as shown in FIG. 1, a large number of spiral protrusions (2) are continuously or discontinuously formed on the outer surface of a tube (1).
As shown in FIG. 2, the protrusion (2) has a wedge-shaped cross section, and its height h0] is 0.1 to Bms and the pitch (po) is 0.5 to 8 gourds. The main groove (3) has a triangular or trapezoidal cross-sectional shape as shown in Figure 3 0) (B) and (C), and the groove depth is b+)'i-0.05 to 1.0.
The ms pitch (pi) is 0.2 to 1.0 m.

作用 本発明伝熱管は上記の如く管外面に多数の螺旋状突起と
管内面に多数の螺旋状溝を形成して、管内の冷媒圧力損
失を高めることなく、管内の冷媒と管外の流体間の熱通
過率を向上せしめたもので、管外面の突起の高さを0,
1〜8 wasピッチを0.5〜8mと限定(1,たの
に、突起の高さが0.1−未満でピッチが8璽を越える
と、管外面が平滑面に近くなり、熱通過率を高める本発
明の効果が得られず、高さが8■を越え、ピッチが0.
5−未満では、突起と突起の間隙が狭く突起の高さが高
くなるため、管外流体が突起間に入り込んで流れにくく
なり、熱通過率を高める効果が失なわれるためである。
Function: As described above, the heat transfer tube of the present invention has a large number of spiral protrusions on the outer surface of the tube and a large number of spiral grooves on the inner surface of the tube, so that there is no increase in pressure loss between the refrigerant inside the tube and the fluid outside the tube. The height of the protrusion on the outer surface of the tube can be reduced to 0.
1 to 8 was pitch is limited to 0.5 to 8 m (1, However, if the height of the protrusions is less than 0.1 and the pitch exceeds 8 m, the outer surface of the tube will become close to a smooth surface and the heat passage will be reduced.) The effect of the present invention, which increases the ratio, cannot be obtained, and the height exceeds 8cm and the pitch is 0.
This is because if it is less than 5-, the gap between the protrusions becomes narrow and the height of the protrusions becomes high, so that the extratubular fluid enters between the protrusions and becomes difficult to flow, and the effect of increasing the heat transfer rate is lost.

尚突起の高さ及びピッチは、上記範囲内で管外流体の条
件により選択決定することが望ましい。
It is preferable that the height and pitch of the projections be selected and determined within the above range depending on the conditions of the extraluminal fluid.

また管内面の溝の深さ’io、05〜1.0鱈、ピッチ
を0.2〜1.0+mと限定したのは、溝の深さが0.
05w未満、ピッチが0.2m未満では管内面が平滑面
に近くなり熱通過率の向上効果が得られも、管内冷媒の
圧力損失が大きくなり、高性能伝熱管としてのメ1]ッ
トが失なわれるためである。開溝の深さ及びピッチは上
記範囲内で管内冷媒の条件により選択決定することが望
ましい。
In addition, the depth of the groove on the inner surface of the tube was limited to 0.05 to 1.0 m, and the pitch was limited to 0.2 to 1.0 + m.
If the pitch is less than 0.05w and the pitch is less than 0.2m, the inner surface of the tube will be close to a smooth surface and the heat transfer rate will be improved. Because it is lost. It is desirable that the depth and pitch of the opening grooves be selected and determined within the above range depending on the conditions of the refrigerant in the pipe.

また管内面の溝のねじれ角度は16〜35°とすること
が望ましく、この範囲において管内の冷媒の沸騰、凝縮
のバランスがよく、熱通過率を著しく向上することがで
きる。
Further, it is desirable that the twist angle of the grooves on the inner surface of the tube be 16 to 35 degrees, and within this range, boiling and condensation of the refrigerant inside the tube are well balanced, and the heat transfer rate can be significantly improved.

実施例(1) りん脱酸銅からなる外径12.7m、内径11.46露
の管外面に高さ1.59mの断面くさび状の螺旋状突起
をピッチ1.34■で多数形放し、管内面に深さ0.2
簡の第3図(ロ)に示す台形状溝をねじれ角18°+、
。ピッチQ、53mmで多数螺旋状に形成した本発明伝
熱管について熱通過率比と管内冷媒圧力損失比を測定し
た。その結果をりん酸銅からなる外径15.88mm、
肉厚0.8m+の管周面に深さW=1.30■の溝f 
P c = 8 ttmのピッチで螺旋状に形成し几第
6図に示すコルゲート管、りん脱酸銅からなる外径15
.88 mm、内径14.28■の平滑管内に10枚の
フィンを放射状に設けたアルミ押出材を嵌入しまた第5
図に示すインナーフィンチューブ及びりん脱酸銅からな
る直径15.813+m、内径14.28m+aの平滑
管と比較して第4図(イ)(ロ)(ハ)に示す。
Example (1) On the outer surface of a tube made of phosphorus-deoxidized copper with an outer diameter of 12.7 m and an inner diameter of 11.46 mm, a large number of spiral protrusions with a wedge-shaped cross section of 1.59 m in height were released at a pitch of 1.34 square meters, Depth 0.2 on the inner surface of the tube
The trapezoidal groove shown in Fig. 3 (b) of the simple is made with a helix angle of 18° +,
. The heat transfer rate ratio and the refrigerant pressure loss ratio in the tubes were measured for the heat transfer tubes of the present invention formed in multiple spiral shapes with a pitch Q of 53 mm. The result was an outer diameter of 15.88 mm made of copper phosphate,
Groove f with depth W=1.30■ on the circumferential surface of the pipe with wall thickness 0.8m+
A corrugated pipe formed spirally with a pitch of P c = 8 ttm and shown in Fig. 6, made of phosphorus-deoxidized copper and having an outer diameter of 15
.. An extruded aluminum material with 10 radially arranged fins is fitted into a smooth tube with an inner diameter of 88 mm and an inner diameter of 14.28 mm.
A comparison is shown in FIG. 4 (a), (b), and (c) with the inner fin tube shown in the figure and a smooth tube made of phosphorus-deoxidized copper with a diameter of 15.813+ m and an inner diameter of 14.28 m+a.

熱通過率比と管内冷媒圧力損失比の測定には対交流型熱
交換器を用い、管内冷媒にはフレオンR−22を使用し
1、管外冷却水には水を用いで行ない平滑管の特性を1
として示した。
To measure the heat transfer rate ratio and refrigerant pressure loss ratio in the pipe, a counter-current heat exchanger was used, Freon R-22 was used as the refrigerant in the pipe, and water was used as the cooling water outside the pipe. Characteristics 1
It was shown as

第4図(イ)は管内蒸発による冷媒流量と熱通過率比の
関係を示し、第4図(ロ)は管内蒸発による冷媒流量と
管内圧力損失比の関係を示し、第4図(ハ)は管内凝縮
による冷媒流量と熱通過率比の関係を示すもので、図中
側れも(a)は本発明伝熱管の特性、(b)はコルゲー
ト管の特性、(C)はインナーフィンチューブの特性、
(d)は平滑管の特性全示す。なお、第4図(イ)(ロ
)e→の縦軸は平滑管の特性(d)t−1とした場合の
比である。
Figure 4 (a) shows the relationship between the refrigerant flow rate due to in-pipe evaporation and the heat transfer rate ratio, Figure 4 (b) shows the relationship between the refrigerant flow rate and in-pipe pressure loss ratio due to in-pipe evaporation, and Figure 4 (c) shows the relationship between the refrigerant flow rate due to condensation inside the tube and the heat transfer rate ratio. In the figure, (a) is the characteristic of the heat transfer tube of the present invention, (b) is the characteristic of the corrugated tube, and (C) is the characteristic of the inner fin tube. characteristics,
(d) shows all the characteristics of a smooth tube. Note that the vertical axes in FIGS. 4(a) and 4(b) e→ are the ratios when the smooth tube characteristics (d) are taken as t-1.

図から明らかなように本発明伝熱管(a)は他の従来の
伝熱管(′b)の平滑管(d)に近い冷媒圧力損失比で
、はるかに高い熱通過率比を示し、従来の伝熱管と比較
し特性がはるかに優れていることが判る。
As is clear from the figure, the heat exchanger tube (a) of the present invention has a refrigerant pressure loss ratio close to that of the smooth tube (d) of the other conventional heat exchanger tube ('b), and a much higher heat transfer rate ratio than that of the conventional heat exchanger tube ('b). It can be seen that the characteristics are far superior compared to heat exchanger tubes.

実施例(2) 実施例(1) Kおける4種類の伝熱管を用いてシェル
アンドチューブ式熱交換器を組立て、同一条件で熱交換
能を比較した。その結果を第1表に示す。
Example (2) Example (1) A shell-and-tube heat exchanger was assembled using four types of heat exchanger tubes, and the heat exchange performance was compared under the same conditions. The results are shown in Table 1.

第1表 平滑管   11 インナーフィンチューブ   1.4    1.3コ
ルゲート管      1.3   1.4本発明伝熱
管      2.2   2.0同第1表は平滑管の
熱交換能を1として比較したもので、本発明伝熱管は従
来の伝熱管の何れよりもはるかに優れていることが判る
Table 1 Smooth tube 11 Inner fin tube 1.4 1.3 Corrugated tube 1.3 1.4 Heat exchanger tube of the present invention 2.2 2.0 Table 1 compares the heat exchange capacity of smooth tubes assuming 1 It can be seen that the heat exchanger tube of the present invention is far superior to any of the conventional heat exchanger tubes.

発明の効果 本発明によれば管内冷媒圧力損失を高めることなく、管
内と管外の熱通過率を著しく向上し得るもので、熱交換
器に使用して伝熱特性全向上し、機器の小型化軽量化を
可能にする等工業上顕著な効果を奏するものである。
Effects of the Invention According to the present invention, the heat transfer rate between the inside and outside of the pipe can be significantly improved without increasing the pressure loss of the refrigerant inside the pipe, and when used in a heat exchanger, the heat transfer characteristics can be completely improved, and the size of the equipment can be reduced. This has significant industrial effects such as making it possible to reduce weight and weight.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明伝熱管の一例を一部切欠いて示す斜視図
、第2図は本発明伝熱管の外面突起の一例を示す側断面
図、第3図(f)(ロ)(ハ)は本発明伝熱管の内面溝
の形状を示すもので、(イ)は三角形状の溝の断面図、
(ロ)(ハ)は台形状の溝の断面図、第4図(イ)(ロ
)(ハ)は本発明伝熱管の通過率比と管内冷媒圧力損失
比の測定結果を従来伝熱管と比較して示すもので、(イ
)は管内蒸発における冷媒流量と熱通過率比、(ロ)は
管内蒸発における管内圧力損失比、f→は管内凝縮にお
ける熱通過率比の関係図、第5図は従来の伝熱管用イン
ナーフィンチューブの一例を示す斜視図、第6図は従来
の伝熱管用コルゲートチューブの一例を示す斜視図であ
る。 1、管     2.突起 3、溝     4.平滑管 5、星型押出材 6.コルゲートチューブ第1図   
 第2図 第3図 第4図 (イ) 玲穫這1(kg/h) ン1諭°句[真La1(シ(9/旧 軒u1夙牽比(到千滑菅) ・手続ネrli正書 (自発) 昭和61年3月27日
Fig. 1 is a partially cutaway perspective view of an example of the heat exchanger tube of the present invention, Fig. 2 is a side sectional view showing an example of the external protrusions of the heat exchanger tube of the present invention, and Fig. 3 (f) (b) (c). shows the shape of the inner groove of the heat exchanger tube of the present invention, (a) is a cross-sectional view of the triangular groove;
(b) and (c) are cross-sectional views of trapezoidal grooves, and Figure 4 (a), (b), and (c) show the measurement results of the passage rate ratio and in-pipe refrigerant pressure loss ratio of the heat exchanger tube of the present invention and those of the conventional heat exchanger tube. This shows a comparison: (a) is the refrigerant flow rate and heat transfer rate ratio in tube evaporation, (b) is the tube pressure loss ratio in tube evaporation, and f→ is the relationship diagram between the heat transfer rate ratio in tube condensation. This figure is a perspective view showing an example of a conventional inner fin tube for heat exchanger tubes, and FIG. 6 is a perspective view showing an example of a conventional corrugated tube for heat exchanger tubes. 1. Pipe 2. Protrusion 3, groove 4. Smooth tube 5, star-shaped extrusion material 6. Corrugated tube diagram 1
Fig. 2 Fig. 3 Fig. 4 (a) Reiku 1 (kg/h) Original text (spontaneous) March 27, 1986

Claims (1)

【特許請求の範囲】[Claims] 管外面に多数の螺旋状突起と、管内面に多数の螺旋状凹
溝を一体に設け、該管内で冷媒を沸騰又は凝縮させて管
外の液体との間で熱交換させる伝熱管において、管内面
の溝深さを0.05〜1.0mm、溝ピッチを0.2〜
1.0mmとし、管外面の突起を連続又は不連続として
突起の断面をくさび状とし、突起の高さを0.1〜8m
m、突起ピッチを0.5〜8mmとしたことを特徴とす
る伝熱管。
A heat exchanger tube that has a large number of spiral protrusions on the outer surface of the tube and a large number of spiral grooves on the inner surface of the tube, and boils or condenses a refrigerant within the tube to exchange heat with a liquid outside the tube. The groove depth on the surface is 0.05~1.0mm, the groove pitch is 0.2~
1.0 mm, the protrusion on the outer surface of the tube is continuous or discontinuous, the cross section of the protrusion is wedge-shaped, and the height of the protrusion is 0.1 to 8 m.
m, a heat exchanger tube characterized in that the protrusion pitch is 0.5 to 8 mm.
JP10559885A 1985-05-17 1985-05-17 Heat transfer tube Pending JPS61265499A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10559885A JPS61265499A (en) 1985-05-17 1985-05-17 Heat transfer tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10559885A JPS61265499A (en) 1985-05-17 1985-05-17 Heat transfer tube

Publications (1)

Publication Number Publication Date
JPS61265499A true JPS61265499A (en) 1986-11-25

Family

ID=14411928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10559885A Pending JPS61265499A (en) 1985-05-17 1985-05-17 Heat transfer tube

Country Status (1)

Country Link
JP (1) JPS61265499A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3735915A1 (en) * 1987-10-23 1989-05-03 Wieland Werke Ag Heat exchanger
US5275234A (en) * 1991-05-20 1994-01-04 Heatcraft Inc. Split resistant tubular heat transfer member
JPH08110187A (en) * 1994-09-12 1996-04-30 Carrier Corp Heat exchanger tube
US5690167A (en) * 1994-12-05 1997-11-25 High Performance Tube, Inc. Inner ribbed tube of hard metal and method
JP2001289585A (en) * 2000-04-05 2001-10-19 Mitsubishi Alum Co Ltd Inner grooved aluminum tube and heat exchanger comprising the same
JP2001296096A (en) * 2000-02-09 2001-10-26 Japan Atom Energy Res Inst Screw cooling pipe
KR100469321B1 (en) * 2001-12-08 2005-02-02 핀튜브텍(주) A Fin-Tube Type Heat Exchanger And Manufacturing Method Thereof
US7017651B1 (en) * 2000-09-13 2006-03-28 Raytheon Company Method and apparatus for temperature gradient control in an electronic system
JP2006090657A (en) * 2004-09-24 2006-04-06 Furukawa Electric Co Ltd:The Heat exchanger tube for heat exchanger, and its manufacturing method
JP2008045868A (en) * 2006-07-21 2008-02-28 Sumitomo Light Metal Ind Ltd Heat exchanger for water heater, and its manufacturing method
JP2011140037A (en) * 2010-01-06 2011-07-21 Toshiba Corp Method of manufacturing heat transfer enhancement tube, mold for heat transfer enhancement tube, heat transfer enhancement tube, heat exchanger, nuclear fusion reactor, and neutral particle injection heating device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5142U (en) * 1974-06-17 1976-01-05
JPS5161049A (en) * 1974-11-25 1976-05-27 Hitachi Ltd DENNET SUKAN

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5142U (en) * 1974-06-17 1976-01-05
JPS5161049A (en) * 1974-11-25 1976-05-27 Hitachi Ltd DENNET SUKAN

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3735915A1 (en) * 1987-10-23 1989-05-03 Wieland Werke Ag Heat exchanger
US5275234A (en) * 1991-05-20 1994-01-04 Heatcraft Inc. Split resistant tubular heat transfer member
JPH08110187A (en) * 1994-09-12 1996-04-30 Carrier Corp Heat exchanger tube
US5690167A (en) * 1994-12-05 1997-11-25 High Performance Tube, Inc. Inner ribbed tube of hard metal and method
JP2001296096A (en) * 2000-02-09 2001-10-26 Japan Atom Energy Res Inst Screw cooling pipe
JP2001289585A (en) * 2000-04-05 2001-10-19 Mitsubishi Alum Co Ltd Inner grooved aluminum tube and heat exchanger comprising the same
US7017651B1 (en) * 2000-09-13 2006-03-28 Raytheon Company Method and apparatus for temperature gradient control in an electronic system
KR100469321B1 (en) * 2001-12-08 2005-02-02 핀튜브텍(주) A Fin-Tube Type Heat Exchanger And Manufacturing Method Thereof
JP2006090657A (en) * 2004-09-24 2006-04-06 Furukawa Electric Co Ltd:The Heat exchanger tube for heat exchanger, and its manufacturing method
JP2008045868A (en) * 2006-07-21 2008-02-28 Sumitomo Light Metal Ind Ltd Heat exchanger for water heater, and its manufacturing method
JP2011140037A (en) * 2010-01-06 2011-07-21 Toshiba Corp Method of manufacturing heat transfer enhancement tube, mold for heat transfer enhancement tube, heat transfer enhancement tube, heat exchanger, nuclear fusion reactor, and neutral particle injection heating device

Similar Documents

Publication Publication Date Title
US4660630A (en) Heat transfer tube having internal ridges, and method of making same
US7178361B2 (en) Heat transfer tubes, including methods of fabrication and use thereof
US4545428A (en) Heat exchanger for air conditioning system
EP0148609B1 (en) Heat-transfer tubes with grooved inner surface
US3217799A (en) Steam condenser of the water tube type
JPH0587752B2 (en)
JPS61265499A (en) Heat transfer tube
KR102068488B1 (en) Evaporation heat transfer tube
KR102066878B1 (en) Evaporation heat transfer tube with a hollow caviity
US7418848B2 (en) High-performance and high-efficiency rolled fin tube and forming disk therefor
JP5642462B2 (en) Heat exchanger tube for heat exchanger and heat exchanger using the same
CA1302395C (en) Heat exchanger tube having minute internal fins
JP2912826B2 (en) Heat transfer tube with internal groove
JPS62106292A (en) Heat transfer tube and manufacture thereof
JPS6352310B2 (en)
JP3417825B2 (en) Inner grooved pipe
JPH0418231B2 (en)
CN208108902U (en) Half annular knurl finned condensation pipe
JPH074884A (en) Heat transfer pipe with inner surface groove and its manufacturing method
JPS62242795A (en) Heat transfer tube
JP3129565B2 (en) Heat exchanger tubes for heat exchangers
JPH05106991A (en) Heat transfer tube with inner surface groove and manufacture thereof
JPS62134493A (en) Heat exchanger
JPH02165831A (en) Manufacture of heat exchanger
JPH01131895A (en) Heat transfer tube with inner surface groove