JP2011140037A - Method of manufacturing heat transfer enhancement tube, mold for heat transfer enhancement tube, heat transfer enhancement tube, heat exchanger, nuclear fusion reactor, and neutral particle injection heating device - Google Patents

Method of manufacturing heat transfer enhancement tube, mold for heat transfer enhancement tube, heat transfer enhancement tube, heat exchanger, nuclear fusion reactor, and neutral particle injection heating device Download PDF

Info

Publication number
JP2011140037A
JP2011140037A JP2010001499A JP2010001499A JP2011140037A JP 2011140037 A JP2011140037 A JP 2011140037A JP 2010001499 A JP2010001499 A JP 2010001499A JP 2010001499 A JP2010001499 A JP 2010001499A JP 2011140037 A JP2011140037 A JP 2011140037A
Authority
JP
Japan
Prior art keywords
tube
heat transfer
mold
heat
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010001499A
Other languages
Japanese (ja)
Other versions
JP5574714B2 (en
Inventor
Hiroshi Yanagi
寛 柳
Masanao Shibui
正直 澁井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2010001499A priority Critical patent/JP5574714B2/en
Publication of JP2011140037A publication Critical patent/JP2011140037A/en
Application granted granted Critical
Publication of JP5574714B2 publication Critical patent/JP5574714B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a heat transfer enhancement tube capable of manufacturing it easily and efficiently, a mold for the heat transfer enhancement tube, the heat transfer enhancement tube, and a heat exchanger. <P>SOLUTION: The method of manufacturing the heat transfer enhancement tube 10a includes a hydrostatic pressure step of imparting a hydrostatic pressure in a condition where a facing surface 21 of the mold 20 of a prescribed shape faces an object surface 11 of tube material 10 for form-rolling the shape of the facing surface 21 on the object surface 11 by rolling. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、伝熱促進管の製造方法、伝熱促進管用型、伝熱促進管、熱交換器、核融合炉、及び中性粒子入射加熱装置に関する。   The present invention relates to a method for manufacturing a heat transfer promotion tube, a mold for heat transfer promotion tube, a heat transfer promotion tube, a heat exchanger, a nuclear fusion reactor, and a neutral particle injection heating apparatus.

冷凍機や空調機や一般冷却装置に使用する熱交換器の冷却管として、あるいは核融合炉受熱機器やその周辺装置の受熱機器及び熱交換器等に使用される高熱負荷機器の除熱のための冷却管として、表面に所定形状のフィンが形成された伝熱促進管が用いられる(例えば、特許文献1または2参照)。   For heat removal from high heat load devices used as cooling pipes for heat exchangers used in refrigerators, air conditioners and general cooling devices, or for heat receiving devices and heat exchangers of fusion reactor heat receiving devices and peripheral devices As the cooling pipe, a heat transfer accelerating pipe having a surface with fins having a predetermined shape is used (see, for example, Patent Document 1 or 2).

このような伝熱促進管の製造方法として、例えば表面が平滑な素管である管材を予め用意し、溝形状を形成するための型やダイスを内部に入れて引き抜きながら管内面に転造加工する方法や、機械加工にて内面に溝形状を直接切削加工する方法、さらに溝形状に対応する凹凸が形成された型棒やダイス棒を管内部に挿入しながら転造加工する方法が知られている。管外面への溝形状形成も同様に、管自体が潰れない様に内部に心金を入れ、外面に型を押し当てて溝形状を形成させる方法や切削加工する方法が用いられている。   As a method of manufacturing such a heat transfer promotion tube, for example, a tube material that is a raw surface with a smooth surface is prepared in advance, and a rolling process is performed on the inner surface of the tube while pulling out a mold or a die for forming a groove shape. And a method of cutting a groove shape directly on the inner surface by machining, and a method of rolling while inserting a die bar or a die bar with irregularities corresponding to the groove shape inside the pipe. ing. Similarly, for forming the groove shape on the outer surface of the tube, a method of forming a groove shape by inserting a mandrel into the inside so that the tube itself is not crushed and pressing a die against the outer surface, or a cutting method is used.

特開2001−296096号公報JP 2001-296096 A 特開平5−141890号公報Japanese Patent Laid-Open No. 5-141890

しかしながら上述の技術では以下の問題がある。すなわち、機械加工による切削加工では、特別な機械加工機を用意して単品毎に加工する必要があり、溝形状を形成する際の処理効率が悪いという問題がある。また、例えば除熱性能を高めるためにリード角を小さくする場合には引き抜き時にフィンの崩れが生じやすいという問題が生じる。また、例えば内径の小さい管の内面を長尺サイズの管に対して機械加工する場合には処理の複雑化や処理時間がかかるという問題がある。さらに、型棒やダイス棒の挿入による転造加工では、素管内径の元形状寸法の管理を厳しくする必要があり、フィン形状の完成度が素管の寸法に大きく依存してしまうため、特別に仕上げた素管を用意する必要がありコスト増大の要因となるという問題がある。   However, the above technique has the following problems. That is, in the cutting process by machining, it is necessary to prepare a special machining machine for each single product, and there is a problem that the processing efficiency when forming the groove shape is poor. In addition, for example, when the lead angle is made small in order to improve the heat removal performance, there arises a problem that the fins are liable to collapse at the time of drawing. In addition, for example, when machining the inner surface of a pipe having a small inner diameter with respect to a long-sized pipe, there is a problem that processing is complicated and processing time is required. Furthermore, in the rolling process by inserting a die rod or a die rod, it is necessary to strictly control the original shape of the inner diameter of the raw tube, and the completeness of the fin shape greatly depends on the dimensions of the raw tube, so special Therefore, there is a problem that it is necessary to prepare a finished pipe, which causes an increase in cost.

このため、容易かつ効率的に製造できる伝熱促進管の製造方法、伝熱促進管用型、伝熱促進管、及び熱交換器が要望される。   For this reason, the manufacturing method of the heat-transfer acceleration | stimulation pipe | tube which can be manufactured easily and efficiently, the type | mold for heat-transfer acceleration | stimulation pipe | tubes, a heat-transfer acceleration | stimulation pipe | tube, and a heat exchanger are desired.

本発明の一形態に係る伝熱促進管の製造方法は、管材の対象面に、所定形状を成す型の対向面を対向させた状態で、静水圧を付与し、前記対向面の形状を前記対象面に転造する静水圧工程を備えたことを特徴とする。   In the method for manufacturing a heat transfer promoting tube according to one aspect of the present invention, a hydrostatic pressure is applied to a target surface of a pipe material with a facing surface of a mold having a predetermined shape facing the surface, and the shape of the facing surface is changed to the shape of the facing surface. A hydrostatic pressure process for rolling onto the target surface is provided.

本発明の他の一形態に係る伝熱促進管は、前記伝熱促進管の製造方法で製造されたことを特徴とする。   A heat transfer promotion tube according to another embodiment of the present invention is manufactured by the method for manufacturing a heat transfer promotion tube.

本発明の他の一形態に係る伝熱促進管用型は、成形対象となる管材の内側に配置され、の外面に成形形状に対応する凹凸形状を有する型であって、前記管材の軸方向に移動可能な中子部と、前記中子部の周りに配置される分割可能な複数の部材と、を備え、前記複数の部材は、前記中子部を前記軸方向に引き抜いた後、前記管材の内周面から離間するように前記管材の径方向内側に移動可能に構成されたことを特徴とする。   A heat transfer promoting pipe mold according to another embodiment of the present invention is a mold that is arranged on the inner side of a pipe material to be molded and has an uneven shape corresponding to the molded shape on the outer surface thereof, and is in the axial direction of the pipe material. A movable core part, and a plurality of separable members disposed around the core part, wherein the plurality of members pull out the core part in the axial direction, and then the tube material. It is configured to be movable inward in the radial direction of the tube so as to be separated from the inner peripheral surface of the tube.

本発明の他の一形態に係る熱交換器は、前記伝熱促進管と、前記伝熱促進管の近傍に配される熱交換対象と、を備え、前記伝熱促進管内の媒体と、前記熱交換対象の間で熱交換を行うことを特徴とする。   A heat exchanger according to another aspect of the present invention includes the heat transfer promotion tube and a heat exchange target disposed in the vicinity of the heat transfer promotion tube, and a medium in the heat transfer promotion tube, Heat exchange is performed between heat exchange targets.

本発明に係る伝熱促進管の製造方法、伝熱促進管用型、伝熱促進管、熱交換器、核融合炉、及び中性粒子入射加熱装置によれば、伝熱促進管を容易かつ効率的に製造することが可能となる。   According to the method of manufacturing a heat transfer promotion tube, the heat transfer promotion tube mold, the heat transfer promotion tube, the heat exchanger, the fusion reactor, and the neutral particle injection heating device according to the present invention, the heat transfer promotion tube can be easily and efficiently used. Can be manufactured automatically.

本発明の第1実施形態に係る伝熱促進管のセット工程の状態を一部切欠して示す側面図。The side view which cuts off the state of the setting process of the heat-transfer acceleration | stimulation pipe | tube which concerns on 1st Embodiment of this invention, and shows it partially. 同伝熱促進管のセット工程後の状態を示すAA断面図。The AA sectional view showing the state after the setting process of the heat transfer promotion tube. 同伝熱促進管の設置工程を示す説明図。Explanatory drawing which shows the installation process of the heat-transfer acceleration | stimulation pipe | tube. 同伝熱促進管のHIP処理後の状態を一部切欠して示す側面図。The side view which shows the state after the HIP process of the heat transfer acceleration | stimulation pipe | tube partially cut off. 同伝熱促進管のHIP処理後の状態を示すBB断面図。BB sectional drawing which shows the state after the HIP process of the heat-transfer acceleration | stimulation pipe | tube. 同伝熱促進管の除去工程後の状態を一部切欠して示す側面図。The side view which partially cuts and shows the state after the removal process of the heat-transfer acceleration | stimulation pipe | tube. 同伝熱促進管の除去工程後の状態を示すCC断面図。CC sectional drawing which shows the state after the removal process of the same heat-transfer acceleration | stimulation pipe | tube. 同実施形態に係る熱交換器を示す説明図。Explanatory drawing which shows the heat exchanger which concerns on the same embodiment. 本発明の第2実施形態に係る成形型の構成を一部切欠して示す側面図。The side view which partially cuts and shows the structure of the shaping | molding die concerning 2nd Embodiment of this invention. 同成形型の組み付け状態を示すDD断面図。DD sectional drawing which shows the assembly | attachment state of the same shaping | molding die. 同成形型の分解状態を示すDD断面図。DD sectional drawing which shows the decomposition | disassembly state of the same shaping | molding die. 本発明の第3実施形態に係る伝熱促進管の除去工程の状態を一部切欠して示す側面図。The side view which shows the state of the removal process of the heat-transfer acceleration | stimulation pipe | tube which concerns on 3rd Embodiment of this invention, and is notched partially. 本発明の他の実施形態にかかる成形型の組み付け状態を示す断面図。Sectional drawing which shows the assembly | attachment state of the shaping | molding die concerning other embodiment of this invention. 同成形型の分解状態を示す断面図。Sectional drawing which shows the decomposition | disassembly state of the same shaping | molding die. 本発明の他の実施形態にかかる成形型の組み付け状態を示す断面図。Sectional drawing which shows the assembly | attachment state of the shaping | molding die concerning other embodiment of this invention. 同成形型の分解状態を示す断面図。Sectional drawing which shows the decomposition | disassembly state of the same shaping | molding die. 本発明の他の実施形態にかかる成形型を示す斜視図。The perspective view which shows the shaping | molding die concerning other embodiment of this invention. 本発明の他の実施形態にかかる成形型を示す斜視図。The perspective view which shows the shaping | molding die concerning other embodiment of this invention. 本発明の他の実施形態にかかる熱交換器としての核融合炉を示す説明図。Explanatory drawing which shows the nuclear fusion reactor as a heat exchanger concerning other embodiment of this invention. 同核融合炉のダイバータを示す説明図。Explanatory drawing which shows the divertor of the nuclear fusion reactor. 本発明の他の実施形態にかかる熱交換器としての中性粒子入射加熱装置を示す説明図。Explanatory drawing which shows the neutral particle injection heating apparatus as a heat exchanger concerning other embodiment of this invention.

[第1実施形態]
以下、本発明の第1実施形態にかかる伝熱促進管10aの製造方法、成形型20、伝熱促進管10a、及び熱交換器40について、図1乃至図8を参照して説明する。なお、各図において説明のため、適宜、構成を拡大、縮小または省略して概略的に示している。図中矢印X,Y及びZはそれぞれ互いに直交する3方向を示す。
[First Embodiment]
Hereinafter, the manufacturing method of the heat transfer promotion pipe | tube 10a concerning 1st Embodiment of this invention, the shaping | molding die 20, the heat transfer promotion pipe | tube 10a, and the heat exchanger 40 are demonstrated with reference to FIG. 1 thru | or FIG. In each figure, for the sake of explanation, the configuration is schematically shown with enlargement, reduction, or omission as appropriate. In the figure, arrows X, Y and Z indicate three directions orthogonal to each other.

ここでは一例として内周面にフィン構造として凹凸形状11aを有する伝熱促進管10aの製造方法を示す。   Here, as an example, a method of manufacturing the heat transfer promotion tube 10a having the uneven shape 11a as the fin structure on the inner peripheral surface is shown.

伝熱促進管10aの製造方法は、管材10内に伝熱促進管用成形型としての成形型20(型)をセットするセット工程と、セット後に管材10をHIP装置30内に設置する設置工程と、HIP装置30内にてHIP処理(熱間静水圧処理)を行い成形型20の形状を管材10に転造するHIP工程(熱間静水圧工程)と、HIP処理後に管材10から成形型20を除去する除去工程と、を備える。   The manufacturing method of the heat transfer promoting tube 10a includes a setting step of setting a forming die 20 (mold) as a forming die for heat transfer enhancing tube in the tube material 10, and an installation step of installing the tube material 10 in the HIP device 30 after setting. The HIP process (hot isostatic pressure process) is performed in the HIP device 30 and the shape of the mold 20 is rolled into the tube material 10 (hot isostatic pressure process). And a removing step for removing.

図1は、セット工程において管材10内に成形型20を挿入した状態を示し、管材10の一部を切欠して示す側面図である。図2はそのAA断面図である。   FIG. 1 is a side view showing a state in which the forming die 20 is inserted into the tube material 10 in the setting step, and a part of the tube material 10 is cut away. FIG. 2 is a cross-sectional view taken along the line AA.

セット工程において、予め用意した管材10の内部に成形型20を挿入する。管材10は銅材または銅合金からなり、内面及び外面が平滑な円管形状の素管である。管材10は例えば外径d1:φ13mm(公称)、内径d2:φ8mm(公称)、肉厚t1:2.5mm、長さl1:2m程度に構成されている。   In the setting step, the molding die 20 is inserted into the pipe material 10 prepared in advance. The tube material 10 is made of a copper material or a copper alloy, and is a circular tube-shaped element tube having smooth inner and outer surfaces. For example, the tube material 10 has an outer diameter d1: φ13 mm (nominal), an inner diameter d2: φ8 mm (nominal), a wall thickness t1: 2.5 mm, and a length l1: 2 m.

成形型20は、その外周面21に螺旋状に連続するねじ形状の山22及び溝23を有する凹凸形状24を成し、例えばステンレス等の管材10とは異なる材質で構成されている。成形型20は例えば直径d3:φ8mm(公称)程度、長さは管材10と同じl1:2m程度の円柱状に構成されている。ここでは、一例として一般用メートルねじのM8ねじを想定し、図4に示すように、管軸心c1に直交する管径軸r1に対する螺旋状の山22及び溝23の螺旋方向h1の角度で定義されるリード角βが、tanβ=P/(πD2)から(P:ピッチ,D2:有効径)、β≒3.168deg程度となるねじ形状に設定されている。また、成形後の取り外しを容易とするため、凹凸形状24,11aの頂部は、鋭利な形状ではなく、滑らかな曲面状になっている。   The forming die 20 has a concave and convex shape 24 having a screw-like crest 22 and a groove 23 continuously spirally on its outer peripheral surface 21 and is made of a material different from the tube material 10 such as stainless steel. The molding die 20 is configured in a cylindrical shape having a diameter d3: φ8 mm (nominal), for example, and a length of about 11: 2 m, which is the same as that of the tube material 10. Here, as an example, a general metric screw M8 screw is assumed, and as shown in FIG. 4, at an angle in the spiral direction h1 of the spiral crest 22 and the groove 23 with respect to the tube diameter axis r1 orthogonal to the tube axis c1. The defined lead angle β is set to a screw shape such that tan β = P / (πD2) (P: pitch, D2: effective diameter), β≈3.168 deg. Further, in order to facilitate removal after molding, the tops of the concavo-convex shapes 24 and 11a are not sharp shapes but smooth curved surfaces.

図1及び図2に示すように、HIP処理前において、管材10の内径d2は成形型20の外径d3よりも僅かに大きく設定され、セット工程では成形型20を図中X方向に沿う軸方向に移動させながら管材10内に挿入できるようになっている。   As shown in FIGS. 1 and 2, before the HIP process, the inner diameter d2 of the tube material 10 is set to be slightly larger than the outer diameter d3 of the molding die 20, and in the setting step, the molding die 20 is an axis along the X direction in the drawing. It can be inserted into the tube 10 while moving in the direction.

このセット工程の状態では、対象面となる管材10の内周面11は、対向面となる成形型20の外周面21に対向しており、その間には隙間25が形成されている。   In the state of this setting step, the inner peripheral surface 11 of the pipe material 10 that is the target surface is opposed to the outer peripheral surface 21 of the molding die 20 that is the opposing surface, and a gap 25 is formed therebetween.

ついで、成形型20と管材10との隙間25を真空排気した状態で、例えば電子ビーム溶接などの方法で長さ方向(X方向)両端部を封止し、図3に示すHIP装置30に複数本設置する。   Next, in a state where the gap 25 between the mold 20 and the tube material 10 is evacuated, both ends in the length direction (X direction) are sealed by a method such as electron beam welding, and a plurality of HIP devices 30 shown in FIG. Install this book.

図3に示すHIP装置30は、所定の径を有する有底円筒形状のHIP容器31と、管材10を保持する保持部32と、HIP容器31を密閉する蓋材33と、HIP処理を行うHIP手段34と、を備えている。   The HIP device 30 shown in FIG. 3 includes a bottomed cylindrical HIP container 31 having a predetermined diameter, a holding part 32 that holds the tube material 10, a lid member 33 that seals the HIP container 31, and an HIP that performs HIP processing. Means 34.

HIP容器31内に複数本の管材10を直立状態で設置し、保持部32にて保持する。設置後、蓋材33を閉めてHIP容器31内を密閉する。さらに、HIP手段34にて、HIP容器31内にAr等の不活性ガスを充填させるとともに、所定の温度に保持して、静水圧を付与する、HIP処理を行う。   A plurality of pipe members 10 are installed in an upright state in the HIP container 31 and held by the holding unit 32. After installation, the lid member 33 is closed to seal the inside of the HIP container 31. Further, the HIP means 34 performs an HIP process in which an inert gas such as Ar is filled in the HIP container 31 and is maintained at a predetermined temperature to apply a hydrostatic pressure.

ここで、HIP処理条件は、管材10の対象面である内周面11が成形型20の対向面である外周面21に倣って変形しつつも、外周面21に対して接着されないような条件に設定する。例えば、管材10の材質が銅で、成形型20の材質がステンレスである場合には、銅とステンレスのHIP処理における接着条件に到達しないように設定する。一例として、銅とステンレスのHIP処理接着条件が圧力:100MPa、温度:850〜900度、処理時間:2時間とした場合には、このHIP処理接着条件から外れる条件でHIP処理を行う。   Here, the HIP processing conditions are such that the inner peripheral surface 11 that is the target surface of the tube material 10 is deformed following the outer peripheral surface 21 that is the opposing surface of the mold 20 but is not bonded to the outer peripheral surface 21. Set to. For example, when the material of the tube material 10 is copper and the material of the forming die 20 is stainless steel, it is set so as not to reach the bonding condition in the HIP process of copper and stainless steel. As an example, when the HIP treatment adhesion conditions of copper and stainless steel are pressure: 100 MPa, temperature: 850 to 900 degrees, and treatment time: 2 hours, the HIP treatment is performed under conditions that deviate from the HIP treatment adhesion conditions.

図4はHIP処理後の素管及び成形型20を一部切欠して示す側面図であり、図5はそのBB断面図である。図4及び図5に示すように、このHIP処理によって、管材10が、成形型20に接着されることなく、成形型20の形状に倣う形状となるように変形し、隙間25が埋まる。以上により、管材10の内周面11に、成形型20の外周面21の形状が転造される。すなわち、成形型20の螺旋状の山22に対応して管材10に螺旋状の溝13が形成され、成形型20の螺旋状の溝23に対応して管材10に螺旋状の山12が形成され、内周面11にスパイラルフィン(フィン構造)を構成する螺旋状の凹凸形状11aが形成される。   FIG. 4 is a side view of the base tube and the mold 20 after the HIP process, with a part cut away, and FIG. 5 is a BB cross-sectional view thereof. As shown in FIGS. 4 and 5, the pipe 10 is deformed so as to follow the shape of the mold 20 without being bonded to the mold 20, and the gap 25 is filled by this HIP process. As described above, the shape of the outer peripheral surface 21 of the molding die 20 is rolled on the inner peripheral surface 11 of the tube material 10. That is, a spiral groove 13 is formed in the tube material 10 corresponding to the spiral crest 22 of the mold 20, and a spiral peak 12 is formed in the tube material 10 corresponding to the spiral groove 23 of the mold 20. Thus, a spiral concavo-convex shape 11 a constituting a spiral fin (fin structure) is formed on the inner peripheral surface 11.

さらに、HIP処理後に成形型20を管材10から引き抜き除去することにより、図6及び図7に示すように、所望の形状の凹凸形状11aが成形された伝熱促進管10aが完成する。   Further, by removing the forming die 20 from the tube material 10 after the HIP treatment, as shown in FIGS. 6 and 7, the heat transfer promoting tube 10a in which the uneven shape 11a having a desired shape is formed is completed.

以上の製造方法にて製造された伝熱促進管10aは、例えば図8に示すような熱交換器40に用いられる。熱交換器40は、熱交換対象としての容器41と、容器41に設置された伝熱促進管10aとを備えて構成されている。そして、この容器41内において伝熱促進管10aの外側を流れる第1の流体(媒体)42と、伝熱促進管10aの内側を流れる第2の流体(媒体)43とが熱交換するシステムとなっている。   The heat transfer promotion tube 10a manufactured by the above manufacturing method is used for a heat exchanger 40 as shown in FIG. 8, for example. The heat exchanger 40 includes a container 41 as a heat exchange target and a heat transfer promotion tube 10 a installed in the container 41. And in this container 41, a system in which the first fluid (medium) 42 flowing outside the heat transfer promoting tube 10a and the second fluid (medium) 43 flowing inside the heat transfer promoting tube 10a exchange heat. It has become.

本実施形態に係る伝熱促進管10aの製造方法、伝熱促進管用成形型20、伝熱促進管10a、及び熱交換器40によれば、HIP処理により成形型20の形状を管材10に転造するため、容易かつ効率的に伝熱促進管10aを製造することが出来る。   According to the manufacturing method of the heat transfer promoting tube 10a, the heat transfer promoting tube forming die 20, the heat transfer promoting tube 10a, and the heat exchanger 40 according to the present embodiment, the shape of the forming die 20 is changed to the tube material 10 by HIP processing. Therefore, the heat transfer promoting tube 10a can be manufactured easily and efficiently.

すなわち、HIP処理により転造するため、スパイラルフィンのリード角を小さく設定することが容易であり、除熱性能を向上できる。また小径長尺サイズの管材にも内面にスパイラルフィンを形成させることができ、任意のサイズの伝熱促進管10aを容易に製造することができる。このため利用範囲の拡大に繋がる。   That is, since rolling is performed by HIP processing, it is easy to set the lead angle of the spiral fin small, and the heat removal performance can be improved. In addition, spiral fins can be formed on the inner surface of a small-diameter and long-sized tube material, and a heat transfer promoting tube 10a of any size can be easily manufactured. For this reason, it leads to expansion of a use range.

管材10の内面を成形型20に沿うように変形させるので、スパイラルフィンの完成度が元素管である管材10の寸法に影響受けることがなく、利用できる管材10の条件が緩和できるとともに、伝熱促進管10aの信頼性を向上させることが可能となる。また、製造過程での歩留まりが向上し、安定した品質の製品を安価で大量生産することが可能となる。   Since the inner surface of the tube material 10 is deformed so as to follow the mold 20, the completeness of the spiral fin is not affected by the dimensions of the tube material 10, which is an element tube, the conditions of the available tube material 10 can be relaxed, and heat transfer It becomes possible to improve the reliability of the promotion tube 10a. In addition, the yield in the manufacturing process is improved, and stable quality products can be mass-produced at low cost.

HIP容器31に複数本の管材10を設置して同時にHIP処理できるため、安定した品質の製品を安価で大量生産することが可能となる。   Since a plurality of pipes 10 can be installed in the HIP container 31 and simultaneously subjected to HIP processing, stable quality products can be mass-produced at low cost.

また成形型20の形状を予め自由に設定し、その型に合わせて所望の形状を管材10の内面に転造できるため、形状を任意に決定することができ、機能や目的に応じた伝熱促進管10aを製作することが可能となる。   Moreover, since the shape of the shaping | molding die 20 can be set freely beforehand and a desired shape can be rolled to the inner surface of the pipe material 10 according to the type | mold, a shape can be determined arbitrarily and the heat transfer according to a function and the objective The promotion tube 10a can be manufactured.

[第2実施形態]
次に本発明の第2実施形態に係る伝熱促進管10aの製造方法について図9乃至図11を参照して説明する。本実施形態は、成形型20の構成及び除去工程以外については上記第1実施形態と同様であるため、説明を省略する。
[Second Embodiment]
Next, the manufacturing method of the heat transfer acceleration | stimulation pipe | tube 10a which concerns on 2nd Embodiment of this invention is demonstrated with reference to FIG. 9 thru | or FIG. Since the present embodiment is the same as the first embodiment except for the configuration of the mold 20 and the removal step, description thereof will be omitted.

図9は成形型20の構成を一部切欠して示す側面図であり、図10はそのDD断面図である。図11は成形型20の分割状態を示す断面図である。   FIG. 9 is a side view showing a part of the configuration of the mold 20, and FIG. 10 is a DD cross-sectional view thereof. FIG. 11 is a cross-sectional view showing a divided state of the mold 20.

成形型20は、成形対象となる管材10の内側に配置され、その外周面21に成形形状に対応する凹凸形状24が形成された伝熱促進管用成形型である。ここではねじ山22及びねじ溝23が螺旋状に連続して形成されている。   The forming die 20 is a heat transfer accelerating tube forming die that is disposed inside the tube material 10 to be formed and has an outer peripheral surface 21 with an uneven shape 24 corresponding to the forming shape. Here, the thread 22 and the thread groove 23 are continuously formed in a spiral shape.

図10に示すように、成形型20は、中央部分に配置され管材10の軸方向に移動可能な中子部51と、中子部51の周りを囲む第1部材52〜第5部材56と、を備えて構成されている。   As shown in FIG. 10, the mold 20 includes a core portion 51 that is disposed in the center portion and is movable in the axial direction of the tube material 10, and a first member 52 to a fifth member 56 that surround the core portion 51. , And is configured.

中子部51は円柱状の芯部51aと芯部51aから径方向に突出する凸部51bとを一体に有し、軸方向に一様に構成されている。これらの中子部51及び第1部材52〜第5部材56は、互いに組み付け可能かつ分割可能になっている。   The core portion 51 has a cylindrical core portion 51a and a convex portion 51b protruding in the radial direction from the core portion 51a, and is configured uniformly in the axial direction. The core 51 and the first member 52 to the fifth member 56 can be assembled and divided.

図9及び図10に示す組み付け状態において、第1部材52は凸部51bの外側に配置され、第2部材53〜第5部材56はそれぞれ芯部51aの周囲を囲むように接触して組み付いている。図11に示す第1部材52〜第5部材56の円弧面52a〜56aが組み付け状態において相まって成形型20の外周面21を形成し、それぞれの円弧面52a〜56aに形成される溝形状が螺旋状に連続するように配置されている。この円弧面52a〜56a以外の内側の壁52b〜56bはいずれも軸方向に延びている。   In the assembled state shown in FIGS. 9 and 10, the first member 52 is disposed outside the convex portion 51b, and the second member 53 to the fifth member 56 are assembled in contact with each other so as to surround the periphery of the core portion 51a. ing. The arc surfaces 52a to 56a of the first member 52 to the fifth member 56 shown in FIG. 11 combine to form the outer peripheral surface 21 of the mold 20 in the assembled state, and the groove shapes formed on the arc surfaces 52a to 56a are spiral. Are arranged in a continuous manner. The inner walls 52b to 56b other than the circular arc surfaces 52a to 56a all extend in the axial direction.

中子部51は軸方向に一様に形成され、軸方向に引き抜き可能に構成されている。また第1部材52〜第5部材56は中子部51を引き抜いた後に、管材10の内周面から離間するように管材10の径方向内側に移動可能になっている。さらに内側の壁52b〜56bが軸方向に延びているため、円弧面52a〜56aを管材10の内周面を離間させた状態で第1部材52〜第5部材56もそれぞれ軸方向に引き抜き可能である。   The core portion 51 is formed uniformly in the axial direction and is configured to be able to be pulled out in the axial direction. The first member 52 to the fifth member 56 are movable inward in the radial direction of the tube material 10 so as to be separated from the inner peripheral surface of the tube material 10 after the core portion 51 is pulled out. Further, since the inner walls 52b to 56b extend in the axial direction, the first member 52 to the fifth member 56 can also be pulled out in the axial direction while the arc surfaces 52a to 56a are separated from the inner peripheral surface of the tube material 10. It is.

本実施形態に係る伝熱促進管10aの製造方法では、セット工程において、分割構造の成形型20を予め組みつけて一体化して、管材10内に挿入する。その後、第1実施形態と同様に設置工程、HIP処理工程を行う。HIP処理後において、成形型20と伝熱促進管10aとは、凹凸形状11aと凹凸形状24とが互いに嵌合して隙間なく密着している。このため、この状態では成形型20を軸方向に移動させることはできない。   In the method for manufacturing the heat transfer promoting tube 10a according to the present embodiment, the mold 20 having a divided structure is assembled in advance and integrated into the tube material 10 in the setting step. Thereafter, the installation process and the HIP processing process are performed in the same manner as in the first embodiment. After the HIP process, the mold 20 and the heat transfer promoting tube 10a are in close contact with each other with the concavo-convex shape 11a and the concavo-convex shape 24 fitted together. For this reason, in this state, the mold 20 cannot be moved in the axial direction.

本実施形態では、除去工程において複数の部材51〜56を互いに分割して軸方向に引き抜いて除去する。すなわち、HIP処理後の除去工程において、まず中央の中子部51を軸方向に移動して引き抜く。その後、第1部材52を中子部51が配置されていた空間の方に内側にずらして管材10の内周面11から離間させる。そうすると管材10の内周面11に成形により形成された凹凸形状11aと成形型20の外周面21に設けられた凹凸形状24とが互いに離間するので、軸方向の移動を邪魔することがなくなる。   In the present embodiment, in the removing step, the plurality of members 51 to 56 are separated from each other and pulled out in the axial direction for removal. That is, in the removal step after the HIP process, the central core 51 is first moved in the axial direction and pulled out. Thereafter, the first member 52 is shifted inward toward the space in which the core portion 51 is disposed to be separated from the inner peripheral surface 11 of the tube material 10. Then, the uneven shape 11a formed by molding on the inner peripheral surface 11 of the tube material 10 and the uneven shape 24 provided on the outer peripheral surface 21 of the mold 20 are separated from each other, so that the movement in the axial direction is not hindered.

したがって、第1部材52を軸方向にスムーズに引き抜くことが出来る。さらに、残りの複数の第2部材53〜第5部材56も同様に内側にずらして管材10の内周面11から離間させてから軸方向に引き抜くことにより、容易に成形型20の除去を行うことができる。   Therefore, the first member 52 can be pulled out smoothly in the axial direction. Further, the remaining plurality of second members 53 to 56 are similarly shifted inward to be separated from the inner peripheral surface 11 of the tube material 10 and then pulled out in the axial direction, thereby easily removing the mold 20. be able to.

本実施形態に係る伝熱促進管10aの製造方法及び伝熱促進管用成形型によれば、以下のような効果が得られる。すなわち、分割構造の成形型20を用いることによって、HIP処理後の成形型20の取り外しの際に、成形型20自体を分解してから取り外すことにより、成形型20を伝熱促進管10a内部から容易に取り外すことが可能である。   According to the manufacturing method of the heat transfer promotion tube 10a and the mold for heat transfer promotion tube according to the present embodiment, the following effects can be obtained. That is, by using the mold 20 having a split structure, when the mold 20 after the HIP process is removed, the mold 20 itself is disassembled and then removed, so that the mold 20 can be removed from the heat transfer promoting tube 10a. It can be easily removed.

例えば成形型20を回転させながら螺旋状の溝に沿って移動させて伝熱促進管10aから取り外す場合には成形誤差などにより取り外し時に溝形状を損傷させてしまう可能性があり、また引き抜きに長時間を要し、特に長尺の場合には引抜き困難となるという問題がある。また、凹凸形状が軸方向に連続しておらず周方向の複数の溝が独立した形状である場合等には、引き抜きは不可能である。本実施形態では成形型20を分割して管材10を離間させられるため、軸方向の移動を可能とし、容易かつ迅速な引き抜きが可能となる。また、HIP転造後に形成された伝熱促進管10aの溝形状を損傷させることもない。このため、製造後の伝熱促進管10aの品質及び信頼性も向上し、安定した形状の伝熱促進管10aを安価で大量生産することが可能となる。さらに、取り外した成形型20は再び組み立てて一体化して繰り返し利用できるので、製作コストの低減に繋がる。   For example, when the mold 20 is moved along the spiral groove while being rotated and removed from the heat transfer promoting tube 10a, the groove shape may be damaged during removal due to a molding error or the like. There is a problem that it takes time and it becomes difficult to pull out particularly in the case of a long length. Further, when the uneven shape is not continuous in the axial direction and the plurality of circumferential grooves are independent shapes, etc., the drawing is impossible. In this embodiment, since the mold 20 is divided and the tube material 10 can be separated, the axial movement is possible, and the drawing can be easily and quickly performed. Further, the groove shape of the heat transfer promoting tube 10a formed after the HIP rolling is not damaged. For this reason, the quality and reliability of the heat transfer promotion tube 10a after manufacture are also improved, and it becomes possible to mass-produce the heat transfer promotion tube 10a having a stable shape at a low cost. Furthermore, since the removed mold 20 can be reassembled, integrated, and used repeatedly, this leads to a reduction in manufacturing cost.

[第3実施形態]
次に本発明の第3実施形態に係る伝熱促進管10aの製造方法について図12を参照して説明する。本実施形態は、除去工程以外については上記第1実施形態と同様であるため、説明を省略する。図12は本実施形態にかかる伝熱促進管10aのHIP処理後の状態を一部切欠して示す側面図である。
[Third Embodiment]
Next, the manufacturing method of the heat transfer acceleration | stimulation pipe | tube 10a which concerns on 3rd Embodiment of this invention is demonstrated with reference to FIG. Since this embodiment is the same as the first embodiment except for the removal step, description thereof is omitted. FIG. 12 is a side view showing a state after the HIP process of the heat transfer promoting tube 10a according to the present embodiment with a part cut away.

本実施形態にかかる伝熱促進管10aの製造方法においては、除去工程として、エッチング処理により成形型20のみを化学的に減肉又は溶融させて除去する。ここでは、管材10は銅で構成され、成形型20はステンレスで構成されているため、ステンレスのみを腐食させるエッチング剤60を用いてエッチング処理を行う。   In the method for manufacturing the heat transfer promotion tube 10a according to the present embodiment, as the removing step, only the mold 20 is chemically reduced or melted and removed by an etching process. Here, since the pipe material 10 is made of copper and the mold 20 is made of stainless steel, the etching process is performed using an etching agent 60 that corrodes only stainless steel.

すなわち、HIP処理後の状態において、図12に示すように材質の異なる成形型20と管材10とは、溝形状部分において互いに隙間無く密着しているため、このままでは容易に成形型20を除去することが困難であるが、エッチング剤60を導入することにより、ステンレス製の成形型20のみを化学的に減肉又は溶融させることにより、容易に除去することができる。   That is, in the state after the HIP treatment, as shown in FIG. 12, the molding die 20 and the pipe material 10 of different materials are in close contact with each other in the groove-shaped portion, so that the molding die 20 can be easily removed as it is. Although it is difficult, by introducing the etching agent 60, it is possible to easily remove only the stainless steel mold 20 by reducing the thickness or melting it chemically.

本実施形態によれば、製品である伝熱促進管10aに損傷を与えることなく成形型20を除去できるため、製作後の伝熱促進管10aの品質及び信頼性も向上し、安定した形状の伝熱促進管10aを安価で大量生産することが可能となる。   According to the present embodiment, since the mold 20 can be removed without damaging the product heat transfer promotion tube 10a, the quality and reliability of the heat transfer promotion tube 10a after production is improved, and a stable shape is obtained. It becomes possible to mass-produce the heat transfer acceleration tube 10a at low cost.

また、例えばHIP条件を誤って設定してしまって、管材10と成形型20とが接合してしまった場合であっても、双方は材質が異なるため、成形型20のみ腐食させる化学的薬品やエッチング方法等を用いることにより、製品である伝熱促進管10aに損傷を与えることなく成形型20を取り外すことが可能となる。   Further, for example, even when the HIP condition is set incorrectly and the pipe material 10 and the mold 20 are joined, since the materials are different from each other, By using an etching method or the like, the mold 20 can be removed without damaging the heat transfer promotion tube 10a that is a product.

なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。   Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage.

例えば、上記第2実施形態においては中子部51の芯部51aの一方側のみに凸部51b及び第1部材52aが形成される場合を例示したがこれに限られるものではない。例えば図13及び図14に示すように、芯部51aの両側に凸部51b及び第1部材52aが形成される構成であっても、図15及び図16に示すように4箇所に凸部51b及び第1部材52aが形成される構成であっても、上記第2実施形態と同様の効果を奏する。また、リード角βについても、上記実施形態に限られるものではなく、ねじサイズや適用規格によって、大きさは適宜変更可能である。   For example, although the case where the convex part 51b and the 1st member 52a are formed only in the one side of the core part 51a of the core part 51 was illustrated in the said 2nd Embodiment, it is not restricted to this. For example, as shown in FIGS. 13 and 14, even if the convex portions 51b and the first member 52a are formed on both sides of the core portion 51a, the convex portions 51b are formed at four locations as shown in FIGS. And even if it is the structure in which the 1st member 52a is formed, there exists an effect similar to the said 2nd Embodiment. Also, the lead angle β is not limited to the above embodiment, and the size can be appropriately changed according to the screw size and applicable standards.

上記実施形態においては、管材10の内周面11フィン構造となる凹凸形状11aを転造する場合について例示したが、これに限られるものではなく、管材10の外周面に凹凸形状を転造する場合にも本発明を適用できる。   In the said embodiment, although illustrated about the case where the uneven | corrugated shape 11a used as the inner peripheral surface 11 fin structure of the tube material 10 is rolled, it is not restricted to this, An uneven shape is rolled on the outer peripheral surface of the tube material 10. The present invention can also be applied to cases.

また、伝熱促進管10aに形成するフィンの形状は上記実施形態に限られるものではない。すなわち、上記実施形態においては螺旋状に凹凸形状が連続するねじ形状とした場合を示したが、例えばこの他に、図17に示す成形型120を用いて軸方向に沿う凹凸形状が形成される構成に適用しても、図18に示す成形型130を用いて周方向に沿う複数の凹凸形状が独立して軸方向に並列配置される構成に適用しても、上記実施形態と同様の効果を奏する。   Moreover, the shape of the fin formed in the heat transfer acceleration | stimulation pipe | tube 10a is not restricted to the said embodiment. That is, in the above-described embodiment, the case where the spiral shape is a screw shape in which the uneven shape is continuous is shown. However, for example, the uneven shape along the axial direction is formed using the molding die 120 shown in FIG. Even if applied to the configuration or applied to a configuration in which a plurality of concave and convex shapes along the circumferential direction are independently arranged in parallel in the axial direction using the molding die 130 shown in FIG. Play.

また、上記第1実施形態においては、伝熱促進管10aの適用対象となる熱交換器40として一般的な冷却装置を例示したが、これに限られるものではなく、様々な装置に適用することが出来る。例えば、図19及び図20に示す核融合機器等にも本発明の伝熱促進管10aを適用可能である。   Moreover, in the said 1st Embodiment, although the general cooling device was illustrated as the heat exchanger 40 used as the application object of the heat-transfer acceleration | stimulation pipe | tube 10a, it is not restricted to this, It applies to various apparatuses. I can do it. For example, the heat transfer promoting tube 10a of the present invention can be applied to the fusion device shown in FIGS.

図19は核融合炉100を示す断面図であり、図20はダイバータのターゲット部を示す斜視図である。図19に示す核融合炉100において真空容器101はトーラス形状で構成されており、その真空容器101内にプラズマ102を閉じ込め核融合反応を起こさせる。真空容器101内に各種炉内機器が配置され、特に核融合反応後に生ずるHeなどを容器101外へ排気するためにダイバータ103が配置される。ダイバータ103には高エネルギーのHeなどが磁場で導かれ、ターゲット104にあたり熱エネルギーへ変換される。熱交換対象としてのターゲット104の熱負荷は例えば20MW/mもの高いものであり、通常は強制冷却方式が採用される。ターゲット104には冷却管105が設けられており、この冷却管105として本発明の伝熱促進管10aを適用可能である。すなわち、ターゲット104と伝熱促進管10a内を流れる媒体との間で熱交換が行われる。 FIG. 19 is a cross-sectional view showing a nuclear fusion reactor 100, and FIG. 20 is a perspective view showing a target portion of a diverter. In the nuclear fusion reactor 100 shown in FIG. 19, the vacuum vessel 101 has a torus shape, and the plasma 102 is confined in the vacuum vessel 101 to cause a fusion reaction. Various in-reactor devices are arranged in the vacuum vessel 101, and in particular, a diverter 103 is arranged to exhaust He and the like generated after the nuclear fusion reaction out of the vessel 101. High energy He or the like is guided to the diverter 103 by a magnetic field, hits the target 104, and is converted into thermal energy. The heat load of the target 104 as the heat exchange target is as high as 20 MW / m 2, for example, and a forced cooling method is usually adopted. The target 104 is provided with a cooling pipe 105, and the heat transfer promoting pipe 10 a of the present invention can be applied as the cooling pipe 105. That is, heat exchange is performed between the target 104 and the medium flowing in the heat transfer promoting tube 10a.

また他の実施形態として、例えば図21に示すような中性粒子入射加熱装置200にも伝熱促進管10aを適用できる。中性粒子入射加熱装置200は、核融合装置にプラズマ追加熱機器として取り付けられ、イオンの引き出しを行うイオン源201と、中性化を逃れたイオンを回収するビームダンプ202と、イオン源201に設置されたイオン源排気系203と、ビームダンプ202に設置されたビームダンプ排気系204と、を備えている。この中性粒子入射加熱装置200において、中性化セルで中性化されずに残った高エネルギー水素イオンなどが、偏向電磁石の磁場により軌道を曲げられ、ビームダンプ202へダンプする。熱負荷は例えば10−20MW/mもの高いものであり、同様に強制冷却方式で冷却されることになる。熱交換対象としてのビームダンプ202は、冷却配管一本一本が整然と並べられているものがあり、それらの冷却配管として本発明の伝熱促進管10aを適用することができる。すなわち、ビームダンプ202と伝熱促進管10a内を流れる媒体との間で熱交換が行われる。 As another embodiment, the heat transfer promoting tube 10a can be applied to a neutral particle incident heating apparatus 200 as shown in FIG. The neutral particle injection heating apparatus 200 is attached to the nuclear fusion apparatus as a plasma additional heat apparatus, and includes an ion source 201 that extracts ions, a beam dump 202 that collects ions that have escaped neutralization, and an ion source 201. An ion source exhaust system 203 installed and a beam dump exhaust system 204 installed in the beam dump 202 are provided. In this neutral particle incidence heating apparatus 200, the high energy hydrogen ions remaining without being neutralized in the neutralization cell are bent in the orbit by the magnetic field of the deflection electromagnet and dumped to the beam dump 202. The heat load is as high as, for example, 10-20 MW / m 2 and is similarly cooled by the forced cooling method. The beam dump 202 as a heat exchange target includes one in which cooling pipes are arranged in an orderly manner, and the heat transfer promotion pipe 10a of the present invention can be applied as the cooling pipe. That is, heat exchange is performed between the beam dump 202 and the medium flowing in the heat transfer promoting tube 10a.

これらの核融合炉受熱機器をはじめとする高熱負荷機器では高い熱負荷を受けるが、本実施形態では伝熱促進管10aのリード角を小さくでき、高い除熱性能確保できるので、これらの高熱負荷機器にも対応できる。   High heat load devices such as these fusion reactor heat receiving devices receive a high heat load, but in this embodiment, the lead angle of the heat transfer promoting tube 10a can be reduced and high heat removal performance can be secured. It can also be used for equipment.

また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。   In addition, various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.

10a…伝熱促進管、10…管材、11…内周面、11a…凹凸形状、
12…山、13…溝、20,120,130…成形型、21…外周面、22…山、
23…溝、24…凹凸形状、25…隙間、30…HIP装置、31…HIP容器、
32…保持部、33…蓋材、34…HIP手段、40…熱交換器、
41…容器(熱交換対象)、51…中子部、51a…芯部、51b…凸部、
52…第1部材、53…第2部材、54…第3部材、55…第4部材、56…第5部材、52a〜56a…円弧面、52b〜56b…壁、60…エッチング剤。
10a ... Heat transfer promotion tube, 10 ... Tube material, 11 ... Inner peripheral surface, 11a ... Uneven shape,
12 ... Mountain, 13 ... Groove, 20, 120, 130 ... Mold, 21 ... Outer peripheral surface, 22 ... Mountain,
23 ... Groove, 24 ... Uneven shape, 25 ... Gap, 30 ... HIP device, 31 ... HIP container,
32 ... Holding part, 33 ... Cover material, 34 ... HIP means, 40 ... Heat exchanger,
41 ... Container (heat exchange target), 51 ... Core part, 51a ... Core part, 51b ... Projection part,
52 ... 1st member, 53 ... 2nd member, 54 ... 3rd member, 55 ... 4th member, 56 ... 5th member, 52a-56a ... Circular arc surface, 52b-56b ... Wall, 60 ... Etching agent.

Claims (11)

管材の対象面に、所定形状を成す型の対向面を対向させた状態で、静水圧を付与し、前記対向面の形状を前記対象面に転造する静水圧工程を備えたことを特徴とする伝熱促進管の製造方法。   A hydrostatic pressure process is provided, in which a hydrostatic pressure is applied to a target surface of a pipe material in a state where a facing surface of a mold having a predetermined shape is opposed, and the shape of the facing surface is rolled onto the target surface. A method of manufacturing a heat transfer acceleration tube. 前記静水圧工程を高温条件で行う熱間静水圧工程とし、前記管材の対象面を前記型の対向面に倣う形状に変形させることを特徴とする請求項1記載の伝熱促進管の製造方法。   The method for producing a heat transfer enhancement tube according to claim 1, wherein the hydrostatic pressure step is a hot hydrostatic pressure step in which the hydrostatic pressure step is performed under a high temperature condition, and the target surface of the pipe material is deformed into a shape following the opposing surface of the mold. . 前記型はその外周面に所定のフィン構造に対応する凹凸形状を有する柱状部材であって、
前記管材の内側の空間に前記型を軸方向に沿って挿入した状態で、前記静水圧工程を行うことにより、前記管材の内周面に前記凹凸形状に対応するフィンが形成されることを特徴とする請求項1または2記載の伝熱促進管の製造方法。
The mold is a columnar member having an uneven shape corresponding to a predetermined fin structure on its outer peripheral surface,
The fin corresponding to the uneven shape is formed on the inner peripheral surface of the tube material by performing the hydrostatic pressure step in a state where the mold is inserted along the axial direction into the space inside the tube material. The manufacturing method of the heat-transfer acceleration | stimulation pipe | tube of Claim 1 or 2.
前記型は、互いに分割可能な複数の部材を組み合わせて構成され、
前記複数の部材を組み付けた状態で前記静水圧工程が行われた後に、前記複数の部材を互いに分割して引き抜いて除去する除去工程を備えたことを特徴とする請求項1乃至3のいずれか記載の伝熱促進管の製造方法。
The mold is configured by combining a plurality of members that can be divided from each other.
4. The method according to claim 1, further comprising a removing step of separating and removing the plurality of members by separating them after the hydrostatic pressure step is performed with the plurality of members assembled. 5. The manufacturing method of the heat-transfer acceleration | stimulation pipe | tube of description.
前記静水圧工程後に、前記型を化学的に減肉又は溶融させて除去する除去工程を備えたことを特徴とする請求項1乃至3のいずれか記載の伝熱促進管の製造方法。   The method for producing a heat transfer promotion tube according to any one of claims 1 to 3, further comprising a removal step of removing the mold by thinning or melting it chemically after the hydrostatic pressure step. 前記型の外周面に沿って螺旋状に前記凹凸形状が連続して形成されたことを特徴とする請求項1乃至5のいずれか記載の伝熱促進管の製造方法。   The method for producing a heat transfer promoting tube according to any one of claims 1 to 5, wherein the uneven shape is continuously formed in a spiral along the outer peripheral surface of the mold. 請求項1乃至6のいずれか記載の伝熱促進管の製造方法で製造されたことを特徴とする伝熱促進管。   A heat transfer acceleration tube manufactured by the method of manufacturing a heat transfer acceleration tube according to any one of claims 1 to 6. 成形対象となる管材の内側に配置され、その外面に成形形状に対応する凹凸形状を有する型であって、
前記管材の軸方向に移動可能な中子部と、
前記中子部の周りに配置される分割可能な複数の部材と、を備え、
前記複数の部材は、前記中子部を前記軸方向に引き抜いた後、前記管材の内周面から離間するように前記管材の径方向内側に移動可能に構成されたことを特徴とする、伝熱促進管用型。
A mold that is arranged inside the tube material to be molded and has an uneven shape corresponding to the molded shape on the outer surface thereof,
A core part movable in the axial direction of the pipe member;
A plurality of separable members disposed around the core portion,
The plurality of members are configured to be movable radially inward of the tubular material so as to be separated from the inner peripheral surface of the tubular material after the core portion is pulled out in the axial direction. Mold for heat promotion tube.
請求項7記載の伝熱促進管と、
前記伝熱促進管の近傍に配される熱交換対象と、を備え、
前記伝熱促進管内の媒体と、前記熱交換対象の間で熱交換を行うことを特徴とする、熱交換器。
A heat transfer promoting tube according to claim 7;
A heat exchange object disposed in the vicinity of the heat transfer promoting tube,
A heat exchanger for performing heat exchange between the medium in the heat transfer promotion tube and the heat exchange target.
真空容器と、
前記真空容器内に配置されるダイバータと、
前記ダイバータに設けられたプラズマのターゲット部と、を備え、
前記ターゲット部近傍に請求項7記載の伝熱促進管が配置されたことを特徴とする核融合炉。
A vacuum vessel;
A diverter disposed in the vacuum vessel;
A plasma target portion provided on the diverter,
A fusion reactor characterized in that the heat transfer promoting tube according to claim 7 is disposed in the vicinity of the target portion.
イオンの引き出しを行うイオン源と、
中性化を逃れたイオンを回収するビームダンプと、
前記イオン源に設置されたイオン源排気系と、
前記ビームダンプに設置されたビームダンプ排気系と、を備え、
前記ビームダンプに請求項7記載の伝熱促進管が設けられたことを特徴とする中性粒子入射加熱装置。
An ion source for extracting ions;
A beam dump that collects ions that have escaped neutralization, and
An ion source exhaust system installed in the ion source;
A beam dump exhaust system installed in the beam dump,
A neutral particle incidence heating apparatus, wherein the beam dump is provided with the heat transfer promotion tube according to claim 7.
JP2010001499A 2010-01-06 2010-01-06 Manufacturing method of heat transfer promotion tube, mold for heat transfer promotion tube, heat transfer promotion tube, heat exchanger, fusion reactor, and neutral particle injection heating device Active JP5574714B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010001499A JP5574714B2 (en) 2010-01-06 2010-01-06 Manufacturing method of heat transfer promotion tube, mold for heat transfer promotion tube, heat transfer promotion tube, heat exchanger, fusion reactor, and neutral particle injection heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010001499A JP5574714B2 (en) 2010-01-06 2010-01-06 Manufacturing method of heat transfer promotion tube, mold for heat transfer promotion tube, heat transfer promotion tube, heat exchanger, fusion reactor, and neutral particle injection heating device

Publications (2)

Publication Number Publication Date
JP2011140037A true JP2011140037A (en) 2011-07-21
JP5574714B2 JP5574714B2 (en) 2014-08-20

Family

ID=44456273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010001499A Active JP5574714B2 (en) 2010-01-06 2010-01-06 Manufacturing method of heat transfer promotion tube, mold for heat transfer promotion tube, heat transfer promotion tube, heat exchanger, fusion reactor, and neutral particle injection heating device

Country Status (1)

Country Link
JP (1) JP5574714B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090308504A1 (en) * 2006-03-31 2009-12-17 Jft Steel Corporation, A Corporation Of Japan Steel sheet excellent in fine blanking performance and manufacturing method of the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61265499A (en) * 1985-05-17 1986-11-25 Furukawa Electric Co Ltd:The Heat transfer tube
JPH01287208A (en) * 1988-05-12 1989-11-17 Sumitomo Heavy Ind Ltd Method for forming coating in inner surface
JPH03210921A (en) * 1990-01-16 1991-09-13 Amada Co Ltd Manufacture of ball screw
JPH08228890A (en) * 1995-02-27 1996-09-10 Nakano Kenchiku Bankin Kogyosho:Kk Bed device
JPH1046210A (en) * 1996-08-06 1998-02-17 Kubota Corp Core material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61265499A (en) * 1985-05-17 1986-11-25 Furukawa Electric Co Ltd:The Heat transfer tube
JPH01287208A (en) * 1988-05-12 1989-11-17 Sumitomo Heavy Ind Ltd Method for forming coating in inner surface
JPH03210921A (en) * 1990-01-16 1991-09-13 Amada Co Ltd Manufacture of ball screw
JPH08228890A (en) * 1995-02-27 1996-09-10 Nakano Kenchiku Bankin Kogyosho:Kk Bed device
JPH1046210A (en) * 1996-08-06 1998-02-17 Kubota Corp Core material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090308504A1 (en) * 2006-03-31 2009-12-17 Jft Steel Corporation, A Corporation Of Japan Steel sheet excellent in fine blanking performance and manufacturing method of the same

Also Published As

Publication number Publication date
JP5574714B2 (en) 2014-08-20

Similar Documents

Publication Publication Date Title
KR101166534B1 (en) Manufacturing thereof for oil cooler of automatic transmission
JP2013127356A5 (en)
JP2010181138A (en) Heat transfer tube and method of manufacturing the same
JP2006170205A (en) Rocket engine chamber
EP3406997B1 (en) Entwined tubular arrangements for heat exchangers and counterflow heat transfer systems
KR101590021B1 (en) Multi layer pipe mufacturing apparatus and the manufacturing method of multi layer pipe using this
JP5574714B2 (en) Manufacturing method of heat transfer promotion tube, mold for heat transfer promotion tube, heat transfer promotion tube, heat exchanger, fusion reactor, and neutral particle injection heating device
KR101483646B1 (en) Clad pipe manufactured by the manufacturing method, and clad pipe connected by the connecting method
JP2010214404A (en) Method for manufacturing heat exchanger, and air-conditioner using the heat exchanger
US10252310B2 (en) Tube flanging method
US7231798B2 (en) System and method for tube bending
KR20130079325A (en) Method for producing a heat exchanger and heat exchanger
JP5689341B2 (en) Double tube heat exchanger and method for manufacturing the same
KR20130038187A (en) Tube-type heat exchanger and method for producing same
US5442910A (en) Reaction motor structure and method of construction
Kim et al. High‐Throughput Metal 3D Printing Pen Enabled by a Continuous Molten Droplet Transfer
JP7288255B2 (en) How to introduce equivalent strain
JP2010115694A (en) Method of expanding steel tube for heat exchanger
KR101882074B1 (en) Method for manufacturing multi-layered pipe
CN106271060A (en) A kind of thin-walled tantalum pipe and the method for laser welding of thin-walled iron-nickel alloy pipe
JP2018183787A (en) Method of manufacturing steel pipe
KR20090050412A (en) A cooling system and method for manufacturing the same
KR102608986B1 (en) Apparatus and method for manufacturing a double tube
JP2541056B2 (en) Method of manufacturing heat pipe type heat exchanger
Park et al. First test results of Superconducting Twin axis cavity for ERL applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131129

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131205

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131212

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131219

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131226

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140109

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140701

R151 Written notification of patent or utility model registration

Ref document number: 5574714

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151