JPH01131895A - Heat transfer tube with inner surface groove - Google Patents
Heat transfer tube with inner surface grooveInfo
- Publication number
- JPH01131895A JPH01131895A JP28896787A JP28896787A JPH01131895A JP H01131895 A JPH01131895 A JP H01131895A JP 28896787 A JP28896787 A JP 28896787A JP 28896787 A JP28896787 A JP 28896787A JP H01131895 A JPH01131895 A JP H01131895A
- Authority
- JP
- Japan
- Prior art keywords
- tube
- heat transfer
- heat exchange
- exchange medium
- groove
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005494 condensation Effects 0.000 abstract description 6
- 238000009833 condensation Methods 0.000 abstract description 6
- 230000008020 evaporation Effects 0.000 abstract description 3
- 238000001704 evaporation Methods 0.000 abstract description 3
- 230000014759 maintenance of location Effects 0.000 abstract description 2
- 230000007423 decrease Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- VOPWNXZWBYDODV-UHFFFAOYSA-N Chlorodifluoromethane Chemical compound FC(F)Cl VOPWNXZWBYDODV-UHFFFAOYSA-N 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000003507 refrigerant Substances 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/40—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Geometry (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は空調器や冷凍器等の熱交換器における内面溝付
伝熱管に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an internally grooved heat exchanger tube in a heat exchanger such as an air conditioner or a refrigerator.
空調器や冷凍器等の熱交換器における伝熱管では、第5
図及び第6図に示すように伝熱管(1)の内面に多数の
螺旋状の連続する溝(2)と山(3)を隣接して設ける
ことにより、熱交換面積を増大し、熱交換効率(管内熱
伝達率)を向上させている。In heat transfer tubes in heat exchangers such as air conditioners and refrigerators, the fifth
As shown in Fig. 6 and Fig. 6, by providing a large number of continuous spiral grooves (2) and peaks (3) adjacent to each other on the inner surface of the heat exchanger tube (1), the heat exchange area is increased. Improves efficiency (in-pipe heat transfer coefficient).
現在空調器や冷凍器等の熱交換器の伝熱管には、第7図
に示すように直径9.538の伝熱管(1)の内面に多
数の螺旋状の連続する溝(2)と山(3)を隣接して設
けた溝付伝熱管が用いられており、管内に熱交換媒体と
して冷媒R−22を流し、管外に水又は空気を流して熱
交換を行なっている。しかして管内に熱交換媒体を流し
、管外に水を流して熱交換を行なうと、管内の熱交換媒
体の流量が少なくなる(管内流速が遅くなる)と管内蒸
発熱伝達率及び管内凝縮熱伝達率が低下する。即ち管内
蒸発において、内部を流れる熱交換媒体の流量が少なく
なる(管内流速が遅くなる)と熱交換媒体が層流となり
、管内壁に沿って熱交換媒体の膜が形成されて乱流効果
を失い、熱交換効率を低下する。このため熱交換媒体の
流量が少なくなるほど平滑管との性能差がなくなる。ま
た管内凝縮においても、第8図に示すように溝(2)の
底幅(Wl)が山(3)の底幅(Wl)に比べて狭いた
め、凝縮液(4)が滞留しやすく低流量域において熱交
換効率を低下する。Currently, heat exchanger tubes in heat exchangers such as air conditioners and refrigerators have a large number of continuous spiral grooves (2) and ridges on the inner surface of the heat exchanger tube (1) with a diameter of 9.538 mm, as shown in Figure 7. A grooved heat exchanger tube (3) is used, in which refrigerant R-22 is flowed as a heat exchange medium inside the tube, and water or air is flowed outside the tube to perform heat exchange. However, when heat exchange is performed by flowing a heat exchange medium inside the tube and flowing water outside the tube, the flow rate of the heat exchange medium inside the tube decreases (the flow velocity inside the tube decreases), and the evaporative heat transfer coefficient inside the tube increases. Transmission rate decreases. In other words, in evaporation inside a tube, when the flow rate of the heat exchange medium flowing inside the tube decreases (the flow velocity inside the tube becomes slower), the heat exchange medium becomes a laminar flow, and a film of the heat exchange medium is formed along the inner wall of the tube, causing a turbulent flow effect. heat exchange efficiency. Therefore, the smaller the flow rate of the heat exchange medium, the less the difference in performance from the smooth tube. In addition, when condensing in the pipe, as shown in Figure 8, the bottom width (Wl) of the groove (2) is narrower than the bottom width (Wl) of the peak (3), so the condensate (4) tends to accumulate and the drop occurs. Reduces heat exchange efficiency in the flow rate range.
しかるに最近の空調器や冷凍器の伝熱管の使用は、パス
数を増やして低流量域での使用が増えており、低流量域
における熱交換効率の向上が強く望まれている。However, in recent years, heat exchanger tubes in air conditioners and refrigerators have been increasingly used in low flow ranges by increasing the number of passes, and there is a strong desire to improve heat exchange efficiency in low flow ranges.
本発明はこれに鑑み種々検討の結果、内面溝付管の低流
量域における熱交換媒体の層流化、凝縮液の滞留化を防
ぎ、低流量域においても熱交換効率の極めて良い内面溝
付伝熱管を開発したもので、管内面に連続する多数の溝
と山を隣接して設けた伝熱管において、伝熱管の外径を
D、溝の深さをN1溝の底幅をW1、山の底幅をW1、
溝数をN、山頂角をαとすると、Dは8m以下、Hは0
.1〜0.5M、WlはH≦W1≦3H又はW2≦W1
≦3W2 、Nは40〜60゜αは20〜60°とし、
直角横断面の溝の部分の断面積を隣接する山の部分の断
面積の2〜5倍としたことを特徴とするものである。In view of this, as a result of various studies, the present invention has been developed to prevent the laminar flow of the heat exchange medium and the stagnation of condensate in the low flow rate region of the internally grooved tube, and to achieve extremely high heat exchange efficiency even in the low flow rate region. This is a developed heat exchanger tube that has a large number of continuous grooves and ridges adjacent to each other on the inner surface of the tube.The outer diameter of the tube is D, the depth of the groove is N1, the bottom width of the groove is W1, and the ridges are The bottom width of W1,
If the number of grooves is N and the peak angle is α, then D is 8m or less and H is 0.
.. 1-0.5M, Wl is H≦W1≦3H or W2≦W1
≦3W2, N is 40-60°, α is 20-60°,
It is characterized in that the cross-sectional area of the groove portion of the right-angled cross section is 2 to 5 times the cross-sectional area of the adjacent mountain portion.
本発明伝熱管は上記構成からなり、特に第1図に示すよ
うに伝熱管(1)の外径をD、溝(2)の深さをN1溝
(2)の底幅をW1、山(3)の底幅をW1、溝(2)
の数をN1山(3)の頂角をαとすると、Dは8s以下
、Hは0.1〜0.5s。The heat exchanger tube of the present invention has the above-mentioned configuration. In particular, as shown in FIG. 1, the outer diameter of the heat exchanger tube (1) is D, the depth of the groove (2) is N1, the bottom width of the groove (2) is W1, and the peak 3) Bottom width of W1, groove (2)
When the apex angle of N1 mountain (3) is α, D is 8s or less, and H is 0.1 to 0.5s.
WlはH≦W1≦3H又はW2≦W1≦3W2、Nは4
0〜60、αは20〜60” とし、これ等を組合わせ
、第2図に示すように伝熱管(1)の直角横断面におい
て、溝(2)の断面積(Sl)を山(3)の断面積(S
2)の2〜5倍とし、伝熱管(1)の外径りを8m以下
と従来よりも小さくして低流量域における熱交換媒体の
管内流速を高め、乱流を促進させて層流化を防止し、か
つ熱交換媒体の凝縮液(4)の滞留高さ(f)が低くな
るように充分な溝底幅(Wl)をもたせたものである。Wl is H≦W1≦3H or W2≦W1≦3W2, N is 4
0 to 60" and α is 20 to 60", and by combining these, the cross-sectional area (Sl) of the groove (2) is reduced to a mountain (3 ) cross-sectional area (S
2), and the outer diameter of the heat exchanger tube (1) is smaller than the conventional one to 8 m or less to increase the flow velocity of the heat exchange medium in the tube in the low flow area, promoting turbulent flow and creating laminar flow. The groove bottom width (Wl) is sufficient to prevent this and to reduce the retention height (f) of the condensate (4) as a heat exchange medium.
置溝と溝の間に形成する山の先端形状は半円状、台形、
三角形又は長方形とするか、或いはこれ等の形状を適宜
組合せてもよい。また溝は螺旋状であっても、管軸と平
行であってもよい。The tip of the mountain formed between the grooves is semicircular, trapezoidal, or trapezoidal.
It may be triangular or rectangular, or a combination of these shapes may be used as appropriate. Furthermore, the groove may be spiral or parallel to the tube axis.
外径7#の伝熱管の内面に、下記の溝と山を隣接して形
成した本発明伝熱管を造り、管内熱伝達率を測定した。A heat transfer tube of the present invention was fabricated in which the following grooves and peaks were formed adjacent to each other on the inner surface of a heat transfer tube having an outer diameter of 7#, and the heat transfer coefficient within the tube was measured.
その結果を従来の直径9.35mの内面溝付伝熱管と内
面平滑伝熱管と比較して第3図及び第4図に示す。The results are shown in FIGS. 3 and 4 in comparison with a conventional heat exchanger tube with a grooved inner surface and a heat exchanger tube with a smooth inner surface having a diameter of 9.35 m.
本発明伝熱管は外径7履、溝底肉厚0.25M、溝深さ
0.15mで、溝底幅0.25mの溝を50個、管軸に
対して右上り18°傾けて設け、溝と溝との間にできる
山の頂角を50°、出先端形状を半円状とした。The heat exchanger tube of the present invention has an outer diameter of 7, a groove bottom wall thickness of 0.25 m, a groove depth of 0.15 m, and 50 grooves with a groove bottom width of 0.25 m, which are tilted upward at an angle of 18 degrees to the right with respect to the tube axis. The apex angle of the peak formed between the grooves was 50°, and the protrusion tip shape was semicircular.
管内熱伝達率の測定は管内に冷媒R−22を流し、管外
に水を流して熱交換を行なわせ、その時の管内蒸発熱伝
達率と管内凝縮熱伝達率を測定した。第3図は管内蒸発
熱伝達率を、第4図は管内凝縮熱伝達率の測定結果を示
すもので、図中(1)、 (1’)は従来の内面平滑伝
熱管、(2)。The heat transfer coefficient inside the tube was measured by flowing refrigerant R-22 into the tube and flowing water outside the tube to perform heat exchange, and then measuring the evaporative heat transfer coefficient within the tube and the condensation heat transfer coefficient within the tube. Figure 3 shows the measurement results for the evaporative heat transfer coefficient in the tube, and Figure 4 shows the measurement results for the condensation heat transfer coefficient in the tube.
(2°)は従来の内面溝付伝熱管、(3)、(3’)は
本発明伝熱管の場合を示す。(2°) shows the conventional internally grooved heat exchanger tube, and (3) and (3') show the heat exchanger tube of the present invention.
図から判るように従来の内面溝付伝熱管の管内蒸発熱伝
達率は内部を流通する熱交換媒体の流量が少なくなる(
管内流速が遅くなる)と熱交換媒体が層流となり、管内
壁に沿って熱交換媒体の膜が形成され、管内蒸発熱伝達
率を低下し、熱交換媒体の流量が少なくなるほど内面平
滑伝熱管との性能差がなくなる。また従来の内面溝付伝
熱管の管内凝縮熱伝達率は溝底幅が山底幅に比べて狭い
ため、凝縮液が滞留しやすく、熱交換媒体の低速流域に
おいて熱交換率を著しく低下する。As can be seen from the figure, the in-tube evaporative heat transfer coefficient of the conventional internally grooved heat exchanger tube is such that the flow rate of the heat exchange medium flowing inside the tube decreases (
When the flow rate in the tube becomes slower), the heat exchange medium becomes a laminar flow, and a film of the heat exchange medium is formed along the inner wall of the tube, reducing the evaporative heat transfer coefficient in the tube, and the lower the flow rate of the heat exchange medium, the smoother the inner surface of the heat exchange tube. There is no difference in performance between the two. Furthermore, in the condensing heat transfer coefficient within the tube of a conventional internally grooved heat exchanger tube, the width of the groove bottom is narrower than the width of the mountain bottom, so the condensate tends to accumulate, which significantly reduces the heat exchange efficiency in the low-velocity region of the heat exchange medium.
これに対し本発明伝熱管は熱交換媒体の低速流域におい
ても管内凝縮熱伝達率には著しい性能低下がなく、管内
蒸発熱伝達率では熱交換媒体の低速流域で低流量になる
ほど性能が向上することが判る。In contrast, in the heat exchanger tube of the present invention, there is no significant performance deterioration in the condensing heat transfer coefficient within the tube even in the low-velocity region of the heat exchange medium, and the performance improves as the flow rate decreases in the low-velocity region of the heat exchange medium in terms of the evaporative heat transfer coefficient within the tube. I understand that.
本発明伝熱管は、従来の内面溝付伝熱管より外径を小さ
くして管内を流通する熱交換媒体の管内流速を高めるこ
とにより、低流量域においても適度の乱流となり、これ
によって熱交換媒体が層流となるのを防ぎ、管内壁に沿
って熱交換媒体の膜が形成されるのを解消し、また溝底
幅を従来よりも広くすることにより、熱交換媒体の凝縮
液の滞留高さを低くし、これ等の作用の相乗効果により
、熱交換媒体の低流量域において管内蒸発熱伝達率及び
管内凝縮熱伝達率を飛躍的に向上したものである。The heat exchanger tube of the present invention has a smaller outer diameter than conventional heat exchanger tubes with internal grooves and increases the flow velocity of the heat exchange medium flowing through the tube, resulting in moderate turbulence even in the low flow rate range, which allows heat exchange. This prevents the medium from forming a laminar flow, eliminates the formation of a film of heat exchange medium along the inner wall of the pipe, and makes the groove bottom wider than before to prevent the condensate of the heat exchange medium from stagnation. By reducing the height and the synergistic effect of these effects, the in-pipe evaporative heat transfer coefficient and the in-pipe condensation heat transfer coefficient are dramatically improved in the low flow rate range of the heat exchange medium.
第1図は本発明伝熱管の一例を示す断面図、第2図は本
発明伝熱管の内面溝の断面積と山の断面積を示す説明図
、第3図は各内面溝付管の管内蒸発熱伝達率と冷媒流量
(熱交換媒体の流量)の関係を示す説明図、第4図は各
内面溝付管の管内凝縮熱伝達率と冷媒流量(熱交換媒体
の流量)の関係を示す説明図、第5図は従来の内面溝付
伝熱管の一例を示す断面図、第6図は第5図に示す伝熱
管の側断面図、第7図は従来の内面溝付伝熱管の他の一
例を示す断面図、第8図は従来の内面溝付伝熱管の断面
を拡大して示す説明図である。
1、伝熱管
2、溝
3、山
4、凝縮液
り、直径
H0溝の深さ
W1、溝の底幅
W2 、山の底幅
α、山の頂角
第1図
7/
ツ
第2図
7が一一一一一一一
■
第3図
IO
玲嬬5友量 (Kg / hr )
第4図
XIO
2050to。
;令 匂9本、ラブ!tt (Kg/hr)第
5図
第6図Figure 1 is a sectional view showing an example of the heat exchanger tube of the present invention, Figure 2 is an explanatory diagram showing the cross-sectional area of the inner groove and the cross-sectional area of the peak of the heat exchanger tube of the present invention, and Figure 3 is the inside of each inner grooved tube. An explanatory diagram showing the relationship between the evaporative heat transfer coefficient and the refrigerant flow rate (heat exchange medium flow rate). Figure 4 shows the relationship between the in-pipe condensation heat transfer coefficient and the refrigerant flow rate (heat exchange medium flow rate) of each internally grooved tube. Explanatory drawings, FIG. 5 is a sectional view showing an example of a conventional internally grooved heat exchanger tube, FIG. 6 is a side sectional view of the heat exchanger tube shown in FIG. 5, and FIG. 7 is an example of a conventional internally grooved heat exchanger tube. FIG. 8 is an explanatory diagram showing an enlarged cross section of a conventional internally grooved heat exchanger tube. 1. Heat exchanger tube 2, groove 3, ridge 4, condensate sump, diameter H0 groove depth W1, groove bottom width W2, ridge bottom width α, ridge top angle Fig. 1 7/ TS Fig. 2 7 111111■ Figure 3 IO Lingyin 5 Tomo (Kg/hr) Figure 4 XIO 2050to. ; Rei 9 scents, love! tt (Kg/hr) Fig. 5 Fig. 6
Claims (1)
管において、伝熱管の外径をD、溝の深さをH、溝の底
幅をW_1、山の底幅をW_2、溝数をN、山の頂角を
αとすると、Dは8mm以下、Hは0.1〜0.5mm
、W_1はH≦W_1≦3H又はW_2≦W_1≦3W
_2、Nは40〜60、αは20〜60゜とし、直角横
断面の溝の部分の断面積を隣接する山の部分の断面積の
2〜5倍としたことを特徴とする内面溝付伝熱管。In a heat exchanger tube that has a large number of continuous grooves and ridges adjacent to each other on the inner surface of the tube, the outer diameter of the heat exchanger tube is D, the depth of the groove is H, the bottom width of the groove is W_1, the bottom width of the ridge is W_2, and the groove If the number is N and the peak angle is α, then D is 8 mm or less and H is 0.1 to 0.5 mm.
, W_1 is H≦W_1≦3H or W_2≦W_1≦3W
_2, N is 40 to 60, α is 20 to 60 degrees, and the cross-sectional area of the groove part of the right-angled cross section is 2 to 5 times the cross-sectional area of the adjacent peak part. heat exchanger tube.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28896787A JPH01131895A (en) | 1987-11-16 | 1987-11-16 | Heat transfer tube with inner surface groove |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28896787A JPH01131895A (en) | 1987-11-16 | 1987-11-16 | Heat transfer tube with inner surface groove |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01131895A true JPH01131895A (en) | 1989-05-24 |
Family
ID=17737117
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28896787A Pending JPH01131895A (en) | 1987-11-16 | 1987-11-16 | Heat transfer tube with inner surface groove |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01131895A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0297898A (en) * | 1988-10-04 | 1990-04-10 | Sumitomo Light Metal Ind Ltd | Heat transfer tube with inner surface groove |
JP2011185589A (en) * | 2010-02-09 | 2011-09-22 | Sumitomo Light Metal Ind Ltd | Serpentine heat exchanger for air conditioner |
-
1987
- 1987-11-16 JP JP28896787A patent/JPH01131895A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0297898A (en) * | 1988-10-04 | 1990-04-10 | Sumitomo Light Metal Ind Ltd | Heat transfer tube with inner surface groove |
JP2011185589A (en) * | 2010-02-09 | 2011-09-22 | Sumitomo Light Metal Ind Ltd | Serpentine heat exchanger for air conditioner |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3315785B2 (en) | Heat transfer tube for absorber | |
JPS6189497A (en) | Heat transfer pipe | |
KR960024225A (en) | Heat pipe for mixed refrigerant | |
JPS58217195A (en) | Heat exchanger | |
US5960870A (en) | Heat transfer tube for absorber | |
JPH04177091A (en) | Heat exchanger | |
JPS61153498A (en) | Finned heat exchanger | |
JPH01131895A (en) | Heat transfer tube with inner surface groove | |
CA1302395C (en) | Heat exchanger tube having minute internal fins | |
JP3811909B2 (en) | Heat transfer tube and heat exchanger using the same | |
JP2002130973A (en) | Heat exchanger | |
JP3430909B2 (en) | Air conditioner | |
JPH03102193A (en) | Condenser | |
JPH06147532A (en) | Air conditioner | |
JPS5883189A (en) | Heat-transmitting pipe | |
JP2960828B2 (en) | Heat transfer tube for absorber | |
JP3199636B2 (en) | Heat transfer tube with internal groove | |
JPH05322477A (en) | Boiling heat transfer surface | |
JPS58214783A (en) | Heat exchanger | |
CN209386613U (en) | Evaporator tube and refrigerator | |
JPS5977272A (en) | Heat exchanger for air conditioner | |
KR200397472Y1 (en) | Fin and tube integral type heat exchanger | |
JPH0445753B2 (en) | ||
JPH0241501Y2 (en) | ||
JPS63180090A (en) | Heat transfer tube |