JPH0445753B2 - - Google Patents

Info

Publication number
JPH0445753B2
JPH0445753B2 JP23072384A JP23072384A JPH0445753B2 JP H0445753 B2 JPH0445753 B2 JP H0445753B2 JP 23072384 A JP23072384 A JP 23072384A JP 23072384 A JP23072384 A JP 23072384A JP H0445753 B2 JPH0445753 B2 JP H0445753B2
Authority
JP
Japan
Prior art keywords
heat transfer
refrigerant
tube
groove
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP23072384A
Other languages
Japanese (ja)
Other versions
JPS61110891A (en
Inventor
Fumitoshi Nishiwaki
Mitsuhiro Ikoma
Tomoaki Ando
Masaaki Adachi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP23072384A priority Critical patent/JPS61110891A/en
Publication of JPS61110891A publication Critical patent/JPS61110891A/en
Publication of JPH0445753B2 publication Critical patent/JPH0445753B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は空気調和機や冷凍機等に用いる熱交換
器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a heat exchanger used in air conditioners, refrigerators, etc.

従来例の構成とその問題点 冷媒等の作動流体が伝熱管内を相変化しながら
流動する熱交換器としては、従来、第1図に示す
ようなフイン付熱交換器が用いられている。これ
は一定間隔に並設した多数のフイン1と、前記フ
イン1を貫通して配列した複数の伝熱管2から構
成されており、伝熱管2内の冷媒と管外の空気の
間で熱交換が行われる。図中矢印3は冷媒の流動
方向を示す。伝熱管2としては、第2図に示すよ
うに、溝深さhが一定であるらせん溝4を管内壁
に設けた管内らせん溝付管が用いられている。
Conventional Structure and Problems There has conventionally been used a finned heat exchanger as shown in FIG. 1 as a heat exchanger in which a working fluid such as a refrigerant flows through heat transfer tubes while undergoing a phase change. This consists of a large number of fins 1 arranged in parallel at regular intervals and a plurality of heat transfer tubes 2 arranged through the fins 1, and heat exchange between the refrigerant inside the heat transfer tubes 2 and the air outside the tubes. will be held. Arrow 3 in the figure indicates the flow direction of the refrigerant. As the heat exchanger tube 2, as shown in FIG. 2, an internal spiral grooved tube is used, in which a spiral groove 4 having a constant groove depth h is provided on the inner wall of the tube.

この管内らせん溝付管は溝4を設けることによ
つて、蒸発熱伝達の場合は管底部の液冷媒が毛細
管現象によつて溝内を上昇し、管内伝熱面に形成
される冷媒液膜の平均厚さが薄くなり、凝縮熱伝
達の場合は凝縮液が表面張力の作用で溝底部に集
まり、管内伝熱面に生成される凝縮液膜の平均厚
さが薄くなり、共に伝熱性能が向上すると言われ
ていた。
By providing the groove 4 in this internal spiral grooved tube, in the case of evaporative heat transfer, the liquid refrigerant at the bottom of the tube rises in the groove due to capillary action, and a refrigerant liquid film is formed on the heat transfer surface inside the tube. In the case of condensation heat transfer, the condensate gathers at the bottom of the groove due to surface tension, and the average thickness of the condensate film formed on the heat transfer surface inside the tube becomes thinner, which both improves heat transfer performance. was said to improve.

しかし、我々の経験によれば、例えば蒸発熱伝
達の場合に管内全伝熱面に薄い厚さの冷媒液膜が
形成され、著しい伝熱促進効果が得られるのは冷
媒の乾き度が大きい、すなわち蒸発過程の後期だ
けである。一方、蒸発過程の初期においては、冷
媒の乾き度は小さく、管内の液冷媒の流量が多
い。そのため、液冷媒は容易に溝を埋めてしま
い、溝を乗り越えて流動する。したがつて、前述
のような蒸発メカニズムによる著しい伝熱促進効
果は望めない。以上のことから、蒸発器の伝熱性
能を飛躍的に向上させるためには、冷媒の乾き度
が大きい領域における著しい伝熱促進効果をより
一層有効利用しなければならないという問題があ
る。
However, according to our experience, for example, in the case of evaporative heat transfer, a thin refrigerant liquid film is formed on the entire heat transfer surface in the tube, and a significant heat transfer promotion effect can be obtained if the refrigerant is highly dry. That is, only in the latter stages of the evaporation process. On the other hand, at the beginning of the evaporation process, the dryness of the refrigerant is low and the flow rate of the liquid refrigerant in the pipes is large. Therefore, the liquid refrigerant easily fills the groove and flows over the groove. Therefore, a significant heat transfer promoting effect due to the evaporation mechanism as described above cannot be expected. From the above, in order to dramatically improve the heat transfer performance of the evaporator, there is a problem that the remarkable heat transfer promoting effect in the region where the degree of dryness of the refrigerant is large must be utilized more effectively.

一方、管内の作動流体が単相流の場合の管内ら
せん溝付管の伝熱性能は、前述の管内の作動流体
が二相流の場合の伝熱性能よりはるかに小さく、
管内壁が平滑な平滑管の単相流伝熱性能にほとん
ど等しい。すなわち、管内の作動流体が単相流の
場合には溝の効果は僅かである。以上のことか
ら、単相流域に管内らせん溝付管を用いることは
あまり効果的ではな。
On the other hand, the heat transfer performance of the spiral grooved tube in the pipe when the working fluid in the pipe is a single-phase flow is much lower than the heat transfer performance in the case where the working fluid in the pipe is a two-phase flow.
It is almost equivalent to the single-phase flow heat transfer performance of a smooth tube with a smooth inner wall. That is, when the working fluid in the pipe is a single-phase flow, the effect of the grooves is small. From the above, it is not very effective to use internal spiral grooved pipes in single-phase flow areas.

発明の目的 本発明は上記従来の欠点を解消するものであ
り、冷媒の乾き度が大きな領域における管内らせ
ん溝付管の伝熱性能を著しく向上させた高性能な
熱交換器を提供することを目的とする。
Purpose of the Invention The present invention solves the above-mentioned conventional drawbacks, and aims to provide a high-performance heat exchanger that significantly improves the heat transfer performance of a spirally grooved tube in a region where the dryness of the refrigerant is large. purpose.

発明の構成 本発明の熱交換器は、伝熱管の管内を相変化す
る流体の流路とし、前記伝熱管の管内壁に溝深さ
が異なる少なくとも2種類のらせん溝を設け、前
記らせん溝の溝深さを管内流体の入口側で小さ
く、出口側で大きくしたものである。
Structure of the Invention The heat exchanger of the present invention includes a heat exchanger tube in which the inside of the heat exchanger tube is a flow path for a phase-changing fluid, an inner wall of the heat exchanger tube is provided with at least two types of helical grooves having different groove depths, and the helical groove is The groove depth is smaller on the inlet side of the fluid in the pipe and larger on the outlet side.

実施例の説明 以下、本発明の一実施例について第3図〜第5
図を参照しながら説明する。
DESCRIPTION OF EMBODIMENTS Hereinafter, one embodiment of the present invention will be described in FIGS. 3 to 5.
This will be explained with reference to the figures.

第3図は本発明の一実施例の蒸発器の断面図で
ある。この第3図において、一定間隔に並設した
多数のフイン5と、前記フイン5を貫通して配列
した複数の伝熱管6,7,8,9および前記各伝
熱管6〜9を互いに結合するU字形ベンド10よ
り蒸発器が構成されている。管内を矢印11方向
に冷媒が流動し、管外のフイン5間を空気が流動
して熱交換が行われる。そして、単相の液冷媒お
よび冷媒蒸気が流動する伝熱管6および9は管内
壁面が平滑な平滑管である。また、蒸発熱伝達が
行われる伝熱管7,8の管内壁にはそれぞれ第4
図に示すように断面が三角形状のらせん溝12,
13が設けてあり、蒸発器の入口に近い、冷媒乾
き度の小さな領域の伝熱管7のらせん溝12の溝
深さh1は小さく(例えばh1=0.15mm)、蒸発器の
出口に近い、乾き度の大きな領域の伝熱管8のら
せん溝13の溝深さh2は溝深さh1よりかなり大き
く(例えばh2=0.25mm)してある。なお14は側
板である。
FIG. 3 is a sectional view of an evaporator according to an embodiment of the present invention. In FIG. 3, a large number of fins 5 arranged in parallel at regular intervals, a plurality of heat transfer tubes 6, 7, 8, 9 arranged through the fins 5, and each of the heat transfer tubes 6 to 9 are connected to each other. The U-shaped bend 10 constitutes an evaporator. Refrigerant flows inside the tube in the direction of arrow 11, and air flows between the fins 5 outside the tube to perform heat exchange. The heat transfer tubes 6 and 9 through which single-phase liquid refrigerant and refrigerant vapor flow are smooth tubes with smooth inner wall surfaces. Further, on the inner walls of the heat exchanger tubes 7 and 8 where evaporative heat transfer is performed, fourth tubes are respectively installed.
As shown in the figure, a spiral groove 12 having a triangular cross section,
13 is provided, and the groove depth h 1 of the helical groove 12 of the heat transfer tube 7 in the region of low refrigerant dryness near the evaporator inlet is small (for example, h 1 = 0.15 mm) and is close to the evaporator outlet. The groove depth h 2 of the helical groove 13 of the heat exchanger tube 8 in the region of high dryness is considerably larger than the groove depth h 1 (for example, h 2 =0.25 mm). Note that 14 is a side plate.

このような構成であるために次のような作用と
効果を生じる。
This configuration produces the following functions and effects.

単相の液冷媒および冷媒蒸気が流動する伝熱管
6および9を管内壁面が平滑な平滑管としている
ため、前述の単相流域では平滑管6,9と管内ら
せん溝付管の伝熱性能はほとんど等しいという理
由から、伝熱管の伝熱性能を減少させることな
く、伝熱管加工費を安く、すなわち安価な蒸発器
とすることができる。
Since the heat transfer tubes 6 and 9 through which single-phase liquid refrigerant and refrigerant vapor flow are smooth tubes with smooth inner wall surfaces, the heat transfer performance of the smooth tubes 6 and 9 and the spiral grooved tube in the tube in the above-mentioned single-phase region is as follows. Because they are almost equal, the processing cost of the heat exchanger tubes is low, without reducing the heat transfer performance of the heat exchanger tubes, that is, an inexpensive evaporator can be obtained.

次に、冷媒の流動状態が液冷媒と冷媒蒸気が同
時に流れる二相流状態のときの、以下の実験条件
下での、各種伝熱管の蒸発伝熱性能に関する実験
結果を第5図に示す。
Next, FIG. 5 shows experimental results regarding the evaporative heat transfer performance of various heat transfer tubes under the following experimental conditions when the flow state of the refrigerant is a two-phase flow state in which liquid refrigerant and refrigerant vapor flow simultaneously.

使用冷媒……R22 蒸発温度……5℃ 冷媒の重量流量……250Kg/m2・S 熱流束……6000kcal/m2・h なお、縦軸は各伝熱管の熱伝達率、横軸は冷媒
の乾き度である。冷媒の乾き度が大きくなるにつ
れて、平滑管と管内らせん溝付管の熱伝達率の差
が大きくなる。つまり、乾き度が大きいほど管内
らせん溝による伝熱促進効果が非常に著しくな
る。また、冷媒の乾き度が小さな領域では管内ら
せん溝付管の溝深さの影響はほとんどないが、乾
き度が大きくなり冷媒蒸気量が増加するにつれて
溝深さが大きいほど伝熱性能は著しく増加する。
一方、冷媒による圧力損失は溝深さが大きいほど
大きくなつている。しかしながら、冷媒の乾き度
が大きな領域における溝深さの増加による圧力損
失の増加の割合は上記の熱伝達率の増加の割合と
比較して小さな値である。
Refrigerant used...R 22 evaporation temperature...5℃ Refrigerant weight flow rate...250Kg/ m2・S Heat flux...6000kcal/ m2・h The vertical axis is the heat transfer coefficient of each heat transfer tube, and the horizontal axis is the heat transfer coefficient of each heat transfer tube. It is the dryness of the refrigerant. As the dryness of the refrigerant increases, the difference in heat transfer coefficient between the smooth tube and the spirally grooved tube increases. In other words, the greater the degree of dryness, the more significant the effect of promoting heat transfer by the internal spiral grooves becomes. In addition, in areas where the degree of dryness of the refrigerant is small, the groove depth of the spiral grooved tube has little effect, but as the degree of dryness increases and the amount of refrigerant vapor increases, the heat transfer performance increases significantly as the groove depth increases. do.
On the other hand, the pressure loss due to the refrigerant increases as the groove depth increases. However, the rate of increase in pressure loss due to the increase in groove depth in a region where the dryness of the refrigerant is large is a small value compared to the rate of increase in the heat transfer coefficient described above.

上記の実験結果に基いて、本実施例では冷媒の
乾き度が小さな領域の伝熱管7には溝深さが小さ
ならせん溝12を設けている。冷媒の乾き度が小
さく管内の液冷媒の流量が多い場合には、液冷媒
は溝に沿つて流れるのではなく、溝を乗り越えな
がら流れている。そのため、溝深さが小さならせ
ん溝付管を用いることにより、伝熱性能を低下さ
せることなく冷媒による圧力損失を減少させるこ
とができる。
Based on the above experimental results, in this embodiment, a spiral groove 12 with a small groove depth is provided in the heat transfer tube 7 in a region where the degree of dryness of the refrigerant is small. When the degree of dryness of the refrigerant is low and the flow rate of the liquid refrigerant in the pipe is large, the liquid refrigerant does not flow along the grooves, but flows over the grooves. Therefore, by using a spiral grooved tube with a small groove depth, pressure loss due to the refrigerant can be reduced without deteriorating heat transfer performance.

また、本実施例では冷媒の乾き度が大きな領域
の伝熱管8には溝深さが大きならせん溝13を設
けている。冷媒の乾き度が大きくなり管内の液冷
媒の流量が少くなるにつれて、らせん溝による毛
細管現象により管内の冷媒の流動状態は環状流あ
るいは環状噴露流に遷移しやすくなり、管内の全
溝内面上に非常に薄い厚さの冷媒液膜が形成さ
れ、伝熱性能が著しく向上する。したがつて、ら
せん溝付管において溝深さが大きいほど、より広
い溝内面に、さらに薄い冷媒液膜が形成されるこ
とになり、伝熱性能を大幅に向上させることがで
きる。
Further, in this embodiment, the helical grooves 13 having a large groove depth are provided in the heat exchanger tubes 8 in regions where the degree of dryness of the refrigerant is large. As the dryness of the refrigerant increases and the flow rate of the liquid refrigerant in the tube decreases, the flow state of the refrigerant in the tube tends to transition to an annular flow or an annular jet flow due to the capillary phenomenon caused by the spiral groove, and the flow state of the refrigerant in the tube tends to change to an annular flow or an annular jet flow. A very thin refrigerant liquid film is formed, which significantly improves heat transfer performance. Therefore, the larger the groove depth in the spirally grooved tube, the thinner the refrigerant liquid film is formed on the wider inner surface of the groove, and the heat transfer performance can be significantly improved.

なお、上記実施例の管内らせん溝付管7,8に
は、らせん溝として断面が三角形状の溝を設けた
が、三角形以外の多角形の断面形状を有する溝を
設けても同様な効果が得られることは言うまでも
ない。また、らせん溝の溝深さをh1とh2の2種類
としたがそれ以上でも良いことは明らかである。
Note that although the internal spiral grooved tubes 7 and 8 of the above embodiments were provided with a groove having a triangular cross section as the spiral groove, the same effect could be obtained by providing a groove having a polygonal cross section other than a triangle. It goes without saying that you can get it. In addition, although the groove depths of the spiral grooves are set to two types, h 1 and h 2 , it is clear that the depths may be greater than that.

また本発明は凝縮熱伝達においても蒸発熱伝達
の場合と同様の効果を発揮する。すなわち、冷媒
の乾き度が大きな領域の伝熱管に溝深さが大きな
らせん溝を設けることにより、管内の全溝内面に
生成される凝縮液膜の平均厚さを非常に薄くし、
伝熱性能を著しく向上させることができる。
Further, the present invention exhibits the same effect in condensation heat transfer as in evaporative heat transfer. In other words, by providing spiral grooves with a large groove depth in the heat exchanger tubes in areas where the dryness of the refrigerant is large, the average thickness of the condensate film formed on the inner surface of all grooves in the tubes can be made extremely thin.
Heat transfer performance can be significantly improved.

発明の効果 以上のように本発明の熱交換器は、伝熱管の管
内を相変化する流体の流路とし、前記伝熱管の管
内壁に溝深さが異なる少なくとも2種類のらせん
溝を設け、前記らせん溝の溝深さを管内流体の入
口側の低乾き度域で小さく、出口側の高乾き度域
で大きくしたものであるから、高乾き度域におい
て管内の全溝内面上に非常に薄い厚さの冷媒液膜
を形成することができ、熱交換器の伝熱性能を著
しく向上させることが可能であり、その工業的効
果は大なるものがある。
Effects of the Invention As described above, the heat exchanger of the present invention has the heat exchanger tube as a flow path for a phase-changing fluid, and the inner wall of the heat exchanger tube is provided with at least two types of helical grooves having different groove depths. The groove depth of the spiral groove is small in the low dryness region on the inlet side of the fluid in the pipe and large in the high dryness region on the outlet side. It is possible to form a thin refrigerant liquid film, and it is possible to significantly improve the heat transfer performance of a heat exchanger, which has great industrial effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のフイン付熱交換器の斜視図、第
2図aおよびbは同フイン付熱交換器の管内らせ
ん溝付管の一部欠截正面図および半截側断面図、
第3図は本発明の一実施例を示す蒸発器の一部欠
截正面図、第4図aおよびbは同蒸発器の管内ら
せん溝付管7の一部欠截正面図および半截側断面
図、第4図cおよびdは同蒸発器の管内らせん溝
付管8の一部欠截正面図および半截側断面図、第
5図は伝熱管の蒸発性能実験の結果を示す特性図
である。 5…フイン、6,7,8,9…伝熱管、12,
13…らせん溝。
FIG. 1 is a perspective view of a conventional finned heat exchanger, and FIGS. 2a and 2b are a partially cutaway front view and a half-cutted side sectional view of a spiral grooved tube in the pipe of the same finned heat exchanger.
FIG. 3 is a partially cutaway front view of an evaporator showing an embodiment of the present invention, and FIGS. 4a and 4b are a partially cutaway front view and a half-cut side cross-section of the internal spiral grooved tube 7 of the same evaporator. Figures 4c and 4d are a partially cut-away front view and a half-cut side sectional view of the internal spiral grooved tube 8 of the same evaporator, and Figure 5 is a characteristic diagram showing the results of an evaporation performance experiment of the heat transfer tube. . 5...fin, 6,7,8,9...heat exchanger tube, 12,
13...Spiral groove.

Claims (1)

【特許請求の範囲】[Claims] 1 伝熱管の管内を相変化する流体の流路とし、
前記伝熱管の管内壁に溝深さが異なる少なくとも
2種類のらせん溝を設け、前記らせん溝の溝深さ
を管内流体の入口側で小さく、出口側で大きくし
た熱交換器。
1. The inside of the heat transfer tube is used as a phase-changing fluid flow path,
At least two types of helical grooves having different groove depths are provided on the inner wall of the heat exchanger tube, and the groove depth of the helical grooves is small on the inlet side of the fluid in the tube and large on the outlet side.
JP23072384A 1984-11-01 1984-11-01 Heat exchanger Granted JPS61110891A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23072384A JPS61110891A (en) 1984-11-01 1984-11-01 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23072384A JPS61110891A (en) 1984-11-01 1984-11-01 Heat exchanger

Publications (2)

Publication Number Publication Date
JPS61110891A JPS61110891A (en) 1986-05-29
JPH0445753B2 true JPH0445753B2 (en) 1992-07-27

Family

ID=16912293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23072384A Granted JPS61110891A (en) 1984-11-01 1984-11-01 Heat exchanger

Country Status (1)

Country Link
JP (1) JPS61110891A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07109354B2 (en) * 1987-01-12 1995-11-22 松下冷機株式会社 Heat exchanger
CN103998891B (en) * 2011-12-07 2016-04-20 松下电器产业株式会社 Fin tube type heat exchanger

Also Published As

Publication number Publication date
JPS61110891A (en) 1986-05-29

Similar Documents

Publication Publication Date Title
US4715436A (en) Construction of a heat transfer wall of a heat transfer pipe
JPH0587752B2 (en)
JP2002372390A (en) Heat exchanger tube for falling film evaporator
US6412549B1 (en) Heat transfer pipe for refrigerant mixture
JPS58217195A (en) Heat exchanger
JPH06185885A (en) Flat multi-holed condensing and heat transfer pipe
JPH0445753B2 (en)
JPS6352310B2 (en)
JPS61114092A (en) Heat exchanger
JPS6252238B2 (en)
JPS6218865Y2 (en)
JPH05322477A (en) Boiling heat transfer surface
JPS624638B2 (en)
JPH07109354B2 (en) Heat exchanger
JP3417825B2 (en) Inner grooved pipe
JPS5938596A (en) Heat exchanger
JPS6127493A (en) Heat exchanger with fins
JPS58214783A (en) Heat exchanger
JP2663776B2 (en) Condenser
JPH02143094A (en) Heat exchanger equipped with heat transfer tube
JPH0666458A (en) Refrigerator evaporator
JPH05133692A (en) Evaporator
JPS63172890A (en) Heat exchanger
SU883647A1 (en) Heat-exchange surface
JPS63172891A (en) Heat exchanger