JPS6218865Y2 - - Google Patents

Info

Publication number
JPS6218865Y2
JPS6218865Y2 JP16477782U JP16477782U JPS6218865Y2 JP S6218865 Y2 JPS6218865 Y2 JP S6218865Y2 JP 16477782 U JP16477782 U JP 16477782U JP 16477782 U JP16477782 U JP 16477782U JP S6218865 Y2 JPS6218865 Y2 JP S6218865Y2
Authority
JP
Japan
Prior art keywords
tube
fins
evaporation
heat exchanger
condensation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16477782U
Other languages
Japanese (ja)
Other versions
JPS5971084U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP16477782U priority Critical patent/JPS5971084U/en
Publication of JPS5971084U publication Critical patent/JPS5971084U/en
Application granted granted Critical
Publication of JPS6218865Y2 publication Critical patent/JPS6218865Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【考案の詳細な説明】 本考案は管内で冷媒が蒸発または凝縮する熱交
換器に供する伝熱管であつて、内面に螺旋状の溝
を付した内面溝付伝熱管の構造に関するものであ
る。
[Detailed Description of the Invention] The present invention is a heat exchanger tube used in a heat exchanger in which a refrigerant evaporates or condenses within the tube, and relates to the structure of an internally grooved heat exchanger tube in which a spiral groove is provided on the inner surface.

従来上記の様な熱交換器に供する伝熱管として
は、インナーフインチユーブ、コルゲートチユー
ブ、内面溝付管等が使用されている。この内イン
ナーフインチユーブは、管の内面に断面星型形状
の型材を挿入したもので、伝熱特性が優れている
が高価であり、単位体積当りの重量が大きく圧力
損失が非常に大きい等の欠点がある。又、コルゲ
ートチユーブは価格的には問題は無いが、伝熱特
性(特に凝縮特性)に問題があり、圧力損失も大
きく実用的では無い。
Conventionally, inner finch tubes, corrugated tubes, internally grooved tubes, and the like have been used as heat transfer tubes for the above-mentioned heat exchangers. Among these, inner finches have a star-shaped cross-section inserted into the inner surface of the tube, and although they have excellent heat transfer characteristics, they are expensive, have a large weight per unit volume, and have very large pressure losses. There are drawbacks. Further, although corrugated tubes have no problem in terms of price, they have problems with heat transfer characteristics (particularly condensation characteristics) and have large pressure losses, making them impractical.

一方内面溝付管は、第1図に示す様に管内面に
軸線に対してXの傾きを有する螺線状のフインを
刻設したもので、価格的には若干高いが、伝熱特
性が優れていると共に、圧力損失が非常に小さ
く、伝熱管として優れたものである。
On the other hand, internally grooved tubes have spiral fins carved into the inner surface of the tube with an inclination of In addition to being excellent, the pressure loss is extremely small, making it an excellent heat exchanger tube.

最近の冷凍器はヒートポンプ方式が主流となつ
て来ており、これらに使用される熱交換器は蒸発
器あるいは凝縮器として作動される為、伝熱管も
蒸発時と凝縮時の性能のバランスを要求される様
になつて来ている。この点内面溝付管の場合、凝
縮性能に関してはフイン高さを高くすると共に、
フイン谷部の断面積を大きくし、且つリード角を
適当な値にすることにより大幅に向上することが
できるが、蒸発性能に関してはこれらの影響が小
さく、かかる構造の変更により圧力損失のみ増加
してしまうことがあり、一般的に蒸発性能が凝縮
性能を下回り、アンバランスとなつている。
Heat pump systems have become mainstream in recent refrigerators, and the heat exchangers used in these systems operate as evaporators or condensers, so the heat transfer tubes also require a balance of performance during evaporation and condensation. It is becoming more and more like that. In this regard, in the case of internally grooved pipes, in terms of condensation performance, the height of the fins should be increased, and
Although it can be greatly improved by increasing the cross-sectional area of the fin valley and setting the lead angle to an appropriate value, the effect of these on evaporation performance is small, and such structural changes only increase pressure loss. Generally, the evaporation performance is lower than the condensation performance, resulting in an imbalance.

従つて内面溝付管をヒートポンプ用熱交換器等
の様に管内で流体が相変化(蒸発又は凝縮)しな
がら熱交換を行う伝熱管に適用した場合、凝縮時
の能力に対して蒸発時の能力が不足するという問
題点があつた。
Therefore, when an internally grooved tube is applied to a heat exchanger tube, such as a heat exchanger for a heat pump, in which the fluid exchanges heat while undergoing a phase change (evaporation or condensation) within the tube, the capacity during evaporation will be lower than the capacity during condensation. There was a problem of lack of capacity.

本考案は上記した様な内面溝付管の蒸発時の性
能を凝縮時の性能を損うことなく改善することを
目的とするものであり、その主たる構成が管内面
に管内径Diとフイン高さHの比H/Diが0.01〜
0.05でフインの管軸に対する捩れ角Xが15〜35度
のフインを多数有し、そのフインの片側斜面には
フイン底部よりフイン頂部にかけ核沸騰を促進す
る微細な亀裂構造を有している点にある内面溝付
伝熱管を提供せんとするものである。
The purpose of this invention is to improve the performance of the above-mentioned internally grooved tube during evaporation without impairing the performance during condensation. The ratio H/Di is 0.01~
It has many fins with a torsion angle X of 0.05 to the tube axis of 15 to 35 degrees, and one slope of the fins has a fine crack structure from the bottom of the fins to the top of the fins that promotes nucleate boiling. The present invention aims to provide a heat exchanger tube with internal grooves.

本考案に係る内面溝付伝熱管のフイン部の正断
面形状は第2図に示す如くで、管の内径がDi、
フインの谷部1から頂部2までの高さがHで、各
フインの正断面形状は第2図に示す様に概略三角
形若しくは台形を成しており、その片側面に微細
な亀裂構造3を有している。
The cross-sectional shape of the fin portion of the internally grooved heat exchanger tube according to the present invention is as shown in Fig. 2, and the inner diameter of the tube is Di,
The height from the trough 1 to the top 2 of the fin is H, and the cross-sectional shape of each fin is roughly triangular or trapezoidal as shown in Figure 2, with a fine crack structure 3 on one side. have.

まずかかる亀裂構造を有していない内面溝付管
についてその特性を種々実験した結果、第4図か
ら第6図に示す様な特性が得られた。第4図は上
記管内径Diとフイン高さHとの比を種々変化さ
せた場合の管内側伝熱係数Hiの変化の状態を示
すもので、第5図は同じくH/Diに対する圧力
損失△Pの関係を示すもので、何れも蒸発時と凝
縮時の両方に付いて得たテスト結果である。
First, as a result of conducting various experiments on the characteristics of an internally grooved tube that does not have such a crack structure, the characteristics shown in FIGS. 4 to 6 were obtained. Figure 4 shows the changes in the tube inner heat transfer coefficient Hi when the ratio of the tube inner diameter Di to the fin height H is varied, and Figure 5 also shows the pressure loss △ versus H/Di. This shows the relationship between P and all test results obtained during both evaporation and condensation.

第4図及び第5図により蒸発の場合、管内側伝
熱係数Hiは管内径Diとフイン高さHの比H/Di
が大きくなるにつれ若干増加し、圧力損失△Pは
H/Diが0.05を越える近傍から急激に増加して行
くことがわかる。又凝縮の場合管内側伝熱係数
HiはH/Diが0.05を若干越えた近傍で極大とな
り、圧力損失△PはH/Diの増加にほぼ比例し
ていることが分かる。
4 and 5, in the case of evaporation, the tube inner heat transfer coefficient Hi is the ratio H/Di of the tube inner diameter Di and the fin height H.
It can be seen that the pressure loss ΔP increases slightly as H/Di becomes larger, and the pressure loss ΔP rapidly increases from the vicinity where H/Di exceeds 0.05. In the case of condensation, the heat transfer coefficient inside the tube
It can be seen that Hi reaches a maximum near H/Di slightly exceeding 0.05, and pressure loss ΔP is almost proportional to the increase in H/Di.

又第6図は、捩れ角Xに対する管内側伝熱係数
Hiの関係をまとめたもので、蒸発の場合、管内
側伝熱係数Hiは捩れ角Xが10゜近傍でピークと
なり、Xの増加と共に若干低下し、25゜近傍より
再び増加していることが分かる。又凝縮の場合、
管内側伝熱係数HiはXが25゜近傍で極大となる
ことが分かる。
Also, Figure 6 shows the tube inner heat transfer coefficient with respect to the twist angle
This summarizes the relationship between Hi and shows that in the case of evaporation, the tube inside heat transfer coefficient Hi peaks when the twist angle I understand. Also, in the case of condensation,
It can be seen that the tube inside heat transfer coefficient Hi reaches a maximum when X is around 25°.

以上の結果より内面溝付管を熱交換器用として
使用する場合H/Diが0.01〜0.05、Xが15〜35度
の範囲で管内側伝熱係数Hiと圧力損失△Pが取
り分け蒸発時に於て満足すべき特性を有している
ことが分かる。
From the above results, when using an internally grooved tube for a heat exchanger, when H/Di is in the range of 0.01 to 0.05 and It can be seen that it has satisfactory characteristics.

しかしこの範囲内と言えども、特に管内側伝熱
係数Hiは凝縮時の方が蒸発時の性能を上回つて
おり蒸発性能の改善が必要である。かかる蒸発性
能の改善方法として、フインの表面をポーラスな
焼結金属組識としたり、機械的に凹凸を有する構
造と成したりするいわゆる核沸騰促進構造にする
ことが望ましい。かかる核沸騰促進構造に於て
は、ポーラス状や凹凸形状により形成された微細
な空間に保持された気泡が加熱により成長し、こ
の空間より飛び出すと共に、その一部が当該空間
に残され、続いて異なる場所により液体が流入
し、この空間に取り残された気泡がその後の成長
の出発点となり、沸騰を継続するもので、蒸発性
能を著しく改善するものである。
However, even within this range, the tube inside heat transfer coefficient Hi is higher during condensation than during evaporation, so it is necessary to improve the evaporation performance. As a method for improving such evaporation performance, it is desirable to make the surface of the fin a porous sintered metal structure or a so-called nucleate boiling promoting structure, such as a mechanically uneven structure. In such a nucleate boiling promoting structure, bubbles held in minute spaces formed by porous or uneven shapes grow by heating, fly out of these spaces, and some of them remain in the spaces, and then continue to grow. The liquid flows into different places, and the bubbles left behind in these spaces serve as starting points for subsequent growth and continue boiling, significantly improving evaporation performance.

しかし製造上の問題として管内面にポーラスな
焼結金属組識を成形することは難しく、冷媒中に
含まれる油分等による目詰まりの為の経時劣化や
熱交換器組立時の拡管等による剥離等の難点があ
り、機械的に微細な凹凸構造を管内に成形するこ
とは更に困難であり、熱交換器組立時の拡管等に
より構造が破壊されてしまう等の難点がある。
However, due to manufacturing issues, it is difficult to form a porous sintered metal structure on the inner surface of the tube, which can cause deterioration over time due to clogging due to oil contained in the refrigerant, and peeling due to tube expansion during heat exchanger assembly. It is even more difficult to mechanically form a fine uneven structure inside the tube, and there are other disadvantages such as the structure being destroyed due to tube expansion during heat exchanger assembly.

本考案は係る難点を解決せんとするもので、内
面溝付伝熱管のフインの片側斜面のみを第2図及
び第3図に示す様に亀列構造を有するものと成
し、微細な亀裂隙間4を気泡保持用の空間として
役立たせ様とするものである。
The present invention is an attempt to solve this problem, and the fins of the internally grooved heat exchanger tube have only one side slope of the fins having a hexagonal structure as shown in Figs. 2 and 3. 4 is intended to serve as a space for holding air bubbles.

従つてこの様な亀裂構造は、管基材と同一の素
材よりなる薄片の積層構造より構成され、内面溝
付管の形状を殆んど損わないことから凝縮時の性
能をそのまま保ち、微小な亀裂構造よりなる核沸
騰促進構造部で蒸発性能を改善しようとするもの
である。
Therefore, such a crack structure is composed of a laminated structure of thin pieces made of the same material as the pipe base material, and since it hardly damages the shape of the internally grooved pipe, it maintains its performance during condensation and causes microscopic damage. The aim is to improve evaporation performance with a nucleate boiling promoting structure consisting of a crack structure.

上記の様な亀裂構造をフイン片側斜面のみに形
成することにより凝縮時の性能の低下を極力押え
得ると共に、加工時の溝割出しに若干のずれを与
えることにより亀裂構造の製造が容易にできる。
又かかる微細な亀裂4は第3図に示す様にフイン
に対して若干傾斜して成形される。
By forming the above-mentioned crack structure only on the slope of one side of the fin, it is possible to suppress the performance degradation during condensation as much as possible, and by giving a slight deviation to the groove index during processing, the crack structure can be manufactured easily. .
Further, the fine cracks 4 are formed at a slight angle with respect to the fins, as shown in FIG.

かかる微細な亀裂隙間の存在によりこの隙間に
保持された気泡が加熱により成長し、核沸騰を繰
り返すことによつて小さい加熱度に於ても核沸騰
が促進され蒸発性能を大きく改善するものであ
る。
Due to the presence of such fine crack gaps, the bubbles held in these gaps grow by heating, and by repeating nucleate boiling, nucleate boiling is promoted even at a small heating degree, greatly improving evaporation performance. .

向流二重管式熱交換器に本考案の伝熱管
(15.88×0.8)と該伝熱管と同様の形状を持ち片
側面の亀裂構造を有しない内面溝付管(15.88×
0.8)を適用した場合の総括伝熱係数Kと水流速
との関係を第7図に示す。
The heat exchanger tube of the present invention (15.88 x 0.8) and an internally grooved tube (15.88 x 0.8
Figure 7 shows the relationship between the overall heat transfer coefficient K and the water flow velocity when 0.8) is applied.

第7図より本考案の伝熱管は蒸発時の性能が大
きく改善され、凝縮時の性能に近づいていること
が分かり、又凝縮時の性能も殆ど低下していない
事が理解される。
From FIG. 7, it can be seen that the performance of the heat exchanger tube of the present invention during evaporation is greatly improved and approaches the performance during condensation, and it is also understood that the performance during condensation is hardly degraded.

尚本試験の際、蒸発時冷媒を亀裂構造のある側
と無い側から夫々流して実験してみたが両者の性
能に殆ど差は無かつた。但し圧力損失については
冷媒を亀裂構造の無い側から流した方が小さく亀
裂構造の無い内面溝付管に於る圧力損失と殆ど相
違無かつた。
In this test, the refrigerant during evaporation was flowed from the side with the crack structure and the side without it, and there was almost no difference in performance between the two. However, the pressure loss was smaller when the refrigerant was flowed from the side with no crack structure, and was almost the same as the pressure loss in an internally grooved tube without a crack structure.

本考案の適用に際しては内面溝付管の形状をで
きるだけ凝縮性能が優れる様にして適用すると凝
縮、蒸発共に性能を向上でき前述した様にH/
Diが0.01〜0.05、Xが15〜35度の範囲内で最適値
が得られる。
When applying this invention, if the shape of the internally grooved tube is made to have as good a condensing performance as possible, both condensation and evaporation performance can be improved, and as mentioned above, H/
The optimum value is obtained within the range of Di from 0.01 to 0.05 and X from 15 to 35 degrees.

本考案は以上述べた様に管内で流体が相変化
(蒸発または凝縮)しながら熱交換を行う伝熱管
で、管内面に管内径Diとフイン高さHの比H/
Diが0.01〜0.05、フインの管軸に対する捩れ角X
が15〜35度のフインを多数有し、そのフインの片
側斜面にはフイン底部よりフイン頂部にかけ核沸
騰を促進する微細な亀裂構造を有していることを
特徴とする内面溝付き伝熱管であるから、内面溝
付加工時に若干の改良を加えるだけで容易に加工
することができ、蒸発時と凝縮時の性能のバラン
スが改善されヒートポンプ等の様に管内で流体が
相変化しながら熱交換を行う伝熱管に適用して好
適である。
As described above, this invention is a heat transfer tube in which the fluid undergoes a phase change (evaporation or condensation) while exchanging heat. The ratio H/H of the inner diameter Di and the fin height H on the inner surface of the tube is
Di is 0.01 to 0.05, and the twist angle X of the fin relative to the tube axis is
The inner grooved heat transfer tube has many fins with an angle of 15 to 35 degrees, and one side of the fin has a fine crack structure that promotes nucleate boiling from the bottom to the top of the fin. Therefore, it can be easily processed with just a little modification during the inner groove processing, and the balance of performance during evaporation and condensation is improved, making it suitable for use in heat transfer tubes where heat exchange occurs while the fluid changes phase inside the tube, such as in heat pumps.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一般の内面溝付管の内部構造を示す斜
示図、第2図は本考案の一実施例である内面溝付
伝熱管のフイン部の詳細断面図、第3図は第2図
に於るA−A矢視断面図、第4図及び第5図は亀
裂構造を有しない内面溝付管のH/Diに対する
Hiと△Pの関係を示すグラフ、第6図は同亀裂
構造無しの内面溝付管に於るフインの捩れ角Xと
Hiの関係を示すグラフ、第7図は本考案の効果
を示す水流速と総括伝熱係数との関係を亀裂構造
の有る場合と無い場合とで示したグラフ、第8図
a及びbは第2図及び第3図に示した金属断面を
示す金属組織写真である。 1……フイン底部、2……フイン頂部、3……
亀裂構造、4……亀裂隙間。
Fig. 1 is a perspective view showing the internal structure of a general internally grooved tube, Fig. 2 is a detailed sectional view of the fin portion of an internally grooved heat exchanger tube which is an embodiment of the present invention, and Fig. 3 is a perspective view showing the internal structure of a general internally grooved tube. The A-A cross-sectional view in the figure, Figures 4 and 5 are for H/Di of an internally grooved pipe that does not have a crack structure.
A graph showing the relationship between Hi and △P, Figure 6 shows the torsion angle
Figure 7 is a graph showing the effect of the present invention, showing the relationship between water flow velocity and overall heat transfer coefficient with and without a crack structure. Figure 8 a and b are graphs showing the relationship between Hi. 3 is a metal structure photograph showing the cross section of the metal shown in FIGS. 2 and 3. FIG. 1...Fin bottom, 2...Fin top, 3...
Crack structure, 4...Crack gap.

Claims (1)

【実用新案登録請求の範囲】 1 管内で流体が相変化(蒸発又は凝縮)しなが
ら熱交換を行う伝熱管で、管内面に管内径Di
とフイン高さHの比H/Diが0.01〜0.05、フイ
ンの管軸に対するネジレ角Xが15〜35度のフイ
ンを多数有し、そのフインの片側斜面にフイン
底部よりフイン頂部にかけ核沸騰を促進する微
細な亀裂構造を有していることを特徴とする内
面溝付き伝熱管。 2 フインの断面形状が亀裂構造を有する面と有
していない面が対称で、全体として概略三角形
又は台形である実用新案登録請求の範囲第1項
に記載した内面溝付き伝熱管。
[Claims for Utility Model Registration] 1. A heat transfer tube that exchanges heat while a fluid undergoes a phase change (evaporation or condensation) inside the tube.
It has many fins with a ratio H/Di of 0.01 to 0.05 and a torsion angle X of the fins with respect to the tube axis of 15 to 35 degrees. A heat exchanger tube with internal grooves characterized by having a micro-crack structure that promotes fine cracks. 2. The internally grooved heat exchanger tube according to claim 1, wherein the cross-sectional shape of the fins is generally triangular or trapezoidal as a whole, with symmetrical surfaces having and not having a crack structure.
JP16477782U 1982-10-29 1982-10-29 Heat exchanger tube with inner groove Granted JPS5971084U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16477782U JPS5971084U (en) 1982-10-29 1982-10-29 Heat exchanger tube with inner groove

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16477782U JPS5971084U (en) 1982-10-29 1982-10-29 Heat exchanger tube with inner groove

Publications (2)

Publication Number Publication Date
JPS5971084U JPS5971084U (en) 1984-05-14
JPS6218865Y2 true JPS6218865Y2 (en) 1987-05-14

Family

ID=30361168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16477782U Granted JPS5971084U (en) 1982-10-29 1982-10-29 Heat exchanger tube with inner groove

Country Status (1)

Country Link
JP (1) JPS5971084U (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1317772C (en) * 1985-10-02 1993-05-18 Leon A. Guntly Condenser with small hydraulic diameter flow path
JP2912826B2 (en) * 1994-08-04 1999-06-28 住友軽金属工業株式会社 Heat transfer tube with internal groove
JP2011075122A (en) * 2009-09-29 2011-04-14 Sumitomo Light Metal Ind Ltd Aluminum internally-grooved heat transfer tube
JP5943644B2 (en) * 2012-02-28 2016-07-05 三菱重工業株式会社 Fluid cooling device

Also Published As

Publication number Publication date
JPS5971084U (en) 1984-05-14

Similar Documents

Publication Publication Date Title
CA1247078A (en) Heat transfer tube having internal ridges, and method of making same
US5458191A (en) Heat transfer tube
US4733698A (en) Heat transfer pipe
JP2002318087A (en) Heat exchanger
WO2003089865A1 (en) Heat transfer tubes, including methods of fabrication and use thereof
JPS6218865Y2 (en)
KR20150084778A (en) Evaporation heat transfer tube with a hollow caviity
JPS60216190A (en) Heat transfer pipe and manufacture thereof
CA2506936C (en) Polyhedral array heat transfer tube
JPH06323778A (en) Heating tube for use in boiling
JP3292043B2 (en) Heat exchanger
JP3417825B2 (en) Inner grooved pipe
JP2001074384A (en) Internally grooved tube
CN100458348C (en) Efficient heat-exchanging pipe of evaporator for electric refrigerator set
JP3747974B2 (en) Internal grooved heat transfer tube
JPS588995A (en) Heat conducting pipe
JPS6042298Y2 (en) Fins for heat exchanger
CN212362947U (en) Heat exchange tube and air conditioning unit
JPH0445753B2 (en)
JPS6049837B2 (en) Heat exchanger tube for condenser
JPS60196598A (en) Heat transfer pipe
JPH0615951B2 (en) Heat transfer tube with internal groove
JPH07109354B2 (en) Heat exchanger
JP2726480B2 (en) Heat transfer tube
JPH05106989A (en) Heat transfer tube