EP3465057B1 - Heat exchanger tube - Google Patents

Heat exchanger tube Download PDF

Info

Publication number
EP3465057B1
EP3465057B1 EP17727102.0A EP17727102A EP3465057B1 EP 3465057 B1 EP3465057 B1 EP 3465057B1 EP 17727102 A EP17727102 A EP 17727102A EP 3465057 B1 EP3465057 B1 EP 3465057B1
Authority
EP
European Patent Office
Prior art keywords
projections
rib
pipe
ribs
projection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17727102.0A
Other languages
German (de)
French (fr)
Other versions
EP3465057A1 (en
Inventor
Achim Gotterbarm
Ronald Lutz
Jean El Hajal
Manfred Knab
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wieland Werke AG
Original Assignee
Wieland Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wieland Werke AG filed Critical Wieland Werke AG
Publication of EP3465057A1 publication Critical patent/EP3465057A1/en
Application granted granted Critical
Publication of EP3465057B1 publication Critical patent/EP3465057B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/14Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally
    • F28F1/16Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally the means being integral with the element, e.g. formed by extrusion
    • F28F1/18Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally the means being integral with the element, e.g. formed by extrusion the element being built-up from finned sections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/34Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending obliquely
    • F28F1/36Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending obliquely the means being helically wound fins or wire spirals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/42Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
    • F28F1/422Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element with outside means integral with the tubular element and inside means integral with the tubular element

Definitions

  • the invention relates to a heat exchanger tube according to the preamble of claim 1.
  • Such metallic heat exchanger tubes are used in particular for evaporating liquids from pure substances or mixtures on the outside of the tube.
  • Tube bundle heat exchangers are often used in which liquids of pure substances or mixtures evaporate on the outside of the tube and brine or water cools down on the inside of the tube.
  • Such apparatuses are referred to as flooded evaporators.
  • the size of the evaporator can be greatly reduced by intensifying the heat transfer on the outside and inside of the tube. This reduces the manufacturing costs of such devices.
  • the amount of refrigerant required is reduced, which can make up a non-negligible proportion of the total system costs with the chlorine-free safety refrigerants that are predominantly used today.
  • the risk potential can also be reduced by reducing the filling quantity.
  • Today's high-performance pipes are already about four times more efficient than smooth pipes of the same diameter.
  • integrally rolled finned tubes understood ribbed tubes in which the ribs were formed from the wall material of a smooth tube.
  • ribbed tubes in which the ribs were formed from the wall material of a smooth tube.
  • Various methods are known in this regard, with which the channels located between adjacent ribs are closed in such a way that connections between the channel and the environment remain in the form of pores or slits.
  • essentially closed channels are formed by bending or folding over the ribs ( U.S. 3,696,861 ; U.S. 5,054,548 ; U.S. 7,178,361 B2 ), by splitting and upsetting the ribs ( DE 2 758 526 C2 ; U.S. 4,577,381 ) and by notching and upsetting the ribs ( U.S. 4,660,630 ; EP 0 713 072 B1 ; U.S. 4,216,826 ) generated.
  • the highest performance commercially available finned tubes for flooded evaporators have a fin structure on the tube face with a fin density of 55 to 60 fins per inch ( U.S. 5,669,441 ; U.S. 5,697,430 ; DE 197 57 526 C1 ). This corresponds to a rib spacing of approx. 0.45 to 0.40 mm.
  • a smaller rib pitch inevitably requires equally finer tools.
  • finer tools are subject to a higher risk of breakage and faster wear.
  • the tools currently available enable the reliable production of finned tubes with fin densities of a maximum of 60 fins per inch. Furthermore, as the fin pitch decreases, the production speed of the tubes becomes slower and consequently the manufacturing cost becomes higher.
  • performance-enhanced evaporation structures can be produced on the outside of the tube with the same fin density by introducing additional structural elements in the area of the groove base between the fins. Since the temperature of the rib is higher in the area of the bottom of the groove than in the area of the tip of the rib, structural elements for intensifying the formation of bubbles are particularly effective in this area. Examples of this are in EP 0 222 100 B1 ; U.S. 5,186,252 ; JP04039596A and U.S. 2007/0151715 A1 to find. What these inventions have in common is that the structural elements at the bottom of the groove do not have an undercut shape, which is why they do not sufficiently intensify the formation of bubbles.
  • EP 1 223 400 B1 and EP 2 101 136 B1 it is proposed to produce undercut secondary grooves at the bottom of the groove between the ribs, which extend continuously along the primary groove.
  • the cross section of these secondary grooves can remain constant or be varied at regular intervals.
  • the pamphlets U.S. 2006/0213346 A1 and U.S. 2005/0145377 A1 disclose improved heat transfer surfaces that facilitate heat transfer from one side of the surface to the other. Described herein is another method of improving heat transfer surfaces by using a tool to cut the inner surface of a tube.
  • the tool has at least one tip with a cutting edge and a lifting edge.
  • Protrusions are formed by cutting the inner surface of a heat exchanger tube and raising the cut surface.
  • Boiling surfaces produced in this way have a multiplicity of primary grooves, projections and secondary grooves, for example to form boiling cavities.
  • the invention is based on the object of specifying a performance-enhanced heat exchanger tube for evaporating liquids.
  • the structured area can in principle also be formed on the outside of the tube.
  • the structures described can be used for both evaporator and condenser tubes.
  • the structures are also suitable for single-phase fluid flows, such as water.
  • a cavity in adjacent projections is present when the respective shortest distance between adjacent projections decreases, starting from the tube wall to the point of the projections that is furthest away from the tube wall.
  • the adjacent projections forming a cavity incline toward one another.
  • the cavity is formed with the opposing concave surfaces of adjacent projections.
  • the surfaces of the adjacent projections forming a cavity extend over it in the manner of a vault.
  • Protrusion height is conveniently defined as the dimension of a protrusion in the radial direction. The height of the projection is then, in the radial direction, the distance starting from the pipe wall to the point of the projection which is furthest away from the pipe wall.
  • the notch depth of the notches is the distance measured in the radial direction from the original rib tip to the deepest point of the notch. In other words: the notch depth is the difference between the original rib height and the remaining rib height at the deepest point of a notch.
  • the invention is based on the consideration that the cavities formed between the tube wall and the folded-over projections or between adjacent projections form the cavities according to the invention.
  • the projections are cut and set up or folded over in such a way that they form such cavities.
  • the projections touch the tube wall or form cavities without direct contact.
  • the production can take place directly via adapted cutting geometries or via a secondary forming process, whereby the secondary tool used can be smooth or have an additional structure.
  • the tubes can be arranged horizontally or vertically during evaporation, for example on the inside of the tube.
  • the pipes are slightly inclined from the horizontal or the vertical.
  • evaporators with horizontal tubes are usually used.
  • vertical circulation evaporators are often used in chemical engineering to heat distillation columns. The evaporation of the substance takes place on the inside of vertical tubes.
  • the temperature of the heat-emitting medium In order to enable heat transport between the heat-emitting medium and the evaporating substance, the temperature of the heat-emitting medium must be higher than the saturation temperature of the substance. This temperature difference is called the driving temperature difference. The higher the driving temperature difference, the more heat can be transferred. On the other hand, the aim is usually to keep the driving temperature difference small, as this is advantageous for process efficiency.
  • the cavities according to the invention intensify the process of nucleate boiling in order to increase the heat transfer coefficient during evaporation.
  • the formation of bubbles begins at nucleation sites. These nucleation sites are mostly small gas or vapor inclusions. When the growing bubble reaches a certain size, it detaches from the surface. If the nucleation site is flooded with liquid in the course of the bubble detachment, then the nucleation site is deactivated.
  • the surface must therefore be designed as a cavity in such a way that when the bubble detaches, a small bubble remains, which then serves as the nucleus for a new cycle of bubble formation. This is achieved by arranging cavities on the surface in which a small bubble can remain after the bubble has detached.
  • the tips of at least two projections touch or cross one another along the course of the ribs. This is particularly advantageous in reversible operation during the phase change, since the projections for the liquefaction protrude far out of the condensate and form a kind of cavity for the evaporation.
  • the tips of at least two projections can touch or cross one another across the primary groove. This is advantageous in reversible operation during the phase change, since the projections for the liquefaction in turn protrude far out of the condensate and form a kind of cavity for the evaporation.
  • the distance between the tip of the projection and the tube wall is also possible for the distance between the tip of the projection and the tube wall to be less than the remaining height of the ribs. This gives the projection a hook-like or loop-like shape directly above the pipe wall. Such rounded shapes are particularly advantageous for bubble nucleation in evaporation processes.
  • At least one of the projections can be deformed in such a way that its tip touches the inside of the pipe.
  • a bubble nucleus is formed by a hook-like or eyelet-like shape of the projection during the phase transition of a fluid heat transfer medium close to the tube wall. A particularly intensive heat exchange into the fluid takes place there via the tube wall.
  • the indentations can be formed by cutting the inner ribs with a cutting depth transverse to the rib path to form rib layers and by raising the rib layers with a main orientation along the rib path between primary grooves.
  • the process-side structuring of the heat exchanger tube according to the invention can be produced using a tool which in the DE 603 17 506 T2 is already described.
  • the disclosure of this reference DE 603 17 506 T2 is fully included in the available documents.
  • the projection height and the distance can be made variable and individually adapted to the requirements, for example the viscosity of the liquid or the flow rate.
  • the tool used has a cutting edge for cutting through the fins on the inner surface of the tube to create layers of fins and a lifting edge for lifting the layers of fins to form the projections.
  • the protrusions are formed without removing metal from the inner surface of the tube.
  • the projections on the inner surface of the tube can be in the same or different processing than the
  • the projections can vary in projection height, shape and alignment.
  • the individual projections can be specifically adapted to one another and varied in relation to one another, so that, particularly in the case of laminar flow, the different rib heights dip into the different boundary layers of the flow in order to dissipate the heat to the tube wall.
  • the height of the protrusion and the distance can also be individually adapted to the requirements, for example the viscosity of the fluid or the flow rate.
  • a projection can have a pointed tip on the side facing away from the tube wall. This leads to optimized projection tip condensation in condenser tubes using two-phase fluids.
  • a projection can have a curved tip on the side facing away from the pipe wall, the local radius of curvature of which is reduced as the distance from the pipe wall increases along the course of the projection.
  • the heat exchanger tube 1 shows schematically an oblique view of a pipe section of the Heat exchanger tube 1 with a structure according to the invention on the tube inside 22.
  • the heat exchanger tube 1 has a tube wall 2, a tube outside 21 and a tube inside 22.
  • continuously running, helically circumferential ribs 3 are formed from the tube wall 2.
  • the longitudinal axis A of the tube runs at a certain angle relative to the ribs 3 .
  • Continuously extending primary grooves 4 are formed between each adjacent ribs 3 .
  • a plurality of projections 6 are deformed in pairs to one another to such an extent that cavities 10 are formed between adjacent projections 6 .
  • the tips 61 of at least two projections 6 touch one another along the course of the ribs.
  • the projections 6 are formed by cutting the ribs 3 with a cutting depth across the rib path to form layers of ribs and raising the layers of ribs with a main orientation along the rib path between primary grooves 4 .
  • the indentations 7 between the projections 6 can also be formed in a rib 3 with an alternating indentation depth.
  • FIG. 2 1 schematically shows an oblique view of a tube section of the heat exchanger tube 1 with a structure not according to the invention.
  • a plurality of projections 6 are deformed in pairs to one another to such an extent that cavities 10 are formed between adjacent projections 6 .
  • the tips 61 of at least two projections 6 extend beyond the primary groove 4 and touch one another.
  • the tips 61 of projections 6 deformed in pairs relative to one another can also still have a certain distance from one another. However, this is so small that effective cavities 10 are nevertheless formed.
  • the projections 6 are in turn made by cutting the ribs 3 with a cutting depth transverse to the rib course to form rib layers and by raising the rib layers with a main orientation along the Rib course between primary grooves 4 formed.
  • the indentations 7 between the projections 6 can also be formed in a rib 3 with an alternating indentation depth.
  • 3 1 schematically shows an oblique view of a tube section of the heat exchanger tube 1 with a further structure not according to the invention on the inside 22 of the tube.
  • the distance between the tips 61 of a projection and the tube wall is less than the residual rib height.
  • a hook-like shape is created.
  • a projection 6 can be deformed in such a way that its tip 61 touches the inside 22 of the tube. In this in figure 3 not shown case preferably creates a loop-like shape.
  • the projections 6 are in turn by cutting the ribs 3 analogous to the Figures 1 and 2 educated.
  • 4 1 schematically shows a rib section 31 with different notch depths t 1 , t 2 , t 3 .
  • the terms cutting depth and notch depth represent the same terminology. Dashed is indicated in the 4 the original formed helical circumferential rib 3. From this the protrusions 6 are cut by cutting the rib 3 with a notching/cutting depth t 1 , t 2 , t 3 transverse to the rib course to form rib layers and by raising the rib layers with a main orientation along the Shaped ribs. The different notch/cutting depths t 1 , t 2 , t 3 are consequently dimensioned based on the notch depth of the original rib in the radial direction.
  • the projection height h is in 2 is plotted as the dimension of a protrusion in the radial direction.
  • the projection height h is then in the radial direction Distance starting from the tube wall to the point of the projection that is furthest away from the tube wall.
  • the notch depth t 1 , t 2 , t 3 is the distance measured in the radial direction, starting from the original rib tip to the deepest point of the notch.
  • the notch depth is the difference between the original rib height and the remaining rib height at the deepest point of a notch.
  • FIG. 1 schematically shows a rib section 31 with two projections 6 touching one another along the course of the rib.
  • FIG 6 shows schematically a rib portion 31 with two mutually crossing projections 6 along the course of the rib.
  • 7 shows schematically a rib section 31, which is not according to the invention here, however, with two projections 6 touching one another across the primary groove.
  • 8 shows schematically a further rib section 31 not according to the invention with two mutually crossing projections 6 beyond the primary groove.
  • the structural elements shown are advantageous, especially in reversible operation with two-phase fluids, that they form a type of cavity 10 for evaporation.
  • the cavities 10 of this special type form the starting points for bubble nuclei of an evaporating fluid.

Description

Die Erfindung betrifft ein Wärmeübertragerrohr gemäß dem Oberbegriff des Anspruchs 1.The invention relates to a heat exchanger tube according to the preamble of claim 1.

Derartige metallische Wärmeübertragerrohre dienen insbesondere zur Verdampfung von Flüssigkeiten aus Reinstoffen oder Gemischen auf der Rohraußenseite.Such metallic heat exchanger tubes are used in particular for evaporating liquids from pure substances or mixtures on the outside of the tube.

Verdampfung tritt in vielen Bereichen der Kälte- und Klimatechnik sowie in der Prozess- und Energietechnik auf. Häufig werden Rohrbündelwärmeaustauscher verwendet, in denen Flüssigkeiten von Reinstoffen oder Mischungen auf der Rohraußenseite verdampfen und dabei auf der Rohrinnenseite eine Sole oder Wasser abkühlen. Solche Apparate werden als überflutete Verdampfer bezeichnet.Evaporation occurs in many areas of refrigeration and air conditioning technology as well as in process and energy technology. Tube bundle heat exchangers are often used in which liquids of pure substances or mixtures evaporate on the outside of the tube and brine or water cools down on the inside of the tube. Such apparatuses are referred to as flooded evaporators.

Durch die Intensivierung des Wärmeübergangs auf der Rohraußen- und der Rohrinnenseite lässt sich die Größe der Verdampfer stark reduzieren. Hierdurch nehmen die Herstellungskosten solcher Apparate ab. Außerdem sinkt die notwendige Füllmenge an Kältemittel, die bei den heute überwiegend verwendeten, chlorfreien Sicherheitskältemitteln einen nicht zu vernachlässigenden Kostenanteil an den gesamten Anlagekosten ausmachen kann. Bei toxischen oder brennbaren Kältemitteln lässt sich durch eine Reduktion der Füllmenge ferner das Gefahrenpotenzial herabsetzen. Die heute üblichen Hochleistungsrohre sind bereits etwa um den Faktor vier leistungsfähiger als glatte Rohre gleichen Durchmessers.The size of the evaporator can be greatly reduced by intensifying the heat transfer on the outside and inside of the tube. This reduces the manufacturing costs of such devices. In addition, the amount of refrigerant required is reduced, which can make up a non-negligible proportion of the total system costs with the chlorine-free safety refrigerants that are predominantly used today. In the case of toxic or flammable refrigerants, the risk potential can also be reduced by reducing the filling quantity. Today's high-performance pipes are already about four times more efficient than smooth pipes of the same diameter.

Es ist Stand der Technik, derartig leistungsfähige Rohre auf der Basis von integral gewalzten Rippenrohren herzustellen. Unter integral gewalzten Rippenrohren werden berippte Rohre verstanden, bei denen die Rippen aus dem Wandmaterial eines Glattrohres geformt wurden. Es sind hierbei verschiedene Verfahren bekannt, mit denen die zwischen benachbarten Rippen befindlichen Kanäle derart verschlossen werden, dass Verbindungen zwischen Kanal und Umgebung in Form von Poren oder Schlitzen bleiben. Insbesondere werden solche im Wesentlichen geschlossene Kanäle durch Umbiegen oder Umlegen der Rippen ( US 3,696,861 ; US 5,054,548 ; US 7,178,361 B2 ), durch Spalten und Stauchen der Rippen ( DE 2 758 526 C2 ; US 4,577,381 ) und durch Kerben und Stauchen der Rippen ( US 4,660,630 ; EP 0 713 072 B1 ; US 4,216,826 ) erzeugt.It is state of the art to produce such high-performance tubes on the basis of integrally rolled finned tubes. Below are integrally rolled finned tubes understood ribbed tubes in which the ribs were formed from the wall material of a smooth tube. Various methods are known in this regard, with which the channels located between adjacent ribs are closed in such a way that connections between the channel and the environment remain in the form of pores or slits. In particular, such essentially closed channels are formed by bending or folding over the ribs ( U.S. 3,696,861 ; U.S. 5,054,548 ; U.S. 7,178,361 B2 ), by splitting and upsetting the ribs ( DE 2 758 526 C2 ; U.S. 4,577,381 ) and by notching and upsetting the ribs ( U.S. 4,660,630 ; EP 0 713 072 B1 ; U.S. 4,216,826 ) generated.

Die leistungsstärksten, kommerziell erhältlichen Rippenrohre für überflutete Verdampfer besitzen auf der Rohraußenseite eine Rippenstruktur mit einer Rippendichte von 55 bis 60 Rippen pro Zoll ( US 5,669,441 ; US 5,697,430 ; DE 197 57 526 C1 ). Dies entspricht einer Rippenteilung von ca. 0,45 bis 0,40 mm. Prinzipiell ist es möglich, die Leistungsfähigkeit derartiger Rohre durch eine noch höhere Rippendichte bzw. kleinere Rippenteilung zu verbessern, da hierdurch die Blasenkeimstellendichte erhöht wird. Eine kleinere Rippenteilung erfordert zwangsläufig gleichermaßen feinere Werkzeuge. Feinere Werkzeuge sind jedoch einer höheren Bruchgefahr und schnellerem Verschleiß unterworfen. Die derzeit verfügbaren Werkzeuge ermöglichen eine sichere Fertigung von Rippenrohren mit Rippendichten von maximal 60 Rippen pro Zoll. Ferner wird mit abnehmender Rippenteilung die Produktionsgeschwindigkeit der Rohre geringer und folglich werden die Herstellungskosten höher.The highest performance commercially available finned tubes for flooded evaporators have a fin structure on the tube face with a fin density of 55 to 60 fins per inch ( U.S. 5,669,441 ; U.S. 5,697,430 ; DE 197 57 526 C1 ). This corresponds to a rib spacing of approx. 0.45 to 0.40 mm. In principle, it is possible to improve the performance of such tubes by an even higher rib density or smaller rib pitch, since this increases the bubble nucleation point density. A smaller rib pitch inevitably requires equally finer tools. However, finer tools are subject to a higher risk of breakage and faster wear. The tools currently available enable the reliable production of finned tubes with fin densities of a maximum of 60 fins per inch. Furthermore, as the fin pitch decreases, the production speed of the tubes becomes slower and consequently the manufacturing cost becomes higher.

Weiterhin ist bekannt, dass leistungsgesteigerte Verdampfungsstrukturen bei gleichbleibender Rippendichte auf der Rohraußenseite erzeugt werden können, indem man zusätzliche Strukturelemente im Bereich des Nutengrundes zwischen den Rippen einbringt. Da im Bereich des Nutengrundes die Temperatur der Rippe höher ist als im Bereich der Rippenspitze, sind Strukturelemente zur Intensivierung der Blasenbildung in diesem Bereich besonders wirkungsvoll. Beispiele hierfür sind in EP 0 222 100 B1 ; US 5,186,252 ; JP 04039596A und US 2007/0151715 A1 zu finden. Diesen Erfindungen ist gemeinsam, dass die Strukturelemente am Nutengrund keine hinterschnittene Form aufweisen, weshalb sie die Blasenbildung nicht ausreichend intensivieren. In EP 1 223 400 B1 und EP 2 101 136 B1 wird vorgeschlagen, am Nutengrund zwischen den Rippen hinterschnittene Sekundärnuten zu erzeugen, die sich kontinuierlich entlang der Primärnut erstrecken. Der Querschnitt dieser Sekundärnuten kann konstant bleiben oder in regelmäßigen Abständen variiert werden.It is also known that performance-enhanced evaporation structures can be produced on the outside of the tube with the same fin density by introducing additional structural elements in the area of the groove base between the fins. Since the temperature of the rib is higher in the area of the bottom of the groove than in the area of the tip of the rib, structural elements for intensifying the formation of bubbles are particularly effective in this area. Examples of this are in EP 0 222 100 B1 ; U.S. 5,186,252 ; JP04039596A and U.S. 2007/0151715 A1 to find. What these inventions have in common is that the structural elements at the bottom of the groove do not have an undercut shape, which is why they do not sufficiently intensify the formation of bubbles. In EP 1 223 400 B1 and EP 2 101 136 B1 it is proposed to produce undercut secondary grooves at the bottom of the groove between the ribs, which extend continuously along the primary groove. The cross section of these secondary grooves can remain constant or be varied at regular intervals.

Die Druckschriften US 2006/0213346 A1 und US 2005/0145377 A1 offenbaren verbesserte Wärmeübertragungsflächen, die die Wärmeübertragung von einer Seite der Oberfläche zur anderen erleichtern. Hierzu beschrieben ist eine weitere Methode zur Verbesserung von Wärmeübertragungsflächen durch die Verwendung eines Werkzeugs zum Schneiden der Innenfläche eines Rohrs. Das Werkzeug hat mindestens eine Spitze mit einer Schneidkante und einer Hubkante. Durch Schneiden der Innenoberfläche eines Wärmeübertragerrohres und Anheben der angeschnittenen Oberfläche werden Vorsprünge ausgebildet. Derart hergestellte Siedeflächen weisen eine Vielzahl von Primärnuten, Vorsprüngen und Sekundärnuten auf, beispielsweise um Siedehohlräume zu bilden.The pamphlets U.S. 2006/0213346 A1 and U.S. 2005/0145377 A1 disclose improved heat transfer surfaces that facilitate heat transfer from one side of the surface to the other. Described herein is another method of improving heat transfer surfaces by using a tool to cut the inner surface of a tube. The tool has at least one tip with a cutting edge and a lifting edge. Protrusions are formed by cutting the inner surface of a heat exchanger tube and raising the cut surface. Boiling surfaces produced in this way have a multiplicity of primary grooves, projections and secondary grooves, for example to form boiling cavities.

Der Erfindung liegt die Aufgabe zugrunde, ein leistungsgesteigertes Wärmeaustauscherrohr zur Verdampfung von Flüssigkeiten anzugeben.The invention is based on the object of specifying a performance-enhanced heat exchanger tube for evaporating liquids.

Die Erfindung wird durch die Merkmale des Anspruchs 1 wiedergegeben. Die weiteren rückbezogenen Ansprüche betreffen vorteilhafte Aus- und Weiterbildungen der Erfindung.The invention is represented by the features of claim 1. The further dependent claims relate to advantageous developments and refinements of the invention.

Bei beiden erfindungsgemäßen Lösungen kann der strukturierte Bereich prinzipiell auch auf der Rohraußenseite ausgeformt sein.In both solutions according to the invention, the structured area can in principle also be formed on the outside of the tube.

Die beschriebenen Strukturen lassen sich sowohl für Verdampfer- als auch für Kondensatorrohre einsetzen. Ebenso eignen sich die Strukturen für einphasige Fluidströmungen, wie beispielsweise Wasser.The structures described can be used for both evaporator and condenser tubes. The structures are also suitable for single-phase fluid flows, such as water.

Eine Kavität bei benachbarten Vorsprüngen liegt dann vor, wenn sich der jeweils kürzeste Abstand zwischen benachbarten Vorsprüngen ausgehend von der Rohrwand bis zur von der Rohrwand entferntesten Stelle der Vorsprünge verringert. Mit anderen Worten: Die eine Kavität ausbildenden benachbarte Vorsprünge neigen sich aufeinander zu.A cavity in adjacent projections is present when the respective shortest distance between adjacent projections decreases, starting from the tube wall to the point of the projections that is furthest away from the tube wall. In other words: the adjacent projections forming a cavity incline toward one another.

Anders ausgedrückt: Die Kavität wird mit den jeweils sich gegenüber stehenden konkaven Flächen benachbarter Vorsprünge gebildet. So erstrecken sich die eine Kavität bildenden Flächen der benachbarten Vorsprünge über ihr gewölbeartig. Die Vorsprungshöhe wird zweckmäßigerweise als die Abmessung eines Vorsprungs in radialer Richtung definiert. Die Vorsprungshöhe ist dann in radialer Richtung die Strecke ausgehend von der Rohrwand bis zur von der Rohrwand entferntesten Stelle des Vorsprungs.In other words, the cavity is formed with the opposing concave surfaces of adjacent projections. Thus, the surfaces of the adjacent projections forming a cavity extend over it in the manner of a vault. Protrusion height is conveniently defined as the dimension of a protrusion in the radial direction. The height of the projection is then, in the radial direction, the distance starting from the pipe wall to the point of the projection which is furthest away from the pipe wall.

Die Kerbtiefe der Einkerbungen ist die in radialer Richtung gemessene Strecke ausgehend von der originären Rippenspitze bis zur tiefsten Stelle der Kerbe. Mit anderen Worten: Die Kerbtiefe ist die Differenz der originären Rippenhöhe und der an der tiefsten Stelle einer Kerbe verbleibenden Restrippenhöhe.The notch depth of the notches is the distance measured in the radial direction from the original rib tip to the deepest point of the notch. In other words: the notch depth is the difference between the original rib height and the remaining rib height at the deepest point of a notch.

Die Erfindung geht dabei von der Überlegung aus, dass die Hohlräume, die zwischen der Rohrwand und den umgelegten Vorsprüngen bzw. zwischen benachbarten Vorsprüngen gebildet werden, die erfindungsgemäßen Kavitäten ausbilden. Zur Erzeugung der Kavitäten werden die Vorsprünge so geschnitten und aufgestellt bzw. umgelegt, damit diese solche Kavitäten bilden. Dabei gibt es auch nicht erfindungsgemässe Möglichkeiten, bei denen die Vorsprünge die Rohrwand berühren oder auch ohne direkten Kontakt Kavitäten bilden. Die Herstellung kann direkt über angepasste Schneidgeometrien oder über einen sekundären Umformprozess erfolgen, wobei das verwendete Sekundärwerkzeug glatt oder über eine zusätzliche Struktur verfügen kann.The invention is based on the consideration that the cavities formed between the tube wall and the folded-over projections or between adjacent projections form the cavities according to the invention. To produce the cavities, the projections are cut and set up or folded over in such a way that they form such cavities. There are also possibilities, not according to the invention, in which the projections touch the tube wall or form cavities without direct contact. The production can take place directly via adapted cutting geometries or via a secondary forming process, whereby the secondary tool used can be smooth or have an additional structure.

Prinzipiell können bei der Verdampfung beispielsweise auf der Rohrinnenseite die Rohre waagrecht oder senkrecht angeordnet sein. Ferner gibt es Fälle, in denen die Rohre geringfügig gegenüber der waagrechten oder der senkrechten geneigt sind. In der Kältetechnik werden üblicherweise Verdampfer mit horizontalen Rohren eingesetzt. Dagegen werden in der Chemietechnik zur Beheizung von Destillationskolonnen häufig vertikale Umlaufverdampfer verwendet. Die Verdampfung des Stoffes findet dabei auf der Innenseite von senkrechten Rohren statt.In principle, the tubes can be arranged horizontally or vertically during evaporation, for example on the inside of the tube. There are also cases where the pipes are slightly inclined from the horizontal or the vertical. In refrigeration technology, evaporators with horizontal tubes are usually used. In contrast, vertical circulation evaporators are often used in chemical engineering to heat distillation columns. The evaporation of the substance takes place on the inside of vertical tubes.

Um den Wärmetransport zwischen dem Wärme abgebenden Medium und dem verdampfenden Stoff zu ermöglichen, muss die Temperatur des wärmeabgebenden Mediums höher sein als die Sättigungstemperatur des Stoffs. Diesen Temperaturunterschied bezeichnet man als treibende Temperaturdifferenz. Je höher die treibende Temperaturdifferenz ist, desto mehr Wärme kann übertragen werden. Andererseits ist meist das Bestreben, die treibende Temperaturdifferenz klein zu halten, da dies vorteilhaft für die Prozesseffizienz ist.In order to enable heat transport between the heat-emitting medium and the evaporating substance, the temperature of the heat-emitting medium must be higher than the saturation temperature of the substance. This temperature difference is called the driving temperature difference. The higher the driving temperature difference, the more heat can be transferred. On the other hand, the aim is usually to keep the driving temperature difference small, as this is advantageous for process efficiency.

Durch die erfindungsgemäßen Kavitäten wird zur Erhöhung des Wärmeübergangskoeffizienten bei der Verdampfung der Vorgang des Blasensiedens intensiviert. Die Bildung von Blasen beginnt an Keimstellen. Diese Keimstellen sind meist kleine Gas- oder Dampfeinschlüsse. Wenn die anwachsende Blase eine bestimmte Größe erreicht hat, löst sie sich von der Oberfläche ab. Wird im Zuge der Blasenablösung die Keimstelle mit Flüssigkeit geflutet, dann wird die Keimstelle deaktiviert. Die Oberfläche muss also derart als Kavität gestaltet werden, dass beim Ablösen der Blase eine kleine Blase bestehen bleibt, die dann als Keimstelle für einen neuen Zyklus der Blasenbildung dient. Dies wird erreicht, indem man auf der Oberfläche Kavitäten anordnet, in denen nach Ablösung der Blase eine kleine Blase zurück bleiben kann.The cavities according to the invention intensify the process of nucleate boiling in order to increase the heat transfer coefficient during evaporation. The formation of bubbles begins at nucleation sites. These nucleation sites are mostly small gas or vapor inclusions. When the growing bubble reaches a certain size, it detaches from the surface. If the nucleation site is flooded with liquid in the course of the bubble detachment, then the nucleation site is deactivated. The surface must therefore be designed as a cavity in such a way that when the bubble detaches, a small bubble remains, which then serves as the nucleus for a new cycle of bubble formation. This is achieved by arranging cavities on the surface in which a small bubble can remain after the bubble has detached.

Erfindungsgemäss berühren oder überkreuzen sich die Spitzen von zumindest zwei Vorsprüngen entlang dem Rippenverlauf gegenseitig. Dies ist speziell im reversiblen Betrieb beim Phasenwechsel von Vorteil, da die Vorsprünge für die Verflüssigung weit aus dem Kondensat ragen und für die Verdampfung eine Art Kavität ausbilden.According to the invention, the tips of at least two projections touch or cross one another along the course of the ribs. This is particularly advantageous in reversible operation during the phase change, since the projections for the liquefaction protrude far out of the condensate and form a kind of cavity for the evaporation.

In nicht erfindungsgemässer Ausgestaltung können sich die Spitzen von zumindest zwei Vorsprüngen über die Primärnut hinweg gegenseitig berühren oder überkreuzen. Dies ist im reversiblen Betrieb beim Phasenwechsel von Vorteil, da die Vorsprünge für die Verflüssigung wiederum weit aus dem Kondensat ragen und für die Verdampfung eine Art Kavität ausbilden.In an embodiment not according to the invention, the tips of at least two projections can touch or cross one another across the primary groove. This is advantageous in reversible operation during the phase change, since the projections for the liquefaction in turn protrude far out of the condensate and form a kind of cavity for the evaporation.

Demgegenüber ist es in einer nicht erfindungsgemässen Ausgestaltung auch möglich, dass der Abstand der Spitze des Vorsprungs zur Rohrwand geringer ist als die Restrippenhöhe. Hierdurch erhält der Vorsprung eine hakenartige bzw. ösenartige Form unmittelbar über der Rohrwand. Derartig gerundete Formen sind bei Verdampfungsprozessen für eine Blasenkeimbildung besonders vorteilhaft.In contrast, in a configuration not according to the invention it is also possible for the distance between the tip of the projection and the tube wall to be less than the remaining height of the ribs. This gives the projection a hook-like or loop-like shape directly above the pipe wall. Such rounded shapes are particularly advantageous for bubble nucleation in evaporation processes.

Bei einer anderen nicht erfindungsgemässen Ausgestaltung kann mindestens einer der Vorsprünge derartig verformt sein, dass dessen Spitze die Rohrinnenseite berührt. Hierdurch wird ein Blasenkeim durch eine wiederum hakenartige bzw. ösenartige Form des Vorsprungs beim Phasenübergang eines fluiden Wärmeträgermediums nahe an der Rohrwand gebildet. Über die Rohrwand findet dort ein besonders intensiver Wärmeaustausch in das Fluid statt.In another embodiment not according to the invention, at least one of the projections can be deformed in such a way that its tip touches the inside of the pipe. As a result, a bubble nucleus is formed by a hook-like or eyelet-like shape of the projection during the phase transition of a fluid heat transfer medium close to the tube wall. A particularly intensive heat exchange into the fluid takes place there via the tube wall.

In vorteilhafter Ausgestaltung der Erfindung können die Einkerbungen durch Schneiden der Innenrippen mit einer Schneidtiefe quer zum Rippenverlauf zur Bildung von Rippenschichten und durch Anheben der Rippenschichten mit einer Hauptausrichtung entlang dem Rippenverlauf zwischen Primärnuten ausgeformt sein.In an advantageous embodiment of the invention, the indentations can be formed by cutting the inner ribs with a cutting depth transverse to the rib path to form rib layers and by raising the rib layers with a main orientation along the rib path between primary grooves.

Die verfahrensseitige Strukturierung des erfindungsgemäßen Wärmeübertragerrohrs kann unter Verwendung eines Werkzeugs hergestellt werden, welches in der DE 603 17 506 T2 bereits beschrieben ist. Die Offenbarung dieser Druckschrift DE 603 17 506 T2 wird vollumfänglich in die vorliegenden Unterlagen einbezogen. Hierdurch lässt sich die Vorsprungshöhe und der Abstand variabel gestalten und individuell auf die Anforderungen, beispielsweise der Viskosität der Flüssigkeit oder der Strömungsgeschwindigkeit, anpassen.The process-side structuring of the heat exchanger tube according to the invention can be produced using a tool which in the DE 603 17 506 T2 is already described. The disclosure of this reference DE 603 17 506 T2 is fully included in the available documents. As a result, the projection height and the distance can be made variable and individually adapted to the requirements, for example the viscosity of the liquid or the flow rate.

Das verwendete Werkzeug weist eine Schneidkante zum Schneiden durch die Rippen an der inneren Fläche des Rohres auf zur Schaffung von Rippenschichten und eine Anhebekante zum Anheben der Rippenschichten zur Bildung der Vorsprünge. Auf diese Weise werden die Vorsprünge ohne Entfernung von Metall von der inneren Fläche des Rohrs gebildet. Die Vorsprünge an der inneren Fläche des Rohrs können in der gleichen oder einer unterschiedlichen Bearbeitung wie dieThe tool used has a cutting edge for cutting through the fins on the inner surface of the tube to create layers of fins and a lifting edge for lifting the layers of fins to form the projections. In this way, the protrusions are formed without removing metal from the inner surface of the tube. The projections on the inner surface of the tube can be in the same or different processing than the

Bildung der Rippen gebildet werden.formation of the ribs are formed.

Hiermit lässt sich die Vorsprungshöhe und Abstand variabel gestalten und individuell auf die Anforderungen des in Betracht kommenden Fluids, beispielsweise hinsichtlich Viskosität der Flüssigkeit, Strömungsgeschwindigkeit, anpassen.This allows the protrusion height and distance to be made variable and individually adapted to the requirements of the fluid in question, for example with regard to the viscosity of the liquid and the flow rate.

Vorteilhafterweise können die Vorsprünge in Vorsprungshöhe, Form und Ausrichtung untereinander variieren. Hierdurch lassen sich die einzelnen Vorsprünge gezielt aufeinander anpassen sowie zueinander variieren, damit besonders bei laminarer Strömung durch unterschiedliche Rippenhöhen in die unterschiedlichen Grenzschichten der Strömung eintaucht, um die Wärme an die Rohrwand abzuleiten. Damit lässt sich auch die Vorsprungshöhe und der Abstand individuell auf die Anforderungen, beispielsweise der Viskosität des Fluids oder der Strömungsgeschwindigkeit, anpassen.Advantageously, the projections can vary in projection height, shape and alignment. As a result, the individual projections can be specifically adapted to one another and varied in relation to one another, so that, particularly in the case of laminar flow, the different rib heights dip into the different boundary layers of the flow in order to dissipate the heat to the tube wall. The height of the protrusion and the distance can also be individually adapted to the requirements, for example the viscosity of the fluid or the flow rate.

In bevorzugter Ausführungsform der Erfindung kann ein Vorsprung an der von der Rohrwand abgewandten Seite eine spitz zulaufende Spitze aufweisen. Dies führt bei Kondensatorrohren mit einer Verwendung von zweiphasigen Fluiden zu einer optimierten Kondensation an der Vorsprungsspitze.In a preferred embodiment of the invention, a projection can have a pointed tip on the side facing away from the tube wall. This leads to optimized projection tip condensation in condenser tubes using two-phase fluids.

In besonders bevorzugter Ausführungsform kann ein Vorsprung an der von der Rohrwand abgewandten Seite eine gekrümmte Spitze aufweisen, deren lokaler Krümmungsradius mit entlang dem Vorsprungsverlauf zunehmender Entfernung von der Rohrwand verkleinert ist. Dies hat zum Vorteil, dass insbesondere bei Kondensation das an der Spitze entstandene Kondensat durch die konvexe Krümmung schneller hin zum Rippenfuß transportiert und somit der Wärmeübergang bei der Verflüssigung optimiert wird. Beim Phasenwechsel, hier im speziellen bei der Verflüssigung, liegt das Hauptaugenmerk auf der Verflüssigung des Dampfes und das Abführen des Kondensats weg von der Spitze hin zum Rippenfuß. Dafür bildet ein konvex gekrümmter Vorsprung eine ideale Grundlage zur effektiven Wärmeübertragung. Die Basis des Vorsprungs steht dabei im Wesentlichen radial von der Rohrwand ab. So können sich gleiche oder ähnliche Strukturelemente sowohl für ein Verdampferrohr wie auch für ein Kondensatorrohr gleichermaßen eignen.In a particularly preferred embodiment, a projection can have a curved tip on the side facing away from the pipe wall, the local radius of curvature of which is reduced as the distance from the pipe wall increases along the course of the projection. This has the advantage that, particularly in the event of condensation, the condensate that forms at the tip is transported more quickly to the base of the fins due to the convex curvature, thus optimizing the heat transfer during liquefaction. During the phase change, here in particular during the liquefaction, the main focus is on the liquefaction of the vapor and the discharge of the condensate away from the tip towards the bottom of the fins. A convexly curved projection forms an ideal basis for effective heat transfer. The base of the projection protrudes essentially radially from the tube wall. The same or similar structural elements can thus be equally suitable both for an evaporator tube and for a condenser tube.

Ausführungsbeispiele der Erfindung werden anhand der schematischen Zeichnungen näher erläutert. Die Zeichnungen 2, 3, 7 und 8 zeigen hingegen nicht erfindungsgemässe Ausführungen.Exemplary embodiments of the invention are explained in more detail with reference to the schematic drawings. The drawings 2, 3, 7 and 8, on the other hand, do not show embodiments according to the invention.

Darin zeigen:

Fig. 1
schematisch eine Schrägansicht eines Rohrausschnitts des Wärmeübertragerrohrs mit einer erfindungsgemäßen Struktur auf der Rohrinnenseite;
Fig. 2
schematisch eine Schrägansicht eines Rohrausschnitts des Wärmeübertragerrohrs mit einer nicht erfindungsgemäßen Struktur;
Fig. 3
schematisch eine Schrägansicht eines Rohrausschnitts des Wärmeübertragerrohrs mit einer nicht erfindungsgemäßen Struktur auf der Rohrinnenseite;
Fig. 4
schematisch einen Rippenabschnitt mit unterschiedlicher Kerbtiefe;
Fig. 5
schematisch einen Rippenabschnitt mit zwei sich entlang dem Rippenverlauf sich gegenseitig berührenden Vorsprüngen;
Fig. 6
schematisch einen Rippenabschnitt mit zwei sich entlang dem Rippenverlauf sich gegenseitig überkreuzenden Vorsprüngen;
Fig. 7
schematisch einen Rippenabschnitt mit zwei sich über die Primärnut hinweg gegenseitig berührenden Vorsprüngen; und
Fig. 8
schematisch einen Rippenabschnitt mit zwei sich über die Primärnut hinweg gegenseitig überkreuzenden Vorsprüngen.
Show in it:
1
schematically an oblique view of a tube section of the heat exchanger tube with a structure according to the invention on the inside of the tube;
2
schematically an oblique view of a tube section of the heat exchanger tube with a structure not according to the invention;
3
schematically an oblique view of a tube section of the heat exchanger tube with a structure not according to the invention on the inside of the tube;
4
schematically a rib section with different notch depth;
figure 5
schematically a rib section with two mutually touching projections along the course of the ribs;
6
schematically a rib section with two mutually crossing projections along the course of the ribs;
7
schematically a rib section with two mutually touching projections across the primary groove; and
8
schematically shows a rib section with two mutually crossing projections across the primary groove.

Einander entsprechende Teile sind in allen Figuren mit denselben Bezugszeichen versehen.Corresponding parts are provided with the same reference symbols in all figures.

Fig. 1 zeigt schematisch eine Schrägansicht eines Rohrausschnitts des Wärmeübertragerrohrs 1 mit einer erfindungsgemäßen Struktur auf der Rohrinnenseite 22. Das Wärmeübertragerrohr 1 besitzt eine Rohrwand 2, eine Rohraußenseite 21 und eine Rohrinnenseite 22. Auf der Rohrinnenseite 22 sind aus der Rohrwand 2 kontinuierlich verlaufende, helixförmig umlaufende Rippen 3 geformt. Die Rohrlängsachse A verläuft gegenüber den Rippen 3 unter einem gewissen Winkel. Zwischen jeweils benachbarten Rippen 3 sind sich kontinuierlich erstreckende Primärnuten 4 gebildet. 1 shows schematically an oblique view of a pipe section of the Heat exchanger tube 1 with a structure according to the invention on the tube inside 22. The heat exchanger tube 1 has a tube wall 2, a tube outside 21 and a tube inside 22. On the tube inside 22, continuously running, helically circumferential ribs 3 are formed from the tube wall 2. The longitudinal axis A of the tube runs at a certain angle relative to the ribs 3 . Continuously extending primary grooves 4 are formed between each adjacent ribs 3 .

Mehrere Vorsprünge 6 sind soweit paarweise zueinander verformt, dass sich Kavitäten 10 zwischen benachbarten Vorsprüngen 6 ausbilden. Hierbei berühren sich die Spitzen 61 von zumindest zwei Vorsprüngen 6 entlang dem Rippenverlauf gegenseitig.A plurality of projections 6 are deformed in pairs to one another to such an extent that cavities 10 are formed between adjacent projections 6 . In this case, the tips 61 of at least two projections 6 touch one another along the course of the ribs.

Die Vorsprünge 6 sind durch Schneiden der Rippen 3 mit einer Schneidtiefe quer zum Rippenverlauf zur Bildung von Rippenschichten und durch Anheben der Rippenschichten mit einer Hauptausrichtung entlang dem Rippenverlauf zwischen Primärnuten 4 ausgeformt. Die Einkerbungen 7 zwischen den Vorsprüngen 6 können auch mit einer wechselnden Kerbtiefe in einer Rippe 3 ausgebildet sein.The projections 6 are formed by cutting the ribs 3 with a cutting depth across the rib path to form layers of ribs and raising the layers of ribs with a main orientation along the rib path between primary grooves 4 . The indentations 7 between the projections 6 can also be formed in a rib 3 with an alternating indentation depth.

Fig. 2 zeigt schematisch eine Schrägansicht eines Rohrausschnitts des Wärmeübertragerrohrs 1 mit einer nicht erfindungsgemäßen Struktur. Mehrere Vorsprünge 6 sind soweit paarweise zueinander verformt, dass sich Kavitäten 10 zwischen benachbarten Vorsprüngen 6 ausbilden. Hierbei reichen die Spitzen 61 von zumindest zwei Vorsprüngen 6 über die Primärnut 4 hinweg und berühren sich gegenseitig. Die Spitzen 61 von paarweise zueinander verformten Vorsprüngen 6 können jedoch auch noch einen gewissen Abstand zueinander haben. Dieser ist jedoch so gering, dass sich dennoch wirksame Kavitäten 10 ausbilden. 2 1 schematically shows an oblique view of a tube section of the heat exchanger tube 1 with a structure not according to the invention. A plurality of projections 6 are deformed in pairs to one another to such an extent that cavities 10 are formed between adjacent projections 6 . In this case, the tips 61 of at least two projections 6 extend beyond the primary groove 4 and touch one another. However, the tips 61 of projections 6 deformed in pairs relative to one another can also still have a certain distance from one another. However, this is so small that effective cavities 10 are nevertheless formed.

Die Vorsprünge 6 sind wiederum durch Schneiden der Rippen 3 mit einer Schneidtiefe quer zum Rippenverlauf zur Bildung von Rippenschichten und durch Anheben der Rippenschichten mit einer Hauptausrichtung entlang dem Rippenverlauf zwischen Primärnuten 4 ausgeformt. Die Einkerbungen 7 zwischen den Vorsprüngen 6 können auch mit einer wechselnden Kerbtiefe in einer Rippe 3 ausgebildet sein.The projections 6 are in turn made by cutting the ribs 3 with a cutting depth transverse to the rib course to form rib layers and by raising the rib layers with a main orientation along the Rib course between primary grooves 4 formed. The indentations 7 between the projections 6 can also be formed in a rib 3 with an alternating indentation depth.

Fig. 3 zeigt schematisch eine Schrägansicht eines Rohrausschnitts des Wärmeübertragerrohrs 1 mit einer weiteren nicht erfindungsgemäßen Struktur auf der Rohrinnenseite 22. Mehrere Vorsprünge 6 sind in Richtung Rohrwand 2 verformt, so dass sich Kavitäten 10 zwischen einem jeweiligen Vorsprung und der Rohrwand 2 ausbilden. 3 1 schematically shows an oblique view of a tube section of the heat exchanger tube 1 with a further structure not according to the invention on the inside 22 of the tube.

Hierbei ist der Abstand der Spitzen 61 eines Vorsprungs zur Rohrwand geringer ist als die Restrippenhöhe. Es entsteht folglich eine hakenartige Form. Es kann jedoch ein Vorsprung 6 derartig verformt sein, dass dessen Spitze 61 die Rohrinnenseite 22 berührt. In diesem in Figur 3 nicht dargestellten Fall entsteht bevorzugt eine ösenartige Form. Die Vorsprünge 6 sind wiederum durch Schneiden der Rippen 3 analog zu den Figuren 1 und 2 ausgebildet.In this case, the distance between the tips 61 of a projection and the tube wall is less than the residual rib height. As a result, a hook-like shape is created. However, a projection 6 can be deformed in such a way that its tip 61 touches the inside 22 of the tube. In this in figure 3 not shown case preferably creates a loop-like shape. The projections 6 are in turn by cutting the ribs 3 analogous to the Figures 1 and 2 educated.

Fig. 4 zeigt schematisch einen Rippenabschnitt 31 mit unterschiedlicher Kerbtiefe t1, t2, t3. Die Bezeichnungen Schneidtiefe bzw. Kerbtiefe stellen im Rahmen der Erfindung dieselbe Begrifflichkeit dar. Die Vorsprünge 6 weisen alternierend wechselnde Kerbtiefen t1, t2, t3 durch eine Rippe 3 auf. Gestrichelt angedeutet ist in der Fig. 4 die originäre geformte helixförmig umlaufende Rippe 3. Aus dieser sind die Vorsprünge 6 durch Schneiden der Rippe 3 mit einer Kerb-/Schneidtiefe t1, t2, t3 quer zum Rippenverlauf zur Bildung von Rippenschichten und durch Anheben der Rippenschichten mit einer Hauptausrichtung entlang dem Rippenverlauf ausgeformt. Die unterschiedlichen Kerb-/Schneidtiefen t1, t2, t3 bemessen sich folglich an der Einkerbtiefe der originären Rippe in radialer Richtung. 4 1 schematically shows a rib section 31 with different notch depths t 1 , t 2 , t 3 . Within the scope of the invention , the terms cutting depth and notch depth represent the same terminology. Dashed is indicated in the 4 the original formed helical circumferential rib 3. From this the protrusions 6 are cut by cutting the rib 3 with a notching/cutting depth t 1 , t 2 , t 3 transverse to the rib course to form rib layers and by raising the rib layers with a main orientation along the Shaped ribs. The different notch/cutting depths t 1 , t 2 , t 3 are consequently dimensioned based on the notch depth of the original rib in the radial direction.

Die Vorsprungshöhe h ist in Fig. 2 als die Abmessung eines Vorsprungs in radialer Richtung eingezeichnet. Die Vorsprungshöhe h ist dann in radialer Richtung die Strecke ausgehend von der Rohrwand bis zur von der Rohrwand entferntesten Stelle des Vorsprungs.The projection height h is in 2 is plotted as the dimension of a protrusion in the radial direction. The projection height h is then in the radial direction Distance starting from the tube wall to the point of the projection that is furthest away from the tube wall.

Die Kerbtiefe t1, t2, t3 ist die in radialer Richtung gemessene Strecke ausgehend von der originären Rippenspitze bis zur tiefsten Stelle der Kerbe. Mit anderen Worten:
Die Kerbtiefe ist die Differenz der originären Rippenhöhe und der an der tiefsten Stelle einer Kerbe verbleibenden Restrippenhöhe.
The notch depth t 1 , t 2 , t 3 is the distance measured in the radial direction, starting from the original rib tip to the deepest point of the notch. In other words:
The notch depth is the difference between the original rib height and the remaining rib height at the deepest point of a notch.

Fig. 5 zeigt schematisch einen Rippenabschnitt 31 mit zwei sich entlang dem Rippenverlauf sich gegenseitig berührenden Vorsprüngen 6. Des Weiteren zeigt Fig. 6 zeigt schematisch einen Rippenabschnitt 31 mit zwei sich entlang dem Rippenverlauf gegenseitig überkreuzenden Vorsprüngen 6. Auch Fig. 7 zeigt schematisch einen hier allerdings nicht erfindungsgemässen Rippenabschnitt 31 mit zwei sich über die Primärnut hinweg gegenseitig berührenden Vorsprüngen 6. Fig. 8 zeigt schematisch einen weiteren nicht erfindungsgemässen Rippenabschnitt 31 mit zwei sich über die Primärnut hinweg gegenseitig überkreuzenden Vorsprüngen 6. figure 5 FIG. 1 schematically shows a rib section 31 with two projections 6 touching one another along the course of the rib. FIG 6 shows schematically a rib portion 31 with two mutually crossing projections 6 along the course of the rib. Also 7 shows schematically a rib section 31, which is not according to the invention here, however, with two projections 6 touching one another across the primary groove. 8 shows schematically a further rib section 31 not according to the invention with two mutually crossing projections 6 beyond the primary groove.

Bei den in den Fig. 5 bis 8 dargestellten Strukturelementen ist speziell im reversiblen Betrieb bei zweiphasigen Fluiden von Vorteil, dass diese für die Verdampfung eine Art Kavität 10 ausbilden. Die Kavitäten 10 dieser besonderen Art bilden die Ausgangsstellen für Blasenkeime eines verdampfenden Fluids.At the in the Figures 5 to 8 The structural elements shown are advantageous, especially in reversible operation with two-phase fluids, that they form a type of cavity 10 for evaporation. The cavities 10 of this special type form the starting points for bubble nuclei of an evaporating fluid.

BezugszeichenlisteReference List

11
Wärmeübertragerrohrheat exchanger tube
22
Rohrwandpipe wall
2121
Rohraußenseitepipe exterior
2222
Rohrinnenseitepipe inside
33
Ripperib
3131
Rippenabschnittrib section
44
Primärnutprimary groove
66
Vorsprunghead Start
6161
SpitzeTop
77
Einkerbungennotches
1010
Kavitätcavity
AA
Rohrlängsachselongitudinal axis of the pipe
t1t1
erste Schneidtiefefirst cutting depth
t2t2
zweite Schneidtiefesecond cutting depth
t3t3
dritte Schneidtiefethird cutting depth
hH
Vorsprungshöheprotrusion height

Claims (5)

  1. Heat transfer pipe (1) having a longitudinal pipe axis (A), wherein
    - continually extending, axially parallel or helically circumferential ribs (3) are formed from the pipe wall (2) at the inner pipe side (22),
    - continuously extending primary grooves (4) are formed in each case between adjacent ribs (3),
    - the ribs (3) have at least one structured region at the inner pipe side (22),
    - the structured region has a plurality of projections (6) which protrude from the surface and which have a projection height (h),
    whereby the projections (6) are separated by notches (7), wherein a plurality of projections (6) are deformed with respect to each other in pairs to such an extent that cavities (10) are formed between adjacent projections, characterised in that the tips (61) of at least two projections (6) contact each other or intersect along the rib path.
  2. Heat transfer pipe (1) according to claim 1, characterised in that the notches (7) are formed by cutting the inner ribs (3) with a cutting depth (t1, t2, t3) transversely relative to the rib path in order to form rib layers and by raising the rib layers with a main orientation along the rib path between primary grooves (4).
  3. Heat transfer pipe (1) according to claim 1 or claim 2, characterised in that the projections (6) vary relative to each other in terms of projection height (h), shape and orientation.
  4. Heat transfer pipe (1) according to any one of claims 1 to 3, characterised in that a projection (6) has an acutely tapering tip (61) at the side facing away from the pipe wall (2) .
  5. Heat transfer pipe (1) according to any one of claims 1 to 4, characterised in that a projection (6) at the side facing away from the pipe wall (2) has a curved tip (61) whose local radius of curvature is reduced with increasing spacing from the pipe wall (2) along the projection path.
EP17727102.0A 2016-06-01 2017-05-17 Heat exchanger tube Active EP3465057B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016006914.7A DE102016006914B4 (en) 2016-06-01 2016-06-01 heat exchanger tube
PCT/EP2017/000595 WO2017207089A1 (en) 2016-06-01 2017-05-17 Heat exchanger tube

Publications (2)

Publication Number Publication Date
EP3465057A1 EP3465057A1 (en) 2019-04-10
EP3465057B1 true EP3465057B1 (en) 2022-06-22

Family

ID=58992793

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17727102.0A Active EP3465057B1 (en) 2016-06-01 2017-05-17 Heat exchanger tube

Country Status (10)

Country Link
US (1) US10996005B2 (en)
EP (1) EP3465057B1 (en)
JP (1) JP6788688B2 (en)
KR (1) KR102451113B1 (en)
CN (1) CN109219727B (en)
DE (1) DE102016006914B4 (en)
MX (1) MX2018014687A (en)
PL (1) PL3465057T3 (en)
PT (1) PT3465057T (en)
WO (1) WO2017207089A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6765453B2 (en) * 2016-07-07 2020-10-07 シーメンス アクティエンゲゼルシャフト Steam generation pipe with turbulent installation
US9945618B1 (en) * 2017-01-04 2018-04-17 Wieland Copper Products, Llc Heat transfer surface

Family Cites Families (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1951394A (en) * 1930-12-03 1934-03-20 Chase Tubing
US3662582A (en) * 1970-05-18 1972-05-16 Noranda Metal Ind Heat-exchange tubing and method of making it
US3696861A (en) 1970-05-18 1972-10-10 Trane Co Heat transfer surface having a high boiling heat transfer coefficient
US3776018A (en) * 1972-02-29 1973-12-04 Noranda Metal Ind Tubing with inner baffle fins and method of producing it
JPS541946B2 (en) * 1972-10-06 1979-01-31
DE2808080C2 (en) 1977-02-25 1982-12-30 Furukawa Metals Co., Ltd., Tokyo Heat transfer tube for boiling heat exchangers and process for its manufacture
US4179911A (en) * 1977-08-09 1979-12-25 Wieland-Werke Aktiengesellschaft Y and T-finned tubes and methods and apparatus for their making
DE2758526C2 (en) 1977-12-28 1986-03-06 Wieland-Werke Ag, 7900 Ulm Method and device for manufacturing a finned tube
US4332069A (en) * 1980-11-10 1982-06-01 Kritzer Richard W Making heat exchangers
DE3048959C2 (en) * 1980-12-24 1985-08-29 Wieland-Werke Ag, 7900 Ulm Method and device for producing a finned tube for heat exchangers or the like.
US4577381A (en) 1983-04-01 1986-03-25 Kabushiki Kaisha Kobe Seiko Sho Boiling heat transfer pipes
US4660630A (en) 1985-06-12 1987-04-28 Wolverine Tube, Inc. Heat transfer tube having internal ridges, and method of making same
US4733698A (en) * 1985-09-13 1988-03-29 Kabushiki Kaisha Kobe Seiko Sho Heat transfer pipe
DE3664959D1 (en) 1985-10-31 1989-09-14 Wieland Werke Ag Finned tube with a notched groove bottom and method for making it
JPH0439596A (en) 1990-06-06 1992-02-10 Furukawa Electric Co Ltd:The Boiling type heat transfer tube
US5054548A (en) 1990-10-24 1991-10-08 Carrier Corporation High performance heat transfer surface for high pressure refrigerants
JP2788793B2 (en) 1991-01-14 1998-08-20 古河電気工業株式会社 Heat transfer tube
JP2721755B2 (en) * 1991-05-16 1998-03-04 株式会社神戸製鋼所 Heat transfer tube and method of manufacturing the same
US5332034A (en) * 1992-12-16 1994-07-26 Carrier Corporation Heat exchanger tube
JPH07180984A (en) * 1993-12-21 1995-07-18 Sanden Corp Heat-exchanger and manufacture therefor
US5597039A (en) * 1994-03-23 1997-01-28 High Performance Tube, Inc. Evaporator tube
US5458191A (en) * 1994-07-11 1995-10-17 Carrier Corporation Heat transfer tube
CN1084876C (en) * 1994-08-08 2002-05-15 运载器有限公司 Heat transfer tube
JPH08121984A (en) * 1994-10-21 1996-05-17 Hitachi Ltd Heat transferring pipe for azeotropic mixed refrigerant and heat exchanger for mixed refrigerant, freezer and air conditioner using heat transfer pipe
ES2171519T3 (en) 1994-11-17 2002-09-16 Carrier Corp HEAT TRANSFER TUBE.
JP3323682B2 (en) * 1994-12-28 2002-09-09 株式会社日立製作所 Heat transfer tube with internal cross groove for mixed refrigerant
US5697430A (en) 1995-04-04 1997-12-16 Wolverine Tube, Inc. Heat transfer tubes and methods of fabrication thereof
DE19757526C1 (en) 1997-12-23 1999-04-29 Wieland Werke Ag Heat exchanger tube manufacturing method
US6182743B1 (en) * 1998-11-02 2001-02-06 Outokumpu Cooper Franklin Inc. Polyhedral array heat transfer tube
CN1161586C (en) * 1998-12-25 2004-08-11 株式会社神户制钢所 Tube having inner surface trough, and method for producing same
DE19963353B4 (en) * 1999-12-28 2004-05-27 Wieland-Werke Ag Heat exchanger tube structured on both sides and method for its production
DE10101589C1 (en) 2001-01-16 2002-08-08 Wieland Werke Ag Heat exchanger tube and process for its production
US6883597B2 (en) * 2001-04-17 2005-04-26 Wolverine Tube, Inc. Heat transfer tube with grooved inner surface
JP3794341B2 (en) * 2002-03-28 2006-07-05 株式会社コベルコ マテリアル銅管 Internal grooved tube and manufacturing method thereof
US20040010913A1 (en) 2002-04-19 2004-01-22 Petur Thors Heat transfer tubes, including methods of fabrication and use thereof
US7311137B2 (en) * 2002-06-10 2007-12-25 Wolverine Tube, Inc. Heat transfer tube including enhanced heat transfer surfaces
US8573022B2 (en) * 2002-06-10 2013-11-05 Wieland-Werke Ag Method for making enhanced heat transfer surfaces
EP1516150B1 (en) 2002-06-10 2007-11-14 Wolverine Tube Inc. Heat transfer tube and method of and tool for manufacturing the same
US20060112535A1 (en) * 2004-05-13 2006-06-01 Petur Thors Retractable finning tool and method of using
CN1898520B (en) * 2003-10-23 2012-06-13 沃尔弗林管子公司 Method and tool for making enhanced heat transfer surfaces
WO2006105002A2 (en) 2005-03-25 2006-10-05 Wolverine Tube, Inc. Tool for making enhanced heat transfer surfaces
CN100437011C (en) 2005-12-13 2008-11-26 金龙精密铜管集团股份有限公司 Flooded copper-evaporating heat-exchanging pipe for electric refrigerator set
DE102006008083B4 (en) 2006-02-22 2012-04-26 Wieland-Werke Ag Structured heat exchanger tube and method for its production
EP1985958A4 (en) * 2006-02-06 2012-09-19 Panasonic Corp Fin-tube heat exchanger
CN100498187C (en) * 2007-01-15 2009-06-10 高克联管件(上海)有限公司 Evaporation and condensation combined type heat-transfer pipe
WO2009051037A1 (en) * 2007-10-17 2009-04-23 Sumitomo Metal Industries, Ltd. Production method of steel pipe with inner rib and steel pipe with inner rib
US20090178432A1 (en) * 2008-01-15 2009-07-16 Scot Reagen Ice maker evaporator
CN100547339C (en) * 2008-03-12 2009-10-07 江苏萃隆精密铜管股份有限公司 A kind of intensify heat transfer pipe and preparation method thereof
DE102008013929B3 (en) 2008-03-12 2009-04-09 Wieland-Werke Ag Metallic heat exchanger pipe i.e. integrally rolled ribbed type pipe, for e.g. air-conditioning and refrigeration application, has pair of material edges extending continuously along primary grooves, where distance is formed between edges
DE102009007446B4 (en) * 2009-02-04 2012-03-29 Wieland-Werke Ag Heat exchanger tube and method for its production
US20100282456A1 (en) * 2009-05-06 2010-11-11 General Electric Company Finned tube heat exchanger
DE102009021334A1 (en) * 2009-05-14 2010-11-18 Wieland-Werke Ag Metallic heat exchanger tube
JP4638951B2 (en) * 2009-06-08 2011-02-23 株式会社神戸製鋼所 Metal plate for heat exchange and method for producing metal plate for heat exchange
US20110036553A1 (en) * 2009-08-12 2011-02-17 Brian John Christen Integral evaporator and defrost heater system
DE102009060395A1 (en) * 2009-12-22 2011-06-30 Wieland-Werke AG, 89079 Heat exchanger tube and method for producing a heat exchanger tube
DE102010007570A1 (en) * 2010-02-10 2011-08-11 ThyssenKrupp Nirosta GmbH, 47807 Product for fluidic applications, process for its preparation and use of such a product
DE102011121733A1 (en) * 2011-12-21 2013-06-27 Wieland-Werke Ag Evaporator tube with optimized external structure
US10551130B2 (en) * 2014-10-06 2020-02-04 Brazeway, Inc. Heat transfer tube with multiple enhancements
US10508325B2 (en) * 2015-06-18 2019-12-17 Brazeway, Inc. Corrosion-resistant aluminum alloy for heat exchanger
US9945618B1 (en) * 2017-01-04 2018-04-17 Wieland Copper Products, Llc Heat transfer surface

Also Published As

Publication number Publication date
JP6788688B2 (en) 2020-11-25
MX2018014687A (en) 2019-02-28
KR20190015205A (en) 2019-02-13
EP3465057A1 (en) 2019-04-10
US20190120567A1 (en) 2019-04-25
PL3465057T3 (en) 2022-10-24
DE102016006914B4 (en) 2019-01-24
WO2017207089A1 (en) 2017-12-07
CN109219727A (en) 2019-01-15
JP2019517651A (en) 2019-06-24
CN109219727B (en) 2021-04-27
US10996005B2 (en) 2021-05-04
DE102016006914A1 (en) 2017-12-07
KR102451113B1 (en) 2022-10-05
PT3465057T (en) 2022-08-12

Similar Documents

Publication Publication Date Title
DE4404357C1 (en) Heat exchange core for condensing vapour (steam)
EP1223400B1 (en) Tube for heat exchanger and process for making same
EP2795233B1 (en) Evaporator pipe with optimised external structure
DE102009007446B4 (en) Heat exchanger tube and method for its production
EP2101136B1 (en) Metallic heat exchanger tube
EP2253922B1 (en) Metallic heat exchange pipe
DE19757526C1 (en) Heat exchanger tube manufacturing method
EP3111153B1 (en) Metal heat exchanger tube
EP3465057B1 (en) Heat exchanger tube
EP2791609B1 (en) Condenser tubes with additional flank structure
EP3465055B1 (en) Heat exchanger tube
EP3465056B1 (en) Heat exchanger tube
EP3581871B1 (en) Metallic heat exchange pipe
WO2022089773A1 (en) Metal heat exchanger tube
EP4237781A1 (en) Metal heat exchanger tube

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181026

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220210

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017013366

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1500017

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 3465057

Country of ref document: PT

Date of ref document: 20220812

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20220808

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220922

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220923

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221022

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017013366

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230309

Year of fee payment: 7

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20230323

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230314

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20230517

Year of fee payment: 7

Ref country code: IT

Payment date: 20230412

Year of fee payment: 7

Ref country code: DE

Payment date: 20230531

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230515

Year of fee payment: 7

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230517

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230517

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230531

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230517