EP3111153B1 - Metal heat exchanger tube - Google Patents

Metal heat exchanger tube Download PDF

Info

Publication number
EP3111153B1
EP3111153B1 EP15704718.4A EP15704718A EP3111153B1 EP 3111153 B1 EP3111153 B1 EP 3111153B1 EP 15704718 A EP15704718 A EP 15704718A EP 3111153 B1 EP3111153 B1 EP 3111153B1
Authority
EP
European Patent Office
Prior art keywords
channel
heat exchanger
additional structures
ribs
exchanger pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15704718.4A
Other languages
German (de)
French (fr)
Other versions
EP3111153A1 (en
Inventor
Achim Gotterbarm
Ronald Lutz
Jean El Hajal
Manfred Knab
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wieland Werke AG
Original Assignee
Wieland Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wieland Werke AG filed Critical Wieland Werke AG
Priority to PL15704718T priority Critical patent/PL3111153T3/en
Publication of EP3111153A1 publication Critical patent/EP3111153A1/en
Application granted granted Critical
Publication of EP3111153B1 publication Critical patent/EP3111153B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/34Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending obliquely
    • F28F1/36Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending obliquely the means being helically wound fins or wire spirals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0017Flooded core heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/42Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
    • F28F1/422Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element with outside means integral with the tubular element and inside means integral with the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/08Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by varying the cross-section of the flow channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • F28F13/185Heat-exchange surfaces provided with microstructures or with porous coatings
    • F28F13/187Heat-exchange surfaces provided with microstructures or with porous coatings especially adapted for evaporator surfaces or condenser surfaces, e.g. with nucleation sites
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/02Details of evaporators
    • F25B2339/024Evaporators with refrigerant in a vessel in which is situated a heat exchanger
    • F25B2339/0242Evaporators with refrigerant in a vessel in which is situated a heat exchanger having tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0061Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for phase-change applications
    • F28D2021/0064Vaporizers, e.g. evaporators

Definitions

  • EP 1 223 400 B1 It is proposed to produce at the groove bottom between the ribs undercut secondary grooves which extend continuously along the primary groove.
  • the cross section of these secondary grooves can remain constant or varied at regular intervals.
  • the invention includes a metallic heat exchanger tube having integrally ribbed, ribbed and ribbed ribs formed on the tube exterior, the rib stem projecting substantially radially from the tube wall and a channel formed between the ribs in which spaced apart additional structures are disposed.
  • the additional structures divide the channel between the ribs into segments.
  • the additional structures locally reduce the flow-through cross-sectional area in the channel between two ribs by at least 60% and at least limit a fluid flow in the channel during operation.
  • the combination of the segments according to the invention with a channel which is closed except for pores or slots gives a structure which has a very high efficiency in the evaporation of liquids over a very wide range of operating conditions.
  • the heat transfer coefficient of the structure reaches a consistently high level.
  • the first additional structures may be outwardly projecting radially outward protrusions from the channel bottom.
  • the exchange of liquid and steam is determined locally.
  • the segmentation of the channel over the groove base is particularly favorable for the evaporation process, since the excess temperature is greatest at the bottom of the groove and therefore there is the highest driving temperature difference for the bubble formation available.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

Die Erfindung betrifft ein metallisches Wärmeaustauscherrohr nach dem Oberbegriff des Anspruchs 1.The invention relates to a metallic heat exchanger tube according to the preamble of claim 1.

Ein derartiger Wärmeaustauscherrohr ist zum Beispiel aus der EP 0 495 453 A1 bekannt.Such a heat exchanger tube is for example from EP 0 495 453 A1 known.

Verdampfung tritt in vielen Bereichen der Kälte- und Klimatechnik sowie in der Prozess- und Energietechnik auf. Häufig werden Rohrbündelwärmeaustauscher verwendet, in denen Flüssigkeiten von Reinstoffen oder Mischungen auf der Rohraußenseite verdampfen und dabei auf der Rohrinnenseite eine Sole oder Wasser abkühlen. Solche Apparate werden als überflutete Verdampfer bezeichnet.Evaporation occurs in many areas of refrigeration and air conditioning technology as well as in process and energy technology. Frequently, shell-and-tube heat exchangers are used in which liquids of pure substances or mixtures evaporate on the outside of the pipe, cooling a brine or water on the inside of the pipe. Such apparatuses are referred to as flooded evaporators.

Durch die Intensivierung des Wärmeübergangs auf der Rohraußen- und der Rohrinnenseite lässt sich die Größe der Verdampfer stark reduzieren. Hierdurch nehmen die Herstellungskosten solcher Apparate ab. Außerdem sinkt die notwendige Füllmenge an Kältemittel, die bei den mittlerweile überwiegend verwendeten chlorfreien Sicherheitskältemitteln einen nicht zu vernachlässigenden Kostenanteil an den gesamten Anlagekosten ausmachen kann. Zudem sind die heute üblichen Hochleistungsrohre bereits etwa um den Faktor vier leistungsfähiger als glatte Rohre gleichen Durchmessers.By intensifying the heat transfer on the pipe outside and inside the pipe, the size of the evaporator can be greatly reduced. As a result, the production costs of such apparatuses decrease. In addition, the necessary filling quantity of refrigerant, which can account for a not inconsiderable share of the total system costs in the now predominantly used chlorine-free safety refrigerants, drops. In addition, today's conventional high-performance pipes are already about four times more efficient than smooth pipes of the same diameter.

Die leistungsstärksten, kommerziell erhältlichen Rippenrohre für überflutete Verdampfer besitzen auf der Rohraußenseite eine Rippenstruktur mit einer Rippendichte von 55 bis 60 Rippen pro Zoll ( US 5,669,441 A ; US 5,697,430 A ; DE 197 57 526 C1 ). Dies entspricht einer Rippenteilung von ca. 0,45 bis 0,40 mm.The most powerful commercially available finned tube finned tubes have on the tube exterior a ribbed structure with a fin density of 55 to 60 fins per inch ( US 5,669,441 A ; US 5,697,430 A ; DE 197 57 526 C1 ). This corresponds to a rib pitch of about 0.45 to 0.40 mm.

Weiterhin ist bekannt, dass leistungsgesteigerte Verdampfungsstrukturen bei gleichbleibender Rippenteilung auf der Rohraußenseite erzeugt werden können, indem man zusätzliche Strukturelemente im Bereich des Nutengrundes zwischen den Rippen einbringt.Furthermore, it is known that performance-enhanced evaporation structures can be produced with the same fin pitch on the outside of the tube by introducing additional structural elements in the region of the groove bottom between the ribs.

In EP 1 223 400 B1 wird vorgeschlagen, am Nutengrund zwischen den Rippen hinterschnittene Sekundärnuten zu erzeugen, die sich kontinuierlich entlang der Primärnut erstrecken. Der Querschnitt dieser Sekundärnuten kann konstant bleiben oder in regelmäßigen Abständen variiert werden.In EP 1 223 400 B1 It is proposed to produce at the groove bottom between the ribs undercut secondary grooves which extend continuously along the primary groove. The cross section of these secondary grooves can remain constant or varied at regular intervals.

Zudem sind aus DE 10 2008 013 929 B3 Strukturen am Nutengrund bekannt, die als lokale Kavitäten ausgebildet sind, wodurch zur Erhöhung des Wärmeüberganges bei der Verdampfung der Vorgang des Blasensiedens intensiviert wird. Die Lage der Kavitäten in der Nähe des primären Nutengrundes ist für den Verdampfungsprozess günstig, da am Nutengrund die Übertemperatur am größten ist und deshalb dort die höchste treibende Temperaturdifferenz für die Blasenbildung zur Verfügung steht.In addition are out DE 10 2008 013 929 B3 Structures known at the bottom of the groove, which are designed as local cavities, which is intensified to increase the heat transfer during evaporation of the process of bubbling. The location of the cavities in the vicinity of the primary groove bottom is favorable for the evaporation process, since the excess temperature is greatest at the bottom of the groove and therefore the highest driving temperature difference is available there for bubble formation.

Weitere Beispiele für Strukturen am Nutengrund sind in EP 0 222 100 B1 , US 7,254,964 B2 oder US 5,186,252 A zu finden. Diesen Strukturen ist gemeinsam, dass die Strukturelemente am Nutengrund keine hinterschnittene Form aufweisen. Es handelt sich dabei entweder um in den Nutengrund eingebrachte Eindrückungen oder um Auskragungen im unteren Bereich des Kanals. Höhere Auskragungen werden im Stand der Technik explizit ausgeschlossen, da zu befürchten wäre, dass der Fluidfluss im Kanal für einen Wärmeaustausch nachteilig behindert wird.Further examples of structures at the groove bottom are in EP 0 222 100 B1 . US 7,254,964 B2 or US 5,186,252 A to find. These structures have in common that the structural elements on Nutengrund have no undercut shape. These are either impressions made in the groove base or projections in the lower part of the channel. Higher protrusions are explicitly excluded in the prior art, since it would be feared that the fluid flow in the channel for heat exchange is adversely affected.

Der Erfindung liegt die Aufgabe zugrunde, ein leistungsgesteigertes Wärmeaustauscherrohr zur Verdampfung von Flüssigkeiten auf der Rohraußenseite weiterzubilden.The invention has the object of developing a performance-enhanced heat exchanger tube for the evaporation of liquids on the outside of the tube.

Die Erfindung wird durch die Merkmale des Anspruchs 1 wiedergegeben. Die weiteren rückbezogenen Ansprüche betreffen vorteilhafte Aus- und Weiterbildungen der Erfindung.The invention is represented by the features of claim 1. The other dependent claims relate to advantageous embodiments and further developments of the invention.

Die Erfindung schließt ein metallisches Wärmeaustauscherrohr ein, mit auf der Rohraußenseite ausgeformten integralen Rippen mit Rippenfuß, Rippenflanken und Rippenspitze, wobei der Rippenfuß im Wesentlichen radial von der Rohrwandung absteht und zwischen den Rippen ein Kanal ausgebildet ist, in dem voneinander beabstandete Zusatzstrukturen angeordnet sind. Die Zusatzstrukturen unterteilen den Kanal zwischen den Rippen in Segmente. Die Zusatzstrukturen reduzieren die durchströmbare Querschnittsfläche im Kanal zwischen zwei Rippen lokal um mindestens 60 % und begrenzen zumindest dadurch im Betrieb einen Fluidfluss im Kanal.The invention includes a metallic heat exchanger tube having integrally ribbed, ribbed and ribbed ribs formed on the tube exterior, the rib stem projecting substantially radially from the tube wall and a channel formed between the ribs in which spaced apart additional structures are disposed. The additional structures divide the channel between the ribs into segments. The additional structures locally reduce the flow-through cross-sectional area in the channel between two ribs by at least 60% and at least limit a fluid flow in the channel during operation.

Diese metallischen Wärmeaustauscherrohre dienen insbesondere zur Verdampfung von Flüssigkeiten aus Reinstoffen oder Gemischen auf der Rohraußenseite.These metallic heat exchanger tubes are used in particular for the evaporation of liquids from pure substances or mixtures on the tube outside.

Derartig leistungsfähige Rohre können auf der Basis von integral gewalzten Rippenrohren hergestellt werden. Unter integral gewalzten Rippenrohren werden berippte Rohre verstanden, bei denen die Rippen aus dem Wandmaterial eines Glattrohres geformt wurden. Typische auf der Rohraußenseite ausgeformten integralen Rippen sind beispielsweise spiralig umlaufend und weisen einen Rippenfuß, Rippenflanken und Rippenspitze auf, wobei der Rippenfuß im Wesentlichen radial von der Rohrwandung absteht. Die Anzahl der Rippen wird durch Zählung aufeinanderfolgender Ausbuchtungen in axialer Richtung eines Rohres festgelegt.Such efficient tubes can be manufactured on the basis of integrally rolled finned tubes. Integrally rolled finned tubes are understood to mean finned tubes in which the fins are formed from the wall material of a smooth tube. Typical integral ribs formed on the outside of the pipe are, for example, spirally encircling and have a fin root, rib flanks and fin tip, wherein the rib root protrudes substantially radially from the pipe wall. The number of ribs is determined by counting successive bulges in the axial direction of a tube.

Es sind hierbei verschiedene Verfahren bekannt, mit denen die zwischen benachbarten Rippen befindlichen Kanäle derart verschlossen werden, dass Verbindungen zwischen Kanal und Umgebung in Form von Poren oder Schlitzen bleiben. Insbesondere werden solche im Wesentlichen geschlossene Kanäle durch Umbiegen oder Umlegen der Rippen, durch Spalten und Stauchen der Rippen oder durch Kerben und Stauchen der Rippen erzeugt.Here, various methods are known with which the channels located between adjacent ribs are closed in such a way that Connections between channel and environment remain in the form of pores or slits. In particular, such substantially closed channels are created by bending or flipping the ribs, splitting and upsetting the ribs, or notching and upsetting the ribs.

Die Erfindung geht dabei von der Überlegung aus, dass zur Erhöhung des Wärmeüberganges bei der Verdampfung der Rippenzwischenraum durch Zusatzstrukturen segmentiert wird. Die Zusatzstrukturen können dabei zumindest zum Teil aus Material der Rohrwandung massiv aus dem Kanalgrund geformt sein. Hierbei werden die Zusatzstrukturen bevorzugt in regelmäßigen Abständen ausgehend vom Kanalgrund angeordnet und erstrecken sich quer zum Kanalverlauf, ausgehend von einem Rippenfuß einer Rippe zum benachbart liegenden nächsten Rippenfuß. Die Zusatzstrukturen können sich ausgehend vom Rippenfuß radial auch bis zur Rippenflanke und darüber hinaus erstrecken. Mit anderen Worten: Die Zusatzstrukturen verlaufen, ausgehend vom Kanalgrund, beispielsweise als massive Materialauskragungen quer zur Primärnut und trennen diese, wie ein Wehr als nur bedingt überströmbare Querbarriere, in einzelne Segmente ab. Auf diese Weise wird die Primärnut als Kanal zumindest teilweise in regelmäßigen Abständen bereits vom Kanalgrund ausgehend unterteilt.The invention is based on the consideration that the rib gap is segmented by additional structures to increase the heat transfer during evaporation. The additional structures can be formed at least partially from material of the pipe wall solid from the channel bottom. In this case, the additional structures are preferably arranged at regular intervals starting from the channel base and extend transversely to the channel course, starting from a ribbed foot of a rib to the adjacent next ribbed foot. The additional structures can extend radially from the rib foot to the rib flank and beyond. In other words, the additional structures extend, starting from the channel bottom, for example, as massive material projections transversely to the primary groove and separate them, as a weir as only partially überströmbare cross-barrier, into individual segments. In this way, the primary groove is at least partially subdivided as a channel at regular intervals already starting from the channel base.

Hierdurch werden lokale Überhitzungen in den Zwischenräumen erzeugt und der Vorgang des Blasensiedens intensiviert. Die Bildung von Blasen findet dann in erster Linie innerhalb der Segmente statt und beginnt an Keimstellen. An diesen Keimstellen bilden sich zunächst kleine Gas- oder Dampfblasen. Wenn die anwachsende Blase eine bestimmte Größe erreicht hat, löst sie sich von der Oberfläche ab. Im Zuge der Blasenablösung wird der verbleibende Hohlraum im Segment wieder mit Flüssigkeit geflutet und der Zyklus beginnt erneut. Die Oberfläche kann dabei derart gestaltet werden, dass beim Ablösen der Blase eine kleine Blase zurück bleibt, die dann als Keimstelle für einen neuen Zyklus der Blasenbildung dient.As a result, local overheating be generated in the interstices and intensified the process of bubble boiling. The formation of bubbles then takes place primarily within the segments and begins at germinal sites. Initially, small gas or vapor bubbles form at these nucleation sites. When the growing bubble reaches a certain size, it detaches from the surface. In the course of the bladder detachment, the remaining cavity in the segment is flooded with liquid again and the cycle begins again. The surface can be designed such that upon detachment of the bubble, a small bubble remains, which then serves as a germination point for a new cycle of bubble formation.

Bei der vorliegenden Erfindung wird durch die Segmentierung des Kanals zwischen zwei Rippen dieser in umlaufender Richtung immer wieder unterbrochen und so das Wandern der entstehenden Blasen im Kanal zumindest reduziert oder ganz verhindert. Ein Austausch von Flüssigkeit und Dampf entlang des Kanals ist durch die jeweilige Zusatzstruktur zunehmend weniger bis gar nicht mehr unterstützt.In the present invention is interrupted by the segmentation of the channel between two ribs in the circumferential direction over again and again and thus the migration of the resulting bubbles in the channel at least reduced or completely prevented. An exchange of liquid and vapor along the channel is increasingly less supported by the respective additional structure to no longer.

Der besondere Vorteil der Erfindung besteht darin, dass der Austausch von Flüssigkeit und Dampf lokal gezielt gesteuert und die Flutung der Blasenkeimstelle im Segment lokal erfolgt. Insgesamt können durch eine gezielte Wahl der Kanalsegmentierung die Verdampferrohrstrukturen in Abhängigkeit der Einsatzparameter zielführend optimiert werden, wodurch eine Steigerung des Wärmeübergangs erzielt wird. Da im Bereich des Nutengrundes die Temperatur des Rippenfußes höher ist als an der Rippenspitze, sind zudem Strukturelemente zur Intensivierung der Blasenbildung im Nutengrund besonders wirkungsvoll.The particular advantage of the invention is that the exchange of liquid and steam controlled locally targeted and the flooding of the nucleation site in the segment takes place locally. Overall, the evaporator tube structures can be optimized in a targeted manner as a function of the application parameters by a targeted choice of the channel segmentation, whereby an increase of the heat transfer is achieved. Since the temperature of the rib foot is higher in the region of the groove bottom than at the rib tip, structural elements for intensifying the formation of bubbles in the groove base are also particularly effective.

Zudem ist es auch möglich, dass die Zusatzstrukturen die durchströmbare Querschnittsfläche im Kanal zwischen zwei Rippen lokal um mindestens 80 % reduzieren. Insgesamt können durch eine zunehmende Abtrennung einzelner Kanalabschnitte bei der Kanalsegmentierung die Verdampferrohrstrukturen in Abhängigkeit der Einsatzparameter weiter zur Steigerung des Wärmeübergangs optimiert werden.In addition, it is also possible that the additional structures locally reduce the flow-through cross-sectional area in the channel between two ribs by at least 80%. Overall, by an increasing separation of individual channel sections in the channel segmentation, the evaporator tube structures can be further optimized depending on the application parameters to increase the heat transfer.

Bei einer vorteilhaften Ausführungsform der Erfindung können die Zusatzstrukturen die durchströmbare Querschnittsfläche im Kanal zwischen zwei Rippen lokal vollständig abschließen. Auf diese Weise werden die Segmente lokal für einen Fluiddurchtritt vollständig verschlossen. Der zwischen zwei Segmenten liegende Kanalabschnitt ist somit gegenüber benachbart liegenden Kanalabschnitten fluidseitig getrennt.In an advantageous embodiment of the invention, the additional structures can complete the flow-through cross-sectional area in the channel between two ribs locally completely. In this way, the segments are completely closed locally for a fluid passage. The channel section lying between two segments is thus separated from the adjacent channel sections on the fluid side.

In bevorzugter Ausgestaltung der Erfindung kann der Kanal radial nach außen bis auf einzelne lokale Öffnungen abgeschlossen sein. Dabei können die Rippen einen im Wesentlichen T-förmigen oder Γ-förmigen Querschnitt aufweisen, wodurch der Kanal zwischen den Rippen bis auf Poren als lokale Öffnungen verschlossen wird. Durch diese Öffnungen können die im Verdampfungsprozess entstehenden Dampfblasen entweichen. Das Verformen der Rippenspitzen geschieht mit Methoden, die dem Stand der Technik zu entnehmen sind.In a preferred embodiment of the invention, the channel can be completed radially outward to individual local openings. In this case, the ribs may have a substantially T-shaped or Γ-shaped cross-section, whereby the channel between the ribs is closed except for pores as local openings. Through these openings, the resulting vapor bubbles in the evaporation process can escape. The deformation of the rib tips is done with methods that can be found in the prior art.

Durch die Kombination der erfindungsgemäßen Segmente mit einem bis auf Poren oder Schlitze verschlossen Kanal erhält man eine Struktur, die über einen sehr weiten Bereich von Betriebsbedingungen eine sehr hohe Leistungsfähigkeit bei Verdampfung von Flüssigkeiten aufweist. Insbesondere erreicht bei Variation der Wärmestromdichte oder der treibenden Temperaturdifferenz der Wärmeübergangskoeffizient der Struktur ein gleichbleibend hohes Niveau.The combination of the segments according to the invention with a channel which is closed except for pores or slots gives a structure which has a very high efficiency in the evaporation of liquids over a very wide range of operating conditions. In particular, when the heat flow density or the driving temperature difference is varied, the heat transfer coefficient of the structure reaches a consistently high level.

In vorteilhafter Ausgestaltung der Erfindung kann zumindest eine lokale Öffnung pro Segment vorhanden sein. Diese Mindestanforderung gewährleistet noch, dass beim Verdampfungsprozess in einem Kanalsegment entstehende Gasblasen nach außen entweichen können. Die lokalen Öffnungen sind in Größe und Gestalt so ausgeführt, dass auch flüssiges Medium hindurchtreten und in den Kanalabschnitt nachströmen kann. Damit der Verdampfungsvorgang bei einer lokalen Öffnung aufrechterhalten werden kann, müssen die gleichen Mengen Flüssigkeit und Dampf folglich in zueinander entgegengesetzten Richtungen durch die Öffnung transportiert werden. Üblicherweise werden Flüssigkeiten verwendet, die den Rohrwerkstoff gut benetzen. Eine derartige Flüssigkeit kann aufgrund des Kapillareffekts durch jede Öffnung in der äußeren Rohroberfläche auch gegen einen Überdruck in die Kanäle eindringen.In an advantageous embodiment of the invention, at least one local opening per segment may be present. This minimum requirement still ensures that gas bubbles which form in a channel segment during the evaporation process can escape to the outside. The local openings are designed in size and shape so that even liquid medium can pass and flow into the channel section. Thus, to maintain the vaporization process at a local orifice, the same quantities of liquid and vapor must be transported through the orifice in mutually opposite directions. Usually liquids are used, which wet the pipe material well. Such a liquid can penetrate into the channels due to the capillary effect through each opening in the outer tube surface against an overpressure.

In besonders bevorzugter Ausgestaltung kann der Quotient der Anzahl der lokalen Öffnungen zur Anzahl der Segmente 1:1 bis 6:1 betragen. Weiter bevorzugt kann dieser Quotient 1:1 bis 3:1 betragen. Die zwischen den Rippen befindlichen Kanäle sind durch Material der oberen Rippenbereiche im Wesentlichen verschlossen, wobei die so entstehenden Hohlräume der Kanalsegmente durch Öffnungen mit dem umgebenden Raum verbunden sind. Diese Öffnungen können auch als Poren ausgestaltet sein, welche in gleicher Größe oder auch in zwei oder mehr Größenklassen ausgeführt sein können. Bei einem Verhältnis, bei dem mehrere lokale Öffnungen auf ein Segment ausgebildet sind, können sich besonders Poren mit zwei Größenklassen eignen. Nach einem regelmäßigen, sich wiederholenden Schema folgen entlang der Kanäle beispielsweise auf jede kleine eine große Öffnung. Durch diese Struktur wird eine gerichtete Strömung in den Kanälen erzeugt. Flüssigkeit wird bevorzugt durch die kleinen Poren mit Unterstützung des Kapillardrucks eingezogen und benetzt die Kanalwände, wodurch dünne Filme erzeugt werden. Der Dampf sammelt sich im Zentrum des Kanals an und entweicht an den Stellen mit dem geringsten Kapillardruck. Gleichzeitig müssen die großen Poren so dimensioniert werden, dass der Dampf ausreichend schnell entweichen kann und die Kanäle dabei nicht austrocknen. Die Größe und Häufigkeit der Dampfporen im Verhältnis zu den kleineren Flüssigkeitsporen sind dann aufeinander abzustimmen.In a particularly preferred embodiment, the quotient of the number of local openings to the number of segments can be 1: 1 to 6: 1. Further preferred may this quotient is 1: 1 to 3: 1. The channels located between the ribs are substantially closed by material of the upper rib areas, the resulting cavities of the channel segments being connected by openings to the surrounding space. These openings can also be designed as pores, which can be designed in the same size or in two or more size classes. In a ratio in which a plurality of local openings are formed on a segment, especially pores with two size classes may be suitable. For example, following a regular, repetitive pattern, each channel is followed by a large opening along the channels. This structure creates a directional flow in the channels. Liquid is preferentially drawn through the small pores with the aid of capillary pressure and wets the channel walls, producing thin films. The vapor accumulates in the center of the channel and escapes at the lowest capillary pressure points. At the same time, the large pores must be dimensioned so that the steam can escape sufficiently quickly and the channels do not dry out. The size and frequency of the vapor pores in relation to the smaller liquid pores are then matched.

Vorteilhafterweise können erste Zusatzstrukturen vom Kanalgrund ausgehende radial nach außen gerichtete Auskragungen sein. Hierdurch wird auch der Austausch von Flüssigkeit und Dampf lokal festgelegt. Die Segmentierung des Kanals über den Nutengrund ist dabei für den Verdampfungsprozess besonders günstig, da am Nutengrund die Übertemperatur am größten ist und deshalb dort die höchste treibende Temperaturdifferenz für die Blasenbildung zur Verfügung steht.Advantageously, the first additional structures may be outwardly projecting radially outward protrusions from the channel bottom. As a result, the exchange of liquid and steam is determined locally. The segmentation of the channel over the groove base is particularly favorable for the evaporation process, since the excess temperature is greatest at the bottom of the groove and therefore there is the highest driving temperature difference for the bubble formation available.

In bevorzugter Ausführungsform der Erfindung können die ersten Zusatzstrukturen zumindest aus Material des Kanalgrunds zwischen zwei integral umlaufenden Rippen ausgeformt sein. Hierdurch verbleibt eine stoffschlüssige Verbindung für einen guten Wärmeaustausch von der Rohrwandung in die jeweiligen Strukturelemente erhalten. Die Segmentierung des Kanals aus einem einheitlichen Material des Kanalgrunds ist für den Verdampfungsprozess besonders günstig.In a preferred embodiment of the invention, the first additional structures may be formed at least from material of the channel bottom between two integrally encircling ribs. This leaves a cohesive Get a connection for a good heat exchange from the pipe wall into the respective structural elements. The segmentation of the channel from a uniform material of the channel bottom is particularly favorable for the evaporation process.

In besonders bevorzugter Ausführungsform können die aus dem Kanalgrund geformten ersten Zusatzstrukturen eine Höhe zwischen 0,15 und 1 mm aufweisen. Diese Bemaßung der Zusatzstrukturen ist auf die Hochleistungsrippenrohre besonders gut abgestimmt und bringen zum Ausdruck, dass die Strukturgrößen der Außenstrukturen bevorzugt im Submillimeter- bis Millimeterbereich liegen.In a particularly preferred embodiment, the first additional structures formed from the channel base may have a height between 0.15 and 1 mm. This dimensioning of the additional structures is particularly well matched to the high-performance finned tubes and expresses that the structure sizes of the outer structures are preferably in the submillimeter to millimeter range.

In weiterer vorteilhafter Ausgestaltung der Erfindung können zweite Zusatzstrukturen zumindest aus den Rippenflanken der integral umlaufenden Rippen über seitliche Auskragungen ausgeformt sein. Dies kann alternativ oder zusätzlich zu weiteren Auskragungen aus dem Kanalgrundmaterial ausgeführt sein.In a further advantageous embodiment of the invention, second additional structures can be formed at least from the rib flanks of the integrally encircling ribs via lateral protrusions. This may be performed alternatively or in addition to further projections from the channel base material.

In bevorzugter Ausführungsform der Erfindung können die zweiten Zusatzstrukturen zumindest aus einer Rippe von der Rippenspitze ausgehend in Richtung Kanalgrund hin ausgeformt sein. Der Kanal kann folglich auch aus einer Kombination mehrerer sich ergänzender Strukturelemente von unten und/oder der Seite und/oder von oben um das gewünschte Maß verjüngt bis ganz geschlossen werden. Jedenfalls so, dass der Kanal zwischen den Rippen in diskrete Segmente unterteilt wird.In a preferred embodiment of the invention, the second additional structures can be formed, starting at least from one rib from the fin tip, in the direction of the channel bottom. Consequently, the channel can also be tapered or completely closed by a desired amount from a combination of several complementary structural elements from below and / or from the side and / or from above. In any case, so that the channel between the ribs is divided into discrete segments.

In weiterer ergänzender Ausführungsform können Zusatzstrukturen zumindest teilweise über zusätzliches Material eingebracht sein. Zusätzliches Material kann dabei in Beschaffenheit und in Bezug auf die Wechselwirkung mit dem zum Betrieb ausgewählten Fluids vom Material des übrigen Wärmeaustauscherrohres abweichen. Beispielsweise ist es dabei auch angedacht, Materialien mit unterschiedlichen Oberflächeneigenschaften gegenüber dem verwendeten Fluid einzusetzen.In a further supplementary embodiment, additional structures can be introduced at least partially via additional material. Additional material may be in nature and in relation to the interaction with the fluid selected for operation from the material of the remaining heat exchanger tube differ. For example, it is also contemplated to use materials with different surface properties compared to the fluid used.

Vorteilhafterweise können die Zusatzstrukturen asymmetrische Formen aufweisen. Die Asymmetrie der Strukturen erscheint hierbei in einer senkrecht zur Rohrachse verlaufenden Schnittebene. Asymmetrische Formen können, insbesondere wenn eine größere Oberfläche ausgebildet wird, einen zusätzlichen Beitrag zum Verdampfungsprozess leisten. Die Asymmetrie kann sowohl bei Zusatzstrukturen am Kanalgrund wie auch an der Rippenspitze ausgeprägt sein.Advantageously, the additional structures may have asymmetrical shapes. The asymmetry of the structures appears here in a plane perpendicular to the tube axis cutting plane. Asymmetrical shapes, especially if a larger surface is formed, can make an additional contribution to the evaporation process. The asymmetry can be pronounced both at additional structures at the channel bottom as well as at the rib tip.

In bevorzugter Ausführungsform der Erfindung können die Zusatzstrukturen in einer senkrecht zur Rohrachse verlaufenden Schnittebene einen trapezförmigen Querschnitt aufweisen. Trapezförmige Querschnitte sind im Zusammenhang mit integral gewalzten Rippenrohrstrukturen technologisch gut beherrschbare Strukturelemente. Geringfügige fertigungsbedingte Asymmetrien der sonst parallelen Grundseiten eines Trapezes können hierbei auftreten.In a preferred embodiment of the invention, the additional structures can have a trapezoidal cross section in a sectional plane running perpendicular to the tube axis. Trapezoidal cross sections are in the context of integrally rolled finned tube structures technologically well controllable structural elements. Minor manufacturing-related asymmetries of the otherwise parallel bases of a trapezoid can occur here.

Vorteilhafterweise kann die jeweilige durch Zusatzstrukturen reduzierte, durchströmbare Querschnittsfläche im Kanal zwischen zwei Rippen variieren. Auf diese Weise können im Kanal lokal mehr oder weniger durchgängige Bereiche geschaffen werden. Hierzu können beispielsweise Zusatzstrukturen am Kanalgrund eine unterschiedliche Höhe aufweisen.Advantageously, the respective reduced by cross-sectional structures, durchströmbare cross-sectional area in the channel between two ribs vary. In this way, more or less continuous areas can be created locally in the channel. For this purpose, for example, additional structures may have a different height at the channel bottom.

Ausführungsbeispiele der Erfindung werden anhand der schematischen Zeichnungen näher erläutert.Embodiments of the invention will be explained in more detail with reference to the schematic drawings.

Darin zeigen:

Fig. 1
schematisch eine Teilansicht eines Querschnitts eines Wärmeaustauscherrohrs mit durch Zusatzstrukturen unterteilten Segmenten,
Fig. 2
schematisch eine Teilansicht eines Querschnitts eines weiteren Wärmeaustauscherrohrs mit variierten Zusatzstrukturen im Bereich der Rippenspitze, und
Fig. 3
schematisch eine Teilansicht eines Querschnitts eines Wärmeaustauscherrohrs mit nahezu abgeschlossenen Segmenten.
Show:
Fig. 1
1 is a schematic partial view of a cross section of a heat exchanger tube with segments divided by additional structures;
Fig. 2
schematically a partial view of a cross section of another heat exchanger tube with varied additional structures in the rib tip, and
Fig. 3
schematically a partial view of a cross section of a heat exchanger tube with almost closed segments.

Einander entsprechende Teile sind in allen Figuren mit denselben Bezugszeichen versehen.Corresponding parts are provided in all figures with the same reference numerals.

Fig. 1 zeigt schematisch eine Teilansicht eines Querschnitts eines erfindungsgemäßen Wärmeaustauscherrohrs 1 mit durch Zusatzstrukturen 7 unterteilten Segmenten 8. Das integral gewalzte Wärmeaustauscherrohr 1 weist auf der Rohraußenseite schraubenlinienförmig umlaufende Rippen 2 auf, zwischen denen eine Primärnut als Kanal 6 ausgebildet ist. Die Rippen 2 erstrecken sich ohne Unterbrechung kontinuierlich entlang einer Helixlinie auf der Rohraußenseite. Der Rippenfuß 3 steht im Wesentlichen radial von der Rohrwandung 10 ab. Die Rippenhöhe H wird am fertigen Wärmeaustauscherrohr 1 von der tiefsten Stelle des Kanalgrundes 61 ausgehend vom Rippenfuß 3 über die Rippenflanke 4 hinweg bis zur Rippenspitze 5 des vollständig geformten Rippenrohres gemessen. Es wird ein Wärmeaustauscherrohr 1 vorgeschlagen, bei dem im Bereich des Kanalgrundes 61, eine Zusatzstruktur 7 in Gestalt von massiven Auskragungen 71 angeordnet ist. Diese Auskragungen 71 sind als erste Zusatzstruktur bezeichnet und aus Material der Rohrwandung 10 aus dem Kanalgrund 61 geformt. Die massiven Auskragungen 71 sind in bevorzugt regelmäßigen Abständen im Kanalgrund 61 angeordnet und erstrecken sich quer zum Kanalverlauf von einem Rippenfuß 3 einer Rippe 2 zum in der Figurenebene nicht dargestellten darüber liegenden nächsten Rippenfuß. Auf diese Weise wird die Primärnut als Kanal 6 in regelmäßigen Abständen zumindest teilweise verjüngt. Das dadurch entstehende Segment 8 begünstigt eine Blasenkeimbildung in besonderer Weise. Der Austausch von Flüssigkeit und Dampf zwischen den einzelnen Segmenten 8 wird dadurch verringert. Fig. 1 schematically shows a partial view of a cross section of a heat exchanger tube 1 according to the invention divided by additional structures 7 segments 8. The integrally rolled heat exchanger tube 1 has on the outside of the tube helically encircling ribs 2, between which a primary groove is formed as a channel 6. The ribs 2 extend continuously without interruption along a helix line on the tube outside. The ribbed foot 3 projects essentially radially from the tube wall 10. The rib height H is measured on the finished heat exchanger tube 1 from the lowest point of the channel base 61, starting from the ribbed foot 3 over the rib flank 4, to the fin tip 5 of the completely shaped finned tube. A heat exchanger tube 1 is proposed in which an additional structure 7 in the form of solid projections 71 is arranged in the region of the channel bottom 61. These protrusions 71 are referred to as the first additional structure and formed of material of the tube wall 10 from the channel base 61. The solid projections 71 are arranged at preferably regular intervals in the channel base 61 and extend transversely to the channel profile of a fin 3 of a rib 2 for in the plane of the figure not shown above next rib foot. In this way, the primary groove is at least partially tapered as a channel 6 at regular intervals. The resulting segment 8 favors bubble nucleation in a special way. The exchange of liquid and vapor between the individual segments 8 is thereby reduced.

Zusätzlich zur Bildung der Auskragungen 71 am Kanalgrund 61 sind zweckmäßigerweise die Rippenspitzen 5 als distaler Bereich der Rippen 2 derart verformt, dass sie den Kanal 6 in Radialrichtung teilweise als weitere zweite Zusatzstruktur 72 verschließen. Die Verbindung zwischen dem Kanal 6 und der Umgebung ist in Form von Poren 9 als lokale Öffnungen ausgestaltet, damit Dampfblasen aus der Kanal 6 entweichen können. Das Verformen der Rippenspitzen 5 geschieht mit Methoden, die dem Stand der Technik zu entnehmen sind. Die Primärnuten 6 stellen auf diese Weise hinterschnittene Nuten dar. Durch die Kombination der erfindungsgemäßen ersten und zweiten Zusatzstrukturen 71 und 72 erhält man ein Segment 8 in Form einer Kavität, die sich ferner dadurch auszeichnet, dass sie über einen sehr weiten Bereich von Betriebsbedingungen eine sehr hohe Leistungsfähigkeit bei Verdampfung von Flüssigkeiten aufweist. Die Flüssigkeit verdampft innerhalb des Segments 8. Der entstehende Dampf tritt an den lokalen Öffnungen 9 aus dem Kanal 6 aus, durch die auch flüssiges Fluid nachströmt. Zum Nachströmen des Fluid können auch gut benetzbare Rohroberflächen eine Hilfe sein.In addition to the formation of the projections 71 on the channel base 61, the rib tips 5 are expediently deformed as the distal region of the ribs 2 in such a way that they partly close the channel 6 in the radial direction as a further second additional structure 72. The connection between the channel 6 and the environment is configured in the form of pores 9 as local openings, so that vapor bubbles can escape from the channel 6. The deformation of the rib tips 5 is done with methods that can be found in the prior art. The primary grooves 6 in this way represent undercut grooves. The combination of the first and second additional structures 71 and 72 according to the invention results in a segment 8 in the form of a cavity which is further characterized in that it over a very wide range of operating conditions a very high performance in evaporation of liquids. The liquid evaporates within the segment 8. The resulting vapor exits the channel 6 at the local openings 9, through which liquid fluid also flows. For subsequent flow of the fluid also well wettable pipe surfaces can be of help.

Fig. 2 zeigt schematisch eine Teilansicht eines Querschnitts eines weiteren Wärmeaustauscherrohrs 1 mit variierten zweiten Zusatzstrukturen 72 im Bereich der Rippenspitze 5. Zusätzlich zur Bildung der Auskragungen 71 am Kanalgrund 61 sind wiederum die Rippenspitzen 5 als distaler Bereich der Rippen 2 derart verformt, dass sie den Kanal 6 in Radialrichtung teilweise als weitere zweite Zusatzstruktur 72 verschließen. Die Verbindung zwischen dem Kanal 6 und der Umgebung ist in Form von schräg verlaufenden Röhren als lokale Öffnungen 9 zum Entweichen von Dampfblasen aus der Kanal 6 sowie Einströmen von flüssigem Fluid in den Kanal 6 ausgestaltet. Die Primärnuten 6 stellen auf diese Weise wiederum hinterschnittene Nuten dar. Die zweite Zusatzstruktur 72 ist aus einer Rippe von der Rippenspitze 5 ausgehend in Richtung Kanalgrund 61 hin ausgeformt und ragt so in radialer Richtung in den Kanal 6 hinein. Sobald eine erste und eine zweite Zusatzstruktur radial betrachtet übereinanderliegen, reduziert sich die durchströmbare Querschnittsfläche im Kanal 6 zwischen zwei Rippen 2 lokal besonders effektiv, um dadurch im Betrieb den Fluidfluss im Kanal 6 zu begrenzen. Fig. 2 schematically shows a partial view of a cross section of another heat exchanger tube 1 with varied second additional structures 72 in the region of the rib tip 5. In addition to the formation of the projections 71 on the channel base 61 again the rib tips 5 are deformed as a distal portion of the ribs 2 so that they the channel 6 in Partially close the radial direction as a further second additional structure 72. The connection between the channel 6 and the environment is in the form of inclined tubes as local openings 9 designed for the escape of vapor bubbles from the channel 6 and inflow of liquid fluid into the channel 6. The primary grooves 6 in this way in turn represent undercut grooves. The second additional structure 72 is formed starting from a rib from the fin tip 5 in the direction of the channel base 61 and protrudes in the radial direction into the channel 6. As soon as a first and a second additional structure overlap one another radially, the through-flow cross-sectional area in the channel 6 between two ribs 2 reduces locally particularly effectively, thereby limiting the fluid flow in the channel 6 during operation.

Fig. 3 zeigt schematisch eine Teilansicht eines Querschnitts eines Wärmeaustauscherrohrs 1 mit den Zusatzstrukturen 7 aus Fig. 2. Die zweiten Zusatzstrukturen 72 ragen bis fast zu den Auskragungen der ersten Zusatzstrukturen 71 in den Kanal 6 hinein, so dass sich nahezu abgeschlossene Segmente 8 ausbilden. In diesem Fall liegt der Quotient der Anzahl der lokalen Öffnungen 9 zur Anzahl der Segmente 8 im bevorzugten Intervall 1:1 bis 3:1 und beträgt im Schnitt ungefähr 1,7:1 bis 2,3:1. Hierbei sind alle als Röhren ausgebildeten lokalen Öffnungen 9 noch durchgängig, auch wenn eine Öffnung 9 über einer Auskragung 71 zu liegen kommt. Der entstehende Dampf kann noch an den lokalen Öffnungen 9 aus dem Kanal 6 austreten. Das flüssiges Fluid kann aufgrund seiner Oberflächenspannung mittels Kapillarwirkung in den Röhren 9 besonders effizient nachströmen. Fig. 3 schematically shows a partial view of a cross section of a heat exchanger tube 1 with the additional structures 7 Fig. 2 , The second additional structures 72 protrude almost into the projections of the first additional structures 71 into the channel 6, so that almost complete segments 8 form. In this case, the quotient of the number of local openings 9 to the number of segments 8 in the preferred interval is 1: 1 to 3: 1 and is on average about 1.7: 1 to 2.3: 1. Here, all formed as tubes local openings 9 are still continuous, even if an opening 9 comes to rest on a projection 71. The resulting steam can still escape at the local openings 9 from the channel 6. Due to its surface tension, the liquid fluid can flow in the tubes 9 in a particularly efficient manner by means of capillary action.

Durch die Kombination der erfindungsgemäßen ersten und zweiten Zusatzstrukturen 71 und 72 erhält man ein Segment 8 in Form einer Kavität, die sich ferner dadurch auszeichnet, dass sie über einen sehr weiten Bereich von Betriebsbedingungen eine sehr hohe Leistungsfähigkeit bei Verdampfung von Flüssigkeiten aufweist. Insbesondere bleibt bei Variation der Wärmestromdichte oder der treibenden Temperaturdifferenz der Wärmeübergangskoeffizient der Struktur auf einem hohen Niveau nahezu konstant. Die erfindungsgemäße Lösung bezieht sich auf strukturierte Rohre, bei denen der Wärmeübergangskoeffizient auf der Rohraußenseite gesteigert wird. Um nicht den Hauptanteil des Wärmedurchgangswiderstandes auf die Innenseite zu verlagern, kann der Wärmeübergangskoeffizient auf der Innenseite durch eine geeignete Innenstrukturierung 11 zudem intensiviert werden. Die Wärmeaustauscherrohre 1 für Rohrbündelwärmeaustauscher besitzen üblicherweise mindestens einen strukturierten Bereich sowie glatte Endstücke und eventuell glatte Zwischenstücke. Die glatten End- bzw. Zwischenstücke begrenzen die strukturierten Bereiche. Damit das Wärmeaustauscherrohr 1 problemlos in den Rohrbündelwärmeaustauscher eingebaut werden kann, darf der äußere Durchmesser der strukturierten Bereiche nicht größer sein als der äußere Durchmesser der glatten End- und Zwischenstücke.The combination of the first and second additional structures 71 and 72 according to the invention results in a segment 8 in the form of a cavity, which is further characterized by having a very high performance in the evaporation of liquids over a very wide range of operating conditions. In particular, when the heat flow density or the driving temperature difference is varied, the heat transfer coefficient of the structure at a high level remains almost constant. The inventive Solution refers to structured pipes where the heat transfer coefficient on the outside of the pipe is increased. In order not to shift the majority of the heat transfer resistance to the inside, the heat transfer coefficient can be intensified on the inside by a suitable internal structure 11 also. The heat exchanger tubes 1 for shell-and-tube heat exchangers usually have at least one structured region and smooth end pieces and possibly smooth intermediate pieces. The smooth end or intermediate pieces limit the structured areas. So that the heat exchanger tube 1 can be easily installed in the tube bundle heat exchanger, the outer diameter of the structured areas must not be greater than the outer diameter of the smooth end and intermediate pieces.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
Wärmeaustauscherrohrheat exchanger tube
22
Rippenribs
33
Rippenfußfin base
44
Rippenflankerib flank
55
Rippenspitze, distale Bereiche der RippenRib tip, distal regions of the ribs
66
Kanal, PrimärnutChannel, primary groove
6161
Kanalgrundchannel base
77
Zusatzstrukturenadditional structures
7171
erste Zusatzstruktur als Auskragungen am Kanalgrundfirst additional structure as overhangs at the channel bottom
7272
zweite Zusatzstruktur im Bereich der Rippenspitzesecond additional structure in the area of the rib tip
88th
Segmentsegment
99
lokale Öffnung, Poren, Röhrenlocal opening, pores, tubes
1010
Rohrwandungpipe wall
1111
Innenstrukturinternal structure

Claims (15)

  1. Metal heat exchanger pipe (1), having integral ribs (2) which are formed on the outer side of the pipe and which have a rib base (3), rib flanks (4) and a rib tip (5), wherein the rib base (3) protrudes substantially radially from the pipe wall and there is formed between the ribs (2) a channel (6) in which there are arranged additional structures (7, 71, 72) which are spaced apart from each other and which are arranged so as to extend least partially from the channel base (61) and which extend transversely relative to the path of the channel (6),
    characterised in that
    - the additional structures (7, 71, 72) divide the channel (6) between the ribs (2) into segments (8), and
    - in that the additional structures (7, 71, 72) reduce the cross-sectional surface-area through which it is possible to flow in the channel (6) between two ribs (2) locally by at least 60% and thereby during operation at least to limit a fluid flow in the channel (6).
  2. Heat exchanger pipe (1) according to claim 1, characterised in that the additional structures (7, 71, 72) reduce the cross-sectional surface-area through which it is possible to flow in the channel (6) between two ribs (2) locally by at least 80%.
  3. Heat exchanger pipe (1) according to claim 2, characterised in that the additional structures (7, 71, 72) locally completely close the cross-sectional surface-area through which it is possible to flow in the channel (6) between two ribs (2).
  4. Heat exchanger pipe (1) according to any one of claims 1 to 3, characterised in that the channel (6) is closed at the radially outer side with the exception of individual local openings (9).
  5. Heat exchanger pipe (1) according to any one of claims 1 to 4, characterised in that at least one local opening (9) is provided per segment (8).
  6. Heat exchanger pipe (1) according to any one of claims 1 to 5, characterised in that the quotient of the number of local openings (9) to the number of segments (8) is from 1:1 to 6:1.
  7. Heat exchanger pipe (1) according to any one of claims 1 to 6, characterised in that first additional structures (7, 71) are radially outwardly directed protrusions extending from the channel base (61).
  8. Heat exchanger pipe (1) according to any one of claims 1 to 7, characterised in that the first additional structures (7, 71) are formed at least from the material of the channel base (61) between two integrally circumferential ribs (2).
  9. Heat exchanger pipe (1) according to claim 8, characterised in that the first additional structures (7, 71) which are formed from the channel base (61) have a height between 0.15 and 1 mm.
  10. Heat exchanger pipe (1) according to any one of claims 1 to 7, characterised in that second additional structures (7, 72) are formed at least from the rib flanks (4) or rib tips (5) of the integrally circumferential ribs (2) by means of lateral protrusions.
  11. Heat exchanger pipe (1) according to claim 10, characterised in that the second additional structures (7, 72) are formed at least from a rib extending from the rib tip (6) in the direction towards the channel base (61).
  12. Heat exchanger pipe (1) according to any one of claims 1 to 11, characterised in that additional structures (7) are introduced at least partially by means of additional material.
  13. Heat exchanger pipe (1) according to any one of claims 1 to 12, characterised in that the additional structures (7, 72) have asymmetrical shapes.
  14. Heat exchanger pipe (1) according to any one of claims 1 to 12, characterised in that additional structures (7, 71) have a trapezoidal cross-section in a plane of section which extends perpendicularly to the pipe axis.
  15. Heat exchanger pipe (1) according to any one of claims 1 to 14, characterised in that the respective cross-sectional surface-area through which it is possible to flow in the channel (6) and which is reduced by additional structures (7, 71) varies between two ribs (2).
EP15704718.4A 2014-02-27 2015-02-10 Metal heat exchanger tube Active EP3111153B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL15704718T PL3111153T3 (en) 2014-02-27 2015-02-10 Metal heat exchanger tube

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014002829.1A DE102014002829A1 (en) 2014-02-27 2014-02-27 Metallic heat exchanger tube
PCT/EP2015/000278 WO2015128061A1 (en) 2014-02-27 2015-02-10 Metal heat exchanger tube

Publications (2)

Publication Number Publication Date
EP3111153A1 EP3111153A1 (en) 2017-01-04
EP3111153B1 true EP3111153B1 (en) 2019-04-24

Family

ID=52473867

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15704718.4A Active EP3111153B1 (en) 2014-02-27 2015-02-10 Metal heat exchanger tube

Country Status (13)

Country Link
US (1) US11073343B2 (en)
EP (1) EP3111153B1 (en)
JP (1) JP6197121B2 (en)
KR (1) KR102367582B1 (en)
CN (1) CN106030233B (en)
BR (1) BR112016019767B1 (en)
DE (1) DE102014002829A1 (en)
HU (1) HUE044830T2 (en)
MX (1) MX2016006294A (en)
PL (1) PL3111153T3 (en)
PT (1) PT3111153T (en)
TR (1) TR201906855T4 (en)
WO (1) WO2015128061A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202020005625U1 (en) 2020-10-31 2021-11-10 Wieland-Werke Aktiengesellschaft Metallic heat exchanger tube
DE202020005628U1 (en) 2020-10-31 2021-11-11 Wieland-Werke Aktiengesellschaft Metallic heat exchanger tube
WO2022089772A1 (en) 2020-10-31 2022-05-05 Wieland-Werke Ag Metal heat exchanger tube
WO2022089773A1 (en) 2020-10-31 2022-05-05 Wieland-Werke Ag Metal heat exchanger tube

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107421160B (en) * 2017-08-28 2020-11-10 华北电力大学(保定) High-efficient controllable cooling device

Family Cites Families (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE791216A (en) * 1972-11-03 1973-05-10 American Cyanamid Co WALL CLADDING AND ITS PREPARATION PROCESS,
US4313248A (en) * 1977-02-25 1982-02-02 Fukurawa Metals Co., Ltd. Method of producing heat transfer tube for use in boiling type heat exchangers
DE2808080C2 (en) * 1977-02-25 1982-12-30 Furukawa Metals Co., Ltd., Tokyo Heat transfer tube for boiling heat exchangers and process for its manufacture
US4159739A (en) * 1977-07-13 1979-07-03 Carrier Corporation Heat transfer surface and method of manufacture
US4179911A (en) * 1977-08-09 1979-12-25 Wieland-Werke Aktiengesellschaft Y and T-finned tubes and methods and apparatus for their making
US4168618A (en) * 1978-01-26 1979-09-25 Wieland-Werke Aktiengesellschaft Y and T-finned tubes and methods and apparatus for their making
US4324844A (en) * 1980-04-28 1982-04-13 Westinghouse Electric Corp. Variable area fuel cell cooling
US4359086A (en) * 1981-05-18 1982-11-16 The Trane Company Heat exchange surface with porous coating and subsurface cavities
US4438807A (en) * 1981-07-02 1984-03-27 Carrier Corporation High performance heat transfer tube
US4549606A (en) * 1982-09-08 1985-10-29 Kabushiki Kaisha Kobe Seiko Sho Heat transfer pipe
JPS5946490A (en) * 1982-09-08 1984-03-15 Kobe Steel Ltd Heat transmitting tube for heat exchanger of boiling type
JPS5984095A (en) * 1982-11-04 1984-05-15 Hitachi Ltd Heat exchanging wall
JPS5993190A (en) * 1982-11-17 1984-05-29 Hitachi Ltd Heat exchange wall
US4577381A (en) * 1983-04-01 1986-03-25 Kabushiki Kaisha Kobe Seiko Sho Boiling heat transfer pipes
JPS6064196A (en) * 1983-09-19 1985-04-12 Hitachi Cable Ltd Evaporation and heat transfer wall
US4653163A (en) * 1984-09-14 1987-03-31 Hitachi, Ltd. Method for producing a heat transfer wall for vaporizing liquids
JPS6189497A (en) * 1984-10-05 1986-05-07 Hitachi Ltd Heat transfer pipe
US4660630A (en) * 1985-06-12 1987-04-28 Wolverine Tube, Inc. Heat transfer tube having internal ridges, and method of making same
EP0222100B1 (en) 1985-10-31 1989-08-09 Wieland-Werke Ag Finned tube with a notched groove bottom and method for making it
US4819719A (en) * 1987-01-20 1989-04-11 Mcdonnell Douglas Corporation Enhanced evaporator surface
US4921042A (en) * 1987-10-21 1990-05-01 Carrier Corporation High performance heat transfer tube and method of making same
US4866830A (en) * 1987-10-21 1989-09-19 Carrier Corporation Method of making a high performance, uniform fin heat transfer tube
US4799543A (en) * 1987-11-12 1989-01-24 Arthur H. Iversen Means for temperature control of heated surfaces
JPH0495453A (en) * 1990-08-10 1992-03-27 Matsushita Electric Ind Co Ltd House management system
JP2788793B2 (en) * 1991-01-14 1998-08-20 古河電気工業株式会社 Heat transfer tube
JP2730824B2 (en) * 1991-07-09 1998-03-25 三菱伸銅株式会社 Heat transfer tube with inner groove and method of manufacturing the same
US5203404A (en) * 1992-03-02 1993-04-20 Carrier Corporation Heat exchanger tube
DE4301668C1 (en) * 1993-01-22 1994-08-25 Wieland Werke Ag Heat exchange wall, in particular for spray evaporation
KR0134557B1 (en) * 1993-07-07 1998-04-28 가메다카 소키치 Heat exchanger tube for falling film evaporator
US5415225A (en) * 1993-12-15 1995-05-16 Olin Corporation Heat exchange tube with embossed enhancement
US6067712A (en) * 1993-12-15 2000-05-30 Olin Corporation Heat exchange tube with embossed enhancement
DE4404357C2 (en) * 1994-02-11 1998-05-20 Wieland Werke Ag Heat exchange tube for condensing steam
US5482744A (en) * 1994-02-22 1996-01-09 Star Fabrication Limited Production of heat transfer element
US5597039A (en) * 1994-03-23 1997-01-28 High Performance Tube, Inc. Evaporator tube
US5832995A (en) * 1994-09-12 1998-11-10 Carrier Corporation Heat transfer tube
EP0713072B1 (en) 1994-11-17 2002-02-27 Carrier Corporation Heat transfer tube
JP3323682B2 (en) * 1994-12-28 2002-09-09 株式会社日立製作所 Heat transfer tube with internal cross groove for mixed refrigerant
US5697430A (en) 1995-04-04 1997-12-16 Wolverine Tube, Inc. Heat transfer tubes and methods of fabrication thereof
US6427767B1 (en) * 1997-02-26 2002-08-06 American Standard International Inc. Nucleate boiling surface
US5933953A (en) * 1997-03-17 1999-08-10 Carrier Corporation Method of manufacturing a heat transfer tube
DE19757526C1 (en) 1997-12-23 1999-04-29 Wieland Werke Ag Heat exchanger tube manufacturing method
US6176302B1 (en) * 1998-03-04 2001-01-23 Kabushiki Kaisha Kobe Seiko Sho Boiling heat transfer tube
US6056048A (en) * 1998-03-13 2000-05-02 Kabushiki Kaisha Kobe Seiko Sho Falling film type heat exchanger tube
CN1161586C (en) * 1998-12-25 2004-08-11 株式会社神户制钢所 Tube having inner surface trough, and method for producing same
DE10024682C2 (en) * 2000-05-18 2003-02-20 Wieland Werke Ag Heat exchanger tube for evaporation with different pore sizes
US20020074114A1 (en) * 2000-09-01 2002-06-20 Fijas David F. Finned heat exchange tube and process for forming same
US6601299B2 (en) * 2000-10-19 2003-08-05 Ibc Corporation Tapered fin and method of forming the same
DE10101589C1 (en) * 2001-01-16 2002-08-08 Wieland Werke Ag Heat exchanger tube and process for its production
US20020096314A1 (en) * 2001-01-25 2002-07-25 Carrier Corporation High performance micro-rib tube
DE10159860C2 (en) * 2001-12-06 2003-12-04 Sdk Technik Gmbh Heat transfer surface with an electroplated microstructure of protrusions
DE60317506T2 (en) * 2002-06-10 2008-09-18 Wolverine Tube Inc. HEAT EXCHANGE TUBE AND METHOD AND TOOL FOR THE PRODUCTION THEREOF
US7254964B2 (en) 2004-10-12 2007-08-14 Wolverine Tube, Inc. Heat transfer tubes, including methods of fabrication and use thereof
CA2591683C (en) * 2004-10-22 2013-12-10 Aleris Aluminum Koblenz Gmbh Tube made of a profile rolled metal product and method of producing the same
CN100365369C (en) * 2005-08-09 2008-01-30 江苏萃隆铜业有限公司 Heat exchange tube of evaporator
CN100458344C (en) * 2005-12-13 2009-02-04 金龙精密铜管集团股份有限公司 Copper condensing heat-exchanging pipe for flooded electric refrigerator set
CN100437011C (en) * 2005-12-13 2008-11-26 金龙精密铜管集团股份有限公司 Flooded copper-evaporating heat-exchanging pipe for electric refrigerator set
CN100498187C (en) * 2007-01-15 2009-06-10 高克联管件(上海)有限公司 Evaporation and condensation combined type heat-transfer pipe
US20080236803A1 (en) * 2007-03-27 2008-10-02 Wolverine Tube, Inc. Finned tube with indentations
CN101338987B (en) * 2007-07-06 2011-05-04 高克联管件(上海)有限公司 Heat transfer pipe for condensation
CA2644003C (en) * 2007-11-13 2014-09-23 Dri-Steem Corporation Heat transfer system including tubing with nucleation boiling sites
CN101338959B (en) * 2008-01-11 2011-06-08 高克联管件(上海)有限公司 Efficient shell and tube type condenser
DE102008013929B3 (en) * 2008-03-12 2009-04-09 Wieland-Werke Ag Metallic heat exchanger pipe i.e. integrally rolled ribbed type pipe, for e.g. air-conditioning and refrigeration application, has pair of material edges extending continuously along primary grooves, where distance is formed between edges
CN100547339C (en) * 2008-03-12 2009-10-07 江苏萃隆精密铜管股份有限公司 A kind of intensify heat transfer pipe and preparation method thereof
US9844807B2 (en) * 2008-04-16 2017-12-19 Wieland-Werke Ag Tube with fins having wings
US9038710B2 (en) * 2008-04-18 2015-05-26 Wieland-Werke Ag Finned tube for evaporation and condensation
DE102009007446B4 (en) * 2009-02-04 2012-03-29 Wieland-Werke Ag Heat exchanger tube and method for its production
US20100282456A1 (en) * 2009-05-06 2010-11-11 General Electric Company Finned tube heat exchanger
DE102009021334A1 (en) * 2009-05-14 2010-11-18 Wieland-Werke Ag Metallic heat exchanger tube
JP4638951B2 (en) * 2009-06-08 2011-02-23 株式会社神戸製鋼所 Metal plate for heat exchange and method for producing metal plate for heat exchange
US20110083619A1 (en) * 2009-10-08 2011-04-14 Master Bashir I Dual enhanced tube for vapor generator
DE102009060395A1 (en) * 2009-12-22 2011-06-30 Wieland-Werke AG, 89079 Heat exchanger tube and method for producing a heat exchanger tube
US20120325443A1 (en) * 2010-03-11 2012-12-27 Sumitomo Heavy Industries Process Equipment Co., Ltd. Tube Type Heat Exchanger and Manufacturing Method of the Same
CN102589337B (en) * 2011-01-13 2016-02-03 摩丁制造公司 Heat-exchange tube and use the method for this heat-exchange tube
CN102679791B (en) * 2011-03-10 2015-09-23 卢瓦塔埃斯波公司 For the heat-transfer pipe of heat exchanger
CN102130622A (en) * 2011-04-07 2011-07-20 上海威特力焊接设备制造股份有限公司 High-efficiency photovoltaic inverter
CN102121805A (en) * 2011-04-07 2011-07-13 金龙精密铜管集团股份有限公司 Enhanced heat transfer tube used for falling film evaporator
DE102011121436A1 (en) * 2011-12-16 2013-06-20 Wieland-Werke Ag Condenser tubes with additional flank structure
DE102011121733A1 (en) * 2011-12-21 2013-06-27 Wieland-Werke Ag Evaporator tube with optimized external structure

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202020005625U1 (en) 2020-10-31 2021-11-10 Wieland-Werke Aktiengesellschaft Metallic heat exchanger tube
DE202020005628U1 (en) 2020-10-31 2021-11-11 Wieland-Werke Aktiengesellschaft Metallic heat exchanger tube
WO2022089772A1 (en) 2020-10-31 2022-05-05 Wieland-Werke Ag Metal heat exchanger tube
WO2022089773A1 (en) 2020-10-31 2022-05-05 Wieland-Werke Ag Metal heat exchanger tube

Also Published As

Publication number Publication date
KR20160125348A (en) 2016-10-31
HUE044830T2 (en) 2019-11-28
JP2017501362A (en) 2017-01-12
WO2015128061A1 (en) 2015-09-03
PL3111153T3 (en) 2019-09-30
BR112016019767A2 (en) 2017-10-24
JP6197121B2 (en) 2017-09-13
MX2016006294A (en) 2016-12-08
KR102367582B1 (en) 2022-02-25
EP3111153A1 (en) 2017-01-04
US11073343B2 (en) 2021-07-27
PT3111153T (en) 2019-07-30
US20160305717A1 (en) 2016-10-20
TR201906855T4 (en) 2019-05-21
CN106030233B (en) 2019-06-21
BR112016019767B1 (en) 2020-12-08
CN106030233A (en) 2016-10-12
DE102014002829A1 (en) 2015-08-27

Similar Documents

Publication Publication Date Title
DE10101589C1 (en) Heat exchanger tube and process for its production
DE69302668T2 (en) Heat exchanger tube
DE4404357C1 (en) Heat exchange core for condensing vapour (steam)
EP3111153B1 (en) Metal heat exchanger tube
EP2795233B1 (en) Evaporator pipe with optimised external structure
EP2101136B1 (en) Metallic heat exchanger tube
DE60303306T2 (en) HEAT TRANSFER TUBES AND METHOD FOR THE PRODUCTION AND USE THEREOF
DE10024682C2 (en) Heat exchanger tube for evaporation with different pore sizes
EP2253922A2 (en) Metallic heat exchange pipe
EP2791609B1 (en) Condenser tubes with additional flank structure
EP3465057B1 (en) Heat exchanger tube
EP3465056B1 (en) Heat exchanger tube
EP3465055B1 (en) Heat exchanger tube
EP3581871B1 (en) Metallic heat exchange pipe
EP4237782B1 (en) Metal heat exchanger tube
EP4237781B1 (en) Metal heat exchanger tube
DE202020005628U1 (en) Metallic heat exchanger tube
DE202020005625U1 (en) Metallic heat exchanger tube

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20160714

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20181123

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1124641

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190515

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015008794

Country of ref document: DE

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 3111153

Country of ref document: PT

Date of ref document: 20190730

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20190723

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190424

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E044830

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190725

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190824

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015008794

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20200127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200210

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200210

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200210

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1124641

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231212

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HU

Payment date: 20240111

Year of fee payment: 10

Ref country code: DE

Payment date: 20240229

Year of fee payment: 10

Ref country code: PT

Payment date: 20240211

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20240209

Year of fee payment: 10

Ref country code: PL

Payment date: 20231212

Year of fee payment: 10

Ref country code: IT

Payment date: 20240111

Year of fee payment: 10