JPS5993190A - Heat exchange wall - Google Patents

Heat exchange wall

Info

Publication number
JPS5993190A
JPS5993190A JP20042882A JP20042882A JPS5993190A JP S5993190 A JPS5993190 A JP S5993190A JP 20042882 A JP20042882 A JP 20042882A JP 20042882 A JP20042882 A JP 20042882A JP S5993190 A JPS5993190 A JP S5993190A
Authority
JP
Japan
Prior art keywords
tunnel
fins
heat exchange
forming
thin wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20042882A
Other languages
Japanese (ja)
Inventor
Heikichi Kuwabara
桑原 平吉
Tadakatsu Nakajima
忠克 中島
Takahiro Oguro
崇弘 大黒
Hisashi Nakayama
中山 恒
Hiromichi Yoshida
博通 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Hitachi Ltd
Original Assignee
Hitachi Cable Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd, Hitachi Ltd filed Critical Hitachi Cable Ltd
Priority to JP20042882A priority Critical patent/JPS5993190A/en
Publication of JPS5993190A publication Critical patent/JPS5993190A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • F28F13/185Heat-exchange surfaces provided with microstructures or with porous coatings
    • F28F13/187Heat-exchange surfaces provided with microstructures or with porous coatings especially adapted for evaporator surfaces or condenser surfaces, e.g. with nucleation sites

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To maintain a high heat transfer efficiency in a wide range of thermal load by a method wherein an upper tunnel and a lower tunnel each having an opening are provided among fins, while a boiling liquid is flowed through the upper tunnel and the upper tunnel is made to communicate with the lower tunnel. CONSTITUTION:Thin wires 21 each provided with a fine groove 22 are wound around grooves among an array of fins so that a gap 23 formed between each of the thin wires 21 and each of the fins 19 forms the lower tunnel and the fine groove 22 in the thin wire 21 forms the opening of the lower tunnel. Then the array of the fins 19 is laid down and the adjoining fins are bonded together by a roll processing to thereby form cavities 11'.

Description

【発明の詳細な説明】 本発明は熱交換壁の改良に係るものである。[Detailed description of the invention] The present invention relates to improvements in heat exchange walls.

〔従来技術〕[Prior art]

パイプやプレートの表面からこれと接触する液体、例え
ば、水、フロン液、液体蟹素、液体へりリュウム等相変
化して沸騰する液体へ高効率に熱を伝達する試みとして
第1図に示す熱交換壁が提案されている。
The heat shown in Figure 1 is an attempt to efficiently transfer heat from the surface of a pipe or plate to a liquid that comes into contact with it, such as water, fluorocarbon liquid, liquid crab, liquid helium, etc., which undergoes a phase change and boils. A replacement wall is proposed.

第1図の熱交換壁1は、液体と接触する熱交換壁1の表
面下の表皮帯域に互いに平行に配列されたfl(11長
い空洞2が設けられている。この空洞2は開口の大きさ
が制限された多数の微小な開口部3によって熱交換壁1
の外部と連通している。
The heat exchange wall 1 in FIG. The heat exchange wall 1 is formed by a large number of minute openings 3 with limited
communicates with the outside.

しかる構成の熱交換壁であれば、熱交換壁をこれと接触
する液体よシ高い温度に過熱すると、第2し1に沸騰状
態を示すように、空洞2内に蒸気泡8がづ6生し成長す
る。過熱を続けると、空洞2内の然気圧力は外部液の圧
力より高くなり、制限された開口部3から蒸気泡8の一
部が放出され、気泡9として離脱する。多孔板5によっ
て空洞2内の蒸気の放出が防げられるので、蒸気の一部
は空洞2内に残留蒸気として保有される。気泡9の離脱
に伴い、空洞2内に圧力変化が生じる。その際、蒸気9
を放出した開口部3とは別の開口部3から外部液(図示
せず)が矢印10で示すように空洞2内に浸入する。空
洞2内には残留蒸気が存在するため、浸入した液は、残
留蒸気泡によって空洞2の壁面に押しやられ、壁面を伝
わシ空洞2内に拡がる。拡がった液は熱交換壁1の過熱
によシ直ちに蒸発し、蒸気泡8を成長させる。このよう
に浸入液の蒸発、蒸気泡の成長、気泡の離脱、液の浸入
といったサイクルが次々に繰り返えされる。
If the heat exchange wall has such a configuration, when the heat exchange wall is heated to a higher temperature than the liquid in contact with it, vapor bubbles 8 will form in the cavity 2, as shown in the boiling state. and grow. As the heating continues, the natural gas pressure within the cavity 2 becomes higher than the pressure of the external liquid, and some of the vapor bubbles 8 are released through the restricted opening 3 and separate as bubbles 9. Since the perforated plate 5 prevents the release of steam within the cavity 2, a portion of the steam is retained within the cavity 2 as residual steam. As the bubbles 9 leave, a pressure change occurs within the cavity 2. At that time, steam 9
An external liquid (not shown) enters the cavity 2 as shown by arrow 10 from an opening 3 different from the opening 3 from which the liquid was released. Since residual vapor exists in the cavity 2, the infiltrated liquid is pushed to the wall of the cavity 2 by the residual vapor bubbles, spreads along the wall and into the cavity 2. The expanded liquid immediately evaporates due to the overheating of the heat exchange wall 1, causing vapor bubbles 8 to grow. In this way, the cycle of evaporation of the infiltrating liquid, growth of vapor bubbles, separation of the bubbles, and infiltration of the liquid is repeated one after another.

このサイクル中、特に、空洞2内部に浸入した液が空洞
壁面上に薄い液膜状に拡がるので、この液膜は小さな過
熱度で直ちに蒸発することができる。
During this cycle, in particular, the liquid that has entered the interior of the cavity 2 spreads out on the cavity wall in the form of a thin liquid film, which can quickly evaporate with a small degree of superheating.

この理由によって、第1図の熱交換壁は高い熱伝達性能
が得られる。
For this reason, the heat exchange wall of FIG. 1 has a high heat transfer performance.

しかしながら、前記熱交換壁を用いても、下記の実験で
示されるように、熱交換壁の熱伝達性能を広範囲の熱負
荷(単位時間、単位面積当シの伝熱量をいう)に対して
維持することができない。
However, even when using the heat exchange wall, the heat transfer performance of the heat exchange wall is maintained over a wide range of heat loads (the amount of heat transferred per unit time and unit area), as shown in the experiment below. Can not do it.

第3図は第1図の熱交換壁を大気圧下のフロン冷媒R1
1()ククロロ・モノフルオロ・メタンcpcz3)液
に浸漬して、沸騰熱伝達実験を行つた結果を示す。横軸
は熱交換壁の投影面積基準の熱流束q(W/m”)を、
縦軸は上記投影面積基準の熱伝達率α(W / n?・
K)を対数座標で示す。
Figure 3 shows the heat exchange wall in Figure 1 with fluorocarbon refrigerant R1 under atmospheric pressure.
1 () Cuchloro-monofluoro-methane cpcz3) The results of a boiling heat transfer experiment were performed by immersing the sample in a liquid. The horizontal axis is the heat flux q (W/m”) based on the projected area of the heat exchange wall,
The vertical axis is the heat transfer coefficient α (W/n?・) based on the above projected area.
K) is shown in logarithmic coordinates.

2((I・の熱交換壁は、互いに銅製で、空洞ピッチ0
.55間、空洞断面の幅0.25闘、高さ0,4祁、多
孔板の板厚0.05 mm、開口部ピッチ07謔などが
等しいが、伝熱壁Aは開口部の直径が0.2 mm %
伝熱壁Bは0.1 mmである。伝熱壁Aは高熱負荷時
に比べ、低熱負荷時で著しく低下する。一方、伝熱Q1
g B u: Aに比べ低熱負荷時で性能が向上してい
るが、高熱負荷で性能が低下している。伝熱壁A。
The heat exchange walls of 2(I) are made of copper and have a cavity pitch of 0.
.. 55 mm, the width of the cavity cross section is 0.25 mm, the height is 0.4 mm, the thickness of the perforated plate is 0.05 mm, the opening pitch is 0.7 mm, etc., but the diameter of the opening of heat transfer wall A is 0. .2 mm%
The heat transfer wall B is 0.1 mm. The heat transfer wall A decreases significantly when the heat load is low compared to when the heat load is high. On the other hand, heat transfer Q1
g Bu: Compared to A, the performance is improved under low heat loads, but the performance is decreased under high heat loads. Heat transfer wall A.

8面共、広範囲の熱負荷に対して、高い性能を得ること
ができない。このことは、各種熱交換器に応用した場合
、高い性能が得られる作動範囲が狭いことに在り、工業
的に使いにくい熱交換壁と言大小にかかわらず、高い熱
伝達率を維持する熱交各熱負荷に対し空洞内に液量が最
適に供給できるように、熱交換壁表皮層(C多層をなす
細長い溝状の多数の空洞と、前記各層の空洞の最大断面
積より小さく制限され、前記多層の空洞間並びに熱交換
壁外部と上層の空洞間を互いに連通ずる複数個の開口部
とで構成することを特徴とするものであず第4図の如く
第一工程において円管17の表面にローレット加工によ
り浅い溝18を作る。この溝18は管軸に対して約45
°方向とする。続いて第二工程では、管軸にほぼ直角方
向に](イトですき起し加工を行う。すき起し加工で作
られるフィン高さは約1蛸程度とし、第一工程の溝18
より高くする。この方法によシ第5図の如く凹凸20を
もったフィン190列が形成される。第三工程において
第6図のように、倣小溝22をもつ細線21を第7図の
如くフィン列間の溝部に巻き付ける。細線21とフィン
間19に形成される空隙23が下段トンネルを形成し、
釉1線に設けられた微小溝22が下段トンネルの開孔を
形成する。
All eight surfaces cannot achieve high performance over a wide range of heat loads. This means that when applied to various heat exchangers, the operating range in which high performance can be obtained is narrow. In order to optimally supply the amount of liquid in the cavity for each heat load, the heat exchange wall skin layer (C) has a large number of elongated groove-shaped cavities forming multiple layers, and is limited to be smaller than the maximum cross-sectional area of the cavities in each layer, It is characterized by a plurality of openings that communicate with each other between the multilayer cavities and between the outside of the heat exchange wall and the upper layer cavity.As shown in FIG. A shallow groove 18 is made by knurling in the tube.
It is assumed to be in the ° direction. Next, in the second step, the fins are carved in a direction almost perpendicular to the tube axis.
make it higher. By this method, 190 rows of fins having unevenness 20 as shown in FIG. 5 are formed. In the third step, as shown in FIG. 6, a thin wire 21 having small tracing grooves 22 is wound around the grooves between the fin rows as shown in FIG. A gap 23 formed between the thin wire 21 and the fin gap 19 forms a lower tunnel,
The minute grooves 22 provided in the first line of glaze form the openings of the lower tunnel.

な卦、微小溝をもたない細線を巻き付けても細線とフィ
ンとが接する部分にはすき間が形成される場合があるが
、微小溝を設けた方が、より安定した開化を有する。第
四工程において、第8図の如くロール加工あるいはプラ
シング加工などによりフィン19をねかせる。隣接する
フィンが接合されることによシ空洞11′が形成される
。そして、第一工程の浅い溝18は開孔12を構成する
Furthermore, even if a thin wire without microgrooves is wound, a gap may be formed at the portion where the thin wire and the fin come into contact, but providing microgrooves provides more stable opening. In the fourth step, as shown in FIG. 8, the fins 19 are laid down by rolling or plastic processing. A cavity 11' is formed by joining adjacent fins. The shallow groove 18 in the first step constitutes the opening 12.

他の実施例として、本発明のトンネルは2段に限ったこ
とはなく、第9図に示すような先細り断面を有するフィ
ン列を形成して、細線21を多段に巻き付けてもよい。
As another embodiment, the tunnel of the present invention is not limited to two stages, but may have a fin row having a tapered cross section as shown in FIG. 9, and the thin wire 21 may be wound in multiple stages.

この場合、下段4111の細線はと細くすることによシ
、容易にこのような伝熱壁が得られる。まだ下段側の細
線21’に設けられた微小溝はど小さくすると、下段ト
ンネルに設けらhた開孔はどその大きさが小さくなシ伝
熱性能にどって不利になる。最上段トンネルの開孔の太
ききは第一工程のローレット加工における溝深さを深く
して大きくすればよい。
In this case, such a heat transfer wall can be easily obtained by making the thin wire of the lower stage 4111 very thin. However, if the fine grooves provided in the thin wire 21' on the lower stage side are made smaller, the size of the openings provided in the lower tunnel will be disadvantageous in terms of heat transfer performance. The diameter of the opening in the uppermost tunnel can be increased by increasing the depth of the groove in the knurling process in the first step.

一方、第一工程のローレット加工、及び第四工程のフィ
ンをねかせる加工をなくしても、第10図に示すように
細線巻き何けを複数段にすることにより容易に多段トン
ネル構造が得られる◎〔発明の効果〕 開孔とトンネルを有する伝熱面では開孔の大きさ、ある
いは熱負荷によってトンネル内の伝熱形式が変化して性
能の低下をまねく場合がある。熱負荷の値によって高い
伝熱性能を維持出来る開孔の大きさの最適値は狭い範囲
である。
On the other hand, even if the knurling in the first step and the fin-laying process in the fourth step are eliminated, a multi-stage tunnel structure can be easily obtained by forming multiple stages of thin wire windings as shown in Figure 10. [Effects of the Invention] In a heat transfer surface having apertures and tunnels, the type of heat transfer within the tunnel may change depending on the size of the apertures or the heat load, leading to a decrease in performance. The optimum value of the aperture size that can maintain high heat transfer performance is within a narrow range depending on the value of the heat load.

本発明はトンネルを2重構造とし、それぞれのトンネル
には開孔が設けられ、沸騰液と上段トンネル、および上
段トンネルと下段トンネルは、開孔を辿して連通されて
いる。したがって熱負荷によって、それぞれのトンネル
を有効に働かして、広い熱負荷範囲で高い伝熱性能を維
持するものである。
In the present invention, the tunnel has a double structure, each tunnel is provided with an opening, and the boiling liquid and the upper tunnel, and the upper tunnel and the lower tunnel, are communicated through the opening. Therefore, depending on the heat load, each tunnel is effectively operated to maintain high heat transfer performance over a wide heat load range.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来技術の断面図、第2,3図は従来技術の現
象及び特性を示す説明図、第4〜8図は本発明の製作過
程を示す説明図、第9〜10図は本発明の他の実施例を
示す図である。 1・・・トンネル、2・・・開孔、3・・・液膜、5川
液、1′・・・上段トンネル、1“・・・下段トンネル
、6・・・乾き面、8・・・ローレット溝、9・・・微
小フィン、1o・・・凹部、11・・・細線、12・・
・微小溝、13・・・空隙。 レグ     し/ ′fJ 2  図 第 3 図 遭 4 図 濱 g 図 ′FJ  乙 図 圏 7 図 1 11′ %  q  図 第 /θ 図
Figure 1 is a sectional view of the conventional technology, Figures 2 and 3 are explanatory diagrams showing phenomena and characteristics of the prior art, Figures 4 to 8 are explanatory diagrams showing the manufacturing process of the present invention, and Figures 9 to 10 are illustrations of the present invention. FIG. 7 is a diagram showing another embodiment of the invention. 1...Tunnel, 2...Open hole, 3...Liquid film, 5 River liquid, 1'...Upper tunnel, 1"...Lower tunnel, 6...Dry surface, 8...・Knurled groove, 9...Minute fin, 1o...Concavity, 11...Thin wire, 12...
- Micro groove, 13... void. Leg / 'fJ 2 Figure No. 3 Figure Encounter 4 Figure Hama g Figure 'FJ Otsu Figure Area 7 Figure 1 11' % q Figure No. /θ Figure

Claims (1)

【特許請求の範囲】 1、伝熱面表皮下に多数の互いに平行に配列された上下
方向に2段以上の細長いトンネルと、該各段に位置する
トンネルの最大断面積よシ小さく制限され、該各段のト
ンネル相互間並びに伝だ(壁外部と最上段のトンネルを
連通ずる多数の開孔とで構成したことを特徴とする熱交
換壁。 2、上記第1項において、該各部に位置する制限された
開孔の大きさを、該伝熱壁面から下段に向い、順次小さ
くしたことを特徴としだ熱交換壁。 3、上記第1項において、すきおこし加工により断面が
先細りなるフィンの列を形成し、微小溝を有する細線を
フィン列間複数段巻き付ける場合に、下段トンネルを形
成する細線はどよシ細く、上段トンネルを形成する細線
はどよシ太くすることにより2段以上の細長いトンネル
を形成することを特徴とする熱交換壁。 4、上記第1項において、ローレット加工によシ、並列
に走る微小ローレット溝を滑らかな面上に設け、次にす
きおこし加工によって微小フィンを起し、先端に凹凸を
有するフィン列を形成し、次に微小溝を有する細線をフ
ィン列間に巻き伺け、細線とフィン間に生じる空隙によ
り     ・トンネルを形成し、続いてブラシング加
工あるいはロール加工によシフイン先端をぬかせ、隣接
フィンを接合することによシ沸騰液と連通する最上段ト
ンネルを形成することを特徴とする熱交換壁。 5、上記第2項において、下段側l・ンネルを形成する
細線に設けられる微小溝をより小さく、上段側トンネル
を形成する細線に設けられる微小溝をより大きくしだこ
とを特徴とする熱交換壁。
[Scope of Claims] 1. A large number of elongated tunnels arranged in parallel to each other under the skin of the heat transfer surface in two or more stages in the vertical direction, and the maximum cross-sectional area of the tunnels located in each stage is limited to be smaller than the maximum cross-sectional area of the tunnels, A heat exchange wall characterized by being composed of a large number of openings that communicate between the tunnels of each stage and between the tunnels of the uppermost stage.2. The heat exchange wall is characterized in that the size of the limited openings gradually decreases from the heat transfer wall surface toward the bottom. 3. In the above item 1, the fins have a tapered cross section due to the perforation process. When forming a row of fine wires and winding them in multiple stages between the fin rows, the thin wire forming the lower tunnel is made thinner, and the fine wire forming the upper tunnel is made thicker to form two or more stages. A heat exchange wall characterized by forming an elongated tunnel. 4. In the above item 1, micro knurling grooves running in parallel are provided on a smooth surface by knurling, and then micro fins are formed by plowing. , forming a row of fins with uneven tips, then winding a thin wire with micro grooves between the rows of fins, creating a tunnel between the thin wire and the fins, forming a tunnel, and then brushing or A heat exchange wall characterized by removing the tip of the fin by roll processing and joining adjacent fins to form an uppermost tunnel communicating with the boiling liquid. 5. In the above item 2, the lower stage l. A heat exchange wall characterized in that the micro grooves provided in the thin wire forming the tunnel are made smaller, and the micro grooves provided in the thin wire forming the upper tunnel are made larger.
JP20042882A 1982-11-17 1982-11-17 Heat exchange wall Pending JPS5993190A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20042882A JPS5993190A (en) 1982-11-17 1982-11-17 Heat exchange wall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20042882A JPS5993190A (en) 1982-11-17 1982-11-17 Heat exchange wall

Publications (1)

Publication Number Publication Date
JPS5993190A true JPS5993190A (en) 1984-05-29

Family

ID=16424130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20042882A Pending JPS5993190A (en) 1982-11-17 1982-11-17 Heat exchange wall

Country Status (1)

Country Link
JP (1) JPS5993190A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5186252A (en) * 1991-01-14 1993-02-16 Furukawa Electric Co., Ltd. Heat transmission tube
JP2010266189A (en) * 2009-05-14 2010-11-25 Wieland Werke Ag Metallic heat exchanger tube
DE102014002829A1 (en) * 2014-02-27 2015-08-27 Wieland-Werke Ag Metallic heat exchanger tube
CN111707122A (en) * 2020-05-07 2020-09-25 华南理工大学 Outer finned tube with surface mixed wettability and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5186252A (en) * 1991-01-14 1993-02-16 Furukawa Electric Co., Ltd. Heat transmission tube
JP2010266189A (en) * 2009-05-14 2010-11-25 Wieland Werke Ag Metallic heat exchanger tube
DE102014002829A1 (en) * 2014-02-27 2015-08-27 Wieland-Werke Ag Metallic heat exchanger tube
US11073343B2 (en) 2014-02-27 2021-07-27 Wieland-Werke Ag Metal heat exchanger tube
CN111707122A (en) * 2020-05-07 2020-09-25 华南理工大学 Outer finned tube with surface mixed wettability and preparation method thereof

Similar Documents

Publication Publication Date Title
JPS5984095A (en) Heat exchanging wall
KR100382523B1 (en) a tube structure of a micro-multi channel heat exchanger
US7789127B2 (en) Heat transfer tubes for evaporators
US6416283B1 (en) Electrochemical machining process, electrode therefor and turbine bucket with turbulated cooling passage
EP0106761B2 (en) Plate with honeycombed radiating face for a radiant burner
JPS60238698A (en) Heat exchange wall
US7726384B2 (en) Heat pipe
CN104051345B (en) Pitch-halving integrated circuit process and integrated circuit structure made thereby
JPS6325491A (en) Evaporator tube, heat transfer property of which is improved, and manufacture thereof
TW202117258A (en) Non-oriented vapor chamber
JPS5993190A (en) Heat exchange wall
KR860002710A (en) Evaporative Heat Transfer Wall and Forming Method thereof
US4360058A (en) Process for the preparation of a surface of a metal wall for the transfer of heat
JPS5956090A (en) Heat transfer device
JPH0356133B2 (en)
KR100535666B1 (en) Heat Exchanger and Manufacture Method for the Same
JPH0444192B2 (en)
JPS5852993A (en) Porous heat transfer surface
JPH0477239B2 (en)
JP2005233477A (en) Evaporator
JPS59145493A (en) Heat transfer wall
JP2004003733A (en) Heat transfer pipe and heat exchanger, and method of manufacture of heat transfer pipe
JPS60240993A (en) Outside tube evaporating type heat transfer tube and manufacturing thereof
KR20210095373A (en) Heat exchanging surface selectively electrochemically surface treated and having multiple grooves and method for forming the same
JPS63288049A (en) Heat transfer device