JPS5941872B2 - Method of manufacturing thermal head - Google Patents

Method of manufacturing thermal head

Info

Publication number
JPS5941872B2
JPS5941872B2 JP52008499A JP849977A JPS5941872B2 JP S5941872 B2 JPS5941872 B2 JP S5941872B2 JP 52008499 A JP52008499 A JP 52008499A JP 849977 A JP849977 A JP 849977A JP S5941872 B2 JPS5941872 B2 JP S5941872B2
Authority
JP
Japan
Prior art keywords
film layer
layer
thin film
thick film
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52008499A
Other languages
Japanese (ja)
Other versions
JPS5393845A (en
Inventor
清春 山下
登 由上
辰行 富岡
孝道 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP52008499A priority Critical patent/JPS5941872B2/en
Publication of JPS5393845A publication Critical patent/JPS5393845A/en
Publication of JPS5941872B2 publication Critical patent/JPS5941872B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Electronic Switches (AREA)
  • Non-Adjustable Resistors (AREA)

Description

【発明の詳細な説明】 本発明は各種感熱記録方式に使用されるサーマルヘッド
の製造方法に関し、特にサーマルヘッドの電極となる導
電膜厚のフォト・エッチング工程におけるエッチングの
ばらつきおよびフォト・レジスト膜の耐酸性を緩和して
、発熱部の発熱抵抗体層の形状及び抵抗値が均一化され
、印字品質の良好なサーマルヘッドを得る製造方法であ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a thermal head used in various heat-sensitive recording systems, and in particular to a method for manufacturing a thermal head used in various heat-sensitive recording methods, and in particular, to reduce variations in etching in the photo-etching process of the conductive film thickness that becomes the electrode of the thermal head, and to reduce the variation in the thickness of the photoresist film. This is a manufacturing method in which acid resistance is relaxed, the shape and resistance value of the heating resistor layer of the heating section are made uniform, and a thermal head with good printing quality is obtained.

従来、薄膜型のサーマルヘッドは第1図〜第3図の製造
工程により製造されており、すなわち第1図に示すよう
にセラミック等の絶縁性の基板1上にSi−Ta等の発
熱抵抗体層2を蒸着等により0.4μ程度の厚みで一・
様に形成し、この上に導電性の薄膜層3を蒸着等により
0.2μ程度の厚みで一様に形成し、さらにこの上にそ
の薄膜層3を陰極として電気めつきを行なつて導電性の
厚膜層4を2μ程度の厚みで形成した後、第2図に示す
ように基板1上に形成し、た発熱抵抗体層2、薄膜層3
および厚膜層4をフォト・エッチングによりー定の間隔
でエッチングを行なつて発熱部の発熱抵抗体層の幅Wが
規定される複数列の細長い配線パターンを形成し、この
後第3図に示すように発熱抵抗体層2の一部を表出させ
て発熱部の発熱抵抗体層の長さLが形成されるよう構成
するために、その部分の薄膜層3および厚膜層4をフォ
ト・エッチングによりエッチング除去する製造方法であ
る。ところで、この従来における製造方法では、厚膜層
4および薄膜層3のエッチングを膜厚が厚いために強酸
で行なう必要があり、このため耐酸性の高いレジスト膜
を使用する必要があり、また耐酸性を高めるためにはレ
ジスト膜を厚くする必要があつた。
Conventionally, a thin film type thermal head has been manufactured by the manufacturing process shown in FIGS. 1 to 3. That is, as shown in FIG. Layer 2 is coated with a thickness of about 0.4μ by vapor deposition, etc.
On top of this, a conductive thin film layer 3 is uniformly formed with a thickness of about 0.2μ by vapor deposition or the like, and then electroplating is performed on this thin film layer 3 using the thin film layer 3 as a cathode to make it conductive. After forming a thick film layer 4 having a thickness of about 2 μm, a heating resistor layer 2 and a thin film layer 3 are formed on the substrate 1 as shown in FIG.
Then, the thick film layer 4 is photo-etched at regular intervals to form a plurality of rows of elongated wiring patterns that define the width W of the heating resistor layer of the heating section, and then, as shown in FIG. In order to expose a part of the heat generating resistor layer 2 and form a length L of the heat generating resistor layer of the heat generating part as shown in FIG. This is a manufacturing method in which the film is removed by photo-etching. By the way, in this conventional manufacturing method, it is necessary to perform etching of the thick film layer 4 and the thin film layer 3 with strong acid because of their large thickness, and therefore it is necessary to use a resist film with high acid resistance. In order to improve the properties, it was necessary to make the resist film thicker.

しかし、このようにレジスト膜の膜厚を厚くすると、配
線パターンのフォト・レジスト膜(図示せず)のパター
ン寸法(発熱部のW幅、L長さ)にばらつきが生じた。
また厚膜層4の膜厚が厚いと、その部分におけるサイド
エツチが大きく、フオトレジスト膜のWパターン幅に対
して数μ小さいW幅の厚膜層4、薄膜層3、発熱抵抗層
2から成る複数列の細長い配線パターンが形成されるが
厚膜層4のサイドエツチが不均一なために、発熱部の発
熱抵抗層2のW幅も同じようにバラツキが発生し、抵抗
値のバラツキを生じた。
However, when the thickness of the resist film is increased in this manner, variations occur in the pattern dimensions (W width and L length of the heat generating portion) of the photoresist film (not shown) of the wiring pattern.
Furthermore, when the thick film layer 4 is thick, the side etching is large in that part, and the thick film layer 4, thin film layer 3, and heating resistor layer 2 each have a W width several μ smaller than the W pattern width of the photoresist film. Although a plurality of rows of elongated wiring patterns are formed, since the side etching of the thick film layer 4 is uneven, the W width of the heat generating resistor layer 2 in the heat generating section also varies, resulting in variations in resistance value. .

又発熱部の長さLを形成する工程も同様のバラツキを生
じる。このサイドエツチによるバラツキを1mm当り1
6ドツトの発熱部を有するサーマルヘツドで説明すると
、たとえば厚膜層4の膜厚が2μでサイドエツチが膜厚
の2倍の4μ、マスクのパターン寸法がW幅で40μ、
L長さで100μmとすると、パターン寸法に対するバ
ラツキはW幅で10%、L長さで4%となり合計14%
のバラツキが発生し、抵抗値も同じようにバラツキを発
生する。
Further, a similar variation occurs in the process of forming the length L of the heat generating portion. The variation due to this side etching is 1 mm per 1 mm.
To explain this using a thermal head with a 6-dot heating section, for example, the thickness of the thick film layer 4 is 2μ, the side etching is 4μ, which is twice the film thickness, and the pattern dimension of the mask is 40μ in W width.
If the L length is 100 μm, the variation in pattern dimensions is 10% in the W width and 4% in the L length, for a total of 14%.
This causes variations in the resistance value, and the same variation occurs in the resistance value.

以上のようにフオト・レジストのパターン寸法及びサイ
ドエツチのバラツキが重り合つて、発熱部の形状及び抵
抗値バラツキを生じ、印字濃度の不均一という問題を生
じていた。本発明はこのような従来の問題を解決するも
のであり、以下本発明のサーマルヘツドの製造方法の一
実施例を示す第4図〜第7図の図面を用いて説明する。
As described above, variations in the pattern dimensions and side etches of the photoresist combine to cause variations in the shape and resistance value of the heat generating portion, resulting in the problem of non-uniform print density. The present invention solves these conventional problems, and will be described below with reference to FIGS. 4 to 7, which show an embodiment of the method for manufacturing a thermal head according to the present invention.

なお、第1図〜第3図と同一箇所については同一番号を
付している。第4図に示すように、セラミツク等の絶縁
性の基板1上に一様にSi−Ta合金等の発熱抵抗体層
2を蒸着により形成し、この上に一様にAu等の導電性
の薄膜層3を形成した後、第5図に示すようにガラスマ
スク等を用いてマスク合せを行ないレジスト膜(図示せ
ず)で形成された複数列の細長い配線パターンをマスク
として前記基板1上の発熱抵抗体層2と薄膜層3の一部
を一定間隔でエツチング除去し、複数列の細長い配線パ
ターンの形成および発熱部の幅方向のW幅の寸法の規定
を行なう。
Note that the same parts as in FIGS. 1 to 3 are given the same numbers. As shown in FIG. 4, a heating resistor layer 2 such as Si-Ta alloy is uniformly formed on an insulating substrate 1 such as ceramic by vapor deposition, and a conductive layer 2 such as Au is uniformly formed on this layer. After forming the thin film layer 3, as shown in FIG. 5, mask alignment is performed using a glass mask or the like, and a plurality of rows of elongated wiring patterns formed of a resist film (not shown) are used as a mask to form a pattern on the substrate 1. Parts of the heat generating resistor layer 2 and the thin film layer 3 are removed by etching at regular intervals to form a plurality of rows of elongated wiring patterns and to define the dimension W width in the width direction of the heat generating portion.

次いで、第6図に示すように複数列の発熱抵抗体層2上
の薄膜層3を陰極として電気メツキを行ないその上にA
u等の導電性の厚膜層4を形成する。その後、第7図に
示すように発熱部を形成するために、発熱抵抗体層2上
の薄膜層3および厚膜層4の一部をエツチングにより除
去するための、レジスト膜(図示せず)をガラスマスク
等を用いてマスク合せを行い、複数列の厚膜層4を横断
する方向に厚膜層4の一部が表出する細長いパターンを
形成しレジスト膜をマスクとして、表出した厚膜層4と
薄膜層3をエツチングにより除去して発熱部の発熱抵抗
体層の長さLが形成される。これにより、製造すること
ができる。なお、発熱抵抗体層2として膜厚0.4〜1
.0μのSi−Ta合金膜を用いた場合、エツチング液
としてHF+HNO3+CH3COOHを用いればよく
、薄膜層3として膜厚0.1〜0.3μのAu膜を用い
た場合、エツチング液としてK+I2またはHNO3+
HCtを用いればよく、また厚膜層4としては薄膜層3
とで膜厚が2μ程度になるようにAuを形成すればよい
。以上の説明から判るように、本発明によるサーマルヘ
ツドの製造方法は従来法と異なり導電性の厚膜層4の形
成と複数列の細長い配線パターンの形成との工程を逆に
行なうものであり、従来法では厚膜層4の形成後に複数
列の細長い配線パターンを形成していたため、フオト・
レジスト膜の膜厚を厚くしなくてはならなく、パターン
寸法のばらつきや薄膜層3、厚膜層4のサイドエツチン
グが大きくこのばらつきのために発熱部の発熱抵抗体層
2の抵抗値のばらつきが生じ、印字濃度の不均一が生じ
る欠点があつたが、本発明の方法では先に複数列の細長
い配線パターンの形成を行なつているため、フオト・レ
ジスト膜に対する耐酸性が緩和され、フオト・レジスト
膜の膜厚を薄くすることができ、これによつてパターン
寸法のばらつきを小さくすることができるとともに、薄
膜層3の膜厚が0.1〜0.3μ゛と薄いため、たとえ
ばサイドエツチが従来例と同じ膜厚の2倍発しても0.
2〜0.6μとサイドエツチングを小さくすることがで
き、発熱部の発熱抵抗体層2の抵抗値のばらつきを小さ
くすることができ、印字濃度を均一にすることができる
ものである。
Next, as shown in FIG. 6, electroplating is performed using the thin film layer 3 on the heat generating resistor layer 2 in multiple rows as a cathode, and A is applied thereon.
A conductive thick film layer 4 such as u is formed. Thereafter, a resist film (not shown) is used to remove part of the thin film layer 3 and thick film layer 4 on the heat generating resistor layer 2 by etching in order to form a heat generating part as shown in FIG. Mask alignment is performed using a glass mask or the like to form an elongated pattern in which a part of the thick film layer 4 is exposed in a direction that crosses the multiple rows of thick film layers 4. Using the resist film as a mask, the exposed thickness is The film layer 4 and the thin film layer 3 are removed by etching to form the length L of the heating resistor layer of the heating section. Thereby, it can be manufactured. Note that the heating resistor layer 2 has a film thickness of 0.4 to 1
.. When using a 0μ Si-Ta alloy film, HF+HNO3+CH3COOH may be used as the etching solution, and when using an Au film with a thickness of 0.1 to 0.3μ as the thin film layer 3, K+I2 or HNO3+ may be used as the etching solution.
HCt may be used, and the thin film layer 3 may be used as the thick film layer 4.
Au may be formed so that the film thickness is approximately 2 μm. As can be seen from the above description, the method for manufacturing a thermal head according to the present invention differs from the conventional method in that the steps of forming the conductive thick film layer 4 and forming a plurality of rows of elongated wiring patterns are performed in reverse. In the conventional method, multiple rows of elongated wiring patterns were formed after forming the thick film layer 4, so photo
The thickness of the resist film must be increased, and the variation in pattern dimensions and side etching of the thin film layer 3 and thick film layer 4 are large.This variation causes variation in the resistance value of the heat generating resistor layer 2 of the heat generating part. However, since the method of the present invention first forms a long and thin wiring pattern in multiple rows, the acid resistance of the photoresist film is relaxed, and the photoresist film is - The thickness of the resist film can be made thinner, thereby reducing the variation in pattern dimensions, and since the thickness of the thin film layer 3 is as thin as 0.1 to 0.3 μm, it is possible to Even if the film is twice the same thickness as the conventional example, 0.
Side etching can be reduced to 2 to 0.6 microns, variations in the resistance value of the heating resistor layer 2 of the heating section can be reduced, and printing density can be made uniform.

さらにこの効果は厚膜層4の膜厚が厚い程、W幅とL長
さの比が大きくなる程増大する。また、厚膜層4を構成
する材料を少なくすることもできる。このように、本発
明によるサーマルヘツドの製造方法は、工程順序の簡単
な変更により優れた効果を得ることができるものである
Furthermore, this effect increases as the thickness of the thick film layer 4 increases and as the ratio of the W width to the L length increases. Furthermore, the amount of material constituting the thick film layer 4 can also be reduced. As described above, the method for manufacturing a thermal head according to the present invention can obtain excellent effects by simply changing the process order.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は従来のサーマルヘツドの製造方法にお
ける製造工程を示す斜視図、第4図〜第7図は本発明の
サーマルヘツドの製造方法の一実施例における製造工程
を示す斜視図である。 1・・・・・・基板、2・・・・・・発熱抵抗体層、3
・・・・・・薄膜層、4・・・・・・厚膜層。
1 to 3 are perspective views showing manufacturing steps in a conventional thermal head manufacturing method, and FIGS. 4 to 7 are perspective views showing manufacturing steps in an embodiment of the thermal head manufacturing method of the present invention. It is. 1...Substrate, 2...Heating resistor layer, 3
... Thin film layer, 4... Thick film layer.

Claims (1)

【特許請求の範囲】[Claims] 1 絶縁性基板上に発熱抵抗体層および導電薄膜層を順
次積層形成する第1の工程と、該導電薄膜層上に複数列
の細長いパターンを形成し、該複数列の細長いパターン
部を残して前記導電薄膜層と発熱抵抗体層をエッチング
除去する第2の工程と、前記絶縁性基板上に残つた複数
列の導電薄膜層を陰極として電気メッキを行い前記導電
薄膜層上に導電厚膜層を形成する第3の工程と、該複数
列の導電厚膜層を横断する方向に導電厚膜層の一部が表
出する細長いパターンを形成し、表出した導電厚膜層お
よび導電薄膜層をエッチング除去して発熱抵抗体層を表
出させる第4の工程とを有することを特徴とするサーマ
ルヘッドの製造方法。
1. A first step of sequentially laminating a heating resistor layer and a conductive thin film layer on an insulating substrate, and forming a plurality of rows of elongated patterns on the conductive thin film layer, leaving the plurality of rows of elongated pattern parts. A second step of etching away the conductive thin film layer and the heating resistor layer, and electroplating is performed using the plurality of rows of conductive thin film layers remaining on the insulating substrate as cathodes to form a conductive thick film layer on the conductive thin film layer. and forming an elongated pattern in which a part of the conductive thick film layer is exposed in a direction that crosses the plurality of rows of conductive thick film layers, and the exposed conductive thick film layer and the conductive thin film layer. a fourth step of etching away the heating resistor layer to expose the heating resistor layer.
JP52008499A 1977-01-27 1977-01-27 Method of manufacturing thermal head Expired JPS5941872B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52008499A JPS5941872B2 (en) 1977-01-27 1977-01-27 Method of manufacturing thermal head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52008499A JPS5941872B2 (en) 1977-01-27 1977-01-27 Method of manufacturing thermal head

Publications (2)

Publication Number Publication Date
JPS5393845A JPS5393845A (en) 1978-08-17
JPS5941872B2 true JPS5941872B2 (en) 1984-10-11

Family

ID=11694797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52008499A Expired JPS5941872B2 (en) 1977-01-27 1977-01-27 Method of manufacturing thermal head

Country Status (1)

Country Link
JP (1) JPS5941872B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6467443A (en) * 1987-09-08 1989-03-14 Honda Motor Co Ltd Cable structure
JPS6467444A (en) * 1987-09-08 1989-03-14 Honda Motor Co Ltd Wiring device for vehicle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2533088B2 (en) * 1986-05-31 1996-09-11 株式会社東芝 Method of manufacturing thermal head

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6467443A (en) * 1987-09-08 1989-03-14 Honda Motor Co Ltd Cable structure
JPS6467444A (en) * 1987-09-08 1989-03-14 Honda Motor Co Ltd Wiring device for vehicle

Also Published As

Publication number Publication date
JPS5393845A (en) 1978-08-17

Similar Documents

Publication Publication Date Title
JPS5941872B2 (en) Method of manufacturing thermal head
JPS6154954A (en) Thermal head and manufacture thereof
JPS61130061A (en) Manufacture of thermal head
JPH0795483B2 (en) Method for manufacturing thick film resistance element
JPS5941873B2 (en) Method of manufacturing thermal head
JPS60239255A (en) Manufacture of thick-film type thermosensitive recording head
JPH04249164A (en) Manufacture of thermal head
JPS6248570A (en) Manufacture of thermal head
JPH0480050A (en) Thermal head and its manufacture
JPS59989A (en) Method of forming pattern
JPS5922675B2 (en) Method of manufacturing thermal head
DE2044255A1 (en) Thin film resistor network prodn - using cermet on insulated substrate followed by nickel-chromium and gold
JPS61137301A (en) Manufacture of thermal head
JPH01214455A (en) Thermal printing head
JPH0433867A (en) Thermal printing head
JPS6140004A (en) Method of forming pattern of resistor
JPS6228262A (en) Manufacture of thermal recording head
JPS63199487A (en) Manufacture of wiring board
JPH05286156A (en) Preparation of thin film type thermal print head
JPH0657454B2 (en) Method of manufacturing thermal head
JPS63216759A (en) Production of film thermal head
JPH03207669A (en) Thermal head and production thereof
JPS5984502A (en) Method of forming thin film resistance pattern
JPS62196160A (en) Formation of thine film circuit conductive layer
JPH04347663A (en) Manufacture of thermal printing head