JPS60240993A - Outside tube evaporating type heat transfer tube and manufacturing thereof - Google Patents
Outside tube evaporating type heat transfer tube and manufacturing thereofInfo
- Publication number
- JPS60240993A JPS60240993A JP9707984A JP9707984A JPS60240993A JP S60240993 A JPS60240993 A JP S60240993A JP 9707984 A JP9707984 A JP 9707984A JP 9707984 A JP9707984 A JP 9707984A JP S60240993 A JPS60240993 A JP S60240993A
- Authority
- JP
- Japan
- Prior art keywords
- heat transfer
- tube
- fins
- transfer tube
- interval
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F13/00—Arrangements for modifying heat-transfer, e.g. increasing, decreasing
- F28F13/18—Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
- F28F13/185—Heat-exchange surfaces provided with microstructures or with porous coatings
- F28F13/187—Heat-exchange surfaces provided with microstructures or with porous coatings especially adapted for evaporator surfaces or condenser surfaces, e.g. with nucleation sites
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Coating By Spraying Or Casting (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、管外蒸発伝達率が飛躍的に高められた管外蒸
発型伝熱管及びその製造方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an extra-tube evaporative heat exchanger tube in which the extra-tube evaporation transfer coefficient is dramatically increased, and a method for manufacturing the same.
管外蒸発型伝熱管とは、管内に高温液体を流すと共に管
外周側に被加熱流体を流し、管内流体との熱交換によっ
て管外流体を加熱し、或は管外流体の蒸発潜熱によって
管内流体を冷却する為に使用されるもので、熱交換器や
蒸発器等に広く実用化されている。ところで省エネルギ
ー、新エネルギー開発等の見地から、伝熱管に対する性
能向上の要求は一段と強まっている。殊に排熱回収用熱
交換器や海洋温度差利用型熱交換器などの様に温度差の
比較的小さい流体相互間の熱交換に利用されるものでは
、極めて高レベルの蒸発熱伝達率が要求される。こうし
た要求に応する為、例えば■伝熱管の外周面にフィンを
形成して伝熱有効面積を拡大する方法、或は■伝熱管の
外周面に微細な凹凸を多数形成し、沸騰核の発生個数を
増大させることにより蒸発潜熱の発生と熱伝達を円滑に
する方法、等が研究されており、具体的にはフィンの形
状を色々工夫したり或は表面を粗面加工する方法等が提
案され、夫々一定の成果を得ている。An extra-tube evaporative heat transfer tube is a tube in which a high-temperature liquid flows inside the tube and a fluid to be heated is passed around the outer circumference of the tube, and the fluid outside the tube is heated by heat exchange with the fluid inside the tube, or the latent heat of evaporation of the fluid outside the tube is used to heat the fluid inside the tube. It is used to cool fluids and is widely used in heat exchangers, evaporators, etc. By the way, from the standpoint of energy saving, new energy development, etc., demands for improved performance of heat exchanger tubes are becoming stronger. In particular, heat exchangers used for heat exchange between fluids with a relatively small temperature difference, such as exhaust heat recovery heat exchangers and ocean temperature difference heat exchangers, have extremely high evaporative heat transfer coefficients. required. In order to meet these demands, for example, there are methods to expand the effective heat transfer area by forming fins on the outer circumferential surface of the heat transfer tube, or ■ forming many fine irregularities on the outer circumferential surface of the heat transfer tube to prevent the generation of boiling nuclei. Research is being carried out on ways to increase the number of fins to smooth the generation of latent heat of vaporization and heat transfer.Specifically, methods have been proposed such as changing the shape of the fins or roughening the surface. Both have achieved certain results.
本発明者等もかねてより管外蒸発型伝熱管の性能向上を
目的として種々研究を進めているが、今回、いわゆるロ
ーフイン型伝熱管に所定の肉盛加工を施してやれば、伝
熱有効面積の拡大と外周面における気泡発生個数の増大
という2大要望が満たされ、極めて高レベルの蒸発熱伝
達率を示す管外蒸発型伝熱管を得ることができることを
知り、ここに提案するものである。The inventors of the present invention have been conducting various research for the purpose of improving the performance of extra-tube evaporation type heat transfer tubes, but this time, we have found that if we perform a specified build-up process on so-called loaf-in type heat transfer tubes, we can increase the effective heat transfer area. We have learned that it is possible to obtain an extra-tube evaporative heat transfer tube that satisfies the two major demands of expansion and an increase in the number of bubbles generated on the outer circumferential surface and exhibits an extremely high level of evaporative heat transfer coefficient, and we hereby propose it.
即ち本発明に係る管外蒸発型伝熱管とは、管体の外周に
形成されるフィンを、該フィンの先端側が肉盛されてそ
の肉厚が根元側の肉厚より大きい形状である様にしたと
ころに要旨を有するものであり、又該伝熱管の製造方法
とは、管体の外周に形成されたフィンの表面に、該フィ
ンの立上り壁に対して80〜60度の傾斜角度から金属
粉末をプラズマ溶射し、前記フィンの先端部側壁に肉盛
するところに要旨を有するものである。In other words, the extra-tube evaporative heat exchanger tube according to the present invention has fins formed on the outer periphery of the tube body, such that the tip side of the fin is built up so that the wall thickness is larger than the wall thickness at the root side. This is the gist of the heat exchanger tube, and the method for manufacturing the heat exchanger tube involves applying metal to the surface of the fins formed on the outer periphery of the tube at an angle of 80 to 60 degrees with respect to the rising wall of the fin. The gist is that powder is plasma sprayed and built up on the side wall of the tip of the fin.
以下研究の経緯を追って本発明の構成及び作用効果を詳
細に説明する。The structure and effects of the present invention will be explained in detail below, following the progress of the research.
蒸発伝達率を高める為の基本的手段の第1としては「伝
熱有効面積の増大」が挙げられ、この点に関しては管外
局面の凹凸加工やフィン形成等多くの技術が提案されて
おり、中でもフィン付伝熱管は優れた蒸発熱伝達率を示
すものの1つと考えられている。これに対し蒸発熱伝達
率向上の為のもう1つの基本的手段とされている「伝熱
管外周面に#ける気泡発生個数の増大と気泡発生の円滑
化」については、理論的には種々研究されているものの
実用的研究は著しく立ち遅れている。以下気泡発生状況
と蒸発熱伝達率の関係について考察する。The first basic means to increase the evaporation transfer rate is to increase the effective heat transfer area, and many techniques have been proposed in this regard, such as roughening the outer surface of the pipe and forming fins. Among these, finned heat exchanger tubes are considered to be one of those that exhibits an excellent evaporative heat transfer coefficient. On the other hand, various theoretical studies have been conducted regarding ``increasing the number of bubbles generated on the outer circumferential surface of the heat transfer tube and smoothing the generation of bubbles'', which is considered to be another basic means for improving the evaporative heat transfer coefficient. However, practical research has lagged significantly behind. The relationship between bubble generation and evaporative heat transfer coefficient will be discussed below.
前述の如く管外蒸発熱伝達は管外周面にあける気泡の発
生個数によって著しく影暢される。従って蒸発型伝熱管
の性能を高める為には、伝熱管表面に尉いて気泡を如何
に多く連続して発生させるかということが最も重要な課
題となる。As mentioned above, the evaporative heat transfer outside the tube is greatly influenced by the number of bubbles formed on the outer peripheral surface of the tube. Therefore, in order to improve the performance of evaporative heat transfer tubes, the most important issue is how many bubbles can be continuously generated on the surface of the heat transfer tube.
気泡を発生し易(する為には、■気泡核(キャビティ)
を増大すること、■気泡が安定して出やすくすること、
の2点が挙げられるが、これらを更に詳細に説明すると
次の通りである。Easy to generate bubbles (in order to do so, ■ bubble nucleus (cavity)
■Making bubbles stable and easy to come out;
These two points are mentioned below, and these will be explained in more detail as follows.
■気泡核について
沸騰熱伝達が行なわれているときに発生する気泡は、伝
熱面表面のキャビティと呼ばれる小さなくぼみから多く
発生するが、このキャビティが小さ過ぎても又大き過ぎ
ても気泡は発生し難く、最適の大きさく開口幅)がある
。そして適当な大きさのキャビティが伝熱管の表面全域
に形成されておれば、気泡は表面全域から数多く発生し
、蒸発熱伝達率は向上すると考えられる。Han−Gr
iffithは、第1図に示す如くキャビティが半径R
の円形開口部を有するものとした時(図中δは温度境界
層、Tsatは外側流体の飽和温度、Twallは伝熱
管の壁面温度を示す)、理論的には次式で示される好適
キャビティ半径(ト)範囲がある旨提唱している。■Bubble nuclei Many of the bubbles that are generated during boiling heat transfer occur from small depressions called cavities on the surface of the heat transfer surface, but bubbles will still occur if these cavities are too small or too large. There is an optimum opening width. If a cavity of an appropriate size is formed over the entire surface of the heat exchanger tube, many bubbles will be generated from the entire surface, and the evaporative heat transfer coefficient will be improved. Han-Gr.
Ifith means that the cavity has radius R as shown in Figure 1.
(in the figure, δ is the temperature boundary layer, Tsat is the saturation temperature of the outer fluid, and Twall is the wall temperature of the heat exchanger tube), theoretically the preferred cavity radius is expressed by the following formula: (g) It is proposed that there is a range.
δ:自然対流時の温度境界層厚さく m )02表面張
力係数(Kg/m)
vv:蒸気の比体積(m37 Kg )■L:液の比体
積(m3/Kg)
L:蒸気潜熱(h・m / Kg・℃)Twall:伝
熱管ノ壁面温度(0K)Tsat :外側流体の飽和温
度(’C)即ち上記CI)式の関係を満たす寸法(半径
R)のキャビティからは気泡が発生してくると述べてい
る。尚上記CI)式中における温度境界層の厚み(勾は
次式によってめることができる。δ: Temperature boundary layer thickness during natural convection (m) 02 Surface tension coefficient (Kg/m) vv: Specific volume of vapor (m37 Kg) L: Specific volume of liquid (m3/Kg) L: Latent heat of vapor (h)・m/Kg・℃) Twall: Temperature of the wall surface of the heat transfer tube (0K) Tsat: Saturation temperature of the outside fluid ('C), i.e., bubbles are generated from a cavity whose size (radius R) satisfies the relationship of the above CI) formula. He says he will come. The thickness (gradient) of the temperature boundary layer in the above equation (CI) can be determined by the following equation.
Gr−g@D3・β(Twall −Tsat ) /
UI2λL :液の熱伝導率(Kcal/m@h’c
)αfc”自然対流熱伝達率(Kcal/m’h’c)
D =管径(m )
β :温度膨張率(1/’K)
νL :動粘性係数(m”/5)
Prニブラントル数
第2〜5図は、流体としてアンモニア、フレオン22、
フレオン118及び水を使用した場合に上記〔■〕、(
10式を適用し、飽和温度(飽和圧力)をパラメータと
したときの飽和温度と管壁温度の差(横軸)とキャビテ
ィ半径(縦軸)の関係を示したグラフである。これらの
図の見方をその模式図である第6図によって説明すると
、斜線で示した領域は気泡の発生し易いキャビティ半径
を示し、他の領域は気泡を発生し難いキャビティ半径を
示す。例えば流体の飽和温度(TBat )と管壁温度
(Twall )よりその差(ΔThat )をめ、こ
れを横軸の上に固定して曲線との2つの交点をめ、それ
らが対応するキャビティ半径RaとRbを示すことにな
る。これらが気泡を発生し易いキャビティ半径の最大値
及び最小値となる。これらの関係は流体の物性によって
異なり、これら8図の中では気泡発生可能領域はフレオ
ン22が最も広く、又ΔTsatが大きくなる程拡大す
る。但し前記〔I〕、〔In式からめられる理論値は現
実の値を完全に予測し得るものではなく、定性的傾向は
一致するもののかなりの誤差があるといわれている。Gr-g@D3・β(Twall-Tsat)/
UI2λL: Thermal conductivity of liquid (Kcal/m@h'c
) αfc” natural convection heat transfer coefficient (Kcal/m'h'c)
D = Pipe diameter (m) β: Temperature expansion coefficient (1/'K) νL: Kinematic viscosity coefficient (m"/5) Pr Nibrandtl number Figures 2 to 5 show ammonia, Freon 22, Freon 22,
When Freon 118 and water are used, the above [■], (
10 is a graph showing the relationship between the difference between the saturation temperature and the tube wall temperature (horizontal axis) and the cavity radius (vertical axis) when the saturation temperature (saturation pressure) is used as a parameter. How to read these figures will be explained with reference to FIG. 6, which is a schematic diagram thereof. The shaded area indicates the cavity radius where bubbles are likely to occur, and the other areas indicate the cavity radius where bubbles are unlikely to occur. For example, find the difference (ΔThat) from the fluid saturation temperature (TBat) and the tube wall temperature (Twall), fix this on the horizontal axis, find the two intersections with the curve, and find the corresponding cavity radius Ra. and Rb. These are the maximum and minimum values of the cavity radius at which bubbles are likely to occur. These relationships vary depending on the physical properties of the fluid, and in these 8 figures, the region where bubbles can be generated is the widest for Freon 22, and increases as ΔTsat increases. However, it is said that the theoretical values obtained from the above-mentioned [I] and [In formulas cannot completely predict the actual values, and although the qualitative trends match, there are considerable errors.
何れにしても第2〜6図からみると、高性能の伝熱管を
得る為にはキャビティ半径(6)を10〜50itm
(2R=20〜100μm )とすべきであることが分
かる。In any case, as seen from Figures 2 to 6, in order to obtain a high-performance heat transfer tube, the cavity radius (6) must be set at 10 to 50 itm.
(2R=20-100 μm).
C気泡発生の安定性について
気泡を安定して発生させる為には、キャビティを奥伝に
すればよいとされており、理論的には次の様な関係が提
唱されている。即ち第7図(4)に示す如く母材と液体
との接触角(Oとキャビティの開孔角(φ)の関係が
ψ〈−一φ ・・・([[−a)
であれば、蒸気と液体との界面(メニスカス)は凸状に
なり、表面張力による圧力変化でP。< Pv(poo
:液温度境界層外側の液体の圧力、Pv:蒸気の圧力)
となり、ToO<TV(TOo:Pooに対応する温度
、Tv:蒸気温度)となる為、キャビティ内の蒸気の熱
が外部の液中へ逃げ、その分蒸気は次第に凝縮して小さ
くなりついには気泡核としての働きを喪失する。これに
対し第7図(Blに示す如く母材と液体の接触角(ψ)
とキャビティ開孔角(φ)の関係が
ψ〉−−φ ・・・ cm−b+
であれば前記メニスカスは凹状となり、Poo>Pvl
T(X)> ”/となる為、蒸気は常に大きくなろうと
する。その結果キャビティ内には常に蒸気が存在すると
共に一部が気泡として常時外部へ放出されつつ残部が気
泡核として残留し、気泡の発生は極めて円滑に安定して
起こる。Regarding the stability of bubble generation, it is said that in order to stably generate bubbles, it is sufficient to make the cavity a secret, and the following relationship has been theoretically proposed. That is, as shown in Fig. 7 (4), if the relationship between the contact angle (O) between the base material and the liquid and the opening angle (φ) of the cavity is ψ<-1φ ... ([[-a), The interface (meniscus) between vapor and liquid becomes convex, and due to pressure change due to surface tension, P.< Pv(poo
: liquid temperature, pressure of liquid outside the boundary layer, Pv: pressure of vapor)
Since ToO<TV (TOo: temperature corresponding to Poo, Tv: steam temperature), the heat of the steam inside the cavity escapes into the outside liquid, and the steam gradually condenses and becomes smaller, eventually forming bubbles. It loses its function as a nucleus. On the other hand, as shown in Figure 7 (Bl), the contact angle (ψ) between the base material and the liquid
If the relationship between and the cavity opening angle (φ) is ψ〉−−φ ... cm−b+, the meniscus becomes concave, and Poo>Pvl
Since T(X) >"/, the steam always tries to grow. As a result, steam always exists inside the cavity, and a part of it is always released to the outside as bubbles, while the rest remains as bubble nuclei. The generation of bubbles occurs very smoothly and stably.
こうした理論を踏まえて考えると、高性能の伝熱管を得
る為には、キャビティの開孔径を20〜100μmとし
且つ奥伝なものとすべをであることが理解される。Considering this theory, it is understood that in order to obtain a high-performance heat exchanger tube, the opening diameter of the cavity should be 20 to 100 μm, and it should be a traditional method.
この様な知見を生かし、伝熱管の表面に、適正な開孔径
を有し且つ奥伝なキャビティを形成することのできる技
術を確立しようとして種々研究を進めた結果、前記した
本発明の構成に想到したものである。Taking advantage of this knowledge, we conducted various studies in an attempt to establish a technique that would allow the formation of a sophisticated cavity with an appropriate opening diameter on the surface of a heat exchanger tube, and as a result, we came up with the structure of the present invention described above. This is what I did.
即ち本発明に係る伝熱管の構成は、例えば第8図(一部
破断拡大図)の実施例に示す如く、伝熱管材1の外周に
螺旋状のフィン2が形成されると共に、該フィン2の先
端側にアルミニウム等からなる金属肉盛部8が形成され
、先端側の肉厚tが根元側の肉厚Tよりも大きく(その
結果として隣り合う肉盛フィンの先端側の間隔lが根元
側の間隔りよりも狭く)形成され、それにより伝熱管材
1の表面側に微細な螺旋状開口部4を有する奥伝の螺旋
状内腔部5が形成される。この様な構造の伝熱管は、例
えば後述する様な方法によって製造されるが、螺旋状開
口部4の間隔lは気泡発生の最も容易な20〜100μ
mの範囲となる様に設計される。従ってこの伝熱管を管
外蒸発型伝熱管として使用すれば、奥伝の内腔部5は発
生蒸気を常時留めて気泡核を安定して保持すると共に、
その開口部4は前述の如く気泡発生の容易な間隔となっ
ているので、内腔部5内の気泡核に刺激されて極めて円
滑に気泡を発生する。その結果、蒸発熱伝達率向上の為
の「伝熱管外周面における気泡発生個数の増大と気泡発
生の円滑化」という極めて重要な条件が満たされ、フィ
ン形成による「伝熱有効面積の増大」という効果とも相
まって卓越した蒸気熱伝達率を発揮する様になる。That is, the structure of the heat exchanger tube according to the present invention is such that, as shown in the embodiment shown in FIG. A metal built-up part 8 made of aluminum or the like is formed on the tip side of the fin, and the wall thickness t on the tip side is larger than the wall thickness T on the base side (as a result, the distance l between the tips of adjacent build-up fins is 2), thereby forming a deep helical lumen 5 having a fine helical opening 4 on the surface side of the heat transfer tube material 1. A heat exchanger tube having such a structure is manufactured, for example, by a method as described below, and the interval l between the spiral openings 4 is set to 20 to 100 μm, which is the easiest way to generate bubbles.
It is designed to be within the range of m. Therefore, if this heat exchanger tube is used as an extra-tube evaporation type heat exchanger tube, the inner cavity 5 of Okuden will always retain the generated steam and stably hold the bubble nucleus,
As mentioned above, the openings 4 are spaced so that bubbles can easily be generated, so that bubbles are stimulated by the bubble nuclei in the inner cavity 5 and bubbles are generated very smoothly. As a result, the extremely important conditions for improving the evaporative heat transfer coefficient of ``increasing the number of bubbles generated on the outer circumferential surface of the heat transfer tube and smoothing the bubble generation'' were met, and the ``increase of the effective heat transfer area'' due to fin formation was achieved. Coupled with this effect, it comes to exhibit an outstanding steam heat transfer coefficient.
尚第8図では螺旋状フィン2の先端側へ金属肉盛部8を
形成した例を示したが、この他用9図(一部横断面拡大
図)に示す如く伝熱管本体lの外周に軸芯と略平行方向
の縦フィン2aを形成してその先端側に同様の金属肉盛
部8を設けたものであってもよく、更には螺旋フィン2
や縦フィン2aに、該フィンと交差する方向の切れ目を
入れ、伝熱有効面積を更に拡大することも有効である。Although FIG. 8 shows an example in which the metal build-up portion 8 is formed on the tip side of the spiral fin 2, in addition, as shown in FIG. 9 (partially enlarged cross-sectional view), it is possible to It is also possible to form a vertical fin 2a in a direction substantially parallel to the axis and provide a similar metal build-up part 8 on the tip side.
It is also effective to further expand the effective heat transfer area by making cuts in the vertical fins 2a in a direction that intersects the fins.
上記の様な金属肉盛部8は色々の方法で形成し得ると考
えられるが、本発明者等が種々実験を行なったところで
は金属粉末をプラズマ溶射する方法が最も良好であり、
殊に第10図に略示する如く、外フィン(図例では螺旋
フィン2)の外周側からフィン2の立上り壁(換言すれ
ば立上り角度二図では垂線Y)に対して80〜60度の
傾斜角度から金属粉末をプラズマ溶射すれば、フィン2
の先端部のみを特に効率良く肉盛りすることができ、奥
部に広幅な内腔部5を残した状態で上方開口部を狭幅に
形成し得ることが確認された。ちなみにプラズマ溶射の
傾斜角が80度未満であると溶射金属がフィン2の根元
まで侵入し易くなってフィン間の隙間が溶射金属で充満
されたり、或は図示した様な内腔部が形成されなくなる
。一方傾斜角が60度を越えると溶射金属の飛散が著し
くなってロスが増大する他、フィン2の頂部壁面に集中
的に肉盛りされすぎる為開口部が閉鎖され易く、間隔l
の調整が困難になる。又溶射法としてはプラズマ溶射法
の他サーモスプレー法もあるが、後者の方法では溶射角
度を適正に調整したとしてもフィン間が溶射金属で埋ま
ってしまって内腔部5を形成することができず、本発明
の方法は金属粉末のプラズマ溶射法に限定される。金属
粉末の種類は特に限定されないが、伝熱管に要求される
伝熱特性と耐食性及びプラズマ溶射の容易性等を総合的
に考えればアルミニウム粉末が最適であり、この場合ア
ルミニウム粉末が200メツシユよりも小さいものであ
ると溶射炎中で酸化消耗し適正な肉盛り部が形成されな
い。従ってアルミニウム粉末は200メツシユよりも粗
粒のもの、より好ましくは250〜850メツシユのも
のを使用することが望まれる。尚プラズマ溶射に先立っ
てショツトブラスト法等により表面を粗面化しておけば
肉盛部8の密着性が向上するので好都合である。It is thought that the metal build-up portion 8 as described above can be formed by various methods, but the inventors have conducted various experiments and found that the method of plasma spraying metal powder is the best method.
In particular, as schematically illustrated in FIG. 10, the angle from the outer periphery of the outer fin (the spiral fin 2 in the illustrated example) to the rising wall of the fin 2 (in other words, the rising angle is 80 to 60 degrees to the vertical line Y in FIG. 2). If metal powder is plasma sprayed from an inclined angle, the fin 2
It was confirmed that it was possible to build up only the tip of the tube particularly efficiently, and that the upper opening could be formed to have a narrow width while leaving a wide inner cavity 5 in the inner part. By the way, if the inclination angle of plasma spraying is less than 80 degrees, the sprayed metal will easily penetrate to the base of the fins 2, and the gaps between the fins will be filled with the sprayed metal, or the inner cavity as shown will be formed. It disappears. On the other hand, if the angle of inclination exceeds 60 degrees, the sprayed metal will scatter significantly and the loss will increase, and the top wall of the fin 2 will be overlaid too intensively, so the opening will be easily closed, and the spacing of l
adjustment becomes difficult. In addition to the plasma spraying method, there is also a thermospray method as a thermal spraying method, but in the latter method, even if the spraying angle is properly adjusted, the spaces between the fins are filled with the sprayed metal, and the inner cavity 5 cannot be formed. First, the method of the present invention is limited to plasma spraying of metal powder. The type of metal powder is not particularly limited, but aluminum powder is optimal if you consider the heat transfer characteristics and corrosion resistance required for heat transfer tubes, ease of plasma spraying, etc. In this case, aluminum powder is more than 200 mesh. If it is small, it will be oxidized and consumed in the spray flame, and an appropriate built-up portion will not be formed. Therefore, it is desirable to use an aluminum powder coarser than 200 mesh, more preferably 250 to 850 mesh. It is advantageous to roughen the surface by shot blasting or the like prior to plasma spraying, since this will improve the adhesion of the built-up portion 8.
ちなみに参考写真1はプラズマ溶射角を80度に設定し
て得た肉盛部の断面拡大写真(50倍:溶射金属は+2
00メツシユのアルミニウム粉末)、参考写真2は溶射
角度を60度に設定して得た肉盛部の断面拡大写真(同
前)であり、フィンの上部側が集中的に肉盛りされて内
腔部が形成されている。これに対し参考写真8はプラズ
マ溶射角度を0度に設定して得た肉盛部の断面拡大写真
(同前)であり、フィン間の上方部のみならず根元部ま
でほぼ一様に肉盛りされる為、上方部の間隔のみを狭め
ることができない。尚上方開口部の間隔を狭めようとす
ると根元部まで肉盛金属が行き渡る為、内腔部が形成さ
れなくなる。By the way, reference photo 1 is an enlarged cross-sectional photo of the built-up part obtained by setting the plasma spray angle to 80 degrees (50 times: sprayed metal is +2
00 mesh aluminum powder), Reference Photo 2 is an enlarged cross-sectional photo of the built-up part obtained by setting the spraying angle to 60 degrees (same as above), and the upper side of the fin is intensively built up and the inner cavity is is formed. On the other hand, reference photo 8 is an enlarged cross-sectional photograph of the built-up part obtained by setting the plasma spray angle to 0 degrees (same as above), and shows that the build-up is almost uniform not only in the upper part between the fins but also in the root part. Therefore, it is not possible to narrow only the gap in the upper part. In addition, if an attempt is made to narrow the interval between the upper openings, the overlay metal will spread all the way to the base, making it impossible to form a lumen.
この様に本発明では外フィンの先端側に肉盛部を形成し
てフィン同士の間隔全狭め、気泡発生の容易な開口間隔
(ff)とすると共に、その下方部に奥床の内腔部を形
成して気泡核を安定的に保持せしめたもので、それによ
シ気泡発生量が著しく増大すると共に気泡の発生が極め
て容易とな夛、外フィンの形成による伝熱有効面積の拡
大とも相まって蒸発熱伝達率を飛躍的に高めることがで
きた。In this way, in the present invention, the built-up part is formed on the tip side of the outer fin to completely narrow the gap between the fins, creating an opening gap (ff) that facilitates the generation of air bubbles, and at the same time, the inner cavity of the deep floor is formed below the built-up part. The bubble core is stably held by forming a fin, which significantly increases the amount of bubbles generated and makes it extremely easy to generate bubbles, and also increases the effective heat transfer area by forming outer fins. We were able to dramatically increase the evaporative heat transfer coefficient.
ちなみに第11図は、(ト)表面加工なしの平滑な伝熱
管、(6)平滑管にプラズマ溶射(アルミニウム)を施
した伝熱管、幻外フィンを設けた従来の伝熱管(フィン
高さ:0815w、フィンピッチェ80山/1nch)
;及び(ロ)上記鱒のフィン先端側にアルミニウム粉末
をプラズマ溶射して得た本発明の蒸発型伝熱管について
夫々性能を比較した実験結果の一例を示したもので、本
発明の効果が如実に(以下余白)
現われている。By the way, Figure 11 shows (g) a smooth heat exchanger tube without surface treatment, (6) a heat exchanger tube with plasma spraying (aluminum) applied to a smooth tube, and a conventional heat exchanger tube with extra-dimensional fins (fin height: 0815w, Finpitche 80 mountains/1nch)
and (b) This shows an example of the experimental results comparing the performance of the evaporative heat exchanger tube of the present invention obtained by plasma spraying aluminum powder on the fin tip side of the trout, and shows how the effect of the present invention is. Indeed (see margin below).
第1図はHan−Grif f i thの設定したC
I)式の補助説明図、第2〜5図は同〔19式から算出
されるキャビティ径と温度差の関係を示すグラフ、第6
図はその説明図、第7図(4)、(6)は気泡核の安定
性に対するキャビティーの形状因子を説明する為の図、
第8.9図は本発明に係る伝熱管を例示する一部断面拡
大図、第10図は該伝熱管の製法を例示する説明図、第
11図は本発明伝熱管の伝熱効果を従来のものと対比し
て示すグラフである。
1・・・伝熱管本管、 2,2a・・・フィン、8・・
・金属肉盛部。
出願人株式会社神戸製鋼所
と、1r−11ト ゝX−ヒ刊Figure 1 shows the C set by Han-Grif fi th.
I) Supplementary explanatory diagram of formula, Figures 2 to 5 are graphs showing the relationship between cavity diameter and temperature difference calculated from formula 19, Figure 6
The figure is an explanatory diagram, and Figures 7 (4) and (6) are diagrams for explaining the shape factor of the cavity with respect to the stability of the bubble nucleus.
Fig. 8.9 is an enlarged partial cross-sectional view illustrating the heat exchanger tube according to the present invention, Fig. 10 is an explanatory view illustrating the manufacturing method of the heat exchanger tube, and Fig. 11 shows the heat transfer effect of the heat exchanger tube according to the present invention. This is a graph shown in comparison with that of . 1... Main heat transfer tube, 2, 2a... Fin, 8...
・Metal overlay part. Applicant Kobe Steel, Ltd. and 1r-11 Published by
Claims (1)
されるフィンを、該フィンの先端側が肉盛されてその肉
厚が根元側の肉厚より大きい形状である様にしたもので
あることを特徴とする管外蒸発型伝熱管。 (2)管外蒸発型伝熱管の製造方法であって、管体の外
周に形成されたフィンの表面に、該フィンの立上り壁に
対し80〜60度の傾斜角度から金属粉末をプラズマ溶
射し、前記フィンの先端部側壁に肉盛することを特徴と
する管外蒸発型伝熱管の製造方法。[Claims] fl) An extra-tube evaporation type heat transfer tube, in which the fins formed on the outer periphery of the tube body are built up on the tip side and the wall thickness is larger than the wall thickness on the root side. 1. An extratube evaporation type heat transfer tube characterized in that it has a shape. (2) A method for manufacturing an extra-tube evaporation type heat transfer tube, in which metal powder is plasma sprayed onto the surface of fins formed on the outer periphery of the tube at an angle of inclination of 80 to 60 degrees with respect to the rising wall of the fin. . A method for manufacturing an extra-tube evaporation type heat transfer tube, characterized in that the side wall of the tip end of the fin is overlaid.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9707984A JPS60240993A (en) | 1984-05-14 | 1984-05-14 | Outside tube evaporating type heat transfer tube and manufacturing thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9707984A JPS60240993A (en) | 1984-05-14 | 1984-05-14 | Outside tube evaporating type heat transfer tube and manufacturing thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60240993A true JPS60240993A (en) | 1985-11-29 |
Family
ID=14182632
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9707984A Pending JPS60240993A (en) | 1984-05-14 | 1984-05-14 | Outside tube evaporating type heat transfer tube and manufacturing thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60240993A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2319042A (en) * | 1996-11-08 | 1998-05-13 | Monitor Coatings & Eng | Flame spray coating of continuous casting machine components |
CN101829837A (en) * | 2010-05-07 | 2010-09-15 | 张英 | Automatic welding device and method for welding straight fins on inner wall of long small-bore seamless steel tube |
CN102466424A (en) * | 2010-11-10 | 2012-05-23 | 珠海格力节能环保制冷技术研究中心有限公司 | Heat transfer pipe, falling film evaporator heat transfer pipe and falling film evaporator |
-
1984
- 1984-05-14 JP JP9707984A patent/JPS60240993A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2319042A (en) * | 1996-11-08 | 1998-05-13 | Monitor Coatings & Eng | Flame spray coating of continuous casting machine components |
GB2319042B (en) * | 1996-11-08 | 1998-11-11 | Monitor Coatings & Eng | Coating of continuous casting machine components |
CN101829837A (en) * | 2010-05-07 | 2010-09-15 | 张英 | Automatic welding device and method for welding straight fins on inner wall of long small-bore seamless steel tube |
CN102466424A (en) * | 2010-11-10 | 2012-05-23 | 珠海格力节能环保制冷技术研究中心有限公司 | Heat transfer pipe, falling film evaporator heat transfer pipe and falling film evaporator |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4359086A (en) | Heat exchange surface with porous coating and subsurface cavities | |
JP2721309B2 (en) | Heat transfer tube | |
US5781996A (en) | Method of manufacturing heat transfer tube | |
JP4395378B2 (en) | HEAT TRANSFER TUBE, INCLUDING METHOD OF MANUFACTURING AND USING HEAT TRANSFER TUBE | |
CA1241321A (en) | Heat transfer wall | |
US4653163A (en) | Method for producing a heat transfer wall for vaporizing liquids | |
KR100324065B1 (en) | A heat transfer tube and method of manufacturing same | |
JP2005164126A (en) | Boiling heat transfer tube and its manufacturing method | |
JP2008261566A (en) | Double-pipe heat exchanger | |
US5933953A (en) | Method of manufacturing a heat transfer tube | |
JP3322292B2 (en) | Heat transfer tube | |
JPS60240993A (en) | Outside tube evaporating type heat transfer tube and manufacturing thereof | |
US4360058A (en) | Process for the preparation of a surface of a metal wall for the transfer of heat | |
JPH0829075A (en) | Gasifying device for low temperature liquid | |
CN215864849U (en) | Evaporation heat exchange tube | |
CN209166209U (en) | A kind of flooded evaporator heat exchanger tube | |
CN209068809U (en) | A kind of new-type full-liquid type evaporating heat-exchanging pipe | |
JPS624638B2 (en) | ||
CN115900416A (en) | Evaporation heat exchange tube and manufacturing method thereof | |
JPH0444192B2 (en) | ||
JP2000304485A (en) | Heating tube for down-flow liquid film type heat exchanger | |
CN221924743U (en) | Welded heat exchange tube | |
JPH0961013A (en) | Absorption refrigerating machine | |
JPH0949698A (en) | Heat exchanger | |
JPH0757401B2 (en) | Tube expansion method for condensing heat transfer tube with internal groove |