EP3465056B1 - Heat exchanger tube - Google Patents
Heat exchanger tube Download PDFInfo
- Publication number
- EP3465056B1 EP3465056B1 EP17725859.7A EP17725859A EP3465056B1 EP 3465056 B1 EP3465056 B1 EP 3465056B1 EP 17725859 A EP17725859 A EP 17725859A EP 3465056 B1 EP3465056 B1 EP 3465056B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- rib
- pipe
- heat transfer
- projections
- ribs
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000012546 transfer Methods 0.000 claims description 41
- 238000005520 cutting process Methods 0.000 claims description 23
- 239000012530 fluid Substances 0.000 description 14
- 238000001704 evaporation Methods 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 230000008020 evaporation Effects 0.000 description 4
- 230000002441 reversible effect Effects 0.000 description 4
- 238000007373 indentation Methods 0.000 description 3
- 238000009835 boiling Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000003507 refrigerant Substances 0.000 description 2
- 238000004378 air conditioning Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/12—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
- F28F1/14—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally
- F28F1/16—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally the means being integral with the element, e.g. formed by extrusion
- F28F1/18—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally the means being integral with the element, e.g. formed by extrusion the element being built-up from finned sections
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/12—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
- F28F1/34—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending obliquely
- F28F1/36—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending obliquely the means being helically wound fins or wire spirals
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/40—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/42—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
- F28F1/422—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element with outside means integral with the tubular element and inside means integral with the tubular element
Definitions
- the present invention relates to a heat exchanger tube according to the preamble of claim 1.
- Heat transfer occurs in many areas of refrigeration and air conditioning technology as well as in process and energy technology. Shell and tube heat exchangers are often used for heat transfer in these areas.
- a liquid flows on the inside of the pipe, which is cooled or heated depending on the direction of the heat flow. The heat is given off to the medium on the outside of the pipe or withdrawn from it.
- Heat exchanger tubes structured on one or both sides for tube bundle heat exchangers usually have at least one structured area as well as smooth end pieces and possibly smooth intermediate pieces.
- the smooth end or intermediate pieces delimit the structured areas.
- the outer diameter of the structured areas should not be larger than the outer diameter of the smooth end and intermediate pieces.
- Integrally rolled finned tubes are often used as structured heat exchanger tubes. Integrally rolled finned tubes are understood to mean finned tubes in which the fins were formed from the material of the wall of a plain tube. In many cases, finned tubes have a large number of axially parallel or helically circumferential ribs on the inside of the tube, which increase the inner surface and improve the heat transfer coefficient on the inside of the tube. On the outside, the finned tubes have annular or helical fins running all the way around.
- the axially parallel or helically circumferential inner ribs can be provided with grooves, as described in the publication DE 101 56 374 C1 and DE 10 2006 008 083 B4 is described. It is important here that the dimensions of the inner and outer structure of the finned tube can be set independently of one another by the use of profiled rolling mandrels disclosed there for producing the inner ribs and grooves. As a result, the structures on the outside and inside can be adapted to the respective requirements and the tube can be designed in this way.
- the pamphlets U.S. 2005/0145377 A1 and WO03104735A1 disclose improved heat transfer surfaces that facilitate heat transfer from one side of the surface to the other. Described herein is another method of improving heat transfer surfaces by using a tool to cut the inner surface of a tube.
- the tool has at least one tip with a cutting edge and a lifting edge.
- Protrusions are formed by cutting the inner surface of a heat exchanger tube and raising the cut surface.
- Boiling surfaces produced in this way have a multiplicity of primary grooves, projections and secondary grooves, for example to form boiling cavities.
- a tube having a longitudinal axis and internal ribs extending obliquely to the axis and indented to form a plurality of fins on the ribs Furthermore, from the pamphlet U.S. 3,776,018 A a tube having a longitudinal axis and internal ribs extending obliquely to the axis and indented to form a plurality of fins on the ribs. Also a method of making such a tube from a round inner fin tube blank by partially flattening the blank to press opposing ones together Scoring and then expanding the partially flattened blank by internal fluid pressure is described.
- the object of the present invention is to further develop the internal and external structures of heat exchanger tubes of the aforementioned type in such a way that a further increase in performance is achieved compared to tubes that are already known.
- the structured area can in principle be formed on the outside of the tube or the inside of the tube.
- the structures described can be used for both evaporator and condenser tubes.
- Protrusion height is conveniently defined as the dimension of a protrusion in the radial direction. The height of the projection is then, in the radial direction, the distance starting from the pipe wall to the point of the projection which is furthest away from the pipe wall.
- the cutting depth also known as the notch depth, is the distance measured in the radial direction from the original tip of the rib to the deepest point of the notch.
- the notch depth is the difference between the original rib height and the remaining rib height at the deepest point of a notch.
- the invention is based on the consideration that the rib sections can in principle be formed on the outside of the tube or the inside of the tube. However, it is preferred to arrange the rib sections according to the invention inside the pipe.
- the structures described can be used for both evaporator and condenser tubes.
- the rib sections according to the invention are particularly suitable for internal structures.
- the inner surface of the tube is enlarged with a plurality of projections divided into rib portions.
- the heat transfer resistance on the pipe side is reduced considerably and the heat transfer coefficient is increased.
- the projections create additional Pathways for fluid flow within the tube, thereby increasing the turbulence of the heat transfer medium flowing within the tube. This measure reduces the boundary layer built up from the fluid near the inner surface of the tube.
- the projections provide a multiple of additional surface area for additional heat exchange. Tests show that the performance of tubes with the specially designed fin sections of this invention is significantly increased.
- the process-side structuring of the heat exchanger tube according to the invention can be produced using a tool which in the DE 603 17 506 T2 is already described.
- the disclosure of this publication DE 603 17 506 T2 is fully included in the available documents.
- the projection height and the distance can be made variable and individually adapted to the requirements, for example the viscosity of the liquid or the flow rate.
- the tool used has a cutting edge for cutting through the ribs on the inner surface of the tube to create rib segments and a lifting edge for raising the rib segments to form the projections.
- the protrusions are formed without removing metal from the inner surface of the tube.
- the protrusions on the inner surface of the tube may be formed in the same or different processing as the formation of the ribs.
- the solution according to the invention in which the ribs are divided into rib sections, which are divided into a plurality of projections with a projection height, causes the projections to deviate from the regulated order.
- This in turn results in optimized heat transfer with the lowest possible pressure loss, since the fluid boundary layer, which is a hindrance to good heat transfer, is interrupted by additionally generated turbulence.
- An interruption caused by the division of the projections also leads to an increase in turbulence and to an exchange of fluid over the course of the primary rib, which also causes an interruption in the boundary layer.
- the structured area can in principle be formed on the outside of the tube or the inside of the tube. However, it is preferred to arrange the rib sections according to the invention inside the pipe.
- the structures described can be used for both evaporator and condenser tubes.
- a homogeneous arrangement of the projections can only partially achieve this targeted interruption of the boundary layer.
- the shapes, heights and arrangement of the distances can be adjusted and optimized by adjusting the cutting blades or cutting geometries and by individually adapted primary rib shapes and geometries.
- the shape of the projections can be individually adjusted and the boundary layer can thus be broken efficiently.
- the rib sections of the ribs can be formed from the ribs of secondary grooves running at a pitch angle ⁇ , measured against the longitudinal axis of the pipe.
- the secondary grooves can run at a pitch angle of at least 10° and at most 80° relative to the inner ribs.
- the depth of the secondary grooves can vary and be at least 20% of the original rib height of the inner ribs.
- the inner ribs no longer have a constant cross-section. If one follows the course of the inner ribs, then the cross-sectional shape of the inner ribs changes at the locations of the secondary grooves.
- the secondary grooves create additional vortices in the medium flowing on the pipe side and axial passage points in the area close to the wall, which further increases the heat transfer coefficient.
- the projections have alternately changing cutting depths due to a rib.
- the height of the individual projections can be specifically adjusted and varied in relation to one another in order to dip into the different boundary layers of the flow up to the flow core, particularly in the case of laminar flow, through different rib heights and dissipate the heat to the tube wall.
- the cutting or notching depth can also extend through the entire original rib into the core wall.
- a changing notch or cutting depth is also synonymous with the fact that the deepest point of the notch alternates and consequently changes the distance to the pipe wall. Equivalent to this is also that the respective deepest point of the Notches - here referred to as the notch base - alternate at a distance from the longitudinal axis of the pipe over successive notches in the direction of the ribs.
- the indentations that are adjacent at least by a projection can vary in the indentation depth by at least 10%. More preferably, the variation in notch depth can be at least 20% or even 50%.
- At least one projection can project from the main alignment along the course of the ribs over the primary groove. This brings with it the advantage that the boundary layer formed in the space between the ribs is interrupted by this projection projecting into the primary groove, which results in improved heat transfer.
- the rib sections of the ribs can be elongated along the course of the ribs.
- the ribs are divided into rib portions divided into a sufficient plurality of projections with a projection height.
- a rib section comprises at least 3, preferably at least 4, projections.
- the rib sections can be spaced apart from one another, as a result of which passage points for the fluid are formed. This in turn results in optimized heat transfer with the lowest possible pressure loss, since the fluid boundary layer, which is a hindrance to good heat transfer, is interrupted by additionally generated turbulence. An interruption also leads to an increase in turbulence and to an exchange of fluid over the course of the primary rib, which also causes an interruption in the boundary layer.
- a plurality of projections can have a surface parallel to the longitudinal axis of the tube at the point furthest away from the tube wall.
- the projections in Projection height, shape and orientation vary with each other in order to adjust the height of the individual projections in a targeted manner and to vary them in relation to one another in order to immerse themselves in the different boundary layers of the flow up to the flow core and dissipate the heat to the pipe wall, especially in the case of laminar flow through different rib heights.
- a projection can have a pointed tip on the side facing away from the tube wall. This leads to optimized projection tip condensation in condenser tubes using two-phase fluids.
- a projection can have a curved tip on the side facing away from the pipe wall, the local radius of curvature of which, starting from the pipe wall, is reduced with increasing distance.
- the advantage of this is that the condensate that forms at the tip of a projection is transported more quickly to the base of the ribs due to the convex curvature, thus optimizing the heat transfer during condensation.
- the main focus is on the liquefaction of the vapor and the discharge of the condensate away from the tip towards the bottom of the fins.
- a convexly curved projection forms an ideal basis for effective heat transfer.
- the base of the projection protrudes essentially radially from the tube wall.
- the projections can have a different shape and/or height from the beginning of the pipe along the longitudinal axis of the pipe to the opposite end of the pipe.
- the advantage of this is a targeted adjustment of the heat transfer from the beginning of the pipe to the end of the pipe.
- the tips of at least two projections along touching or crossing each other along the course of the ribs which is particularly advantageous in reversible operation during the phase change, since the projections for the liquefaction protrude far out of the condensate and form a kind of cavity for the evaporation.
- the tips of at least two projections can touch or cross one another across the primary groove. This is particularly advantageous in reversible operation during the phase change, since the projections for the liquefaction protrude far out of the condensate and form a kind of cavity for the evaporation.
- At least one of the projections can be deformed in such a way that its tip touches the inside of the pipe or the outside of the pipe. This is advantageous in particular in reversible operation during the phase change, since the projections form a kind of cavity for the liquefaction for the evaporation and thus bubble nuclei.
- the projections can be formed from ribs, with at least one of the ribs varying from one another in at least one of the characteristics of rib height, rib spacing, rib tip, rib spacing, rib opening angle and twist.
- the heat exchanger tube 1 shows schematically an oblique view of a tube section of the heat exchanger tube 1 with the structure according to the invention on the tube inside 22.
- the heat exchanger tube 1 has a tube wall 2, a tube outside 21 and a tube inside 22 shaped.
- the longitudinal axis A of the tube runs at a certain angle relative to the ribs.
- Continuously extending primary grooves 4 are formed between each adjacent ribs 3 .
- the ribs 3 are divided along the course of the ribs into periodically repeating rib sections 31 which are divided into a large number of projections 6 .
- the protrusions 6 are formed by cutting the ribs 3 with a cutting depth across the rib run to form rib segments and raising the rib segments with a main orientation along the rib run between primary grooves 4 .
- the rib portions 31 of the ribs 3 are elongated along the course of the ribs.
- a rib section 31 is delimited by an uncut portion of a rib 3 from the following one.
- the original height of the primary rib 3 can also be partially preserved there.
- FIG. 2 shows a further oblique view of a tube section of the heat exchanger tube 1 with the structure according to the invention on the tube inside 22 with a secondary groove 5.
- the ribs 3 are in turn divided along the course of the ribs into periodically repeating rib sections 31, which are divided into a large number of projections 6.
- the rib sections 31 of the ribs 3 are in turn elongated along the course of the ribs.
- a rib section 31 is delimited from the following one by a secondary groove 5 running at a pitch angle ⁇ , measured against the longitudinal axis A of the pipe.
- the secondary groove 5 can have a small notch depth or, as in the exemplary embodiment shown, come close to the primary groove with a large notch depth.
- 3 1 shows schematically a rib section 31 with different cutting or notching depths t 1 , t 2 , t 3 .
- the terms cutting depth and notch depth represent the same terminology within the scope of the invention. Dashed is indicated in the 3 the original formed helical circumferential rib 3. From this, the projections 6 are by cutting the rib 3 with a Cutting depth t 1 , t 2 , t 3 transverse to the rib path to form rib segments and shaped by raising the rib segments with a major orientation along the rib path.
- the different cutting depths t 1 , t 2 , t 3 are consequently dimensioned based on the indentation depth of the original rib in the radial direction.
- the projection height h is in 2 is plotted as the dimension of a protrusion in the radial direction.
- the height h of the projection is then, in the radial direction, the distance starting from the pipe wall to the point of the projection which is furthest away from the pipe wall.
- the notch depth t 1 , t 2 , t 3 is the distance measured in the radial direction, starting from the original rib tip to the deepest point of the notch.
- the notch depth is the difference between the original rib height and the remaining rib height at the deepest point of a notch.
- FIG. 4 shows schematically a rib section 31 with a structural element 6 protruding over the primary groove 4.
- figure 5 shows schematically a rib section 31 with a projection 6 curved in the direction of the ribs at the tip 62.
- the projection 6 has a changing course of curvature at the curved tip 62.
- the local radius of curvature decreases with increasing distance from the pipe wall. In other words: the radius of curvature decreases towards the tip 62 along the line indicated by the points P1, P2, P3.
- This has the advantage that the condensate that forms at the tip 62 in the case of two-phase fluids is transported more quickly to the base of the ribs due to the increasing convex curvature.
- FIG. 6 shows schematically a fin section 31 with a projection 6 with a parallel surface 61 at the point furthest from the tube wall in the area of the tip 62.
- FIG. 1 schematically shows a rib section 31 with two projections 6 touching one another along the course of the rib.
- FIG 8 schematically a rib section 31 with two along the course of the ribs mutually crossing projections 6.
- FIG. 12 shows schematically a rib section 31 with two projections touching each other across the primary groove 4.
- FIG. 10 shows schematically a rib section 31 with two mutually crossing projections 6 over the primary groove 4.
- the structural elements shown are advantageous, especially in reversible operation with two-phase fluids, that they form a kind of cavity for evaporation.
- the cavities of this special type form the exit points for bubble nuclei of an evaporating fluid.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Geometry (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Description
Die vorliegende Erfindung betrifft ein Wärmeübertragerrohr gemäß dem Oberbegriff des Anspruchs 1.The present invention relates to a heat exchanger tube according to the preamble of
Wärmeübertragung tritt in vielen Bereichen der Kälte- und Klimatechnik sowie in der Prozess- und Energietechnik auf. Zur Wärmeübertragung werden in diesen Gebieten häufig Rohrbündelwärmeaustauscher eingesetzt. In vielen Anwendungen strömt hierbei auf der Rohrinnenseite eine Flüssigkeit, die abhängig von der Richtung des Wärmestroms abgekühlt oder erwärmt wird. Die Wärme wird an das sich auf der Rohraußenseite befindende Medium abgegeben oder diesem entzogen.Heat transfer occurs in many areas of refrigeration and air conditioning technology as well as in process and energy technology. Shell and tube heat exchangers are often used for heat transfer in these areas. In many applications, a liquid flows on the inside of the pipe, which is cooled or heated depending on the direction of the heat flow. The heat is given off to the medium on the outside of the pipe or withdrawn from it.
Es ist allgemein bekannt, dass in Rohrbündelwärmeaustauschern anstelle von Glattrohren strukturierte Rohre eingesetzt werden. Durch die Strukturen wird der Wärmedurchgang verbessert. Die Wärmestromdichte wird dadurch erhöht und der Wärmeaustauscher kann kompakter gebaut werden. Alternativ kann die Wärmestromdichte beibehalten und die treibende Temperaturdifferenz erniedrigt werden, wodurch eine energieeffizientere Wärmeübertragung möglich ist.It is generally known that structured tubes are used in tube bundle heat exchangers instead of plain tubes. The heat transfer is improved by the structures. This increases the heat flow density and the heat exchanger can be made more compact. Alternatively, the heat flux density can be maintained and the driving temperature difference lowered, allowing for more energy-efficient heat transfer.
Ein- oder beidseitig strukturierte Wärmeübertragerrohre für Rohrbündelwärmeaustauscher besitzen üblicherweise mindestens einen strukturierten Bereich sowie glatte Endstücke und eventuell glatte Zwischenstücke. Die glatten End- oder Zwischenstücke begrenzen die strukturierten Bereiche. Damit das Rohr problemlos in den Rohrbündelwärmeaustauscher eingebaut werden kann, sollte der äußere Durchmesser der strukturierten Bereiche nicht größer sein als der äußere Durchmesser der glatten End- und Zwischenstücke.Heat exchanger tubes structured on one or both sides for tube bundle heat exchangers usually have at least one structured area as well as smooth end pieces and possibly smooth intermediate pieces. The smooth end or intermediate pieces delimit the structured areas. In order for the tube to be easily installed in the tube bundle heat exchanger, the outer diameter of the structured areas should not be larger than the outer diameter of the smooth end and intermediate pieces.
Als strukturierte Wärmeübertragerrohre werden häufig integral gewalzte Rippenrohre verwendet. Unter integral gewalzten Rippenrohren werden berippte Rohre verstanden, bei denen die Rippen aus dem Material der Wandung eines Glattrohres geformt wurden. In vielen Fällen besitzen Rippenrohre auf der Rohrinnenseite eine Vielzahl von achsparallelen oder schraubenlinienförmig umlaufenden Rippen, die die innere Oberfläche vergrößern und den Wärmeübergangskoeffizient auf der Rohrinnenseite verbessern. Auf ihrer Außenseite besitzen die Rippenrohre ring- oder schraubenförmig umlaufende Rippen.Integrally rolled finned tubes are often used as structured heat exchanger tubes. Integrally rolled finned tubes are understood to mean finned tubes in which the fins were formed from the material of the wall of a plain tube. In many cases, finned tubes have a large number of axially parallel or helically circumferential ribs on the inside of the tube, which increase the inner surface and improve the heat transfer coefficient on the inside of the tube. On the outside, the finned tubes have annular or helical fins running all the way around.
In der Vergangenheit wurden viele Möglichkeiten entwickelt, je nach Anwendung den Wärmeübergang auf der Außenseite von integral gewalzten Rippenrohren weiter zu steigern, indem die Rippen auf der Rohraußenseite mit weiteren Strukturmerkmalen versehen werden. Wie beispielsweise aus der Druckschrift
Die vorstehend genannten Leistungsverbesserungen auf der Rohraußenseite haben zur Folge, dass der Hauptanteil des gesamten Wärmeübergangswiderstands auf die Rohrinnenseite verschoben wird. Dieser Effekt tritt insbesondere bei kleinen Strömungsgeschwindigkeiten auf der Rohrinnenseite, wie beispielsweise beim Teillastbetrieb, auf. Um den gesamten Wärmeübergangswiderstand signifikant zu reduzieren, ist es notwendig, den Wärmeübergangskoeffizient auf der Rohrinnenseite weiter zu erhöhen.The above-mentioned performance improvements on the outside of the tube mean that the majority of the overall heat transfer resistance is shifted to the inside of the tube. This effect occurs in particular at low flow velocities on the inside of the pipe, such as during part-load operation. In order to significantly reduce the overall heat transfer resistance, it is necessary to reduce the heat transfer coefficient on the inside of the tube to increase further.
Um den Wärmeübergang der Rohrinnenseite zu erhöhen, können die achsparallelen oder schraubenlinienförmig umlaufenden Innenrippen mit Nuten versehen werden, wie es in der Druckschrift
Die Druckschriften
Des Weiteren ist aus der Druckschrift
Vor diesem Hintergrund besteht die Aufgabe der vorliegenden Erfindung darin, Innen- bzw. Außenstrukturen von Wärmeübertragerrohren der vorgenannten Art so weiterzubilden, dass eine gegenüber bereits bekannten Rohre eine weitere Leistungssteigerung erzielt wird.Against this background, the object of the present invention is to further develop the internal and external structures of heat exchanger tubes of the aforementioned type in such a way that a further increase in performance is achieved compared to tubes that are already known.
Die Erfindung wird durch die Merkmale des Anspruchs 1 wiedergegeben. Die weiteren rückbezogenen Ansprüche betreffen vorteilhafte Aus- und Weiterbildungen der Erfindung.The invention is represented by the features of
Hierbei kann der strukturierte Bereich prinzipiell auf der Rohraußenseite bzw. der Rohrinnenseite ausgeformt sein. Bevorzugt ist allerdings, die erfindungsgemäßen Rippenabschnitte im Rohrinneren anzuordnen. Die beschriebenen Strukturen lassen sich sowohl für Verdampfer- als auch für Kondensatorrohre einsetzen.In this case, the structured area can in principle be formed on the outside of the tube or the inside of the tube. However, it is preferred to arrange the rib sections according to the invention inside the pipe. The structures described can be used for both evaporator and condenser tubes.
Die Vorsprungshöhe wird zweckmäßigerweise als die Abmessung eines Vorsprungs in radialer Richtung definiert. Die Vorsprungshöhe ist dann in radialer Richtung die Strecke ausgehend von der Rohrwand bis zur von der Rohrwand entferntesten Stelle des Vorsprungs.Protrusion height is conveniently defined as the dimension of a protrusion in the radial direction. The height of the projection is then, in the radial direction, the distance starting from the pipe wall to the point of the projection which is furthest away from the pipe wall.
Die Schneidtiefe, auch Kerbtiefe genannt, ist die in radialer Richtung gemessene Strecke ausgehend von der originären Rippenspitze bis zur tiefsten Stelle der Kerbe. Mit anderen Worten: Die Kerbtiefe ist die Differenz der originären Rippenhöhe und der an der tiefsten Stelle einer Kerbe verbleibenden Restrippenhöhe.The cutting depth, also known as the notch depth, is the distance measured in the radial direction from the original tip of the rib to the deepest point of the notch. In other words: the notch depth is the difference between the original rib height and the remaining rib height at the deepest point of a notch.
Die Erfindung geht dabei von der Überlegung aus, dass die Rippenabschnitte prinzipiell auf der Rohraußenseite bzw. der Rohrinnenseite ausgeformt sein können. Bevorzugt ist allerdings, die erfindungsgemäßen Rippenabschnitte im Rohrinneren anzuordnen. Die beschriebenen Strukturen lassen sich sowohl für Verdampfer- als auch für Kondensatorrohre einsetzen.The invention is based on the consideration that the rib sections can in principle be formed on the outside of the tube or the inside of the tube. However, it is preferred to arrange the rib sections according to the invention inside the pipe. The structures described can be used for both evaporator and condenser tubes.
Ganz besonders eignen sich die erfindungsgemäßen Rippenabschnitte für Innenstrukturen. Hierbei ist die innere Fläche des Rohrs mit einer Mehrzahl von Vorsprüngen vergrößert, die in Rippenabschnitte untergliedert sind. Hierdurch verringert sich in erheblicher Weise der rohrseitige Wärmedurchgangswiderstand und der Wärmeübergangskoeffizient wird gesteigert. Die Vorsprünge schaffen zusätzliche Wege für einen Fluidfluß innerhalb des Rohres und erhöhen dadurch die Turbulenz des Wärmeübertragungsmediums, das innerhalb des Rohres fließt. Diese Maßnahme verringert die aus dem Fluid nahe der inneren Fläche des Rohres aufgebauten Grenzschicht.The rib sections according to the invention are particularly suitable for internal structures. Here, the inner surface of the tube is enlarged with a plurality of projections divided into rib portions. As a result, the heat transfer resistance on the pipe side is reduced considerably and the heat transfer coefficient is increased. The projections create additional Pathways for fluid flow within the tube, thereby increasing the turbulence of the heat transfer medium flowing within the tube. This measure reduces the boundary layer built up from the fluid near the inner surface of the tube.
Gegenüber glatten Oberflächen liefern die Vorsprünge ein Vielfaches an zusätzlichem Oberflächenanteil für einen zusätzlichen Wärmeaustausch. Versuche zeigen, dass die Leistungsfähigkeit von Rohren mit den in besonderer Weise gestalteten Rippenabschnitten dieser Erfindung in erheblicher Weise erhöht ist.Compared to smooth surfaces, the projections provide a multiple of additional surface area for additional heat exchange. Tests show that the performance of tubes with the specially designed fin sections of this invention is significantly increased.
Die verfahrensseitige Strukturierung des erfindungsgemäßen Wärmeübertragerrohrs kann unter Verwendung eines Werkzeugs hergestellt werden, welches in der
Das verwendete Werkzeug weist eine Schneidkante zum Schneiden durch die Rippen an der inneren Fläche des Rohres auf zur Schaffung von Rippensegmenten und eine Anhebekante zum Anheben der Rippensegmente zur Bildung der Vorsprünge. Auf diese Weise werden die Vorsprünge ohne Entfernung von Metall von der inneren Fläche des Rohrs gebildet. Die Vorsprünge an der inneren Fläche des Rohrs können in der gleichen oder einer unterschiedlichen Bearbeitung wie die Bildung der Rippen gebildet werden.The tool used has a cutting edge for cutting through the ribs on the inner surface of the tube to create rib segments and a lifting edge for raising the rib segments to form the projections. In this way, the protrusions are formed without removing metal from the inner surface of the tube. The protrusions on the inner surface of the tube may be formed in the same or different processing as the formation of the ribs.
Die Strukturierung der aus der Rohrwand kontinuierlich verlaufenden, achsparallelen oder helixförmig umlaufenden Rippen mit den zwischen jeweils benachbarten Rippen sich kontinuierlich erstreckende Primärnuten können mit den in der
Die erfindungsgemäße Lösung, bei der die Rippen in Rippenabschnitte unterteilt sind, die in eine Vielzahl von Vorsprüngen mit einer Vorsprungshöhe zerteilt sind, führt dazu, dass die Vorsprünge von der geregelten Ordnung abweichen. Daraus resultiert wiederum ein optimierter Wärmeübergang bei möglichst geringem Druckverlust, da die Fluidgrenzschicht, welche hinderlich für einen guten Wärmeübergang ist, durch zusätzlich erzeugte Turbulenzen unterbrochen wird. Eine Unterbrechung durch die Zerteilung der Vorsprünge führt dabei zusätzlich zu einer Erhöhung der Turbulenz sowie zu einem Fluidaustausch über den Verlauf der Primärrippe hinweg, was ebenfalls eine Unterbrechung der Grenzschicht bedingt. Hierbei kann der strukturierte Bereich prinzipiell auf der Rohraußenseite bzw. der Rohrinnenseite ausgeformt sein. Bevorzugt ist allerdings, die erfindungsgemäßen Rippenabschnitte im Rohrinneren anzuordnen. Die beschriebenen Strukturen lassen sich sowohl für Verdampfer- als auch für Kondensatorrohre einsetzen.The solution according to the invention, in which the ribs are divided into rib sections, which are divided into a plurality of projections with a projection height, causes the projections to deviate from the regulated order. This in turn results in optimized heat transfer with the lowest possible pressure loss, since the fluid boundary layer, which is a hindrance to good heat transfer, is interrupted by additionally generated turbulence. An interruption caused by the division of the projections also leads to an increase in turbulence and to an exchange of fluid over the course of the primary rib, which also causes an interruption in the boundary layer. In this case, the structured area can in principle be formed on the outside of the tube or the inside of the tube. However, it is preferred to arrange the rib sections according to the invention inside the pipe. The structures described can be used for both evaporator and condenser tubes.
Eine homogene Anordnung der Vorsprünge kann diese gezielte Unterbrechung der Grenzschicht nur bedingt leisten. Die Formen, Höhen und Anordnung der Abstände kann durch das Einstellen der Schneidmesser bzw. Schneidgeometrien sowie durch individuell angepasste Primärrippenformen und Geometrien angepasst und optimiert werden. Zur Optimierung der Fluidströmung kann der die Form der Vorsprünge individuell angepasst und damit die Unterbrechung der Grenzschicht effizient durchgeführt werden. Diese Optimierungen für die turbulente bzw. laminare Strömungsform werden durch unterschiedlichen Vorsprungshöhen realisiert.A homogeneous arrangement of the projections can only partially achieve this targeted interruption of the boundary layer. The shapes, heights and arrangement of the distances can be adjusted and optimized by adjusting the cutting blades or cutting geometries and by individually adapted primary rib shapes and geometries. In order to optimize the fluid flow, the shape of the projections can be individually adjusted and the boundary layer can thus be broken efficiently. These optimizations for the turbulent or laminar flow form are realized by different projection heights.
In bevorzugter Ausgestaltung der Erfindung können die Rippenabschnitte der Rippen von unter einem Steigungswinkel β verlaufenden Sekundärnuten gemessen gegen die Rohrlängsachse aus den Rippen gebildet sein.In a preferred embodiment of the invention, the rib sections of the ribs can be formed from the ribs of secondary grooves running at a pitch angle β, measured against the longitudinal axis of the pipe.
Hierbei können die Sekundärnuten gegenüber den Innenrippen unter einem Steigungswinkel von mindestens 10° und höchstens 80° verlaufen. Die Tiefe der Sekundärnuten kann variieren und mindestens 20% der ursprünglichen Rippenhöhe der Innenrippen betragen. Durch das Einbringen der Sekundärnuten besitzen die Innenrippen nun keinen konstanten Querschnitt mehr. Folgt man dem Verlauf der Innenrippen, dann ändert sich die Querschnittsform der Innenrippen an den Stellen der Sekundärnuten. Durch die Sekundärnuten entstehen im rohrseitig strömenden Medium zusätzliche Wirbel und axiale Durchtrittsstellen im wandnahen Bereich, wodurch der Wärmeübergangskoeffizient weiter gesteigert wird.Here, the secondary grooves can run at a pitch angle of at least 10° and at most 80° relative to the inner ribs. The depth of the secondary grooves can vary and be at least 20% of the original rib height of the inner ribs. By incorporating the secondary grooves, the inner ribs no longer have a constant cross-section. If one follows the course of the inner ribs, then the cross-sectional shape of the inner ribs changes at the locations of the secondary grooves. The secondary grooves create additional vortices in the medium flowing on the pipe side and axial passage points in the area close to the wall, which further increases the heat transfer coefficient.
Wenn die Tiefe der Sekundärnuten gleich der Höhe der ursprünglichen Innenrippen ist, dann entstehen auf der Rohrinnenseite voneinander beabstandete Rippenabschnitte als Strukturelemente, die Pyramidenstümpfen ähnlich sind. Durch das Aufbringen von Sekundärnuten ist eine gezielte Einstellung möglich, da die Vorsprünge nur in dem Bereich ausgebildet werden, in dem die Primärrippe noch ausgebildet ist.When the depth of the secondary grooves is equal to the height of the original internal ribs, spaced rib sections are formed on the inside of the tube as structural elements resembling truncated pyramids. A targeted adjustment is possible by applying secondary grooves, since the projections are formed only in the area in which the primary rib is still formed.
Erfindungsgemäß weisen die Vorsprünge alternierend wechselnde Schneidtiefen durch eine Rippe auf.According to the invention, the projections have alternately changing cutting depths due to a rib.
Bei einer derartigen Ausbildung lässt sich die Höhe der einzelnen Vorsprünge gezielt anpassen sowie zueinander variieren um somit besonders bei laminarer Strömung durch unterschiedliche Rippenhöhen in die unterschiedlichen Grenzschichten der Strömung bis hin zum Strömungskern eintauchen und die Wärme an die Rohrwand ableiten. Hierbei kann sich die Schneid- oder Kerbtiefe auch durch die gesamte ursprüngliche Rippe bis in die Kernwandung erstrecken.With such a design, the height of the individual projections can be specifically adjusted and varied in relation to one another in order to dip into the different boundary layers of the flow up to the flow core, particularly in the case of laminar flow, through different rib heights and dissipate the heat to the tube wall. In this case, the cutting or notching depth can also extend through the entire original rib into the core wall.
Eine wechselnde Kerb- oder Schneidtiefe ist auch damit gleichbedeutend, dass die jeweils tiefste Stelle der Kerben alterniert und folglich den Abstand zur Rohrwand verändert. Hierzu gleichbedeutend ist zudem, dass die jeweils tiefste Stelle der Kerben - hier mit Kerbgrund bezeichnet - im Abstand von der Rohrlängsachse über in Rippenrichtung aufeinanderfolgende Kerben alterniert.A changing notch or cutting depth is also synonymous with the fact that the deepest point of the notch alternates and consequently changes the distance to the pipe wall. Equivalent to this is also that the respective deepest point of the Notches - here referred to as the notch base - alternate at a distance from the longitudinal axis of the pipe over successive notches in the direction of the ribs.
Hierbei können die zumindest um einen Vorsprung benachbarten Einkerbungen in der Kerbtiefe um mindestens 10 % variieren. Weiter bevorzugt kann die Variation der Kerbtiefe mindestens 20 % oder sogar 50 % betragen.In this case, the indentations that are adjacent at least by a projection can vary in the indentation depth by at least 10%. More preferably, the variation in notch depth can be at least 20% or even 50%.
Bei einer vorteilhaften Ausführungsform der Erfindung kann mindestens ein Vorsprung aus der Hauptausrichtung entlang dem Rippenverlauf über die Primärnut auskragen. Dies bringt den Vorteil mit sich, dass die ausgebildete Grenzschicht im Rippenzwischenraum durch diesen in die Primärnut ragenden Vorsprung unterbrochen wird, was einen verbesserten Wärmeübergang bedingt.In an advantageous embodiment of the invention, at least one projection can project from the main alignment along the course of the ribs over the primary groove. This brings with it the advantage that the boundary layer formed in the space between the ribs is interrupted by this projection projecting into the primary groove, which results in improved heat transfer.
In vorteilhafter Ausgestaltung der Erfindung können die Rippenabschnitte der Rippen entlang dem Rippenverlauf langgestreckt ausgebildet sein. Hierbei sind die Rippen in Rippenabschnitte unterteilt, die in eine ausreichende Vielzahl von Vorsprüngen mit einer Vorsprungshöhe zerteilt sind. Beispielsweise umfasst ein Rippenabschnitt zumindest 3, bevorzugt zumindest 4 Vorsprünge. Die Rippenabschnitte können dabei gegeneinander beabstandet sein, wodurch sich Durchtrittsstellen für das Fluid bilden. Daraus resultiert wiederum ein optimierter Wärmeübergang bei möglichst geringem Druckverlust, da die Fluidgrenzschicht, welche hinderlich für einen guten Wärmeübergang ist, durch zusätzlich erzeugte Turbulenzen unterbrochen wird. Eine Unterbrechung führt dabei zusätzlich zu einer Erhöhung der Turbulenz sowie zu einem Fluidaustausch über den Verlauf der Primärrippe hinweg, wodurch ebenfalls eine Unterbrechung der Grenzschicht bedingt wird.In an advantageous embodiment of the invention, the rib sections of the ribs can be elongated along the course of the ribs. Here, the ribs are divided into rib portions divided into a sufficient plurality of projections with a projection height. For example, a rib section comprises at least 3, preferably at least 4, projections. The rib sections can be spaced apart from one another, as a result of which passage points for the fluid are formed. This in turn results in optimized heat transfer with the lowest possible pressure loss, since the fluid boundary layer, which is a hindrance to good heat transfer, is interrupted by additionally generated turbulence. An interruption also leads to an increase in turbulence and to an exchange of fluid over the course of the primary rib, which also causes an interruption in the boundary layer.
Vorteilhafterweise können mehrere Vorsprünge an der von der Rohrwand entferntesten Stelle eine zur Rohrlängsachse parallele Fläche aufweisen.Advantageously, a plurality of projections can have a surface parallel to the longitudinal axis of the tube at the point furthest away from the tube wall.
In bevorzugter Ausführungsform der Erfindung können die Vorsprünge in Vorsprungshöhe, Form und Ausrichtung untereinander variieren, um die Höhe der einzelnen Vorsprünge gezielt anzupassen sowie zueinander zu variieren um somit besonders bei laminarer Strömung durch unterschiedliche Rippenhöhen in die unterschiedlichen Grenzschichten der Strömung bis hin zum Strömungskern eintauchen und die Wärme an die Rohrwand ableiten.In a preferred embodiment of the invention, the projections in Projection height, shape and orientation vary with each other in order to adjust the height of the individual projections in a targeted manner and to vary them in relation to one another in order to immerse themselves in the different boundary layers of the flow up to the flow core and dissipate the heat to the pipe wall, especially in the case of laminar flow through different rib heights.
In besonders bevorzugter Ausführungsform kann ein Vorsprung an der von der Rohrwand abgewandten Seite eine spitz zulaufende Spitze aufweisen. Dies führt bei Kondensatorrohren mit einer Verwendung von zweiphasigen Fluiden zu einer optimierten Kondensation an der Vorsprungsspitze.In a particularly preferred embodiment, a projection can have a pointed tip on the side facing away from the tube wall. This leads to optimized projection tip condensation in condenser tubes using two-phase fluids.
In weiterer vorteilhafter Ausgestaltung der Erfindung kann ein Vorsprung an der von der Rohrwand abgewandten Seite eine gekrümmte Spitze aufweisen, deren lokaler Krümmungsradius ausgehend von der Rohrwand mit zunehmender Entfernung verkleinert ist. Dies hat zum Vorteil, dass das an der Spitze eines Vorsprungs entstandene Kondensat durch die konvexe Krümmung schneller hin zum Rippenfuß transportiert und somit der Wärmeübergang bei der Verflüssigung optimiert wird. Beim Phasenwechsel, hier im speziellen bei der Verflüssigung liegt das Hauptaugenmerk auf der Verflüssigung des Dampfes und das Abführen des Kondensats weg von der Spitze hin zum Rippenfuß. Dafür bildet eine konvex gekrümmter Vorsprung eine ideale Grundlage zur effektiven Wärmeübertragung. Die Basis des Vorsprungs steht dabei im Wesentlichen radial von der Rohrwand ab.In a further advantageous embodiment of the invention, a projection can have a curved tip on the side facing away from the pipe wall, the local radius of curvature of which, starting from the pipe wall, is reduced with increasing distance. The advantage of this is that the condensate that forms at the tip of a projection is transported more quickly to the base of the ribs due to the convex curvature, thus optimizing the heat transfer during condensation. During the phase change, here in particular during the liquefaction, the main focus is on the liquefaction of the vapor and the discharge of the condensate away from the tip towards the bottom of the fins. A convexly curved projection forms an ideal basis for effective heat transfer. The base of the projection protrudes essentially radially from the tube wall.
In vorteilhafter Ausgestaltung der Erfindung können die Vorsprünge eine unterschiedliche Form und/oder Höhe von einem Rohranfang entlang der Rohrlängsachse hin zum gegenüber liegenden Rohrende aufweisen. Der Vorteil dabei ist eine gezielte Einstellung des Wärmeübergangs von Rohranfang bis Rohrende.In an advantageous embodiment of the invention, the projections can have a different shape and/or height from the beginning of the pipe along the longitudinal axis of the pipe to the opposite end of the pipe. The advantage of this is a targeted adjustment of the heat transfer from the beginning of the pipe to the end of the pipe.
Vorteilhafterweise können sich die Spitzen von zumindest zwei Vorsprüngen entlang dem Rippenverlauf gegenseitig berühren oder überkreuzen; was speziell im reversiblen Betrieb beim Phasenwechsel von Vorteil ist, da die Vorsprünge für die Verflüssigung weit aus dem Kondensat ragen und für die Verdampfung eine Art Kavität ausbilden.Advantageously, the tips of at least two projections along touching or crossing each other along the course of the ribs; which is particularly advantageous in reversible operation during the phase change, since the projections for the liquefaction protrude far out of the condensate and form a kind of cavity for the evaporation.
In bevorzugter Ausführungsform der Erfindung können sich die Spitzen von zumindest zwei Vorsprüngen über die Primärnut hinweg gegenseitig berühren oder überkreuzen. Dies ist speziell im reversiblen Betrieb beim Phasenwechsel von Vorteil, da die Vorsprünge für die Verflüssigung weit aus dem Kondensat ragen und für die Verdampfung eine Art Kavität ausbilden.In a preferred embodiment of the invention, the tips of at least two projections can touch or cross one another across the primary groove. This is particularly advantageous in reversible operation during the phase change, since the projections for the liquefaction protrude far out of the condensate and form a kind of cavity for the evaporation.
In besonders bevorzugter Ausführungsform kann mindestens einer der Vorsprünge derartig verformt sein, dass dessen Spitze die Rohrinnenseite bzw. die Rohraußenseite berührt. Insbesondere im reversiblen Betrieb beim Phasenwechsel ist dies von Vorteil, da die Vorsprünge für die Verflüssigung für die Verdampfung eine Art Kavität und damit Blasenkeimsteiten ausbilden.In a particularly preferred embodiment, at least one of the projections can be deformed in such a way that its tip touches the inside of the pipe or the outside of the pipe. This is advantageous in particular in reversible operation during the phase change, since the projections form a kind of cavity for the liquefaction for the evaporation and thus bubble nuclei.
Vorteilhafterweise können die Vorsprünge aus Rippen gebildet werden, wobei mindestens eine der Rippen in mindestens einem der Merkmale Rippenhöhe, Rippenabstand, Rippenspitze, Rippenzwischenraum, Rippenöffnungswinkel und Drall voneinander variiert.Advantageously, the projections can be formed from ribs, with at least one of the ribs varying from one another in at least one of the characteristics of rib height, rib spacing, rib tip, rib spacing, rib opening angle and twist.
Ausführungsbeispiele der Erfindung werden anhand der schematischen Zeichnungen näher erläutert.Exemplary embodiments of the invention are explained in more detail with reference to the schematic drawings.
Darin zeigen:
- Fig. 1
- schematisch eine Schrägansicht eines Rohrausschnitts mit der erfindungsgemäßen Struktur auf der Rohrinnenseite;
- Fig. 2
- schematisch eine weitere Schrägansicht eines Rohrausschnitts mit der erfindungsgemäßen Innenstruktur mit Sekundärnut;
- Fig. 3
- schematisch einen Rippenabschnitt mit unterschiedlicher Kerbtiefe;
- Fig. 4
- schematisch einen Rippenabschnitt mit einem über die Primärnut kragenden Strukturelement;
- Fig. 5
- schematisch einen Rippenabschnitt mit einem in Rippenrichtung an der Spitze gekrümmten Vorsprung;
- Fig. 6
- schematisch einen Rippenabschnitt mit einem Vorsprung mit einer parallelen Fläche an der von der Rohrwand entferntesten Stelle;
- Fig. 7
- schematisch einen Rippenabschnitt mit zwei sich entlang dem Rippenverlauf sich gegenseitig berührenden Vorsprüngen;
- Fig. 8
- schematisch einen Rippenabschnitt mit zwei sich entlang dem Rippenverlauf sich gegenseitig überkreuzenden Vorsprüngen;
- Fig. 9
- schematisch einen Rippenabschnitt mit zwei sich über die Primärnut hinweg gegenseitig berührenden Vorsprüngen; und
- Fig. 10
- schematisch einen Rippenabschnitt mit zwei sich über die Primärnut hinweg gegenseitig überkreuzenden Vorsprüngen.
- 1
- schematically an oblique view of a pipe section with the structure according to the invention on the inside of the pipe;
- 2
- schematically another oblique view of a pipe section with the inner structure according to the invention with a secondary groove;
- 3
- schematically a rib section with different notch depth;
- 4
- schematically a rib section with a structural element projecting over the primary groove;
- figure 5
- schematically shows a rib section with a projection curved at the tip in the rib direction;
- 6
- schematically a rib section with a projection with a parallel face at the farthest point from the tube wall;
- 7
- schematically a rib section with two mutually touching projections along the course of the ribs;
- 8
- schematically a rib section with two mutually crossing projections along the course of the ribs;
- 9
- schematically a rib section with two mutually touching projections across the primary groove; and
- 10
- schematically shows a rib section with two mutually crossing projections across the primary groove.
Einander entsprechende Teile sind in allen Figuren mit denselben Bezugszeichen versehen.Corresponding parts are provided with the same reference symbols in all figures.
Die Rippen 3 sind entlang dem Rippenverlauf in sich periodisch wiederholende Rippenabschnitte 31 unterteilt, die in eine Vielzahl von Vorsprüngen 6 zerteilt sind.The
Die Vorsprünge 6 sind durch Schneiden der Rippen 3 mit einer Schneidtiefe quer zum Rippenverlauf zur Bildung von Rippensegmenten und durch Anheben der Rippensegmente mit einer Hauptausrichtung entlang dem Rippenverlauf zwischen Primärnuten 4 ausgeformt.The
In
In
Die Vorsprungshöhe h ist in
Die Kerbtiefe t1, t2, t3 ist die in radialer Richtung gemessene Strecke ausgehend von der originären Rippenspitze bis zur tiefsten Stelle der Kerbe. Mit anderen Worten: Die Kerbtiefe ist die Differenz der originären Rippenhöhe und der an der tiefsten Stelle einer Kerbe verbleibenden Restrippenhöhe.The notch depth t 1 , t 2 , t 3 is the distance measured in the radial direction, starting from the original rib tip to the deepest point of the notch. In other words: the notch depth is the difference between the original rib height and the remaining rib height at the deepest point of a notch.
Hierdurch wird der Wärmeübergang bei der Verflüssigung optimiert.This optimizes the heat transfer during liquefaction.
Bei den in den
- 11
- Wärmeübertragerrohrheat exchanger tube
- 22
- Rohrwandpipe wall
- 2121
- Rohraußenseitepipe exterior
- 2222
- Rohrinnenseitepipe inside
- 33
- Ripperib
- 3131
- Rippenabschnittrib section
- 44
- Primärnutprimary groove
- 55
- Sekundärnutsecondary groove
- 66
- Vorsprunghead Start
- 6161
- parallele Flächeparallel surface
- 6262
- SpitzeTop
- AA
- Rohrlängsachselongitudinal axis of the pipe
- ββ
- Steigungswinkelpitch angle
- t1t1
- erste Schneidtiefefirst cutting depth
- t2t2
- zweite Schneidtiefesecond cutting depth
- t3t3
- dritte Schneidtiefethird cutting depth
- hH
- Vorsprungshöheprotrusion height
Claims (13)
- Heat transfer pipe (1) having a longitudinal pipe axis (A), a pipe wall (2), an outer pipe side (21) and an inner pipe side (22), wherein- continually extending, axially parallel or helically circumferential ribs (3) are formed from the pipe wall (2) at the outer pipe side (21) and/or inner pipe side (22),- continuously extending primary grooves (4) are formed in each case between adjacent ribs (3),wherein the ribs (3) are subdivided along the rib extent into periodically repeating rib portions (31) which are separated into a large number of projections (6) with a projection height (h), wherein the projections (6) are formed by cutting the ribs (3) at a cutting depth (t1, t2, t3) transversely relative to the rib extent in order to form rib segments and by raising the rib segments with a main orientation along the rib extent between primary grooves (4), characterised in that the projections (6) have alternately changing cutting depths (t1, t2, t3) through a rib (3).
- Heat transfer pipe (1) according to claim 1, characterised in that the rib portions (31) of the ribs (3) are formed from the ribs (3) by secondary grooves (5) which extend at an angle of inclination β measured with respect to the longitudinal pipe axis (A).
- Heat transfer pipe (1) according to claim 1 or 2, characterised in that at least one projection (6) protrudes from the main orientation along the rib extent over the primary groove (4).
- Heat transfer pipe (1) according to claim 2 or 3, characterised in that the rib portions (31) of the ribs (3) are constructed to be elongate along the rib extent.
- Heat transfer pipe (1) according to any one of claims 1 to 4, characterised in that a plurality of projections (6) have at the location furthest away from the pipe wall (2) a face (61) which is parallel with the longitudinal pipe axis (A).
- Heat transfer pipe (1) according to any one of claims 1 to 5, characterised in that the projections (6) vary relative to each other in terms of projection height (h), shape and orientation.
- Heat transfer pipe (1) according to any one of claims 1 to 6, characterised in that a projection (6) has an acutely tapering tip (62) at the side facing away from the pipe wall (2) .
- Heat transfer pipe (1) according to any one of claims 1 to 7, characterised in that a projection (6) at the side facing away from the pipe wall (2) has a curved tip (62) whose local radius of curvature is reduced with increasing spacing from the pipe wall (2).
- Heat transfer pipe (1) according to any one of claims 1 to 8, characterised in that the projections (6) have a different shape and/or height from a pipe beginning along the longitudinal pipe axis (A) towards the opposing pipe end.
- Heat transfer pipe (1) according to either claim 7 or claim 8, characterised in that the tips (62) of at least two projections (6) touch or intersect each other along the rib extent.
- Heat transfer pipe (1) according to either claim 7 or claim 8, characterised in that the tips (62) of at least two projections (6) touch or intersect each other over the primary groove (4).
- Heat transfer pipe (1) according to either claim 7 or claim 8, characterised in that at least one of the projections (6) is formed in such a manner that the tip (62) thereof touches the inner pipe side (22) or the outer pipe side.
- Heat transfer pipe (1) according to any one of claims 1 to 12, characterised in that the projections (6) are formed from ribs (3), wherein at least one of the ribs (3) varies relative to the others in terms of at least one of the features rib height, rib spacing, rib tip, intermediate rib space, rib opening angle and torsion.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102016006913.9A DE102016006913B4 (en) | 2016-06-01 | 2016-06-01 | heat exchanger tube |
PCT/EP2017/000597 WO2017207091A1 (en) | 2016-06-01 | 2017-05-17 | Heat exchanger tube |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3465056A1 EP3465056A1 (en) | 2019-04-10 |
EP3465056B1 true EP3465056B1 (en) | 2022-07-06 |
Family
ID=58772829
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17725859.7A Active EP3465056B1 (en) | 2016-06-01 | 2017-05-17 | Heat exchanger tube |
Country Status (10)
Country | Link |
---|---|
US (1) | US10948245B2 (en) |
EP (1) | EP3465056B1 (en) |
JP (1) | JP6907232B2 (en) |
KR (1) | KR102367602B1 (en) |
CN (1) | CN109312992A (en) |
DE (1) | DE102016006913B4 (en) |
MX (1) | MX2018014689A (en) |
PL (1) | PL3465056T3 (en) |
PT (1) | PT3465056T (en) |
WO (1) | WO2017207091A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190293364A1 (en) * | 2018-03-22 | 2019-09-26 | Johnson Controls Technology Company | Varied geometry heat exchanger systems and methods |
CN109631623B (en) * | 2018-12-22 | 2020-12-08 | 大连尼维斯冷暖技术有限公司 | Fin heat exchanger manufactured by using string pipe jig |
Family Cites Families (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3696861A (en) | 1970-05-18 | 1972-10-10 | Trane Co | Heat transfer surface having a high boiling heat transfer coefficient |
US3776018A (en) | 1972-02-29 | 1973-12-04 | Noranda Metal Ind | Tubing with inner baffle fins and method of producing it |
DE2808080C2 (en) | 1977-02-25 | 1982-12-30 | Furukawa Metals Co., Ltd., Tokyo | Heat transfer tube for boiling heat exchangers and process for its manufacture |
US4179911A (en) | 1977-08-09 | 1979-12-25 | Wieland-Werke Aktiengesellschaft | Y and T-finned tubes and methods and apparatus for their making |
DE2758526C2 (en) | 1977-12-28 | 1986-03-06 | Wieland-Werke Ag, 7900 Ulm | Method and device for manufacturing a finned tube |
US4577381A (en) | 1983-04-01 | 1986-03-25 | Kabushiki Kaisha Kobe Seiko Sho | Boiling heat transfer pipes |
US4660630A (en) | 1985-06-12 | 1987-04-28 | Wolverine Tube, Inc. | Heat transfer tube having internal ridges, and method of making same |
US4733698A (en) * | 1985-09-13 | 1988-03-29 | Kabushiki Kaisha Kobe Seiko Sho | Heat transfer pipe |
US5054548A (en) | 1990-10-24 | 1991-10-08 | Carrier Corporation | High performance heat transfer surface for high pressure refrigerants |
US5332034A (en) * | 1992-12-16 | 1994-07-26 | Carrier Corporation | Heat exchanger tube |
DE4404357C2 (en) | 1994-02-11 | 1998-05-20 | Wieland Werke Ag | Heat exchange tube for condensing steam |
US5458191A (en) * | 1994-07-11 | 1995-10-17 | Carrier Corporation | Heat transfer tube |
CN1084876C (en) * | 1994-08-08 | 2002-05-15 | 运载器有限公司 | Heat transfer tube |
EP0713072B1 (en) | 1994-11-17 | 2002-02-27 | Carrier Corporation | Heat transfer tube |
JP3323682B2 (en) * | 1994-12-28 | 2002-09-09 | 株式会社日立製作所 | Heat transfer tube with internal cross groove for mixed refrigerant |
US6182743B1 (en) * | 1998-11-02 | 2001-02-06 | Outokumpu Cooper Franklin Inc. | Polyhedral array heat transfer tube |
US6336501B1 (en) * | 1998-12-25 | 2002-01-08 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Tube having grooved inner surface and its production method |
DE19963353B4 (en) * | 1999-12-28 | 2004-05-27 | Wieland-Werke Ag | Heat exchanger tube structured on both sides and method for its production |
US6883597B2 (en) * | 2001-04-17 | 2005-04-26 | Wolverine Tube, Inc. | Heat transfer tube with grooved inner surface |
DE10156374C1 (en) | 2001-11-16 | 2003-02-27 | Wieland Werke Ag | Heat exchange tube structured on both sides has inner fins crossed by secondary grooves at specified rise angle |
US8573022B2 (en) * | 2002-06-10 | 2013-11-05 | Wieland-Werke Ag | Method for making enhanced heat transfer surfaces |
CA2489104C (en) | 2002-06-10 | 2011-10-18 | Wolverine Tube, Inc. | Method of manufacturing a tube |
US7311137B2 (en) * | 2002-06-10 | 2007-12-25 | Wolverine Tube, Inc. | Heat transfer tube including enhanced heat transfer surfaces |
US20060112535A1 (en) * | 2004-05-13 | 2006-06-01 | Petur Thors | Retractable finning tool and method of using |
CN1898520B (en) * | 2003-10-23 | 2012-06-13 | 沃尔弗林管子公司 | Method and tool for making enhanced heat transfer surfaces |
EP1866119B1 (en) * | 2005-03-25 | 2012-06-27 | Wolverine Tube, Inc. | Tool for making enhanced heat transfer surfaces |
DE102006008083B4 (en) | 2006-02-22 | 2012-04-26 | Wieland-Werke Ag | Structured heat exchanger tube and method for its production |
ES2721599T3 (en) * | 2007-10-17 | 2019-08-01 | Nippon Steel Corp | Production method of an internally fluted steel tube and internally fluted steel tube |
US20090178432A1 (en) * | 2008-01-15 | 2009-07-16 | Scot Reagen | Ice maker evaporator |
DE102009007446B4 (en) * | 2009-02-04 | 2012-03-29 | Wieland-Werke Ag | Heat exchanger tube and method for its production |
US20110036553A1 (en) * | 2009-08-12 | 2011-02-17 | Brian John Christen | Integral evaporator and defrost heater system |
DE102009060395A1 (en) * | 2009-12-22 | 2011-06-30 | Wieland-Werke AG, 89079 | Heat exchanger tube and method for producing a heat exchanger tube |
DE102010007570A1 (en) * | 2010-02-10 | 2011-08-11 | ThyssenKrupp Nirosta GmbH, 47807 | Product for fluidic applications, process for its preparation and use of such a product |
CN202630743U (en) * | 2012-06-11 | 2012-12-26 | 柳州展维热工科技有限公司 | High-efficiency energy-saving heat exchanger |
US10551130B2 (en) * | 2014-10-06 | 2020-02-04 | Brazeway, Inc. | Heat transfer tube with multiple enhancements |
US10508325B2 (en) * | 2015-06-18 | 2019-12-17 | Brazeway, Inc. | Corrosion-resistant aluminum alloy for heat exchanger |
CN204830966U (en) * | 2015-08-26 | 2015-12-02 | 航天海鹰(哈尔滨)钛业有限公司 | High -efficient condenser pipe is used to thermal power condenser |
-
2016
- 2016-06-01 DE DE102016006913.9A patent/DE102016006913B4/en active Active
-
2017
- 2017-05-17 PT PT177258597T patent/PT3465056T/en unknown
- 2017-05-17 WO PCT/EP2017/000597 patent/WO2017207091A1/en unknown
- 2017-05-17 MX MX2018014689A patent/MX2018014689A/en unknown
- 2017-05-17 PL PL17725859.7T patent/PL3465056T3/en unknown
- 2017-05-17 EP EP17725859.7A patent/EP3465056B1/en active Active
- 2017-05-17 CN CN201780034247.7A patent/CN109312992A/en active Pending
- 2017-05-17 KR KR1020187030836A patent/KR102367602B1/en active IP Right Grant
- 2017-05-17 JP JP2018558389A patent/JP6907232B2/en active Active
- 2017-05-17 US US16/099,271 patent/US10948245B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2019517650A (en) | 2019-06-24 |
CN109312992A (en) | 2019-02-05 |
US10948245B2 (en) | 2021-03-16 |
DE102016006913A1 (en) | 2017-12-07 |
MX2018014689A (en) | 2019-02-28 |
JP6907232B2 (en) | 2021-07-21 |
KR102367602B1 (en) | 2022-02-25 |
PT3465056T (en) | 2022-08-22 |
WO2017207091A1 (en) | 2017-12-07 |
PL3465056T3 (en) | 2022-11-14 |
EP3465056A1 (en) | 2019-04-10 |
DE102016006913B4 (en) | 2019-01-03 |
KR20190013719A (en) | 2019-02-11 |
US20190145718A1 (en) | 2019-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102006008083B4 (en) | Structured heat exchanger tube and method for its production | |
DE10101589C1 (en) | Heat exchanger tube and process for its production | |
DE60303306T2 (en) | HEAT TRANSFER TUBES AND METHOD FOR THE PRODUCTION AND USE THEREOF | |
EP2339283B1 (en) | Heat transfer pipe and method for manufacturing same | |
EP2253922B1 (en) | Metallic heat exchange pipe | |
DE2431162A1 (en) | FIBER TUBE | |
EP2795233B1 (en) | Evaporator pipe with optimised external structure | |
DE19510124A1 (en) | Exchanger tube for a heat exchanger | |
EP3111153B1 (en) | Metal heat exchanger tube | |
EP3465056B1 (en) | Heat exchanger tube | |
EP3465055B1 (en) | Heat exchanger tube | |
EP2791609B1 (en) | Condenser tubes with additional flank structure | |
EP3465057B1 (en) | Heat exchanger tube | |
EP3581871B1 (en) | Metallic heat exchange pipe | |
EP0268831A1 (en) | Plate fin | |
EP4237782B1 (en) | Metal heat exchanger tube | |
EP4237781B1 (en) | Metal heat exchanger tube | |
DE8628175U1 (en) | Slat | |
DE202020005628U1 (en) | Metallic heat exchanger tube |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20181026 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20220218 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1503125 Country of ref document: AT Kind code of ref document: T Effective date: 20220715 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502017013429 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Ref document number: 3465056 Country of ref document: PT Date of ref document: 20220822 Kind code of ref document: T Free format text: AVAILABILITY OF NATIONAL TRANSLATION Effective date: 20220812 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20220706 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220706 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220706 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221006 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220706 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220706 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220706 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220706 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220706 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221106 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220706 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221007 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502017013429 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220706 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220706 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220706 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220706 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220706 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220706 |
|
26N | No opposition filed |
Effective date: 20230411 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220706 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220706 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220706 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20230517 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20230531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220706 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230517 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230531 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230531 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230517 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230517 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230517 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230531 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20240312 Year of fee payment: 8 Ref country code: FR Payment date: 20240308 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240531 Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1503125 Country of ref document: AT Kind code of ref document: T Effective date: 20230517 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230517 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230517 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240411 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PT Payment date: 20240516 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20240426 Year of fee payment: 8 |