EP3581871B1 - Metallic heat exchange pipe - Google Patents

Metallic heat exchange pipe Download PDF

Info

Publication number
EP3581871B1
EP3581871B1 EP19000245.1A EP19000245A EP3581871B1 EP 3581871 B1 EP3581871 B1 EP 3581871B1 EP 19000245 A EP19000245 A EP 19000245A EP 3581871 B1 EP3581871 B1 EP 3581871B1
Authority
EP
European Patent Office
Prior art keywords
rib
heat exchanger
metal heat
cavity
exchanger pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19000245.1A
Other languages
German (de)
French (fr)
Other versions
EP3581871A1 (en
Inventor
Achim Gotterbarm
Jean El Hajal
Jochen Dietl
Andreas Schwitalla
Ronald Lutz
Martin Weixler
Manfred Knab
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wieland Werke AG
Original Assignee
Wieland Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wieland Werke AG filed Critical Wieland Werke AG
Priority to PL19000245T priority Critical patent/PL3581871T3/en
Publication of EP3581871A1 publication Critical patent/EP3581871A1/en
Application granted granted Critical
Publication of EP3581871B1 publication Critical patent/EP3581871B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/26Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means being integral with the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/34Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending obliquely
    • F28F1/36Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending obliquely the means being helically wound fins or wire spirals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • F28F13/185Heat-exchange surfaces provided with microstructures or with porous coatings
    • F28F13/187Heat-exchange surfaces provided with microstructures or with porous coatings especially adapted for evaporator surfaces or condenser surfaces, e.g. with nucleation sites

Definitions

  • the invention relates to a metallic heat exchanger tube with ribs running around the outside of the tube according to the preamble of claim 1.
  • a heat exchanger tube is made of WO2013 / 087140A1 known.
  • Metallic heat exchanger tubes of this type are used in particular for the evaporation of liquids from pure substances or mixtures on the outside of the tube.
  • Shell and tube heat exchangers are often used in which liquids of pure substances or mixtures evaporate on the outside of the tube and thereby cool down brine or water on the inside of the tube. Such devices are referred to as flooded evaporators.
  • the size of the evaporators can be greatly reduced. As a result, the manufacturing costs of such apparatus decrease.
  • the amount of refrigerant required decreases, which can make up a not insignificant share of the total system costs with the chlorine-free safety refrigerants that are mainly used today.
  • the risk potential can also be reduced by reducing the filling quantity.
  • Today's high-performance pipes are already four times more powerful than smooth pipes of the same diameter.
  • Integrally rolled finned tubes are understood to mean finned tubes in which the fins are made of the wall material a smooth tube were formed.
  • Various methods are known with which the channels located between adjacent ribs are closed in such a way that connections between the channel and the surroundings remain in the form of pores or slots.
  • such essentially closed channels are formed by bending or folding the ribs ( US 3,696,861 A ; US 5,054,548 A ; US 7 178 361 B2 ), by splitting and compressing the ribs ( DE 27 58 526 C2 ; US 4,577,381 A ) and by notching and compressing the ribs ( US 4,660,630 A ; EP 0 713 072 B1 ; US 4,216,826 A ) generated.
  • the most powerful, commercially available finned tubes for flooded evaporators have a finned structure on the outside of the tube with a fin density of 55 to 60 fins per inch ( US 5,669,441 A ; US 5 697 430 A ; DE 197 57 526 C1 ). This corresponds to a rib pitch of approximately 0.45 to 0.40 mm.
  • a smaller rib division inevitably requires equally fine tools.
  • finer tools are subject to a higher risk of breakage and faster wear.
  • the tools currently available enable the safe production of finned tubes with fin densities of up to 60 fins per inch. Furthermore, as the fin pitch decreases, the production speed of the pipes becomes slower, and consequently the manufacturing costs become higher.
  • EP 1 223 400 B1 and WO 2014/072 047 A1 It is proposed to produce undercut secondary grooves at the bottom of the groove, which extend continuously along the primary groove. The cross-section of these secondary grooves can remain constant or can be varied at regular intervals.
  • WO 2014/072 046 A1 It is proposed to produce pyramid-like undercut structural elements at the bottom of the groove between the ribs, which are arranged at regular intervals along the primary groove.
  • the invention has for its object to provide a performance-enhanced heat exchanger tube for the evaporation of liquids on the outside of the tube.
  • the invention includes a metallic heat exchanger tube, comprising a tube wall and ribs encircling the outside of the tube, which have a rib foot, rib flanks and a rib tip and a primary groove formed between the ribs, the rib foot projecting essentially radially from the tube wall and along the rib flanks the primary groove are provided with additional structural elements spaced apart from one another, which are designed as material projections formed from the material of the rib flank and arranged laterally on the rib flank.
  • the material projections are deformed in such a way that they touch the tube wall in the area of the primary groove, so that local cavities are formed.
  • the cavities have openings in the circumferential direction of the ribs.
  • the invention is based on the consideration that to increase the heat transfer during the evaporation, the process of bubble boiling is intensified.
  • the formation of bubbles begins at the germination points. These germ sites are mostly small gas or vapor inclusions. When the growing bubble has reached a certain size, it detaches from the surface. If, during the course of the bubble detachment, the germ site was flooded with liquid, the germ site is deactivated.
  • the surface must therefore be designed in such a way that a small bubble remains when the bubble is detached, which then serves as the nucleus for a new cycle of bubble formation. This is achieved by forming local cavities on the surface which have openings in the circumferential direction of the ribs. The liquid and vapor are exchanged through the opening.
  • a cavity is formed from material of the rib flank which, shaped like a chip, touches the pipe wall in the area of the primary groove as a material projection.
  • it is the front edge, i.e. the area of a material projection that is the most distant from the rib flank in the course of the curvature.
  • the deformed material projections have a point on the front, the front edges of which, or the surface portions directly connected to these front edges by a conceivable rolling process in the manufacturing process, can come into contact with the tube wall in the region of the primary groove.
  • a cavity is consequently formed from the material projection and the rib foot remaining radially within the material projection and the region of the primary groove adjoining the rib foot until the material projection contacts.
  • the material projections are particularly preferably on both sides of the ribs arranged.
  • the length of the areas in the circumferential direction between two cavities can be between 0.2 mm and 0.5 mm. In this way, optimal coordination of the successive cavities and the areas in between is achieved.
  • the rib tips can be deformed in such a way that they cover and partially close off the primary grooves in the radial direction and thus form a helically surrounding, partially closed cavity.
  • the rib tips can have, for example, a substantially T-shaped cross section with pore-like recesses through which the vapor bubbles can escape.
  • the particular advantage of the invention is that the effect of a cavity on the formation of bubbles is particularly great if the exchange of liquid and steam is controlled in a targeted manner and the flooding of the bladder germ site in the cavity is prevented.
  • the position of the cavities in the vicinity of the primary groove base is particularly favorable for the evaporation process, since the excess temperature is greatest at the groove base and therefore the highest driving temperature difference is available there for the formation of bubbles.
  • the cavities can form a cylindrical cavity.
  • the material projections can deform more and more with increasing distance from the rib flank, so that they curl up to the point of contact with the tube wall and a cylindrical tube is thereby formed.
  • a cylindrical cavity has two openings of the same type in the circumferential direction of the ribs, via which a bubble nuclei supports the evaporation process of a fluid.
  • the maximum clear width of a cavity can advantageously be a maximum of half the longitudinal extent of the cavity. In this way, elongated cavities are formed, which represent bladder germ sites particularly efficiently and contribute to an increase in the heat transfer during evaporation. When the bubble growing from the elongated cavity has reached a certain size, it detaches from the surface.
  • the elongated tube as a germ site is only partially flooded with liquid, which means that the germ site remains constantly activated.
  • the dimension of the cavity is consequently designed such that when a bubble is detached, a small bubble remains, which then serves as a nucleus for a new cycle of bubble formation.
  • fluid guide structures can be arranged on the rib flanks between the cavities.
  • the bubbles formed in the evaporation process preferably originate in the cavities opened in the circumferential direction of the ribs, and the liquid flows through the fluid guide structures preferably radially along the rib flank near the closed regions of the cavity.
  • the escaping bladder is not hindered by the inflowing liquid working medium and can expand undisturbed in the primary groove.
  • the respective flow zones for the liquid and the vapor are ideally spatially separated from one another.
  • fluid guide structures can be arranged which extend from one cavity to the cavity adjacent in the circumferential direction of the ribs.
  • the liquid flows particularly efficiently radially along the rib flank.
  • the escaping bladder is not hindered by the inflowing liquid working medium and can expand in the primary groove until it detaches.
  • the respective flow zones for the liquid and for the vapor are spatially separated by the fluid guide structures.
  • the fluid guide structures on the rib flanks can extend in a raised arc segment rising towards the rib tip. Through such fluid guide structures, the fluid is led to the cavities as bubble nuclei for evaporation.
  • the fluid guide structures on the rib flanks can advantageously extend in the radial direction as raised fluid guide surfaces.
  • Raised fluid guiding surfaces can, due to the comparatively sharp edges and the wetting behavior of the liquid fluid, be particularly effective for mass transfer on the heat exchanger tube and thus for efficient heat exchange.
  • a fluid guide surface can end directed radially inwards at or in the immediate vicinity of a cavity. Structures of this type ensure targeted fluid guidance and thus efficient heat dissipation on the outside of the pipe.
  • a fluid guide surface can advantageously end radially outward at or in the immediate vicinity of the rib tip.
  • the liquid fluid is already guided radially towards the tube wall for heat exchange along the fin flanks.
  • the fluid guide structures on the rib flanks can extend outward in the radial direction up to a maximum of half the rib height.
  • the rib tip can be designed to be extremely narrow, as a result of which, in the radially inward direction, a rib only has a sufficient width and thus sufficient material in the central part and in the region of the rib base in order to form a material projection from the flank.
  • Fig. 1 shows a perspective partial view of a rib section of a heat exchanger tube 1 with four material projections 4. From the tube outer side 21, only a part of the circumferential, integrally formed ribs 3 is shown.
  • the ribs 3 have a rib foot 31 which attaches to the tube wall 2, rib flanks 32 and a rib tip 33.
  • the rib 3 projects essentially radially from the tube wall 2.
  • the rib flanks 32 are provided with additional structural elements which are designed as material projections 4 which attach laterally to the rib flank 32.
  • the material projections 4 have tips 41 on the end face which touch the tube wall 2 in the region of the primary groove 34. In this way, together with the rib base 31, cavities 5 form, which are in the direction of rotation U of the ribs
  • Such cavities 5 preferably form bubble nuclei in the evaporation process of a fluid, which promote heat exchange.
  • the boundary surfaces of the material projections 4 are convexly curved on the side facing away from the tube wall 2. In principle, however, other boundary surfaces can also be provided with a convex curvature for each material projection 4. The remaining, non-convex boundary surfaces can either be flat or concave.
  • the material of the integrally worked-out material projections 4 comes from the fin flank 32, with recesses 42 additionally being formed in the fin flank 32 due to a material shift during the manufacture of the heat exchanger tubes 1.
  • Fig. 2 shows a detailed view of a material projection 4 with a curved boundary surface and a tip 41 which contacts the tube wall 2 in the region of the primary groove 34.
  • the cavity 5 formed from the rib base 31 and the inside of the material projections 4 has an approximately cylindrical cavity.
  • the maximum clear width x 1 of a cavity 5 is significantly smaller than the longitudinal extension x 2 of the cavity 5. This creates elongated cavities which form bubble nuclei particularly efficiently and contribute to an increase in the heat transfer during evaporation.
  • the dimension of the cavity is consequently designed such that when a bubble is detached in the evaporation process, a small bubble residue remains, which then serves as a nucleus for a new cycle of bubble formation.
  • liquid fluid is preferably accumulated in the area of the recess 42, as a result of which there is an increasing amount of liquid in the area of the bladder germ, which is available for evaporation.
  • the structural size of the material projections 4 and thus also the cavities 5 are typically in the submillimeter range.
  • Fig. 3 shows a perspective partial view of a rib section of a heat exchanger tube 1 with material projections 4 and raised fluid guide structures 6. From the tube outer side 21, in turn, only part of one of the circumferential, integrally formed ribs 3 is shown.
  • the ribs 3 have a rib foot 31 which attaches to the tube wall 2, rib flanks 32 and a rib tip 33.
  • the ribs 3 protrude radially from the tube wall 2.
  • the rib flanks 32 are provided with additional structural elements which are designed as material projections 4.
  • the fluid guide structures 6 formed formed essentially extend in the axial and radial directions of the tube 1.
  • Fig. 3 two fluid guide surfaces 62 are assigned to each of the material projections 4.
  • the fluid guide surfaces 62 are brought radially from the outside to the material projections 4.
  • the surface of the tube 1 is enlarged by the fluid guide structures 6.
  • the edges of the fluid guide surfaces 62 facing away from the rib flank 32 represent convex edges, on which the liquid fluid is preferably collected and directed to the cavity 5.
  • Fluid guide surfaces 62 shown are flat surfaces. However, surfaces of this type can also be curved in themselves or assume a wavy shape.
  • the axial extent of the fluid guiding surfaces 62 is smaller than the axial extent of the material projections 4. This results in pocket-like structures as recesses 42 on the rib flank 32. Consequently, with a heat exchanger tube 1 designed in this way, liquid fluid can also collect in the pocket-like structures 42 are available for the evaporation process.
  • the surface of the tube 1 is thus specifically covered with liquid fluid. This favors the Evaporation process, which increases the performance of the pipe.
  • Fig. 4 shows a perspective partial view of a rib section of a heat exchanger tube 1 with a plurality of material projections 4. From the tube outside 21, in turn only a part of the circumferential, integrally formed ribs 3 is shown.
  • the material of the integrally worked-out material projections 4 originates primarily from the rib flank 32, recesses 42 being produced by a material shift during the manufacture of the heat exchanger tubes 1.
  • fluid guide structures 6 run as arc segments 61, which rise on the rib flanks 32 0 toward the rib tip.
  • Such fluid guide structures 6 consequently extend from a cavity 5 to the cavity 5 adjacent in the circumferential direction of the ribs 3. As a result, the liquid flows particularly efficiently radially along the rib flank 32 to the cavity 5.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

Die Erfindung betrifft ein metallisches Wärmeaustauscherrohr mit auf der Rohraußenseite umlaufenden Rippen gemäß dem Oberbegriff des Anspruchs 1. Solch ein Wärmeaustauscherrohr ist aus WO2013/087140A1 bekannt.The invention relates to a metallic heat exchanger tube with ribs running around the outside of the tube according to the preamble of claim 1. Such a heat exchanger tube is made of WO2013 / 087140A1 known.

Derartige metallische Wärmeaustauscherrohre dienen insbesondere zur Verdampfung von Flüssigkeiten aus Reinstoffen oder Gemischen auf der Rohraußenseite.Metallic heat exchanger tubes of this type are used in particular for the evaporation of liquids from pure substances or mixtures on the outside of the tube.

Verdampfung tritt in vielen Bereichen der Kälte- und Klimatechnik sowie in der Prozess- und Energietechnik auf. Häufig werden Rohrbündelwärmeaustauscher verwendet, in denen Flüssigkeiten von Reinstoffen oder Mischungen auf der Rohraußenseite verdampfen und dabei auf der Rohrinnenseite Sole oder Wasser abkühlen. Solche Apparate werden als überflutete Verdampfer bezeichnet.Evaporation occurs in many areas of refrigeration and air conditioning technology as well as in process and energy technology. Shell and tube heat exchangers are often used in which liquids of pure substances or mixtures evaporate on the outside of the tube and thereby cool down brine or water on the inside of the tube. Such devices are referred to as flooded evaporators.

Durch die Intensivierung des Wärmeübergangs auf der Rohraußen- bzw. der Rohrinnenseite lässt sich die Größe der Verdampfer stark reduzieren. Hierdurch nehmen die Herstellungskosten solcher Apparate ab. Außerdem sinkt die notwendige Füllmenge an Kältemittel, die bei den heute überwiegend verwendeten, chlorfreien Sicherheitskältemitteln einen nicht zu vernachlässigenden Kostenanteil an den gesamten Anlagekosten ausmachen kann. Bei toxischen oder brennbaren Kältemitteln lässt sich durch eine Reduktion der Füllmenge ferner das Gefahrenpotenzial herabsetzen. Die heute üblichen Hochleistungsrohre sind bereits etwa um den Faktor vier leistungsfähiger als glatte Rohre gleichen Durchmessers.By intensifying the heat transfer on the outside or inside of the tube, the size of the evaporators can be greatly reduced. As a result, the manufacturing costs of such apparatus decrease. In addition, the amount of refrigerant required decreases, which can make up a not insignificant share of the total system costs with the chlorine-free safety refrigerants that are mainly used today. In the case of toxic or flammable refrigerants, the risk potential can also be reduced by reducing the filling quantity. Today's high-performance pipes are already four times more powerful than smooth pipes of the same diameter.

Es ist Stand der Technik, derartig leistungsfähige Rohre auf der Basis von integral gewalzten Rippenrohren herzustellen. Unter integral gewalzten Rippenrohren werden berippte Rohre verstanden, bei denen die Rippen aus dem Wandmaterial eines Glattrohres geformt wurden. Es sind hierbei verschiedene Verfahren bekannt, mit denen die zwischen benachbarten Rippen befindlichen Kanäle derart verschlossen werden, dass Verbindungen zwischen Kanal und Umgebung in Form von Poren oder Schlitzen bleiben. Insbesondere werden solche im Wesentlichen geschlossenen Kanäle durch Umbiegen oder Umlegen der Rippen ( US 3 696 861 A ; US 5 054 548 A ; US 7 178 361 B2 ), durch Spalten und Stauchen der Rippen ( DE 27 58 526 C2 ; US 4 577 381 A ) und durch Kerben und Stauchen der Rippen ( US 4 660 630 A ; EP 0 713 072 B1 ; US 4 216 826 A ) erzeugt.It is state of the art to produce such powerful tubes on the basis of integrally rolled finned tubes. Integrally rolled finned tubes are understood to mean finned tubes in which the fins are made of the wall material a smooth tube were formed. Various methods are known with which the channels located between adjacent ribs are closed in such a way that connections between the channel and the surroundings remain in the form of pores or slots. In particular, such essentially closed channels are formed by bending or folding the ribs ( US 3,696,861 A ; US 5,054,548 A ; US 7 178 361 B2 ), by splitting and compressing the ribs ( DE 27 58 526 C2 ; US 4,577,381 A ) and by notching and compressing the ribs ( US 4,660,630 A ; EP 0 713 072 B1 ; US 4,216,826 A ) generated.

Die leistungsstärksten, kommerziell erhältlichen Rippenrohre für überflutete Verdampfer besitzen auf der Rohraußenseite eine Rippenstruktur mit einer Rippendichte von 55 bis 60 Rippen pro Zoll ( US 5 669 441 A ; US 5 697 430 A ; DE 197 57 526 C1 ). Dies entspricht einer Rippenteilung von ca. 0,45 bis 0,40 mm. Prinzipiell ist es möglich, die Leistungsfähigkeit derartiger Rohre durch eine noch höhere Rippendichte bzw. kleinere Rippenteilung zu verbessern, da hierdurch die Blasenkeimstellendichte erhöht wird. Eine kleinere Rippenteilung erfordert zwangsläufig gleichermaßen feinere Werkzeuge. Feinere Werkzeuge sind jedoch einer höheren Bruchgefahr und einem schnelleren Verschleiß unterworfen. Die derzeit verfügbaren Werkzeuge ermöglichen eine sichere Fertigung von Rippenrohren mit Rippendichten von maximal 60 Rippen pro Zoll. Ferner wird mit abnehmender Rippenteilung die Produktionsgeschwindigkeit der Rohre kleiner und folglich werden die Herstellungskosten höher.The most powerful, commercially available finned tubes for flooded evaporators have a finned structure on the outside of the tube with a fin density of 55 to 60 fins per inch ( US 5,669,441 A ; US 5 697 430 A ; DE 197 57 526 C1 ). This corresponds to a rib pitch of approximately 0.45 to 0.40 mm. In principle, it is possible to improve the performance of such pipes by means of an even higher fin density or smaller fin pitch, since this increases the density of bladder nuclei. A smaller rib division inevitably requires equally fine tools. However, finer tools are subject to a higher risk of breakage and faster wear. The tools currently available enable the safe production of finned tubes with fin densities of up to 60 fins per inch. Furthermore, as the fin pitch decreases, the production speed of the pipes becomes slower, and consequently the manufacturing costs become higher.

Weiterhin ist bekannt, dass leistungsgesteigerte Verdampfungsstrukturen bei gleichbleibender Rippendichte auf der Rohraußenseite erzeugt werden können, indem man zusätzliche Strukturelemente im Bereich des Nutengrundes zwischen den Rippen einbringt. Da im Bereich des Nutengrundes die Temperatur der Rippe höher ist als im Bereich der Rippenspitze, sind Strukturelemente zur Intensivierung der Blasenbildung in diesem Bereich besonders wirkungsvoll. Beispiele hierfür sind in EP 0 222 100 B1 ; US 5 186 252 A ; JP 4 039 596 B2 und US 2007 / 0 151 715 A1 zu finden. Diesen Erfindungen ist gemeinsam, dass die Strukturelemente am Nutengrund keine hinterschnittene Form aufweisen, weshalb sie die Blasenbildung nicht ausreichend intensivieren. In EP 1 223 400 B1 und WO 2014/ 072 047 A1 wird vorgeschlagen, am Nutengrund zwischen den Rippen hinterschnittene Sekundärnuten zu erzeugen, die sich kontinuierlich entlang der Primärnut erstrecken. Der Querschnitt dieser Sekundärnuten kann konstant bleiben oder in regelmäßigen Abständen variiert werden. In WO 2014/ 072 046 A1 wird vorgeschlagen, am Nutengrund zwischen den Rippen pyramindenartige hinterschnittene Strukturelemente zu erzeugen, die in regelmäßigen Abständen entlang der Primärnut angeordnet sind.Furthermore, it is known that increased evaporation structures can be produced on the outside of the tube with a constant fin density by introducing additional structural elements in the area of the groove base between the fins. Since the temperature of the rib is higher in the area of the groove base than in the area of the rib tip, structural elements for intensifying the formation of bubbles in this area are particularly effective. Examples of this are in EP 0 222 100 B1 ; US 5,186,252 A ; JP 4 039 596 B2 and US 2007/0 151 715 A1 to find. These inventions have in common that the structural elements on the base of the groove do not have an undercut shape, which is why they do not intensify the formation of bubbles sufficiently. In EP 1 223 400 B1 and WO 2014/072 047 A1 It is proposed to produce undercut secondary grooves at the bottom of the groove, which extend continuously along the primary groove. The cross-section of these secondary grooves can remain constant or can be varied at regular intervals. In WO 2014/072 046 A1 It is proposed to produce pyramid-like undercut structural elements at the bottom of the groove between the ribs, which are arranged at regular intervals along the primary groove.

Der Erfindung liegt die Aufgabe zugrunde, ein leistungsgesteigertes Wärmeaustauscherrohr zur Verdampfung von Flüssigkeiten auf der Rohraußenseite anzugeben.The invention has for its object to provide a performance-enhanced heat exchanger tube for the evaporation of liquids on the outside of the tube.

Die Erfindung wird durch die Merkmale des Anspruchs 1 wiedergegeben. Die weiteren rückbezogenen Ansprüche betreffen vorteilhafte Aus- und Weiterbildungen der Erfindung.The invention is represented by the features of claim 1. The further back claims relate to advantageous developments and further developments of the invention.

Die Erfindung schließt ein metallisches Wärmeaustauscherrohr ein, umfassend eine Rohrwand und auf der Rohraußenseite umlaufende Rippen, welche einen Rippenfuß, Rippenflanken und eine Rippenspitze haben sowie eine zwischen den Rippen gebildete Primärnut, wobei der Rippenfuß im Wesentlichen radial von der Rohrwand absteht, und die Rippenflanken entlang der Primärnut mit zusätzlichen voneinander beabstandeten Strukturelementen versehen sind, welche als aus Material der Rippenflanke geformte Werkstoffvorsprünge ausgebildet sind, die seitlich an der Rippenflanke angeordnet sind. Die Werkstoffvorsprünge sind derart verformt, dass sie die Rohrwand im Bereich der Primärnut berühren, so dass lokale Kavitäten ausgebildet sind. Die Kavitäten weisen in Umlaufrichtung der Rippen Öffnungen auf.The invention includes a metallic heat exchanger tube, comprising a tube wall and ribs encircling the outside of the tube, which have a rib foot, rib flanks and a rib tip and a primary groove formed between the ribs, the rib foot projecting essentially radially from the tube wall and along the rib flanks the primary groove are provided with additional structural elements spaced apart from one another, which are designed as material projections formed from the material of the rib flank and arranged laterally on the rib flank. The material projections are deformed in such a way that they touch the tube wall in the area of the primary groove, so that local cavities are formed. The cavities have openings in the circumferential direction of the ribs.

Die Erfindung geht dabei von der Überlegung aus, dass zur Erhöhung des Wärmeüberganges bei der Verdampfung der Vorgang des Blasensiedens intensiviert wird. Die Bildung von Blasen beginnt an Keimstellen. Diese Keimstellen sind meist kleine Gas- oder Dampfeinschlüsse. Wenn die anwachsende Blase eine bestimmte Größe erreicht hat, löst sie sich von der Oberfläche ab. Würde im Zuge der Blasenablösung unerwünscht die Keimstelle mit Flüssigkeit geflutet, dann wird die Keimstelle deaktiviert. Die Oberfläche muss also derart gestaltet werden, dass beim Ablösen der Blase eine kleine Blase zurück bleibt, die dann als Keimstelle für einen neuen Zyklus der Blasenbildung dient. Dies wird erreicht, indem man auf der Oberfläche lokale Kavitäten ausbildet, die in Umlaufrichtung der Rippen Öffnungen aufweisen. Durch die Öffnung erfolgt der Austausch von Flüssigkeit und Dampf.The invention is based on the consideration that to increase the heat transfer during the evaporation, the process of bubble boiling is intensified. The formation of bubbles begins at the germination points. These germ sites are mostly small gas or vapor inclusions. When the growing bubble has reached a certain size, it detaches from the surface. If, during the course of the bubble detachment, the germ site was flooded with liquid, the germ site is deactivated. The surface must therefore be designed in such a way that a small bubble remains when the bubble is detached, which then serves as the nucleus for a new cycle of bubble formation. This is achieved by forming local cavities on the surface which have openings in the circumferential direction of the ribs. The liquid and vapor are exchanged through the opening.

Eine Kavität wird aus Material der Rippenflanke gebildet, welches ähnlich einem Span geformt als Werkstoffvorsprung die Rohrwand im Bereich der Primärnut berührt. Im Sonderfall handelt es sich um die stirnseitige Kante, also den von der Rippenflanke im Krümmungsverlauf entferntesten Bereich eines Werkstoffvorsprungs. Mit anderen Worten: Die verformten Werkstoffvorsprünge weisen vorderseitig quasi eine Spitze auf, deren stirnseitigen Kanten oder auch die durch einen denkbaren Einrollvorgang im Herstellungsprozess an diese stirnseitigen Kanten unmittelbar anschließenden Flächenanteile mit der Rohrwand im Bereich der Primärnut in Berührung kommen können. Eine Kavität wird folglich aus dem Werkstoffvorsprung und dem radial innerhalb des Werkstoffvorsprungs verbleibenden Rippenfuß und dem an den Rippenfuß anschließenden Bereich der Primärnut bis zum Kontakt des Werkstoffvorsprungs ausgeformt. Die Werkstoffvorsprünge sind besonders bevorzugt beidseitig an den Rippen angeordnet.A cavity is formed from material of the rib flank which, shaped like a chip, touches the pipe wall in the area of the primary groove as a material projection. In a special case, it is the front edge, i.e. the area of a material projection that is the most distant from the rib flank in the course of the curvature. In other words, the deformed material projections have a point on the front, the front edges of which, or the surface portions directly connected to these front edges by a conceivable rolling process in the manufacturing process, can come into contact with the tube wall in the region of the primary groove. A cavity is consequently formed from the material projection and the rib foot remaining radially within the material projection and the region of the primary groove adjoining the rib foot until the material projection contacts. The material projections are particularly preferably on both sides of the ribs arranged.

Die Länge der Bereiche in Umlaufrichtung zwischen zwei Kavitäten können zwischen 0,2 mm und 0,5 mm betragen. Hierdurch wird eine optimale Abstimmung der aufeinanderfolgenden Kavitäten und dazwischen liegenden Bereiche erzielt.The length of the areas in the circumferential direction between two cavities can be between 0.2 mm and 0.5 mm. In this way, optimal coordination of the successive cavities and the areas in between is achieved.

Zudem können die Rippenspitzen derart verformt sein, dass sie die Primärnuten in Radialrichtung überdecken und teilweise verschließen und so einen helixförmig umlaufenden, teilweise abgeschlossenen Hohlraum bilden. Die Rippenspitzen können dabei beispielsweise einen im Wesentlichen T-förmigen Querschnitt mit porenartigen Ausnehmungen aufweisen, durch welche die Dampfblasen entweichen können.In addition, the rib tips can be deformed in such a way that they cover and partially close off the primary grooves in the radial direction and thus form a helically surrounding, partially closed cavity. The rib tips can have, for example, a substantially T-shaped cross section with pore-like recesses through which the vapor bubbles can escape.

Der besondere Vorteil der Erfindung besteht darin, dass die Wirkung einer Kavität auf die Bildung von Blasen dann besonders groß ist, wenn der Austausch von Flüssigkeit und Dampf gezielt gesteuert und die Flutung der Blasenkeimstelle in der Kavität verhindert wird. Die Lage der Kavitäten in der Nähe des primären Nutengrundes ist für den Verdampfungsprozess besonders günstig, da am Nutengrund die Übertemperatur am größten ist und deshalb dort die höchste treibende Temperaturdifferenz für die Blasenbildung zur Verfügung steht.The particular advantage of the invention is that the effect of a cavity on the formation of bubbles is particularly great if the exchange of liquid and steam is controlled in a targeted manner and the flooding of the bladder germ site in the cavity is prevented. The position of the cavities in the vicinity of the primary groove base is particularly favorable for the evaporation process, since the excess temperature is greatest at the groove base and therefore the highest driving temperature difference is available there for the formation of bubbles.

In bevorzugter Ausgestaltung der Erfindung können die Kavitäten einen zylinderartigen Hohlraum ausbilden. Die Werkstoffvorsprünge können sich mit zunehmender Entfernung von der Rippenflanke zunehmend verformen, so dass sie sich quasi bis zum Kontakt mit der Rohrwand einrollen und sich dadurch eine zylinderförmige Röhre ausbildet. Ein zylinderartiger Hohlraum hat in Umlaufrichtung der Rippen zwei im Wesentlichen gleichgeartete Öffnungen, über die ein Blasenkeim den Verdampfungsprozess eines Fluids unterstützt. Vorteilhafterweise kann die maximale lichte Weite einer Kavität maximal die Hälfte der Längserstreckung der Kavität betragen. Hierdurch werden längliche Hohlräume ausgebildet, die besonders effizient Blasenkeimstellen darstellen und zu einer Erhöhung des Wärmeüberganges bei der Verdampfung beitragen. Wenn die aus der längsgestreckten Kavität anwachsende Blase eine bestimmte Größe erreicht hat, löst sie sich von der Oberfläche ab. Nach der Ablösung wird die längliche Röhre als Keimstelle nur zu einem gewissen Teil mit Flüssigkeit geflutet, wodurch die Keimstelle ständig aktiviert bleibt. Die Dimension des Hohlraums wird folglich derart gestaltet, dass beim Ablösen einer Blase eine kleine Blase zurück bleibt, die dann als Keimstelle für einen neuen Zyklus der Blasenbildung dient.In a preferred embodiment of the invention, the cavities can form a cylindrical cavity. The material projections can deform more and more with increasing distance from the rib flank, so that they curl up to the point of contact with the tube wall and a cylindrical tube is thereby formed. A cylindrical cavity has two openings of the same type in the circumferential direction of the ribs, via which a bubble nuclei supports the evaporation process of a fluid. The maximum clear width of a cavity can advantageously be a maximum of half the longitudinal extent of the cavity. In this way, elongated cavities are formed, which represent bladder germ sites particularly efficiently and contribute to an increase in the heat transfer during evaporation. When the bubble growing from the elongated cavity has reached a certain size, it detaches from the surface. After detachment, the elongated tube as a germ site is only partially flooded with liquid, which means that the germ site remains constantly activated. The dimension of the cavity is consequently designed such that when a bubble is detached, a small bubble remains, which then serves as a nucleus for a new cycle of bubble formation.

In besonders bevorzugter Ausgestaltung können an den Rippenflanken zwischen den Kavitäten Fluidleitstrukturen angeordnet sein. Die im Verdampfungsprozess gebildeten Blasen haben bevorzugt ihren Ursprung in den in Umlaufrichtung der Rippen geöffneten Kavitäten, die Flüssigkeit strömt durch die Fluidleitstrukturen bevorzugt radial entlang der Rippenflanke nahe der verschlossenen Bereiche der Kavität nach. Hierbei wird die entweichende Blase durch das einströmende flüssige Arbeitsmedium nicht behindert und kann sich ungestört in der Primärnut ausdehnen. Die jeweiligen Strömungszonen für die Flüssigkeit und den Dampf sind dabei im Idealfall räumlich voneinander getrennt.In a particularly preferred embodiment, fluid guide structures can be arranged on the rib flanks between the cavities. The bubbles formed in the evaporation process preferably originate in the cavities opened in the circumferential direction of the ribs, and the liquid flows through the fluid guide structures preferably radially along the rib flank near the closed regions of the cavity. The escaping bladder is not hindered by the inflowing liquid working medium and can expand undisturbed in the primary groove. The respective flow zones for the liquid and the vapor are ideally spatially separated from one another.

Bei einer weiteren vorteilhaften Ausführungsform der Erfindung können Fluidleitstrukturen angeordnet sein, welche sich von einer Kavität zur in Umlaufrichtung der Rippen benachbarten Kavität erstrecken. Hierdurch strömt die Flüssigkeit besonders effizient radial entlang der Rippenflanke nach. Die entweichende Blase wird durch das einströmende flüssige Arbeitsmedium nicht behindert und kann sich bis zur Ablösung in der Primärnut ausdehnen. Durch die Fluidleitstrukturen werden die jeweiligen Strömungszonen für die Flüssigkeit und für den Dampf räumlich getrennt.In a further advantageous embodiment of the invention, fluid guide structures can be arranged which extend from one cavity to the cavity adjacent in the circumferential direction of the ribs. As a result, the liquid flows particularly efficiently radially along the rib flank. The escaping bladder is not hindered by the inflowing liquid working medium and can expand in the primary groove until it detaches. The respective flow zones for the liquid and for the vapor are spatially separated by the fluid guide structures.

In weiterer vorteilhafter Ausgestaltung können sich die Fluidleitstrukturen an den Rippenflanken in einem zur Rippenspitze hin ansteigenden erhabenen Bogensegment erstrecken. Durch derartige Fluidleitstrukturen wird das Fluid zu den Kavitäten als Blasenkeimstellen zur Verdampfung hingeführt.In a further advantageous embodiment, the fluid guide structures on the rib flanks can extend in a raised arc segment rising towards the rib tip. Through such fluid guide structures, the fluid is led to the cavities as bubble nuclei for evaporation.

Vorteilhafterweise können sich die Fluidleitstrukturen an den Rippenflanken in radialer Richtung als erhabene Fluidleitflächen erstrecken. Erhabene Fluidleitflächen können aufgrund vergleichsweise scharfer Kanten und des Benetzungsverhaltens des flüssigen Fluids besonders wirksam für einen Stofftransport am Wärmeaustauscherrohr und damit für einen effizienten Wärmeaustausch sorgen.The fluid guide structures on the rib flanks can advantageously extend in the radial direction as raised fluid guide surfaces. Raised fluid guiding surfaces can, due to the comparatively sharp edges and the wetting behavior of the liquid fluid, be particularly effective for mass transfer on the heat exchanger tube and thus for efficient heat exchange.

In bevorzugter Ausführungsform der Erfindung kann eine Fluidleitfläche radial einwärts gerichtet an oder in unmittelbarer Nachbarschaft einer Kavität enden. Derartige Strukturen sorgen für eine gezielte Fluidführung und damit effiziente Wärmeabfuhr auf der Rohraußenseite.In a preferred embodiment of the invention, a fluid guide surface can end directed radially inwards at or in the immediate vicinity of a cavity. Structures of this type ensure targeted fluid guidance and thus efficient heat dissipation on the outside of the pipe.

Vorteilhafterweise kann eine Fluidleitfläche radial auswärts gerichtet an oder in unmittelbarer Nachbarschaft der Rippenspitze enden. So wird bereits, ausgehend vom Bereich der Rippenspitze, das flüssige Fluid für einen Wärmeaustauch an den Rippenflanken entlang radial in Richtung Rohrwand geführt.A fluid guide surface can advantageously end radially outward at or in the immediate vicinity of the rib tip. Thus, starting from the area of the fin tip, the liquid fluid is already guided radially towards the tube wall for heat exchange along the fin flanks.

In weiterer vorteilhafter Ausgestaltung der Erfindung können sich die Fluidleitstrukturen an den Rippenflanken in radialer Richtung auswärts gerichtet maximal bis zur Hälfte der Rippenhöhe erstrecken. Aus fertigungstechnischen Gründen kann die Rippenspitze ausgesprochen schmal ausgebildet sein, wodurch radial einwärts gerichtet eine Rippe erst im mittleren Teil und im Bereich des Rippenfußes eine ausreichende Breite und damit genügend Material aufweist, um aus der Flanke einen Werkstoffvorsprung auszubilden.In a further advantageous embodiment of the invention, the fluid guide structures on the rib flanks can extend outward in the radial direction up to a maximum of half the rib height. For manufacturing reasons, the rib tip can be designed to be extremely narrow, as a result of which, in the radially inward direction, a rib only has a sufficient width and thus sufficient material in the central part and in the region of the rib base in order to form a material projection from the flank.

Ausführungsbeispiele der Erfindung werden anhand der schematischen Zeichnungen näher erläutert.Embodiments of the invention are explained in more detail with reference to the schematic drawings.

Darin zeigen:

Fig. 1
eine perspektivische Teilansicht eines Rippenabschnitts eines Wärmeaustauscherrohres mit Werkstoffvorsprüngen,
Fig. 2
eine Detailansicht eines in Figur 1 dargestellten Werkstoffvorsprungs mit einer gekrümmten Begrenzungsfläche,
Fig. 3
eine perspektivische Teilansicht eines Rippenabschnitts eines Wärmeaustauscherrohres mit Werkstoffvorsprüngen und erhabenen Fluidleitstrukturen, und
Fig.
4 eine weitere perspektivische Teilansicht eines Rippenabschnitts eines Wärmeaustauscherrohres mit Werkstoffvorsprüngen und bogenartigen Fluidleitstrukturen.
In it show:
Fig. 1
2 shows a perspective partial view of a fin section of a heat exchanger tube with material projections,
Fig. 2
a detailed view of an in Figure 1 material projection shown with a curved boundary surface,
Fig. 3
a partial perspective view of a rib portion of a heat exchanger tube with material projections and raised fluid guide structures, and
Fig.
4 shows a further perspective partial view of a rib section of a heat exchanger tube with material projections and arc-like fluid guide structures.

Einander entsprechende Teile sind in allen Figuren mit denselben Bezugszeichen versehen.Corresponding parts are provided with the same reference symbols in all figures.

Fig. 1 zeigt eine perspektivische Teilansicht eines Rippenabschnitts eines Wärmeaustauscherrohres 1 mit vier Werkstoffvorsprüngen 4. Von der Rohraußenseite 21 ist nur ein Teil der umlaufenden, integral ausgeformten Rippen 3 abgebildet. Die Rippen 3 haben einen Rippenfuß 31, der an der Rohrwand 2 ansetzt, Rippenflanken 32 und eine Rippenspitze 33. Die Rippe 3 steht im Wesentlichen radial von der Rohrwand 2 ab. Die Rippenflanken 32 sind mit zusätzlichen Strukturelementen versehen, die als Werkstoffvorsprünge 4 ausgebildet sind, die seitlich an der Rippenflanke 32 ansetzen. Die Werkstoffvorsprünge 4 weisen stirnseitige Spitzen 41 auf, welche die Rohrwand 2 im Bereich der Primärnut 34 berühren. Hierdurch bilden sich zusammen mit dem Rippenfuß 31 Kavitäten 5 aus, welche in Umlaufrichtung U der Rippen Fig. 1 shows a perspective partial view of a rib section of a heat exchanger tube 1 with four material projections 4. From the tube outer side 21, only a part of the circumferential, integrally formed ribs 3 is shown. The ribs 3 have a rib foot 31 which attaches to the tube wall 2, rib flanks 32 and a rib tip 33. The rib 3 projects essentially radially from the tube wall 2. The rib flanks 32 are provided with additional structural elements which are designed as material projections 4 which attach laterally to the rib flank 32. The material projections 4 have tips 41 on the end face which touch the tube wall 2 in the region of the primary groove 34. In this way, together with the rib base 31, cavities 5 form, which are in the direction of rotation U of the ribs

Öffnungen 51, 52 aufweisen. Derartige Kavitäten 5 bilden im Verdampfungsprozess eines Fluids bevorzugt Blasenkeimstellen, welche den Wärmeaustausch fördern.Have openings 51, 52. Such cavities 5 preferably form bubble nuclei in the evaporation process of a fluid, which promote heat exchange.

In der abgebildeten Ausführungsform sind die Begrenzungsflächen der Werkstoffvorsprünge 4 auf der von der Rohrwand 2 abgewandten Seite konvex gekrümmt. Prinzipiell können allerdings bei jedem Werkstoffvorsprung 4 auch andere Begrenzungsflächen mit einer konvexen Krümmung ausgestattet sein. Die übrigen, nicht konvexen Begrenzungsflächen, können entweder eben oder auch konkav ausgestaltet sein. Das Material der integral herausgearbeiteten Werkstoffvorsprünge 4 stammt aus der Rippenflanke 32, wobei durch eine Materialverlagerung bei der Herstellung der Wärmeaustauscherrohre 1 zusätzlich Ausnehmungen 42 in der Rippenflanke 32 entstehen.In the embodiment shown, the boundary surfaces of the material projections 4 are convexly curved on the side facing away from the tube wall 2. In principle, however, other boundary surfaces can also be provided with a convex curvature for each material projection 4. The remaining, non-convex boundary surfaces can either be flat or concave. The material of the integrally worked-out material projections 4 comes from the fin flank 32, with recesses 42 additionally being formed in the fin flank 32 due to a material shift during the manufacture of the heat exchanger tubes 1.

Fig. 2 zeigt eine Detailansicht eines Werkstoffvorsprungs 4 mit einer gekrümmten Begrenzungsfläche und einer Spitze 41, welche die Rohrwand 2 im Bereich der Primärnut 34 berührt. Die aus dem Rippenfuß 31 und der Innenseite der Werkstoffvorsprünge 4 gebildeten Kavität 5 weist einen annähernd zylinderartigen Hohlraum auf. Fig. 2 shows a detailed view of a material projection 4 with a curved boundary surface and a tip 41 which contacts the tube wall 2 in the region of the primary groove 34. The cavity 5 formed from the rib base 31 and the inside of the material projections 4 has an approximately cylindrical cavity.

Die maximale lichte Weite x1 einer Kavität 5 ist wesentlich geringer als die Längserstreckung x2 der Kavität 5. Hierdurch entstehen längliche Hohlräume, die besonders effizient Blasenkeimstellen bilden und zu einer Erhöhung des Wärmeüberganges bei der Verdampfung beitragen. Die Dimension des Hohlraums wird folglich derart gestaltet, dass beim Ablösen einer Blase im Verdampfungsprozess ein kleiner Blasenrest zurück bleibt, der dann als Keimstelle für einen neuen Zyklus der Blasenbildung dient. Im Bereich der Ausnehmung 42 wird im Betrieb flüssiges Fluid bevorzugt angesammelt, wodurch sich vermehrt Flüssigkeit im Bereich des Blasenkeims befindet, welches zur Verdampfung zur Verfügung steht. Bei üblichen Strukturgrößen der erfindungsgemäßen Wärmeaustauscherrohre 1 mit integral gewalzten Rippen 3 liegt die Strukturgröße der Werkstoffvorsprünge 4 und damit auch der Kavitäten 5 typischerweise im Submillimeterbereich.The maximum clear width x 1 of a cavity 5 is significantly smaller than the longitudinal extension x 2 of the cavity 5. This creates elongated cavities which form bubble nuclei particularly efficiently and contribute to an increase in the heat transfer during evaporation. The dimension of the cavity is consequently designed such that when a bubble is detached in the evaporation process, a small bubble residue remains, which then serves as a nucleus for a new cycle of bubble formation. In operation, liquid fluid is preferably accumulated in the area of the recess 42, as a result of which there is an increasing amount of liquid in the area of the bladder germ, which is available for evaporation. With usual structure sizes of Heat exchanger tubes 1 according to the invention with integrally rolled fins 3, the structural size of the material projections 4 and thus also the cavities 5 are typically in the submillimeter range.

Fig. 3 zeigt eine perspektivische Teilansicht eines Rippenabschnitts eines Wärmeaustauscherrohres 1 mit Werkstoffvorsprüngen 4 und erhabenen Fluidleitstrukturen 6. Von der Rohraußenseite 21 ist wiederum nur ein Teil einer der umlaufenden, integral ausgeformten Rippen 3 abgebildet. Die Rippen 3 haben einen Rippenfuß 31, der an der Rohrwand 2 ansetzt, Rippenflanken 32 und eine Rippenspitze 33. Die Rippen 3 stehen radial von der Rohrwand 2 ab. Die Rippenflanken 32 sind mit zusätzlichen Strukturelementen versehen, die als Werkstoffvorsprünge 4 ausgebildet sind. Die ausgebildeten Fluidleitstrukturen 6 erstrecken sich im Wesentlichen in Axial- und Radialrichtung des Rohres 1. Fig. 3 shows a perspective partial view of a rib section of a heat exchanger tube 1 with material projections 4 and raised fluid guide structures 6. From the tube outer side 21, in turn, only part of one of the circumferential, integrally formed ribs 3 is shown. The ribs 3 have a rib foot 31 which attaches to the tube wall 2, rib flanks 32 and a rib tip 33. The ribs 3 protrude radially from the tube wall 2. The rib flanks 32 are provided with additional structural elements which are designed as material projections 4. The fluid guide structures 6 formed essentially extend in the axial and radial directions of the tube 1.

In Fig. 3 sind zu jedem der Werkstoffvorsprünge 4 jeweils zwei Fluidleitflächen 62 zugeordnet. Die Fluidleitflächen 62 sind radial von außen an die Werkstoffvorsprünge 4 herangeführt. Durch die Fluidleitstrukturen 6 wird die Oberfläche des Rohres 1 vergrößert. Ferner stellen die von der Rippenflanke 32 abgewandten Ränder der Fluidleitflächen 62 konvexe Kanten dar, an denen das flüssige Fluid bevorzugt angesammelt und zur Kavität 5 geleitet wird. Die in Fig. 3 dargestellten Fluidleitflächen 62 sind ebene Flächen. Derartige Flächen können jedoch auch in sich gekrümmt sein bzw. auch eine wellige Gestalt annehmen.In Fig. 3 two fluid guide surfaces 62 are assigned to each of the material projections 4. The fluid guide surfaces 62 are brought radially from the outside to the material projections 4. The surface of the tube 1 is enlarged by the fluid guide structures 6. Furthermore, the edges of the fluid guide surfaces 62 facing away from the rib flank 32 represent convex edges, on which the liquid fluid is preferably collected and directed to the cavity 5. In the Fig. 3 Fluid guide surfaces 62 shown are flat surfaces. However, surfaces of this type can also be curved in themselves or assume a wavy shape.

Wie in Fig. 3 zudem dargestellt, ist die axiale Erstreckung der Fluidleitflächen 62 kleiner als die axiale Erstreckung der Werkstoffvorsprünge 4. Dadurch entstehen an der Rippenflanke 32 taschenartige Strukturen als Ausnehmungen 42. Folglich kann sich bei einem so ausgestalteten Wärmeaustauscherrohr 1 zudem flüssiges Fluid in den taschenartigen Strukturen 42 sammeln und zum Verdampfungsprozess zur Verfügung stehen. Es wird die Oberfläche des Rohres 1 damit gezielt mit flüssigem Fluid bedeckt. Dies begünstigt den Verdampfungsprozess, wodurch die Leistungsfähigkeit des Rohres erhöht wird.As in Fig. 3 also shown, the axial extent of the fluid guiding surfaces 62 is smaller than the axial extent of the material projections 4. This results in pocket-like structures as recesses 42 on the rib flank 32. Consequently, with a heat exchanger tube 1 designed in this way, liquid fluid can also collect in the pocket-like structures 42 are available for the evaporation process. The surface of the tube 1 is thus specifically covered with liquid fluid. This favors the Evaporation process, which increases the performance of the pipe.

Fig. 4 zeigt eine perspektivische Teilansicht eines Rippenabschnitts eines Wärmeaustauscherrohres 1 mit mehreren Werkstoffvorsprüngen 4. Von der Rohraußenseite 21 ist wiederum nur ein Teil der umlaufenden, integral ausgeformten Rippen 3 abgebildet. Das Material der integral herausgearbeiteten Werkstoffvorsprünge 4 stammt in erster Linie aus der Rippenflanke 32, wobei durch eine Materialverlagerung bei der Herstellung der Wärmeaustauscherrohre 1 Ausnehmungen 42 entstehen. Ausgehend von diesen Ausnehmungen 42 verlaufen Fluidleitstrukturen 6 als Bogensegmente 61, die an den Rippenflanken 32 0zur Rippenspitze hin ansteigen. Derartige Fluidleitstrukturen 6 erstrecken sich folglich von einer Kavität 5 zur in Umlaufrichtung der Rippen 3 benachbarte Kavität 5. Hierdurch strömt die Flüssigkeit besonders effizient radial entlang der Rippenflanke 32 zur Kavität 5 nach. Fig. 4 shows a perspective partial view of a rib section of a heat exchanger tube 1 with a plurality of material projections 4. From the tube outside 21, in turn only a part of the circumferential, integrally formed ribs 3 is shown. The material of the integrally worked-out material projections 4 originates primarily from the rib flank 32, recesses 42 being produced by a material shift during the manufacture of the heat exchanger tubes 1. Starting from these recesses 42, fluid guide structures 6 run as arc segments 61, which rise on the rib flanks 32 0 toward the rib tip. Such fluid guide structures 6 consequently extend from a cavity 5 to the cavity 5 adjacent in the circumferential direction of the ribs 3. As a result, the liquid flows particularly efficiently radially along the rib flank 32 to the cavity 5.

BezugszeichenlisteReference symbol list

11
WärmeaustauscherrohrHeat exchanger tube
22nd
RohrwandPipe wall
2121st
RohraußenseitePipe outside
2222
RohrinnenseiteInside of the pipe
33rd
Rippe auf der RohraußenseiteRib on the outside of the pipe
3131
RippenfußRib foot
3232
RippenflankeRib flank
3333
RippenspitzeRib tip
3434
PrimärnutPrimary groove
44th
Strukturelement, WerkstoffvorsprungStructural element, material lead
4141
Spitzetop
4242
AusnehmungRecess
55
Kavitätcavity
5151
Öffnungopening
5252
Öffnungopening
66
FluidleitstrukturFluid guide structure
6161
BogensegmentArc segment
6262
FluidleitflächeFluid guide surface
x1 x 1
lichte Weite einer Kavitätclear width of a cavity
x2 x 2
Längserstreckung einer KavitätLongitudinal extension of a cavity
UU
UmlaufrichtungOrbital direction
AA
RohrachsePipe axis

Claims (10)

  1. Metal heat exchanger pipe (1), comprising a pipe wall (2) and ribs (3) which extend round at the pipe outer side (21) and which have a rib base (31), rib flanks (32) and a rib tip (33) and a primary groove (34) which is formed between the ribs, wherein the rib base (31) protrudes substantially radially from the pipe wall (2), and the rib flanks (32) are provided along the primary groove (34) with additional structural elements (4) which are spaced apart from each other and which are constructed as material projections (4) which are formed from the material of the rib flank (32) and which are arranged laterally on the rib flank (32), characterised in that
    - the material projections (4) are deformed in such a manner that they touch the pipe wall (2) in the region of the primary groove (34) so that local cavities (5) are formed, and
    - in that the cavities (5) have openings (51, 52) in the peripheral direction (U) of the ribs.
  2. Metal heat exchanger pipe (1) according to claim 1, characterised in that the cavities (5) form a cylindrical hollow space.
  3. Metal heat exchanger pipe (1) according to claim 1 or claim 2, characterised in that the maximum clear width (x1) of a cavity (5) is a maximum of half of the longitudinal extent (x2) of the cavity (5).
  4. Metal heat exchanger pipe (1) according to any one of claims 1 to 3,
    characterised in that fluid conducting structures (6) are arranged on the rib flanks (32) between the cavities (5).
  5. Metal heat exchanger pipe (1) according to claim 4, characterised in that fluid conducting structures (6) are arranged and extend from a cavity (5) to the adjacent cavity (5) in the peripheral direction (U) of the ribs (3).
  6. Metal heat exchanger pipe (1) according to claim 5, characterised in that the fluid conducting structures (6) extend on the rib flanks (32) in a raised curved segment (61) which climbs in the direction towards the rib tip (33).
  7. Metal heat exchanger pipe (1) according to claim 4, characterised in that the fluid conducting structures (6) extend on the rib flanks (32) in a radial direction as raised fluid conducting faces (62).
  8. Metal heat exchanger pipe (1) according to claim 7, characterised in that a fluid conducting face (62) terminates in a manner directed radially inwards on or in the direct vicinity of a cavity (5).
  9. Metal heat exchanger pipe (1) according to any one of claims 4, 7 or 8, characterised in that a fluid conducting face (62) terminates in a manner directed radially outwards on or in the direct vicinity of the rib tip (33).
  10. Metal heat exchanger pipe (1) according to any one of claims 4 to 8, characterised in that the fluid conducting structures (6) extend in a manner directed outwards in a radial direction on the rib flanks (32) to a maximum extent of up to half the rib height.
EP19000245.1A 2018-06-12 2019-05-17 Metallic heat exchange pipe Active EP3581871B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL19000245T PL3581871T3 (en) 2018-06-12 2019-05-17 Metallic heat exchange pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102018004701.7A DE102018004701A1 (en) 2018-06-12 2018-06-12 Metallic heat exchanger tube

Publications (2)

Publication Number Publication Date
EP3581871A1 EP3581871A1 (en) 2019-12-18
EP3581871B1 true EP3581871B1 (en) 2020-06-24

Family

ID=66624947

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19000245.1A Active EP3581871B1 (en) 2018-06-12 2019-05-17 Metallic heat exchange pipe

Country Status (5)

Country Link
EP (1) EP3581871B1 (en)
DE (1) DE102018004701A1 (en)
HU (1) HUE051946T2 (en)
PL (1) PL3581871T3 (en)
PT (1) PT3581871T (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118149627B (en) * 2024-05-11 2024-07-23 浙江银轮机械股份有限公司 Heat exchange device, inverter cooling system and converter cooling system

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE559831A (en) * 1956-08-06
US3696861A (en) 1970-05-18 1972-10-10 Trane Co Heat transfer surface having a high boiling heat transfer coefficient
DE2808080C2 (en) 1977-02-25 1982-12-30 Furukawa Metals Co., Ltd., Tokyo Heat transfer tube for boiling heat exchangers and process for its manufacture
DE2758526C2 (en) 1977-12-28 1986-03-06 Wieland-Werke Ag, 7900 Ulm Method and device for manufacturing a finned tube
US4577381A (en) 1983-04-01 1986-03-25 Kabushiki Kaisha Kobe Seiko Sho Boiling heat transfer pipes
US4660630A (en) 1985-06-12 1987-04-28 Wolverine Tube, Inc. Heat transfer tube having internal ridges, and method of making same
EP0222100B1 (en) 1985-10-31 1989-08-09 Wieland-Werke Ag Finned tube with a notched groove bottom and method for making it
US5054548A (en) 1990-10-24 1991-10-08 Carrier Corporation High performance heat transfer surface for high pressure refrigerants
JP2788793B2 (en) 1991-01-14 1998-08-20 古河電気工業株式会社 Heat transfer tube
JP2854751B2 (en) * 1992-03-12 1999-02-03 株式会社神戸製鋼所 Method of manufacturing heat exchanger tube for heat exchanger
EP0713072B1 (en) 1994-11-17 2002-02-27 Carrier Corporation Heat transfer tube
US5697430A (en) 1995-04-04 1997-12-16 Wolverine Tube, Inc. Heat transfer tubes and methods of fabrication thereof
DE19757526C1 (en) 1997-12-23 1999-04-29 Wieland Werke Ag Heat exchanger tube manufacturing method
JP4039596B2 (en) 1998-10-06 2008-01-30 株式会社サンセイアールアンドディ Pachinko machine
DE10101589C1 (en) 2001-01-16 2002-08-08 Wieland Werke Ag Heat exchanger tube and process for its production
US20040010913A1 (en) 2002-04-19 2004-01-22 Petur Thors Heat transfer tubes, including methods of fabrication and use thereof
CN100365369C (en) * 2005-08-09 2008-01-30 江苏萃隆铜业有限公司 Heat exchange tube of evaporator
CN100437011C (en) * 2005-12-13 2008-11-26 金龙精密铜管集团股份有限公司 Flooded copper-evaporating heat-exchanging pipe for electric refrigerator set
DE102009021334A1 (en) * 2009-05-14 2010-11-18 Wieland-Werke Ag Metallic heat exchanger tube
DE102011121436A1 (en) * 2011-12-16 2013-06-20 Wieland-Werke Ag Condenser tubes with additional flank structure
CN102980431A (en) * 2012-11-12 2013-03-20 沃林/维兰德传热技术有限责任公司 Evaporation heat-transfer pipe
CN102980432A (en) * 2012-11-12 2013-03-20 沃林/维兰德传热技术有限责任公司 Evaporation heat transfer pipe with hollow cavity body

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3581871A1 (en) 2019-12-18
HUE051946T2 (en) 2021-03-29
PT3581871T (en) 2020-08-28
DE102018004701A1 (en) 2019-12-12
PL3581871T3 (en) 2020-12-14

Similar Documents

Publication Publication Date Title
DE10101589C1 (en) Heat exchanger tube and process for its production
DE102009007446B4 (en) Heat exchanger tube and method for its production
DE4404357C1 (en) Heat exchange core for condensing vapour (steam)
EP2795233B1 (en) Evaporator pipe with optimised external structure
EP2339283B1 (en) Heat transfer pipe and method for manufacturing same
EP2101136B1 (en) Metallic heat exchanger tube
EP2253922B1 (en) Metallic heat exchange pipe
EP3111153B1 (en) Metal heat exchanger tube
EP3581871B1 (en) Metallic heat exchange pipe
EP2791609B1 (en) Condenser tubes with additional flank structure
EP3465057B1 (en) Heat exchanger tube
EP3465056B1 (en) Heat exchanger tube
EP3465055B1 (en) Heat exchanger tube
EP4237782B1 (en) Metal heat exchanger tube
EP4237781B1 (en) Metal heat exchanger tube

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190812

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200131

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019000066

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1284311

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 3581871

Country of ref document: PT

Date of ref document: 20200828

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20200818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200924

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200925

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200924

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201024

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019000066

Country of ref document: DE

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E051946

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210517

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210517

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230517

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230517

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20240312

Year of fee payment: 6

Ref country code: FR

Payment date: 20240308

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240531

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240411

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20240516

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20240426

Year of fee payment: 6

Ref country code: HU

Payment date: 20240410

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624